memory.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <asm/io.h>
  55. #include <asm/pgalloc.h>
  56. #include <asm/uaccess.h>
  57. #include <asm/tlb.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/pgtable.h>
  60. #include "internal.h"
  61. #ifndef CONFIG_NEED_MULTIPLE_NODES
  62. /* use the per-pgdat data instead for discontigmem - mbligh */
  63. unsigned long max_mapnr;
  64. struct page *mem_map;
  65. EXPORT_SYMBOL(max_mapnr);
  66. EXPORT_SYMBOL(mem_map);
  67. #endif
  68. unsigned long num_physpages;
  69. /*
  70. * A number of key systems in x86 including ioremap() rely on the assumption
  71. * that high_memory defines the upper bound on direct map memory, then end
  72. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  73. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  74. * and ZONE_HIGHMEM.
  75. */
  76. void * high_memory;
  77. EXPORT_SYMBOL(num_physpages);
  78. EXPORT_SYMBOL(high_memory);
  79. /*
  80. * Randomize the address space (stacks, mmaps, brk, etc.).
  81. *
  82. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  83. * as ancient (libc5 based) binaries can segfault. )
  84. */
  85. int randomize_va_space __read_mostly =
  86. #ifdef CONFIG_COMPAT_BRK
  87. 1;
  88. #else
  89. 2;
  90. #endif
  91. static int __init disable_randmaps(char *s)
  92. {
  93. randomize_va_space = 0;
  94. return 1;
  95. }
  96. __setup("norandmaps", disable_randmaps);
  97. unsigned long zero_pfn __read_mostly;
  98. /*
  99. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  100. */
  101. static int __init init_zero_pfn(void)
  102. {
  103. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  104. return 0;
  105. }
  106. core_initcall(init_zero_pfn);
  107. /*
  108. * If a p?d_bad entry is found while walking page tables, report
  109. * the error, before resetting entry to p?d_none. Usually (but
  110. * very seldom) called out from the p?d_none_or_clear_bad macros.
  111. */
  112. void pgd_clear_bad(pgd_t *pgd)
  113. {
  114. pgd_ERROR(*pgd);
  115. pgd_clear(pgd);
  116. }
  117. void pud_clear_bad(pud_t *pud)
  118. {
  119. pud_ERROR(*pud);
  120. pud_clear(pud);
  121. }
  122. void pmd_clear_bad(pmd_t *pmd)
  123. {
  124. pmd_ERROR(*pmd);
  125. pmd_clear(pmd);
  126. }
  127. /*
  128. * Note: this doesn't free the actual pages themselves. That
  129. * has been handled earlier when unmapping all the memory regions.
  130. */
  131. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  132. unsigned long addr)
  133. {
  134. pgtable_t token = pmd_pgtable(*pmd);
  135. pmd_clear(pmd);
  136. pte_free_tlb(tlb, token, addr);
  137. tlb->mm->nr_ptes--;
  138. }
  139. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  140. unsigned long addr, unsigned long end,
  141. unsigned long floor, unsigned long ceiling)
  142. {
  143. pmd_t *pmd;
  144. unsigned long next;
  145. unsigned long start;
  146. start = addr;
  147. pmd = pmd_offset(pud, addr);
  148. do {
  149. next = pmd_addr_end(addr, end);
  150. if (pmd_none_or_clear_bad(pmd))
  151. continue;
  152. free_pte_range(tlb, pmd, addr);
  153. } while (pmd++, addr = next, addr != end);
  154. start &= PUD_MASK;
  155. if (start < floor)
  156. return;
  157. if (ceiling) {
  158. ceiling &= PUD_MASK;
  159. if (!ceiling)
  160. return;
  161. }
  162. if (end - 1 > ceiling - 1)
  163. return;
  164. pmd = pmd_offset(pud, start);
  165. pud_clear(pud);
  166. pmd_free_tlb(tlb, pmd, start);
  167. }
  168. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  169. unsigned long addr, unsigned long end,
  170. unsigned long floor, unsigned long ceiling)
  171. {
  172. pud_t *pud;
  173. unsigned long next;
  174. unsigned long start;
  175. start = addr;
  176. pud = pud_offset(pgd, addr);
  177. do {
  178. next = pud_addr_end(addr, end);
  179. if (pud_none_or_clear_bad(pud))
  180. continue;
  181. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  182. } while (pud++, addr = next, addr != end);
  183. start &= PGDIR_MASK;
  184. if (start < floor)
  185. return;
  186. if (ceiling) {
  187. ceiling &= PGDIR_MASK;
  188. if (!ceiling)
  189. return;
  190. }
  191. if (end - 1 > ceiling - 1)
  192. return;
  193. pud = pud_offset(pgd, start);
  194. pgd_clear(pgd);
  195. pud_free_tlb(tlb, pud, start);
  196. }
  197. /*
  198. * This function frees user-level page tables of a process.
  199. *
  200. * Must be called with pagetable lock held.
  201. */
  202. void free_pgd_range(struct mmu_gather *tlb,
  203. unsigned long addr, unsigned long end,
  204. unsigned long floor, unsigned long ceiling)
  205. {
  206. pgd_t *pgd;
  207. unsigned long next;
  208. unsigned long start;
  209. /*
  210. * The next few lines have given us lots of grief...
  211. *
  212. * Why are we testing PMD* at this top level? Because often
  213. * there will be no work to do at all, and we'd prefer not to
  214. * go all the way down to the bottom just to discover that.
  215. *
  216. * Why all these "- 1"s? Because 0 represents both the bottom
  217. * of the address space and the top of it (using -1 for the
  218. * top wouldn't help much: the masks would do the wrong thing).
  219. * The rule is that addr 0 and floor 0 refer to the bottom of
  220. * the address space, but end 0 and ceiling 0 refer to the top
  221. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  222. * that end 0 case should be mythical).
  223. *
  224. * Wherever addr is brought up or ceiling brought down, we must
  225. * be careful to reject "the opposite 0" before it confuses the
  226. * subsequent tests. But what about where end is brought down
  227. * by PMD_SIZE below? no, end can't go down to 0 there.
  228. *
  229. * Whereas we round start (addr) and ceiling down, by different
  230. * masks at different levels, in order to test whether a table
  231. * now has no other vmas using it, so can be freed, we don't
  232. * bother to round floor or end up - the tests don't need that.
  233. */
  234. addr &= PMD_MASK;
  235. if (addr < floor) {
  236. addr += PMD_SIZE;
  237. if (!addr)
  238. return;
  239. }
  240. if (ceiling) {
  241. ceiling &= PMD_MASK;
  242. if (!ceiling)
  243. return;
  244. }
  245. if (end - 1 > ceiling - 1)
  246. end -= PMD_SIZE;
  247. if (addr > end - 1)
  248. return;
  249. start = addr;
  250. pgd = pgd_offset(tlb->mm, addr);
  251. do {
  252. next = pgd_addr_end(addr, end);
  253. if (pgd_none_or_clear_bad(pgd))
  254. continue;
  255. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  256. } while (pgd++, addr = next, addr != end);
  257. }
  258. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  259. unsigned long floor, unsigned long ceiling)
  260. {
  261. while (vma) {
  262. struct vm_area_struct *next = vma->vm_next;
  263. unsigned long addr = vma->vm_start;
  264. /*
  265. * Hide vma from rmap and vmtruncate before freeing pgtables
  266. */
  267. anon_vma_unlink(vma);
  268. unlink_file_vma(vma);
  269. if (is_vm_hugetlb_page(vma)) {
  270. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  271. floor, next? next->vm_start: ceiling);
  272. } else {
  273. /*
  274. * Optimization: gather nearby vmas into one call down
  275. */
  276. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  277. && !is_vm_hugetlb_page(next)) {
  278. vma = next;
  279. next = vma->vm_next;
  280. anon_vma_unlink(vma);
  281. unlink_file_vma(vma);
  282. }
  283. free_pgd_range(tlb, addr, vma->vm_end,
  284. floor, next? next->vm_start: ceiling);
  285. }
  286. vma = next;
  287. }
  288. }
  289. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  290. {
  291. pgtable_t new = pte_alloc_one(mm, address);
  292. if (!new)
  293. return -ENOMEM;
  294. /*
  295. * Ensure all pte setup (eg. pte page lock and page clearing) are
  296. * visible before the pte is made visible to other CPUs by being
  297. * put into page tables.
  298. *
  299. * The other side of the story is the pointer chasing in the page
  300. * table walking code (when walking the page table without locking;
  301. * ie. most of the time). Fortunately, these data accesses consist
  302. * of a chain of data-dependent loads, meaning most CPUs (alpha
  303. * being the notable exception) will already guarantee loads are
  304. * seen in-order. See the alpha page table accessors for the
  305. * smp_read_barrier_depends() barriers in page table walking code.
  306. */
  307. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  308. spin_lock(&mm->page_table_lock);
  309. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  310. mm->nr_ptes++;
  311. pmd_populate(mm, pmd, new);
  312. new = NULL;
  313. }
  314. spin_unlock(&mm->page_table_lock);
  315. if (new)
  316. pte_free(mm, new);
  317. return 0;
  318. }
  319. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  320. {
  321. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  322. if (!new)
  323. return -ENOMEM;
  324. smp_wmb(); /* See comment in __pte_alloc */
  325. spin_lock(&init_mm.page_table_lock);
  326. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  327. pmd_populate_kernel(&init_mm, pmd, new);
  328. new = NULL;
  329. }
  330. spin_unlock(&init_mm.page_table_lock);
  331. if (new)
  332. pte_free_kernel(&init_mm, new);
  333. return 0;
  334. }
  335. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  336. {
  337. if (file_rss)
  338. add_mm_counter(mm, file_rss, file_rss);
  339. if (anon_rss)
  340. add_mm_counter(mm, anon_rss, anon_rss);
  341. }
  342. /*
  343. * This function is called to print an error when a bad pte
  344. * is found. For example, we might have a PFN-mapped pte in
  345. * a region that doesn't allow it.
  346. *
  347. * The calling function must still handle the error.
  348. */
  349. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  350. pte_t pte, struct page *page)
  351. {
  352. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  353. pud_t *pud = pud_offset(pgd, addr);
  354. pmd_t *pmd = pmd_offset(pud, addr);
  355. struct address_space *mapping;
  356. pgoff_t index;
  357. static unsigned long resume;
  358. static unsigned long nr_shown;
  359. static unsigned long nr_unshown;
  360. /*
  361. * Allow a burst of 60 reports, then keep quiet for that minute;
  362. * or allow a steady drip of one report per second.
  363. */
  364. if (nr_shown == 60) {
  365. if (time_before(jiffies, resume)) {
  366. nr_unshown++;
  367. return;
  368. }
  369. if (nr_unshown) {
  370. printk(KERN_ALERT
  371. "BUG: Bad page map: %lu messages suppressed\n",
  372. nr_unshown);
  373. nr_unshown = 0;
  374. }
  375. nr_shown = 0;
  376. }
  377. if (nr_shown++ == 0)
  378. resume = jiffies + 60 * HZ;
  379. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  380. index = linear_page_index(vma, addr);
  381. printk(KERN_ALERT
  382. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  383. current->comm,
  384. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  385. if (page) {
  386. printk(KERN_ALERT
  387. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  388. page, (void *)page->flags, page_count(page),
  389. page_mapcount(page), page->mapping, page->index);
  390. }
  391. printk(KERN_ALERT
  392. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  393. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  394. /*
  395. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  396. */
  397. if (vma->vm_ops)
  398. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  399. (unsigned long)vma->vm_ops->fault);
  400. if (vma->vm_file && vma->vm_file->f_op)
  401. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  402. (unsigned long)vma->vm_file->f_op->mmap);
  403. dump_stack();
  404. add_taint(TAINT_BAD_PAGE);
  405. }
  406. static inline int is_cow_mapping(unsigned int flags)
  407. {
  408. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  409. }
  410. #ifndef is_zero_pfn
  411. static inline int is_zero_pfn(unsigned long pfn)
  412. {
  413. return pfn == zero_pfn;
  414. }
  415. #endif
  416. #ifndef my_zero_pfn
  417. static inline unsigned long my_zero_pfn(unsigned long addr)
  418. {
  419. return zero_pfn;
  420. }
  421. #endif
  422. /*
  423. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  424. *
  425. * "Special" mappings do not wish to be associated with a "struct page" (either
  426. * it doesn't exist, or it exists but they don't want to touch it). In this
  427. * case, NULL is returned here. "Normal" mappings do have a struct page.
  428. *
  429. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  430. * pte bit, in which case this function is trivial. Secondly, an architecture
  431. * may not have a spare pte bit, which requires a more complicated scheme,
  432. * described below.
  433. *
  434. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  435. * special mapping (even if there are underlying and valid "struct pages").
  436. * COWed pages of a VM_PFNMAP are always normal.
  437. *
  438. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  439. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  440. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  441. * mapping will always honor the rule
  442. *
  443. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  444. *
  445. * And for normal mappings this is false.
  446. *
  447. * This restricts such mappings to be a linear translation from virtual address
  448. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  449. * as the vma is not a COW mapping; in that case, we know that all ptes are
  450. * special (because none can have been COWed).
  451. *
  452. *
  453. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  454. *
  455. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  456. * page" backing, however the difference is that _all_ pages with a struct
  457. * page (that is, those where pfn_valid is true) are refcounted and considered
  458. * normal pages by the VM. The disadvantage is that pages are refcounted
  459. * (which can be slower and simply not an option for some PFNMAP users). The
  460. * advantage is that we don't have to follow the strict linearity rule of
  461. * PFNMAP mappings in order to support COWable mappings.
  462. *
  463. */
  464. #ifdef __HAVE_ARCH_PTE_SPECIAL
  465. # define HAVE_PTE_SPECIAL 1
  466. #else
  467. # define HAVE_PTE_SPECIAL 0
  468. #endif
  469. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  470. pte_t pte)
  471. {
  472. unsigned long pfn = pte_pfn(pte);
  473. if (HAVE_PTE_SPECIAL) {
  474. if (likely(!pte_special(pte)))
  475. goto check_pfn;
  476. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  477. return NULL;
  478. if (!is_zero_pfn(pfn))
  479. print_bad_pte(vma, addr, pte, NULL);
  480. return NULL;
  481. }
  482. /* !HAVE_PTE_SPECIAL case follows: */
  483. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  484. if (vma->vm_flags & VM_MIXEDMAP) {
  485. if (!pfn_valid(pfn))
  486. return NULL;
  487. goto out;
  488. } else {
  489. unsigned long off;
  490. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  491. if (pfn == vma->vm_pgoff + off)
  492. return NULL;
  493. if (!is_cow_mapping(vma->vm_flags))
  494. return NULL;
  495. }
  496. }
  497. if (is_zero_pfn(pfn))
  498. return NULL;
  499. check_pfn:
  500. if (unlikely(pfn > highest_memmap_pfn)) {
  501. print_bad_pte(vma, addr, pte, NULL);
  502. return NULL;
  503. }
  504. /*
  505. * NOTE! We still have PageReserved() pages in the page tables.
  506. * eg. VDSO mappings can cause them to exist.
  507. */
  508. out:
  509. return pfn_to_page(pfn);
  510. }
  511. /*
  512. * copy one vm_area from one task to the other. Assumes the page tables
  513. * already present in the new task to be cleared in the whole range
  514. * covered by this vma.
  515. */
  516. static inline void
  517. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  518. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  519. unsigned long addr, int *rss)
  520. {
  521. unsigned long vm_flags = vma->vm_flags;
  522. pte_t pte = *src_pte;
  523. struct page *page;
  524. /* pte contains position in swap or file, so copy. */
  525. if (unlikely(!pte_present(pte))) {
  526. if (!pte_file(pte)) {
  527. swp_entry_t entry = pte_to_swp_entry(pte);
  528. swap_duplicate(entry);
  529. /* make sure dst_mm is on swapoff's mmlist. */
  530. if (unlikely(list_empty(&dst_mm->mmlist))) {
  531. spin_lock(&mmlist_lock);
  532. if (list_empty(&dst_mm->mmlist))
  533. list_add(&dst_mm->mmlist,
  534. &src_mm->mmlist);
  535. spin_unlock(&mmlist_lock);
  536. }
  537. if (is_write_migration_entry(entry) &&
  538. is_cow_mapping(vm_flags)) {
  539. /*
  540. * COW mappings require pages in both parent
  541. * and child to be set to read.
  542. */
  543. make_migration_entry_read(&entry);
  544. pte = swp_entry_to_pte(entry);
  545. set_pte_at(src_mm, addr, src_pte, pte);
  546. }
  547. }
  548. goto out_set_pte;
  549. }
  550. /*
  551. * If it's a COW mapping, write protect it both
  552. * in the parent and the child
  553. */
  554. if (is_cow_mapping(vm_flags)) {
  555. ptep_set_wrprotect(src_mm, addr, src_pte);
  556. pte = pte_wrprotect(pte);
  557. }
  558. /*
  559. * If it's a shared mapping, mark it clean in
  560. * the child
  561. */
  562. if (vm_flags & VM_SHARED)
  563. pte = pte_mkclean(pte);
  564. pte = pte_mkold(pte);
  565. page = vm_normal_page(vma, addr, pte);
  566. if (page) {
  567. get_page(page);
  568. page_dup_rmap(page);
  569. rss[PageAnon(page)]++;
  570. }
  571. out_set_pte:
  572. set_pte_at(dst_mm, addr, dst_pte, pte);
  573. }
  574. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  575. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  576. unsigned long addr, unsigned long end)
  577. {
  578. pte_t *src_pte, *dst_pte;
  579. spinlock_t *src_ptl, *dst_ptl;
  580. int progress = 0;
  581. int rss[2];
  582. again:
  583. rss[1] = rss[0] = 0;
  584. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  585. if (!dst_pte)
  586. return -ENOMEM;
  587. src_pte = pte_offset_map_nested(src_pmd, addr);
  588. src_ptl = pte_lockptr(src_mm, src_pmd);
  589. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  590. arch_enter_lazy_mmu_mode();
  591. do {
  592. /*
  593. * We are holding two locks at this point - either of them
  594. * could generate latencies in another task on another CPU.
  595. */
  596. if (progress >= 32) {
  597. progress = 0;
  598. if (need_resched() ||
  599. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  600. break;
  601. }
  602. if (pte_none(*src_pte)) {
  603. progress++;
  604. continue;
  605. }
  606. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  607. progress += 8;
  608. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  609. arch_leave_lazy_mmu_mode();
  610. spin_unlock(src_ptl);
  611. pte_unmap_nested(src_pte - 1);
  612. add_mm_rss(dst_mm, rss[0], rss[1]);
  613. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  614. cond_resched();
  615. if (addr != end)
  616. goto again;
  617. return 0;
  618. }
  619. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  620. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  621. unsigned long addr, unsigned long end)
  622. {
  623. pmd_t *src_pmd, *dst_pmd;
  624. unsigned long next;
  625. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  626. if (!dst_pmd)
  627. return -ENOMEM;
  628. src_pmd = pmd_offset(src_pud, addr);
  629. do {
  630. next = pmd_addr_end(addr, end);
  631. if (pmd_none_or_clear_bad(src_pmd))
  632. continue;
  633. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  634. vma, addr, next))
  635. return -ENOMEM;
  636. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  637. return 0;
  638. }
  639. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  640. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  641. unsigned long addr, unsigned long end)
  642. {
  643. pud_t *src_pud, *dst_pud;
  644. unsigned long next;
  645. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  646. if (!dst_pud)
  647. return -ENOMEM;
  648. src_pud = pud_offset(src_pgd, addr);
  649. do {
  650. next = pud_addr_end(addr, end);
  651. if (pud_none_or_clear_bad(src_pud))
  652. continue;
  653. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  654. vma, addr, next))
  655. return -ENOMEM;
  656. } while (dst_pud++, src_pud++, addr = next, addr != end);
  657. return 0;
  658. }
  659. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  660. struct vm_area_struct *vma)
  661. {
  662. pgd_t *src_pgd, *dst_pgd;
  663. unsigned long next;
  664. unsigned long addr = vma->vm_start;
  665. unsigned long end = vma->vm_end;
  666. int ret;
  667. /*
  668. * Don't copy ptes where a page fault will fill them correctly.
  669. * Fork becomes much lighter when there are big shared or private
  670. * readonly mappings. The tradeoff is that copy_page_range is more
  671. * efficient than faulting.
  672. */
  673. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  674. if (!vma->anon_vma)
  675. return 0;
  676. }
  677. if (is_vm_hugetlb_page(vma))
  678. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  679. if (unlikely(is_pfn_mapping(vma))) {
  680. /*
  681. * We do not free on error cases below as remove_vma
  682. * gets called on error from higher level routine
  683. */
  684. ret = track_pfn_vma_copy(vma);
  685. if (ret)
  686. return ret;
  687. }
  688. /*
  689. * We need to invalidate the secondary MMU mappings only when
  690. * there could be a permission downgrade on the ptes of the
  691. * parent mm. And a permission downgrade will only happen if
  692. * is_cow_mapping() returns true.
  693. */
  694. if (is_cow_mapping(vma->vm_flags))
  695. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  696. ret = 0;
  697. dst_pgd = pgd_offset(dst_mm, addr);
  698. src_pgd = pgd_offset(src_mm, addr);
  699. do {
  700. next = pgd_addr_end(addr, end);
  701. if (pgd_none_or_clear_bad(src_pgd))
  702. continue;
  703. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  704. vma, addr, next))) {
  705. ret = -ENOMEM;
  706. break;
  707. }
  708. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  709. if (is_cow_mapping(vma->vm_flags))
  710. mmu_notifier_invalidate_range_end(src_mm,
  711. vma->vm_start, end);
  712. return ret;
  713. }
  714. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  715. struct vm_area_struct *vma, pmd_t *pmd,
  716. unsigned long addr, unsigned long end,
  717. long *zap_work, struct zap_details *details)
  718. {
  719. struct mm_struct *mm = tlb->mm;
  720. pte_t *pte;
  721. spinlock_t *ptl;
  722. int file_rss = 0;
  723. int anon_rss = 0;
  724. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  725. arch_enter_lazy_mmu_mode();
  726. do {
  727. pte_t ptent = *pte;
  728. if (pte_none(ptent)) {
  729. (*zap_work)--;
  730. continue;
  731. }
  732. (*zap_work) -= PAGE_SIZE;
  733. if (pte_present(ptent)) {
  734. struct page *page;
  735. page = vm_normal_page(vma, addr, ptent);
  736. if (unlikely(details) && page) {
  737. /*
  738. * unmap_shared_mapping_pages() wants to
  739. * invalidate cache without truncating:
  740. * unmap shared but keep private pages.
  741. */
  742. if (details->check_mapping &&
  743. details->check_mapping != page->mapping)
  744. continue;
  745. /*
  746. * Each page->index must be checked when
  747. * invalidating or truncating nonlinear.
  748. */
  749. if (details->nonlinear_vma &&
  750. (page->index < details->first_index ||
  751. page->index > details->last_index))
  752. continue;
  753. }
  754. ptent = ptep_get_and_clear_full(mm, addr, pte,
  755. tlb->fullmm);
  756. tlb_remove_tlb_entry(tlb, pte, addr);
  757. if (unlikely(!page))
  758. continue;
  759. if (unlikely(details) && details->nonlinear_vma
  760. && linear_page_index(details->nonlinear_vma,
  761. addr) != page->index)
  762. set_pte_at(mm, addr, pte,
  763. pgoff_to_pte(page->index));
  764. if (PageAnon(page))
  765. anon_rss--;
  766. else {
  767. if (pte_dirty(ptent))
  768. set_page_dirty(page);
  769. if (pte_young(ptent) &&
  770. likely(!VM_SequentialReadHint(vma)))
  771. mark_page_accessed(page);
  772. file_rss--;
  773. }
  774. page_remove_rmap(page);
  775. if (unlikely(page_mapcount(page) < 0))
  776. print_bad_pte(vma, addr, ptent, page);
  777. tlb_remove_page(tlb, page);
  778. continue;
  779. }
  780. /*
  781. * If details->check_mapping, we leave swap entries;
  782. * if details->nonlinear_vma, we leave file entries.
  783. */
  784. if (unlikely(details))
  785. continue;
  786. if (pte_file(ptent)) {
  787. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  788. print_bad_pte(vma, addr, ptent, NULL);
  789. } else if
  790. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  791. print_bad_pte(vma, addr, ptent, NULL);
  792. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  793. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  794. add_mm_rss(mm, file_rss, anon_rss);
  795. arch_leave_lazy_mmu_mode();
  796. pte_unmap_unlock(pte - 1, ptl);
  797. return addr;
  798. }
  799. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  800. struct vm_area_struct *vma, pud_t *pud,
  801. unsigned long addr, unsigned long end,
  802. long *zap_work, struct zap_details *details)
  803. {
  804. pmd_t *pmd;
  805. unsigned long next;
  806. pmd = pmd_offset(pud, addr);
  807. do {
  808. next = pmd_addr_end(addr, end);
  809. if (pmd_none_or_clear_bad(pmd)) {
  810. (*zap_work)--;
  811. continue;
  812. }
  813. next = zap_pte_range(tlb, vma, pmd, addr, next,
  814. zap_work, details);
  815. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  816. return addr;
  817. }
  818. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  819. struct vm_area_struct *vma, pgd_t *pgd,
  820. unsigned long addr, unsigned long end,
  821. long *zap_work, struct zap_details *details)
  822. {
  823. pud_t *pud;
  824. unsigned long next;
  825. pud = pud_offset(pgd, addr);
  826. do {
  827. next = pud_addr_end(addr, end);
  828. if (pud_none_or_clear_bad(pud)) {
  829. (*zap_work)--;
  830. continue;
  831. }
  832. next = zap_pmd_range(tlb, vma, pud, addr, next,
  833. zap_work, details);
  834. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  835. return addr;
  836. }
  837. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  838. struct vm_area_struct *vma,
  839. unsigned long addr, unsigned long end,
  840. long *zap_work, struct zap_details *details)
  841. {
  842. pgd_t *pgd;
  843. unsigned long next;
  844. if (details && !details->check_mapping && !details->nonlinear_vma)
  845. details = NULL;
  846. BUG_ON(addr >= end);
  847. tlb_start_vma(tlb, vma);
  848. pgd = pgd_offset(vma->vm_mm, addr);
  849. do {
  850. next = pgd_addr_end(addr, end);
  851. if (pgd_none_or_clear_bad(pgd)) {
  852. (*zap_work)--;
  853. continue;
  854. }
  855. next = zap_pud_range(tlb, vma, pgd, addr, next,
  856. zap_work, details);
  857. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  858. tlb_end_vma(tlb, vma);
  859. return addr;
  860. }
  861. #ifdef CONFIG_PREEMPT
  862. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  863. #else
  864. /* No preempt: go for improved straight-line efficiency */
  865. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  866. #endif
  867. /**
  868. * unmap_vmas - unmap a range of memory covered by a list of vma's
  869. * @tlbp: address of the caller's struct mmu_gather
  870. * @vma: the starting vma
  871. * @start_addr: virtual address at which to start unmapping
  872. * @end_addr: virtual address at which to end unmapping
  873. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  874. * @details: details of nonlinear truncation or shared cache invalidation
  875. *
  876. * Returns the end address of the unmapping (restart addr if interrupted).
  877. *
  878. * Unmap all pages in the vma list.
  879. *
  880. * We aim to not hold locks for too long (for scheduling latency reasons).
  881. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  882. * return the ending mmu_gather to the caller.
  883. *
  884. * Only addresses between `start' and `end' will be unmapped.
  885. *
  886. * The VMA list must be sorted in ascending virtual address order.
  887. *
  888. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  889. * range after unmap_vmas() returns. So the only responsibility here is to
  890. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  891. * drops the lock and schedules.
  892. */
  893. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  894. struct vm_area_struct *vma, unsigned long start_addr,
  895. unsigned long end_addr, unsigned long *nr_accounted,
  896. struct zap_details *details)
  897. {
  898. long zap_work = ZAP_BLOCK_SIZE;
  899. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  900. int tlb_start_valid = 0;
  901. unsigned long start = start_addr;
  902. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  903. int fullmm = (*tlbp)->fullmm;
  904. struct mm_struct *mm = vma->vm_mm;
  905. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  906. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  907. unsigned long end;
  908. start = max(vma->vm_start, start_addr);
  909. if (start >= vma->vm_end)
  910. continue;
  911. end = min(vma->vm_end, end_addr);
  912. if (end <= vma->vm_start)
  913. continue;
  914. if (vma->vm_flags & VM_ACCOUNT)
  915. *nr_accounted += (end - start) >> PAGE_SHIFT;
  916. if (unlikely(is_pfn_mapping(vma)))
  917. untrack_pfn_vma(vma, 0, 0);
  918. while (start != end) {
  919. if (!tlb_start_valid) {
  920. tlb_start = start;
  921. tlb_start_valid = 1;
  922. }
  923. if (unlikely(is_vm_hugetlb_page(vma))) {
  924. /*
  925. * It is undesirable to test vma->vm_file as it
  926. * should be non-null for valid hugetlb area.
  927. * However, vm_file will be NULL in the error
  928. * cleanup path of do_mmap_pgoff. When
  929. * hugetlbfs ->mmap method fails,
  930. * do_mmap_pgoff() nullifies vma->vm_file
  931. * before calling this function to clean up.
  932. * Since no pte has actually been setup, it is
  933. * safe to do nothing in this case.
  934. */
  935. if (vma->vm_file) {
  936. unmap_hugepage_range(vma, start, end, NULL);
  937. zap_work -= (end - start) /
  938. pages_per_huge_page(hstate_vma(vma));
  939. }
  940. start = end;
  941. } else
  942. start = unmap_page_range(*tlbp, vma,
  943. start, end, &zap_work, details);
  944. if (zap_work > 0) {
  945. BUG_ON(start != end);
  946. break;
  947. }
  948. tlb_finish_mmu(*tlbp, tlb_start, start);
  949. if (need_resched() ||
  950. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  951. if (i_mmap_lock) {
  952. *tlbp = NULL;
  953. goto out;
  954. }
  955. cond_resched();
  956. }
  957. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  958. tlb_start_valid = 0;
  959. zap_work = ZAP_BLOCK_SIZE;
  960. }
  961. }
  962. out:
  963. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  964. return start; /* which is now the end (or restart) address */
  965. }
  966. /**
  967. * zap_page_range - remove user pages in a given range
  968. * @vma: vm_area_struct holding the applicable pages
  969. * @address: starting address of pages to zap
  970. * @size: number of bytes to zap
  971. * @details: details of nonlinear truncation or shared cache invalidation
  972. */
  973. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  974. unsigned long size, struct zap_details *details)
  975. {
  976. struct mm_struct *mm = vma->vm_mm;
  977. struct mmu_gather *tlb;
  978. unsigned long end = address + size;
  979. unsigned long nr_accounted = 0;
  980. lru_add_drain();
  981. tlb = tlb_gather_mmu(mm, 0);
  982. update_hiwater_rss(mm);
  983. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  984. if (tlb)
  985. tlb_finish_mmu(tlb, address, end);
  986. return end;
  987. }
  988. /**
  989. * zap_vma_ptes - remove ptes mapping the vma
  990. * @vma: vm_area_struct holding ptes to be zapped
  991. * @address: starting address of pages to zap
  992. * @size: number of bytes to zap
  993. *
  994. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  995. *
  996. * The entire address range must be fully contained within the vma.
  997. *
  998. * Returns 0 if successful.
  999. */
  1000. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1001. unsigned long size)
  1002. {
  1003. if (address < vma->vm_start || address + size > vma->vm_end ||
  1004. !(vma->vm_flags & VM_PFNMAP))
  1005. return -1;
  1006. zap_page_range(vma, address, size, NULL);
  1007. return 0;
  1008. }
  1009. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1010. /*
  1011. * Do a quick page-table lookup for a single page.
  1012. */
  1013. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1014. unsigned int flags)
  1015. {
  1016. pgd_t *pgd;
  1017. pud_t *pud;
  1018. pmd_t *pmd;
  1019. pte_t *ptep, pte;
  1020. spinlock_t *ptl;
  1021. struct page *page;
  1022. struct mm_struct *mm = vma->vm_mm;
  1023. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1024. if (!IS_ERR(page)) {
  1025. BUG_ON(flags & FOLL_GET);
  1026. goto out;
  1027. }
  1028. page = NULL;
  1029. pgd = pgd_offset(mm, address);
  1030. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1031. goto no_page_table;
  1032. pud = pud_offset(pgd, address);
  1033. if (pud_none(*pud))
  1034. goto no_page_table;
  1035. if (pud_huge(*pud)) {
  1036. BUG_ON(flags & FOLL_GET);
  1037. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1038. goto out;
  1039. }
  1040. if (unlikely(pud_bad(*pud)))
  1041. goto no_page_table;
  1042. pmd = pmd_offset(pud, address);
  1043. if (pmd_none(*pmd))
  1044. goto no_page_table;
  1045. if (pmd_huge(*pmd)) {
  1046. BUG_ON(flags & FOLL_GET);
  1047. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1048. goto out;
  1049. }
  1050. if (unlikely(pmd_bad(*pmd)))
  1051. goto no_page_table;
  1052. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1053. pte = *ptep;
  1054. if (!pte_present(pte))
  1055. goto no_page;
  1056. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1057. goto unlock;
  1058. page = vm_normal_page(vma, address, pte);
  1059. if (unlikely(!page)) {
  1060. if ((flags & FOLL_DUMP) ||
  1061. !is_zero_pfn(pte_pfn(pte)))
  1062. goto bad_page;
  1063. page = pte_page(pte);
  1064. }
  1065. if (flags & FOLL_GET)
  1066. get_page(page);
  1067. if (flags & FOLL_TOUCH) {
  1068. if ((flags & FOLL_WRITE) &&
  1069. !pte_dirty(pte) && !PageDirty(page))
  1070. set_page_dirty(page);
  1071. /*
  1072. * pte_mkyoung() would be more correct here, but atomic care
  1073. * is needed to avoid losing the dirty bit: it is easier to use
  1074. * mark_page_accessed().
  1075. */
  1076. mark_page_accessed(page);
  1077. }
  1078. unlock:
  1079. pte_unmap_unlock(ptep, ptl);
  1080. out:
  1081. return page;
  1082. bad_page:
  1083. pte_unmap_unlock(ptep, ptl);
  1084. return ERR_PTR(-EFAULT);
  1085. no_page:
  1086. pte_unmap_unlock(ptep, ptl);
  1087. if (!pte_none(pte))
  1088. return page;
  1089. no_page_table:
  1090. /*
  1091. * When core dumping an enormous anonymous area that nobody
  1092. * has touched so far, we don't want to allocate unnecessary pages or
  1093. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1094. * then get_dump_page() will return NULL to leave a hole in the dump.
  1095. * But we can only make this optimization where a hole would surely
  1096. * be zero-filled if handle_mm_fault() actually did handle it.
  1097. */
  1098. if ((flags & FOLL_DUMP) &&
  1099. (!vma->vm_ops || !vma->vm_ops->fault))
  1100. return ERR_PTR(-EFAULT);
  1101. return page;
  1102. }
  1103. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1104. unsigned long start, int nr_pages, unsigned int gup_flags,
  1105. struct page **pages, struct vm_area_struct **vmas)
  1106. {
  1107. int i;
  1108. unsigned long vm_flags;
  1109. if (nr_pages <= 0)
  1110. return 0;
  1111. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1112. /*
  1113. * Require read or write permissions.
  1114. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1115. */
  1116. vm_flags = (gup_flags & FOLL_WRITE) ?
  1117. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1118. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1119. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1120. i = 0;
  1121. do {
  1122. struct vm_area_struct *vma;
  1123. vma = find_extend_vma(mm, start);
  1124. if (!vma && in_gate_area(tsk, start)) {
  1125. unsigned long pg = start & PAGE_MASK;
  1126. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1127. pgd_t *pgd;
  1128. pud_t *pud;
  1129. pmd_t *pmd;
  1130. pte_t *pte;
  1131. /* user gate pages are read-only */
  1132. if (gup_flags & FOLL_WRITE)
  1133. return i ? : -EFAULT;
  1134. if (pg > TASK_SIZE)
  1135. pgd = pgd_offset_k(pg);
  1136. else
  1137. pgd = pgd_offset_gate(mm, pg);
  1138. BUG_ON(pgd_none(*pgd));
  1139. pud = pud_offset(pgd, pg);
  1140. BUG_ON(pud_none(*pud));
  1141. pmd = pmd_offset(pud, pg);
  1142. if (pmd_none(*pmd))
  1143. return i ? : -EFAULT;
  1144. pte = pte_offset_map(pmd, pg);
  1145. if (pte_none(*pte)) {
  1146. pte_unmap(pte);
  1147. return i ? : -EFAULT;
  1148. }
  1149. if (pages) {
  1150. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1151. pages[i] = page;
  1152. if (page)
  1153. get_page(page);
  1154. }
  1155. pte_unmap(pte);
  1156. if (vmas)
  1157. vmas[i] = gate_vma;
  1158. i++;
  1159. start += PAGE_SIZE;
  1160. nr_pages--;
  1161. continue;
  1162. }
  1163. if (!vma ||
  1164. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1165. !(vm_flags & vma->vm_flags))
  1166. return i ? : -EFAULT;
  1167. if (is_vm_hugetlb_page(vma)) {
  1168. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1169. &start, &nr_pages, i, gup_flags);
  1170. continue;
  1171. }
  1172. do {
  1173. struct page *page;
  1174. unsigned int foll_flags = gup_flags;
  1175. /*
  1176. * If we have a pending SIGKILL, don't keep faulting
  1177. * pages and potentially allocating memory.
  1178. */
  1179. if (unlikely(fatal_signal_pending(current)))
  1180. return i ? i : -ERESTARTSYS;
  1181. cond_resched();
  1182. while (!(page = follow_page(vma, start, foll_flags))) {
  1183. int ret;
  1184. ret = handle_mm_fault(mm, vma, start,
  1185. (foll_flags & FOLL_WRITE) ?
  1186. FAULT_FLAG_WRITE : 0);
  1187. if (ret & VM_FAULT_ERROR) {
  1188. if (ret & VM_FAULT_OOM)
  1189. return i ? i : -ENOMEM;
  1190. else if (ret & VM_FAULT_SIGBUS)
  1191. return i ? i : -EFAULT;
  1192. BUG();
  1193. }
  1194. if (ret & VM_FAULT_MAJOR)
  1195. tsk->maj_flt++;
  1196. else
  1197. tsk->min_flt++;
  1198. /*
  1199. * The VM_FAULT_WRITE bit tells us that
  1200. * do_wp_page has broken COW when necessary,
  1201. * even if maybe_mkwrite decided not to set
  1202. * pte_write. We can thus safely do subsequent
  1203. * page lookups as if they were reads. But only
  1204. * do so when looping for pte_write is futile:
  1205. * in some cases userspace may also be wanting
  1206. * to write to the gotten user page, which a
  1207. * read fault here might prevent (a readonly
  1208. * page might get reCOWed by userspace write).
  1209. */
  1210. if ((ret & VM_FAULT_WRITE) &&
  1211. !(vma->vm_flags & VM_WRITE))
  1212. foll_flags &= ~FOLL_WRITE;
  1213. cond_resched();
  1214. }
  1215. if (IS_ERR(page))
  1216. return i ? i : PTR_ERR(page);
  1217. if (pages) {
  1218. pages[i] = page;
  1219. flush_anon_page(vma, page, start);
  1220. flush_dcache_page(page);
  1221. }
  1222. if (vmas)
  1223. vmas[i] = vma;
  1224. i++;
  1225. start += PAGE_SIZE;
  1226. nr_pages--;
  1227. } while (nr_pages && start < vma->vm_end);
  1228. } while (nr_pages);
  1229. return i;
  1230. }
  1231. /**
  1232. * get_user_pages() - pin user pages in memory
  1233. * @tsk: task_struct of target task
  1234. * @mm: mm_struct of target mm
  1235. * @start: starting user address
  1236. * @nr_pages: number of pages from start to pin
  1237. * @write: whether pages will be written to by the caller
  1238. * @force: whether to force write access even if user mapping is
  1239. * readonly. This will result in the page being COWed even
  1240. * in MAP_SHARED mappings. You do not want this.
  1241. * @pages: array that receives pointers to the pages pinned.
  1242. * Should be at least nr_pages long. Or NULL, if caller
  1243. * only intends to ensure the pages are faulted in.
  1244. * @vmas: array of pointers to vmas corresponding to each page.
  1245. * Or NULL if the caller does not require them.
  1246. *
  1247. * Returns number of pages pinned. This may be fewer than the number
  1248. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1249. * were pinned, returns -errno. Each page returned must be released
  1250. * with a put_page() call when it is finished with. vmas will only
  1251. * remain valid while mmap_sem is held.
  1252. *
  1253. * Must be called with mmap_sem held for read or write.
  1254. *
  1255. * get_user_pages walks a process's page tables and takes a reference to
  1256. * each struct page that each user address corresponds to at a given
  1257. * instant. That is, it takes the page that would be accessed if a user
  1258. * thread accesses the given user virtual address at that instant.
  1259. *
  1260. * This does not guarantee that the page exists in the user mappings when
  1261. * get_user_pages returns, and there may even be a completely different
  1262. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1263. * and subsequently re faulted). However it does guarantee that the page
  1264. * won't be freed completely. And mostly callers simply care that the page
  1265. * contains data that was valid *at some point in time*. Typically, an IO
  1266. * or similar operation cannot guarantee anything stronger anyway because
  1267. * locks can't be held over the syscall boundary.
  1268. *
  1269. * If write=0, the page must not be written to. If the page is written to,
  1270. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1271. * after the page is finished with, and before put_page is called.
  1272. *
  1273. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1274. * handle on the memory by some means other than accesses via the user virtual
  1275. * addresses. The pages may be submitted for DMA to devices or accessed via
  1276. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1277. * use the correct cache flushing APIs.
  1278. *
  1279. * See also get_user_pages_fast, for performance critical applications.
  1280. */
  1281. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1282. unsigned long start, int nr_pages, int write, int force,
  1283. struct page **pages, struct vm_area_struct **vmas)
  1284. {
  1285. int flags = FOLL_TOUCH;
  1286. if (pages)
  1287. flags |= FOLL_GET;
  1288. if (write)
  1289. flags |= FOLL_WRITE;
  1290. if (force)
  1291. flags |= FOLL_FORCE;
  1292. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
  1293. }
  1294. EXPORT_SYMBOL(get_user_pages);
  1295. /**
  1296. * get_dump_page() - pin user page in memory while writing it to core dump
  1297. * @addr: user address
  1298. *
  1299. * Returns struct page pointer of user page pinned for dump,
  1300. * to be freed afterwards by page_cache_release() or put_page().
  1301. *
  1302. * Returns NULL on any kind of failure - a hole must then be inserted into
  1303. * the corefile, to preserve alignment with its headers; and also returns
  1304. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1305. * allowing a hole to be left in the corefile to save diskspace.
  1306. *
  1307. * Called without mmap_sem, but after all other threads have been killed.
  1308. */
  1309. #ifdef CONFIG_ELF_CORE
  1310. struct page *get_dump_page(unsigned long addr)
  1311. {
  1312. struct vm_area_struct *vma;
  1313. struct page *page;
  1314. if (__get_user_pages(current, current->mm, addr, 1,
  1315. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
  1316. return NULL;
  1317. flush_cache_page(vma, addr, page_to_pfn(page));
  1318. return page;
  1319. }
  1320. #endif /* CONFIG_ELF_CORE */
  1321. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1322. spinlock_t **ptl)
  1323. {
  1324. pgd_t * pgd = pgd_offset(mm, addr);
  1325. pud_t * pud = pud_alloc(mm, pgd, addr);
  1326. if (pud) {
  1327. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1328. if (pmd)
  1329. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1330. }
  1331. return NULL;
  1332. }
  1333. /*
  1334. * This is the old fallback for page remapping.
  1335. *
  1336. * For historical reasons, it only allows reserved pages. Only
  1337. * old drivers should use this, and they needed to mark their
  1338. * pages reserved for the old functions anyway.
  1339. */
  1340. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1341. struct page *page, pgprot_t prot)
  1342. {
  1343. struct mm_struct *mm = vma->vm_mm;
  1344. int retval;
  1345. pte_t *pte;
  1346. spinlock_t *ptl;
  1347. retval = -EINVAL;
  1348. if (PageAnon(page))
  1349. goto out;
  1350. retval = -ENOMEM;
  1351. flush_dcache_page(page);
  1352. pte = get_locked_pte(mm, addr, &ptl);
  1353. if (!pte)
  1354. goto out;
  1355. retval = -EBUSY;
  1356. if (!pte_none(*pte))
  1357. goto out_unlock;
  1358. /* Ok, finally just insert the thing.. */
  1359. get_page(page);
  1360. inc_mm_counter(mm, file_rss);
  1361. page_add_file_rmap(page);
  1362. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1363. retval = 0;
  1364. pte_unmap_unlock(pte, ptl);
  1365. return retval;
  1366. out_unlock:
  1367. pte_unmap_unlock(pte, ptl);
  1368. out:
  1369. return retval;
  1370. }
  1371. /**
  1372. * vm_insert_page - insert single page into user vma
  1373. * @vma: user vma to map to
  1374. * @addr: target user address of this page
  1375. * @page: source kernel page
  1376. *
  1377. * This allows drivers to insert individual pages they've allocated
  1378. * into a user vma.
  1379. *
  1380. * The page has to be a nice clean _individual_ kernel allocation.
  1381. * If you allocate a compound page, you need to have marked it as
  1382. * such (__GFP_COMP), or manually just split the page up yourself
  1383. * (see split_page()).
  1384. *
  1385. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1386. * took an arbitrary page protection parameter. This doesn't allow
  1387. * that. Your vma protection will have to be set up correctly, which
  1388. * means that if you want a shared writable mapping, you'd better
  1389. * ask for a shared writable mapping!
  1390. *
  1391. * The page does not need to be reserved.
  1392. */
  1393. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1394. struct page *page)
  1395. {
  1396. if (addr < vma->vm_start || addr >= vma->vm_end)
  1397. return -EFAULT;
  1398. if (!page_count(page))
  1399. return -EINVAL;
  1400. vma->vm_flags |= VM_INSERTPAGE;
  1401. return insert_page(vma, addr, page, vma->vm_page_prot);
  1402. }
  1403. EXPORT_SYMBOL(vm_insert_page);
  1404. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1405. unsigned long pfn, pgprot_t prot)
  1406. {
  1407. struct mm_struct *mm = vma->vm_mm;
  1408. int retval;
  1409. pte_t *pte, entry;
  1410. spinlock_t *ptl;
  1411. retval = -ENOMEM;
  1412. pte = get_locked_pte(mm, addr, &ptl);
  1413. if (!pte)
  1414. goto out;
  1415. retval = -EBUSY;
  1416. if (!pte_none(*pte))
  1417. goto out_unlock;
  1418. /* Ok, finally just insert the thing.. */
  1419. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1420. set_pte_at(mm, addr, pte, entry);
  1421. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1422. retval = 0;
  1423. out_unlock:
  1424. pte_unmap_unlock(pte, ptl);
  1425. out:
  1426. return retval;
  1427. }
  1428. /**
  1429. * vm_insert_pfn - insert single pfn into user vma
  1430. * @vma: user vma to map to
  1431. * @addr: target user address of this page
  1432. * @pfn: source kernel pfn
  1433. *
  1434. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1435. * they've allocated into a user vma. Same comments apply.
  1436. *
  1437. * This function should only be called from a vm_ops->fault handler, and
  1438. * in that case the handler should return NULL.
  1439. *
  1440. * vma cannot be a COW mapping.
  1441. *
  1442. * As this is called only for pages that do not currently exist, we
  1443. * do not need to flush old virtual caches or the TLB.
  1444. */
  1445. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1446. unsigned long pfn)
  1447. {
  1448. int ret;
  1449. pgprot_t pgprot = vma->vm_page_prot;
  1450. /*
  1451. * Technically, architectures with pte_special can avoid all these
  1452. * restrictions (same for remap_pfn_range). However we would like
  1453. * consistency in testing and feature parity among all, so we should
  1454. * try to keep these invariants in place for everybody.
  1455. */
  1456. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1457. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1458. (VM_PFNMAP|VM_MIXEDMAP));
  1459. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1460. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1461. if (addr < vma->vm_start || addr >= vma->vm_end)
  1462. return -EFAULT;
  1463. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1464. return -EINVAL;
  1465. ret = insert_pfn(vma, addr, pfn, pgprot);
  1466. if (ret)
  1467. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1468. return ret;
  1469. }
  1470. EXPORT_SYMBOL(vm_insert_pfn);
  1471. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1472. unsigned long pfn)
  1473. {
  1474. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1475. if (addr < vma->vm_start || addr >= vma->vm_end)
  1476. return -EFAULT;
  1477. /*
  1478. * If we don't have pte special, then we have to use the pfn_valid()
  1479. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1480. * refcount the page if pfn_valid is true (hence insert_page rather
  1481. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1482. * without pte special, it would there be refcounted as a normal page.
  1483. */
  1484. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1485. struct page *page;
  1486. page = pfn_to_page(pfn);
  1487. return insert_page(vma, addr, page, vma->vm_page_prot);
  1488. }
  1489. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1490. }
  1491. EXPORT_SYMBOL(vm_insert_mixed);
  1492. /*
  1493. * maps a range of physical memory into the requested pages. the old
  1494. * mappings are removed. any references to nonexistent pages results
  1495. * in null mappings (currently treated as "copy-on-access")
  1496. */
  1497. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1498. unsigned long addr, unsigned long end,
  1499. unsigned long pfn, pgprot_t prot)
  1500. {
  1501. pte_t *pte;
  1502. spinlock_t *ptl;
  1503. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1504. if (!pte)
  1505. return -ENOMEM;
  1506. arch_enter_lazy_mmu_mode();
  1507. do {
  1508. BUG_ON(!pte_none(*pte));
  1509. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1510. pfn++;
  1511. } while (pte++, addr += PAGE_SIZE, addr != end);
  1512. arch_leave_lazy_mmu_mode();
  1513. pte_unmap_unlock(pte - 1, ptl);
  1514. return 0;
  1515. }
  1516. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1517. unsigned long addr, unsigned long end,
  1518. unsigned long pfn, pgprot_t prot)
  1519. {
  1520. pmd_t *pmd;
  1521. unsigned long next;
  1522. pfn -= addr >> PAGE_SHIFT;
  1523. pmd = pmd_alloc(mm, pud, addr);
  1524. if (!pmd)
  1525. return -ENOMEM;
  1526. do {
  1527. next = pmd_addr_end(addr, end);
  1528. if (remap_pte_range(mm, pmd, addr, next,
  1529. pfn + (addr >> PAGE_SHIFT), prot))
  1530. return -ENOMEM;
  1531. } while (pmd++, addr = next, addr != end);
  1532. return 0;
  1533. }
  1534. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1535. unsigned long addr, unsigned long end,
  1536. unsigned long pfn, pgprot_t prot)
  1537. {
  1538. pud_t *pud;
  1539. unsigned long next;
  1540. pfn -= addr >> PAGE_SHIFT;
  1541. pud = pud_alloc(mm, pgd, addr);
  1542. if (!pud)
  1543. return -ENOMEM;
  1544. do {
  1545. next = pud_addr_end(addr, end);
  1546. if (remap_pmd_range(mm, pud, addr, next,
  1547. pfn + (addr >> PAGE_SHIFT), prot))
  1548. return -ENOMEM;
  1549. } while (pud++, addr = next, addr != end);
  1550. return 0;
  1551. }
  1552. /**
  1553. * remap_pfn_range - remap kernel memory to userspace
  1554. * @vma: user vma to map to
  1555. * @addr: target user address to start at
  1556. * @pfn: physical address of kernel memory
  1557. * @size: size of map area
  1558. * @prot: page protection flags for this mapping
  1559. *
  1560. * Note: this is only safe if the mm semaphore is held when called.
  1561. */
  1562. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1563. unsigned long pfn, unsigned long size, pgprot_t prot)
  1564. {
  1565. pgd_t *pgd;
  1566. unsigned long next;
  1567. unsigned long end = addr + PAGE_ALIGN(size);
  1568. struct mm_struct *mm = vma->vm_mm;
  1569. int err;
  1570. /*
  1571. * Physically remapped pages are special. Tell the
  1572. * rest of the world about it:
  1573. * VM_IO tells people not to look at these pages
  1574. * (accesses can have side effects).
  1575. * VM_RESERVED is specified all over the place, because
  1576. * in 2.4 it kept swapout's vma scan off this vma; but
  1577. * in 2.6 the LRU scan won't even find its pages, so this
  1578. * flag means no more than count its pages in reserved_vm,
  1579. * and omit it from core dump, even when VM_IO turned off.
  1580. * VM_PFNMAP tells the core MM that the base pages are just
  1581. * raw PFN mappings, and do not have a "struct page" associated
  1582. * with them.
  1583. *
  1584. * There's a horrible special case to handle copy-on-write
  1585. * behaviour that some programs depend on. We mark the "original"
  1586. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1587. */
  1588. if (addr == vma->vm_start && end == vma->vm_end) {
  1589. vma->vm_pgoff = pfn;
  1590. vma->vm_flags |= VM_PFN_AT_MMAP;
  1591. } else if (is_cow_mapping(vma->vm_flags))
  1592. return -EINVAL;
  1593. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1594. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1595. if (err) {
  1596. /*
  1597. * To indicate that track_pfn related cleanup is not
  1598. * needed from higher level routine calling unmap_vmas
  1599. */
  1600. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1601. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1602. return -EINVAL;
  1603. }
  1604. BUG_ON(addr >= end);
  1605. pfn -= addr >> PAGE_SHIFT;
  1606. pgd = pgd_offset(mm, addr);
  1607. flush_cache_range(vma, addr, end);
  1608. do {
  1609. next = pgd_addr_end(addr, end);
  1610. err = remap_pud_range(mm, pgd, addr, next,
  1611. pfn + (addr >> PAGE_SHIFT), prot);
  1612. if (err)
  1613. break;
  1614. } while (pgd++, addr = next, addr != end);
  1615. if (err)
  1616. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1617. return err;
  1618. }
  1619. EXPORT_SYMBOL(remap_pfn_range);
  1620. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1621. unsigned long addr, unsigned long end,
  1622. pte_fn_t fn, void *data)
  1623. {
  1624. pte_t *pte;
  1625. int err;
  1626. pgtable_t token;
  1627. spinlock_t *uninitialized_var(ptl);
  1628. pte = (mm == &init_mm) ?
  1629. pte_alloc_kernel(pmd, addr) :
  1630. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1631. if (!pte)
  1632. return -ENOMEM;
  1633. BUG_ON(pmd_huge(*pmd));
  1634. arch_enter_lazy_mmu_mode();
  1635. token = pmd_pgtable(*pmd);
  1636. do {
  1637. err = fn(pte, token, addr, data);
  1638. if (err)
  1639. break;
  1640. } while (pte++, addr += PAGE_SIZE, addr != end);
  1641. arch_leave_lazy_mmu_mode();
  1642. if (mm != &init_mm)
  1643. pte_unmap_unlock(pte-1, ptl);
  1644. return err;
  1645. }
  1646. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1647. unsigned long addr, unsigned long end,
  1648. pte_fn_t fn, void *data)
  1649. {
  1650. pmd_t *pmd;
  1651. unsigned long next;
  1652. int err;
  1653. BUG_ON(pud_huge(*pud));
  1654. pmd = pmd_alloc(mm, pud, addr);
  1655. if (!pmd)
  1656. return -ENOMEM;
  1657. do {
  1658. next = pmd_addr_end(addr, end);
  1659. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1660. if (err)
  1661. break;
  1662. } while (pmd++, addr = next, addr != end);
  1663. return err;
  1664. }
  1665. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1666. unsigned long addr, unsigned long end,
  1667. pte_fn_t fn, void *data)
  1668. {
  1669. pud_t *pud;
  1670. unsigned long next;
  1671. int err;
  1672. pud = pud_alloc(mm, pgd, addr);
  1673. if (!pud)
  1674. return -ENOMEM;
  1675. do {
  1676. next = pud_addr_end(addr, end);
  1677. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1678. if (err)
  1679. break;
  1680. } while (pud++, addr = next, addr != end);
  1681. return err;
  1682. }
  1683. /*
  1684. * Scan a region of virtual memory, filling in page tables as necessary
  1685. * and calling a provided function on each leaf page table.
  1686. */
  1687. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1688. unsigned long size, pte_fn_t fn, void *data)
  1689. {
  1690. pgd_t *pgd;
  1691. unsigned long next;
  1692. unsigned long start = addr, end = addr + size;
  1693. int err;
  1694. BUG_ON(addr >= end);
  1695. mmu_notifier_invalidate_range_start(mm, start, end);
  1696. pgd = pgd_offset(mm, addr);
  1697. do {
  1698. next = pgd_addr_end(addr, end);
  1699. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1700. if (err)
  1701. break;
  1702. } while (pgd++, addr = next, addr != end);
  1703. mmu_notifier_invalidate_range_end(mm, start, end);
  1704. return err;
  1705. }
  1706. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1707. /*
  1708. * handle_pte_fault chooses page fault handler according to an entry
  1709. * which was read non-atomically. Before making any commitment, on
  1710. * those architectures or configurations (e.g. i386 with PAE) which
  1711. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1712. * must check under lock before unmapping the pte and proceeding
  1713. * (but do_wp_page is only called after already making such a check;
  1714. * and do_anonymous_page and do_no_page can safely check later on).
  1715. */
  1716. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1717. pte_t *page_table, pte_t orig_pte)
  1718. {
  1719. int same = 1;
  1720. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1721. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1722. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1723. spin_lock(ptl);
  1724. same = pte_same(*page_table, orig_pte);
  1725. spin_unlock(ptl);
  1726. }
  1727. #endif
  1728. pte_unmap(page_table);
  1729. return same;
  1730. }
  1731. /*
  1732. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1733. * servicing faults for write access. In the normal case, do always want
  1734. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1735. * that do not have writing enabled, when used by access_process_vm.
  1736. */
  1737. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1738. {
  1739. if (likely(vma->vm_flags & VM_WRITE))
  1740. pte = pte_mkwrite(pte);
  1741. return pte;
  1742. }
  1743. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1744. {
  1745. /*
  1746. * If the source page was a PFN mapping, we don't have
  1747. * a "struct page" for it. We do a best-effort copy by
  1748. * just copying from the original user address. If that
  1749. * fails, we just zero-fill it. Live with it.
  1750. */
  1751. if (unlikely(!src)) {
  1752. void *kaddr = kmap_atomic(dst, KM_USER0);
  1753. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1754. /*
  1755. * This really shouldn't fail, because the page is there
  1756. * in the page tables. But it might just be unreadable,
  1757. * in which case we just give up and fill the result with
  1758. * zeroes.
  1759. */
  1760. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1761. memset(kaddr, 0, PAGE_SIZE);
  1762. kunmap_atomic(kaddr, KM_USER0);
  1763. flush_dcache_page(dst);
  1764. } else
  1765. copy_user_highpage(dst, src, va, vma);
  1766. }
  1767. /*
  1768. * This routine handles present pages, when users try to write
  1769. * to a shared page. It is done by copying the page to a new address
  1770. * and decrementing the shared-page counter for the old page.
  1771. *
  1772. * Note that this routine assumes that the protection checks have been
  1773. * done by the caller (the low-level page fault routine in most cases).
  1774. * Thus we can safely just mark it writable once we've done any necessary
  1775. * COW.
  1776. *
  1777. * We also mark the page dirty at this point even though the page will
  1778. * change only once the write actually happens. This avoids a few races,
  1779. * and potentially makes it more efficient.
  1780. *
  1781. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1782. * but allow concurrent faults), with pte both mapped and locked.
  1783. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1784. */
  1785. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1786. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1787. spinlock_t *ptl, pte_t orig_pte)
  1788. {
  1789. struct page *old_page, *new_page;
  1790. pte_t entry;
  1791. int reuse = 0, ret = 0;
  1792. int page_mkwrite = 0;
  1793. struct page *dirty_page = NULL;
  1794. old_page = vm_normal_page(vma, address, orig_pte);
  1795. if (!old_page) {
  1796. /*
  1797. * VM_MIXEDMAP !pfn_valid() case
  1798. *
  1799. * We should not cow pages in a shared writeable mapping.
  1800. * Just mark the pages writable as we can't do any dirty
  1801. * accounting on raw pfn maps.
  1802. */
  1803. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1804. (VM_WRITE|VM_SHARED))
  1805. goto reuse;
  1806. goto gotten;
  1807. }
  1808. /*
  1809. * Take out anonymous pages first, anonymous shared vmas are
  1810. * not dirty accountable.
  1811. */
  1812. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1813. if (!trylock_page(old_page)) {
  1814. page_cache_get(old_page);
  1815. pte_unmap_unlock(page_table, ptl);
  1816. lock_page(old_page);
  1817. page_table = pte_offset_map_lock(mm, pmd, address,
  1818. &ptl);
  1819. if (!pte_same(*page_table, orig_pte)) {
  1820. unlock_page(old_page);
  1821. page_cache_release(old_page);
  1822. goto unlock;
  1823. }
  1824. page_cache_release(old_page);
  1825. }
  1826. reuse = reuse_swap_page(old_page);
  1827. unlock_page(old_page);
  1828. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1829. (VM_WRITE|VM_SHARED))) {
  1830. /*
  1831. * Only catch write-faults on shared writable pages,
  1832. * read-only shared pages can get COWed by
  1833. * get_user_pages(.write=1, .force=1).
  1834. */
  1835. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1836. struct vm_fault vmf;
  1837. int tmp;
  1838. vmf.virtual_address = (void __user *)(address &
  1839. PAGE_MASK);
  1840. vmf.pgoff = old_page->index;
  1841. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1842. vmf.page = old_page;
  1843. /*
  1844. * Notify the address space that the page is about to
  1845. * become writable so that it can prohibit this or wait
  1846. * for the page to get into an appropriate state.
  1847. *
  1848. * We do this without the lock held, so that it can
  1849. * sleep if it needs to.
  1850. */
  1851. page_cache_get(old_page);
  1852. pte_unmap_unlock(page_table, ptl);
  1853. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1854. if (unlikely(tmp &
  1855. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1856. ret = tmp;
  1857. goto unwritable_page;
  1858. }
  1859. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1860. lock_page(old_page);
  1861. if (!old_page->mapping) {
  1862. ret = 0; /* retry the fault */
  1863. unlock_page(old_page);
  1864. goto unwritable_page;
  1865. }
  1866. } else
  1867. VM_BUG_ON(!PageLocked(old_page));
  1868. /*
  1869. * Since we dropped the lock we need to revalidate
  1870. * the PTE as someone else may have changed it. If
  1871. * they did, we just return, as we can count on the
  1872. * MMU to tell us if they didn't also make it writable.
  1873. */
  1874. page_table = pte_offset_map_lock(mm, pmd, address,
  1875. &ptl);
  1876. if (!pte_same(*page_table, orig_pte)) {
  1877. unlock_page(old_page);
  1878. page_cache_release(old_page);
  1879. goto unlock;
  1880. }
  1881. page_mkwrite = 1;
  1882. }
  1883. dirty_page = old_page;
  1884. get_page(dirty_page);
  1885. reuse = 1;
  1886. }
  1887. if (reuse) {
  1888. reuse:
  1889. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1890. entry = pte_mkyoung(orig_pte);
  1891. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1892. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1893. update_mmu_cache(vma, address, entry);
  1894. ret |= VM_FAULT_WRITE;
  1895. goto unlock;
  1896. }
  1897. /*
  1898. * Ok, we need to copy. Oh, well..
  1899. */
  1900. page_cache_get(old_page);
  1901. gotten:
  1902. pte_unmap_unlock(page_table, ptl);
  1903. if (unlikely(anon_vma_prepare(vma)))
  1904. goto oom;
  1905. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1906. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1907. if (!new_page)
  1908. goto oom;
  1909. } else {
  1910. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1911. if (!new_page)
  1912. goto oom;
  1913. cow_user_page(new_page, old_page, address, vma);
  1914. }
  1915. __SetPageUptodate(new_page);
  1916. /*
  1917. * Don't let another task, with possibly unlocked vma,
  1918. * keep the mlocked page.
  1919. */
  1920. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1921. lock_page(old_page); /* for LRU manipulation */
  1922. clear_page_mlock(old_page);
  1923. unlock_page(old_page);
  1924. }
  1925. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1926. goto oom_free_new;
  1927. /*
  1928. * Re-check the pte - we dropped the lock
  1929. */
  1930. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1931. if (likely(pte_same(*page_table, orig_pte))) {
  1932. if (old_page) {
  1933. if (!PageAnon(old_page)) {
  1934. dec_mm_counter(mm, file_rss);
  1935. inc_mm_counter(mm, anon_rss);
  1936. }
  1937. } else
  1938. inc_mm_counter(mm, anon_rss);
  1939. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1940. entry = mk_pte(new_page, vma->vm_page_prot);
  1941. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1942. /*
  1943. * Clear the pte entry and flush it first, before updating the
  1944. * pte with the new entry. This will avoid a race condition
  1945. * seen in the presence of one thread doing SMC and another
  1946. * thread doing COW.
  1947. */
  1948. ptep_clear_flush(vma, address, page_table);
  1949. page_add_new_anon_rmap(new_page, vma, address);
  1950. /*
  1951. * We call the notify macro here because, when using secondary
  1952. * mmu page tables (such as kvm shadow page tables), we want the
  1953. * new page to be mapped directly into the secondary page table.
  1954. */
  1955. set_pte_at_notify(mm, address, page_table, entry);
  1956. update_mmu_cache(vma, address, entry);
  1957. if (old_page) {
  1958. /*
  1959. * Only after switching the pte to the new page may
  1960. * we remove the mapcount here. Otherwise another
  1961. * process may come and find the rmap count decremented
  1962. * before the pte is switched to the new page, and
  1963. * "reuse" the old page writing into it while our pte
  1964. * here still points into it and can be read by other
  1965. * threads.
  1966. *
  1967. * The critical issue is to order this
  1968. * page_remove_rmap with the ptp_clear_flush above.
  1969. * Those stores are ordered by (if nothing else,)
  1970. * the barrier present in the atomic_add_negative
  1971. * in page_remove_rmap.
  1972. *
  1973. * Then the TLB flush in ptep_clear_flush ensures that
  1974. * no process can access the old page before the
  1975. * decremented mapcount is visible. And the old page
  1976. * cannot be reused until after the decremented
  1977. * mapcount is visible. So transitively, TLBs to
  1978. * old page will be flushed before it can be reused.
  1979. */
  1980. page_remove_rmap(old_page);
  1981. }
  1982. /* Free the old page.. */
  1983. new_page = old_page;
  1984. ret |= VM_FAULT_WRITE;
  1985. } else
  1986. mem_cgroup_uncharge_page(new_page);
  1987. if (new_page)
  1988. page_cache_release(new_page);
  1989. if (old_page)
  1990. page_cache_release(old_page);
  1991. unlock:
  1992. pte_unmap_unlock(page_table, ptl);
  1993. if (dirty_page) {
  1994. /*
  1995. * Yes, Virginia, this is actually required to prevent a race
  1996. * with clear_page_dirty_for_io() from clearing the page dirty
  1997. * bit after it clear all dirty ptes, but before a racing
  1998. * do_wp_page installs a dirty pte.
  1999. *
  2000. * do_no_page is protected similarly.
  2001. */
  2002. if (!page_mkwrite) {
  2003. wait_on_page_locked(dirty_page);
  2004. set_page_dirty_balance(dirty_page, page_mkwrite);
  2005. }
  2006. put_page(dirty_page);
  2007. if (page_mkwrite) {
  2008. struct address_space *mapping = dirty_page->mapping;
  2009. set_page_dirty(dirty_page);
  2010. unlock_page(dirty_page);
  2011. page_cache_release(dirty_page);
  2012. if (mapping) {
  2013. /*
  2014. * Some device drivers do not set page.mapping
  2015. * but still dirty their pages
  2016. */
  2017. balance_dirty_pages_ratelimited(mapping);
  2018. }
  2019. }
  2020. /* file_update_time outside page_lock */
  2021. if (vma->vm_file)
  2022. file_update_time(vma->vm_file);
  2023. }
  2024. return ret;
  2025. oom_free_new:
  2026. page_cache_release(new_page);
  2027. oom:
  2028. if (old_page) {
  2029. if (page_mkwrite) {
  2030. unlock_page(old_page);
  2031. page_cache_release(old_page);
  2032. }
  2033. page_cache_release(old_page);
  2034. }
  2035. return VM_FAULT_OOM;
  2036. unwritable_page:
  2037. page_cache_release(old_page);
  2038. return ret;
  2039. }
  2040. /*
  2041. * Helper functions for unmap_mapping_range().
  2042. *
  2043. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2044. *
  2045. * We have to restart searching the prio_tree whenever we drop the lock,
  2046. * since the iterator is only valid while the lock is held, and anyway
  2047. * a later vma might be split and reinserted earlier while lock dropped.
  2048. *
  2049. * The list of nonlinear vmas could be handled more efficiently, using
  2050. * a placeholder, but handle it in the same way until a need is shown.
  2051. * It is important to search the prio_tree before nonlinear list: a vma
  2052. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2053. * while the lock is dropped; but never shifted from list to prio_tree.
  2054. *
  2055. * In order to make forward progress despite restarting the search,
  2056. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2057. * quickly skip it next time around. Since the prio_tree search only
  2058. * shows us those vmas affected by unmapping the range in question, we
  2059. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2060. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2061. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2062. * i_mmap_lock.
  2063. *
  2064. * In order to make forward progress despite repeatedly restarting some
  2065. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2066. * and restart from that address when we reach that vma again. It might
  2067. * have been split or merged, shrunk or extended, but never shifted: so
  2068. * restart_addr remains valid so long as it remains in the vma's range.
  2069. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2070. * values so we can save vma's restart_addr in its truncate_count field.
  2071. */
  2072. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2073. static void reset_vma_truncate_counts(struct address_space *mapping)
  2074. {
  2075. struct vm_area_struct *vma;
  2076. struct prio_tree_iter iter;
  2077. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2078. vma->vm_truncate_count = 0;
  2079. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2080. vma->vm_truncate_count = 0;
  2081. }
  2082. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2083. unsigned long start_addr, unsigned long end_addr,
  2084. struct zap_details *details)
  2085. {
  2086. unsigned long restart_addr;
  2087. int need_break;
  2088. /*
  2089. * files that support invalidating or truncating portions of the
  2090. * file from under mmaped areas must have their ->fault function
  2091. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2092. * This provides synchronisation against concurrent unmapping here.
  2093. */
  2094. again:
  2095. restart_addr = vma->vm_truncate_count;
  2096. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2097. start_addr = restart_addr;
  2098. if (start_addr >= end_addr) {
  2099. /* Top of vma has been split off since last time */
  2100. vma->vm_truncate_count = details->truncate_count;
  2101. return 0;
  2102. }
  2103. }
  2104. restart_addr = zap_page_range(vma, start_addr,
  2105. end_addr - start_addr, details);
  2106. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2107. if (restart_addr >= end_addr) {
  2108. /* We have now completed this vma: mark it so */
  2109. vma->vm_truncate_count = details->truncate_count;
  2110. if (!need_break)
  2111. return 0;
  2112. } else {
  2113. /* Note restart_addr in vma's truncate_count field */
  2114. vma->vm_truncate_count = restart_addr;
  2115. if (!need_break)
  2116. goto again;
  2117. }
  2118. spin_unlock(details->i_mmap_lock);
  2119. cond_resched();
  2120. spin_lock(details->i_mmap_lock);
  2121. return -EINTR;
  2122. }
  2123. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2124. struct zap_details *details)
  2125. {
  2126. struct vm_area_struct *vma;
  2127. struct prio_tree_iter iter;
  2128. pgoff_t vba, vea, zba, zea;
  2129. restart:
  2130. vma_prio_tree_foreach(vma, &iter, root,
  2131. details->first_index, details->last_index) {
  2132. /* Skip quickly over those we have already dealt with */
  2133. if (vma->vm_truncate_count == details->truncate_count)
  2134. continue;
  2135. vba = vma->vm_pgoff;
  2136. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2137. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2138. zba = details->first_index;
  2139. if (zba < vba)
  2140. zba = vba;
  2141. zea = details->last_index;
  2142. if (zea > vea)
  2143. zea = vea;
  2144. if (unmap_mapping_range_vma(vma,
  2145. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2146. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2147. details) < 0)
  2148. goto restart;
  2149. }
  2150. }
  2151. static inline void unmap_mapping_range_list(struct list_head *head,
  2152. struct zap_details *details)
  2153. {
  2154. struct vm_area_struct *vma;
  2155. /*
  2156. * In nonlinear VMAs there is no correspondence between virtual address
  2157. * offset and file offset. So we must perform an exhaustive search
  2158. * across *all* the pages in each nonlinear VMA, not just the pages
  2159. * whose virtual address lies outside the file truncation point.
  2160. */
  2161. restart:
  2162. list_for_each_entry(vma, head, shared.vm_set.list) {
  2163. /* Skip quickly over those we have already dealt with */
  2164. if (vma->vm_truncate_count == details->truncate_count)
  2165. continue;
  2166. details->nonlinear_vma = vma;
  2167. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2168. vma->vm_end, details) < 0)
  2169. goto restart;
  2170. }
  2171. }
  2172. /**
  2173. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2174. * @mapping: the address space containing mmaps to be unmapped.
  2175. * @holebegin: byte in first page to unmap, relative to the start of
  2176. * the underlying file. This will be rounded down to a PAGE_SIZE
  2177. * boundary. Note that this is different from vmtruncate(), which
  2178. * must keep the partial page. In contrast, we must get rid of
  2179. * partial pages.
  2180. * @holelen: size of prospective hole in bytes. This will be rounded
  2181. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2182. * end of the file.
  2183. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2184. * but 0 when invalidating pagecache, don't throw away private data.
  2185. */
  2186. void unmap_mapping_range(struct address_space *mapping,
  2187. loff_t const holebegin, loff_t const holelen, int even_cows)
  2188. {
  2189. struct zap_details details;
  2190. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2191. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2192. /* Check for overflow. */
  2193. if (sizeof(holelen) > sizeof(hlen)) {
  2194. long long holeend =
  2195. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2196. if (holeend & ~(long long)ULONG_MAX)
  2197. hlen = ULONG_MAX - hba + 1;
  2198. }
  2199. details.check_mapping = even_cows? NULL: mapping;
  2200. details.nonlinear_vma = NULL;
  2201. details.first_index = hba;
  2202. details.last_index = hba + hlen - 1;
  2203. if (details.last_index < details.first_index)
  2204. details.last_index = ULONG_MAX;
  2205. details.i_mmap_lock = &mapping->i_mmap_lock;
  2206. spin_lock(&mapping->i_mmap_lock);
  2207. /* Protect against endless unmapping loops */
  2208. mapping->truncate_count++;
  2209. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2210. if (mapping->truncate_count == 0)
  2211. reset_vma_truncate_counts(mapping);
  2212. mapping->truncate_count++;
  2213. }
  2214. details.truncate_count = mapping->truncate_count;
  2215. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2216. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2217. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2218. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2219. spin_unlock(&mapping->i_mmap_lock);
  2220. }
  2221. EXPORT_SYMBOL(unmap_mapping_range);
  2222. /**
  2223. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2224. * @inode: inode of the file used
  2225. * @offset: file offset to start truncating
  2226. *
  2227. * NOTE! We have to be ready to update the memory sharing
  2228. * between the file and the memory map for a potential last
  2229. * incomplete page. Ugly, but necessary.
  2230. */
  2231. int vmtruncate(struct inode * inode, loff_t offset)
  2232. {
  2233. if (inode->i_size < offset) {
  2234. unsigned long limit;
  2235. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2236. if (limit != RLIM_INFINITY && offset > limit)
  2237. goto out_sig;
  2238. if (offset > inode->i_sb->s_maxbytes)
  2239. goto out_big;
  2240. i_size_write(inode, offset);
  2241. } else {
  2242. struct address_space *mapping = inode->i_mapping;
  2243. /*
  2244. * truncation of in-use swapfiles is disallowed - it would
  2245. * cause subsequent swapout to scribble on the now-freed
  2246. * blocks.
  2247. */
  2248. if (IS_SWAPFILE(inode))
  2249. return -ETXTBSY;
  2250. i_size_write(inode, offset);
  2251. /*
  2252. * unmap_mapping_range is called twice, first simply for
  2253. * efficiency so that truncate_inode_pages does fewer
  2254. * single-page unmaps. However after this first call, and
  2255. * before truncate_inode_pages finishes, it is possible for
  2256. * private pages to be COWed, which remain after
  2257. * truncate_inode_pages finishes, hence the second
  2258. * unmap_mapping_range call must be made for correctness.
  2259. */
  2260. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2261. truncate_inode_pages(mapping, offset);
  2262. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2263. }
  2264. if (inode->i_op->truncate)
  2265. inode->i_op->truncate(inode);
  2266. return 0;
  2267. out_sig:
  2268. send_sig(SIGXFSZ, current, 0);
  2269. out_big:
  2270. return -EFBIG;
  2271. }
  2272. EXPORT_SYMBOL(vmtruncate);
  2273. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2274. {
  2275. struct address_space *mapping = inode->i_mapping;
  2276. /*
  2277. * If the underlying filesystem is not going to provide
  2278. * a way to truncate a range of blocks (punch a hole) -
  2279. * we should return failure right now.
  2280. */
  2281. if (!inode->i_op->truncate_range)
  2282. return -ENOSYS;
  2283. mutex_lock(&inode->i_mutex);
  2284. down_write(&inode->i_alloc_sem);
  2285. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2286. truncate_inode_pages_range(mapping, offset, end);
  2287. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2288. inode->i_op->truncate_range(inode, offset, end);
  2289. up_write(&inode->i_alloc_sem);
  2290. mutex_unlock(&inode->i_mutex);
  2291. return 0;
  2292. }
  2293. /*
  2294. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2295. * but allow concurrent faults), and pte mapped but not yet locked.
  2296. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2297. */
  2298. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2299. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2300. unsigned int flags, pte_t orig_pte)
  2301. {
  2302. spinlock_t *ptl;
  2303. struct page *page;
  2304. swp_entry_t entry;
  2305. pte_t pte;
  2306. struct mem_cgroup *ptr = NULL;
  2307. int ret = 0;
  2308. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2309. goto out;
  2310. entry = pte_to_swp_entry(orig_pte);
  2311. if (is_migration_entry(entry)) {
  2312. migration_entry_wait(mm, pmd, address);
  2313. goto out;
  2314. }
  2315. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2316. page = lookup_swap_cache(entry);
  2317. if (!page) {
  2318. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2319. page = swapin_readahead(entry,
  2320. GFP_HIGHUSER_MOVABLE, vma, address);
  2321. if (!page) {
  2322. /*
  2323. * Back out if somebody else faulted in this pte
  2324. * while we released the pte lock.
  2325. */
  2326. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2327. if (likely(pte_same(*page_table, orig_pte)))
  2328. ret = VM_FAULT_OOM;
  2329. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2330. goto unlock;
  2331. }
  2332. /* Had to read the page from swap area: Major fault */
  2333. ret = VM_FAULT_MAJOR;
  2334. count_vm_event(PGMAJFAULT);
  2335. }
  2336. lock_page(page);
  2337. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2338. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2339. ret = VM_FAULT_OOM;
  2340. goto out_page;
  2341. }
  2342. /*
  2343. * Back out if somebody else already faulted in this pte.
  2344. */
  2345. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2346. if (unlikely(!pte_same(*page_table, orig_pte)))
  2347. goto out_nomap;
  2348. if (unlikely(!PageUptodate(page))) {
  2349. ret = VM_FAULT_SIGBUS;
  2350. goto out_nomap;
  2351. }
  2352. /*
  2353. * The page isn't present yet, go ahead with the fault.
  2354. *
  2355. * Be careful about the sequence of operations here.
  2356. * To get its accounting right, reuse_swap_page() must be called
  2357. * while the page is counted on swap but not yet in mapcount i.e.
  2358. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2359. * must be called after the swap_free(), or it will never succeed.
  2360. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2361. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2362. * in page->private. In this case, a record in swap_cgroup is silently
  2363. * discarded at swap_free().
  2364. */
  2365. inc_mm_counter(mm, anon_rss);
  2366. pte = mk_pte(page, vma->vm_page_prot);
  2367. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2368. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2369. flags &= ~FAULT_FLAG_WRITE;
  2370. }
  2371. flush_icache_page(vma, page);
  2372. set_pte_at(mm, address, page_table, pte);
  2373. page_add_anon_rmap(page, vma, address);
  2374. /* It's better to call commit-charge after rmap is established */
  2375. mem_cgroup_commit_charge_swapin(page, ptr);
  2376. swap_free(entry);
  2377. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2378. try_to_free_swap(page);
  2379. unlock_page(page);
  2380. if (flags & FAULT_FLAG_WRITE) {
  2381. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2382. if (ret & VM_FAULT_ERROR)
  2383. ret &= VM_FAULT_ERROR;
  2384. goto out;
  2385. }
  2386. /* No need to invalidate - it was non-present before */
  2387. update_mmu_cache(vma, address, pte);
  2388. unlock:
  2389. pte_unmap_unlock(page_table, ptl);
  2390. out:
  2391. return ret;
  2392. out_nomap:
  2393. mem_cgroup_cancel_charge_swapin(ptr);
  2394. pte_unmap_unlock(page_table, ptl);
  2395. out_page:
  2396. unlock_page(page);
  2397. page_cache_release(page);
  2398. return ret;
  2399. }
  2400. /*
  2401. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2402. * but allow concurrent faults), and pte mapped but not yet locked.
  2403. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2404. */
  2405. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2406. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2407. unsigned int flags)
  2408. {
  2409. struct page *page;
  2410. spinlock_t *ptl;
  2411. pte_t entry;
  2412. if (!(flags & FAULT_FLAG_WRITE)) {
  2413. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2414. vma->vm_page_prot));
  2415. ptl = pte_lockptr(mm, pmd);
  2416. spin_lock(ptl);
  2417. if (!pte_none(*page_table))
  2418. goto unlock;
  2419. goto setpte;
  2420. }
  2421. /* Allocate our own private page. */
  2422. pte_unmap(page_table);
  2423. if (unlikely(anon_vma_prepare(vma)))
  2424. goto oom;
  2425. page = alloc_zeroed_user_highpage_movable(vma, address);
  2426. if (!page)
  2427. goto oom;
  2428. __SetPageUptodate(page);
  2429. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2430. goto oom_free_page;
  2431. entry = mk_pte(page, vma->vm_page_prot);
  2432. if (vma->vm_flags & VM_WRITE)
  2433. entry = pte_mkwrite(pte_mkdirty(entry));
  2434. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2435. if (!pte_none(*page_table))
  2436. goto release;
  2437. inc_mm_counter(mm, anon_rss);
  2438. page_add_new_anon_rmap(page, vma, address);
  2439. setpte:
  2440. set_pte_at(mm, address, page_table, entry);
  2441. /* No need to invalidate - it was non-present before */
  2442. update_mmu_cache(vma, address, entry);
  2443. unlock:
  2444. pte_unmap_unlock(page_table, ptl);
  2445. return 0;
  2446. release:
  2447. mem_cgroup_uncharge_page(page);
  2448. page_cache_release(page);
  2449. goto unlock;
  2450. oom_free_page:
  2451. page_cache_release(page);
  2452. oom:
  2453. return VM_FAULT_OOM;
  2454. }
  2455. /*
  2456. * __do_fault() tries to create a new page mapping. It aggressively
  2457. * tries to share with existing pages, but makes a separate copy if
  2458. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2459. * the next page fault.
  2460. *
  2461. * As this is called only for pages that do not currently exist, we
  2462. * do not need to flush old virtual caches or the TLB.
  2463. *
  2464. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2465. * but allow concurrent faults), and pte neither mapped nor locked.
  2466. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2467. */
  2468. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2469. unsigned long address, pmd_t *pmd,
  2470. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2471. {
  2472. pte_t *page_table;
  2473. spinlock_t *ptl;
  2474. struct page *page;
  2475. pte_t entry;
  2476. int anon = 0;
  2477. int charged = 0;
  2478. struct page *dirty_page = NULL;
  2479. struct vm_fault vmf;
  2480. int ret;
  2481. int page_mkwrite = 0;
  2482. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2483. vmf.pgoff = pgoff;
  2484. vmf.flags = flags;
  2485. vmf.page = NULL;
  2486. ret = vma->vm_ops->fault(vma, &vmf);
  2487. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2488. return ret;
  2489. /*
  2490. * For consistency in subsequent calls, make the faulted page always
  2491. * locked.
  2492. */
  2493. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2494. lock_page(vmf.page);
  2495. else
  2496. VM_BUG_ON(!PageLocked(vmf.page));
  2497. /*
  2498. * Should we do an early C-O-W break?
  2499. */
  2500. page = vmf.page;
  2501. if (flags & FAULT_FLAG_WRITE) {
  2502. if (!(vma->vm_flags & VM_SHARED)) {
  2503. anon = 1;
  2504. if (unlikely(anon_vma_prepare(vma))) {
  2505. ret = VM_FAULT_OOM;
  2506. goto out;
  2507. }
  2508. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2509. vma, address);
  2510. if (!page) {
  2511. ret = VM_FAULT_OOM;
  2512. goto out;
  2513. }
  2514. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2515. ret = VM_FAULT_OOM;
  2516. page_cache_release(page);
  2517. goto out;
  2518. }
  2519. charged = 1;
  2520. /*
  2521. * Don't let another task, with possibly unlocked vma,
  2522. * keep the mlocked page.
  2523. */
  2524. if (vma->vm_flags & VM_LOCKED)
  2525. clear_page_mlock(vmf.page);
  2526. copy_user_highpage(page, vmf.page, address, vma);
  2527. __SetPageUptodate(page);
  2528. } else {
  2529. /*
  2530. * If the page will be shareable, see if the backing
  2531. * address space wants to know that the page is about
  2532. * to become writable
  2533. */
  2534. if (vma->vm_ops->page_mkwrite) {
  2535. int tmp;
  2536. unlock_page(page);
  2537. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2538. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2539. if (unlikely(tmp &
  2540. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2541. ret = tmp;
  2542. goto unwritable_page;
  2543. }
  2544. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2545. lock_page(page);
  2546. if (!page->mapping) {
  2547. ret = 0; /* retry the fault */
  2548. unlock_page(page);
  2549. goto unwritable_page;
  2550. }
  2551. } else
  2552. VM_BUG_ON(!PageLocked(page));
  2553. page_mkwrite = 1;
  2554. }
  2555. }
  2556. }
  2557. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2558. /*
  2559. * This silly early PAGE_DIRTY setting removes a race
  2560. * due to the bad i386 page protection. But it's valid
  2561. * for other architectures too.
  2562. *
  2563. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2564. * an exclusive copy of the page, or this is a shared mapping,
  2565. * so we can make it writable and dirty to avoid having to
  2566. * handle that later.
  2567. */
  2568. /* Only go through if we didn't race with anybody else... */
  2569. if (likely(pte_same(*page_table, orig_pte))) {
  2570. flush_icache_page(vma, page);
  2571. entry = mk_pte(page, vma->vm_page_prot);
  2572. if (flags & FAULT_FLAG_WRITE)
  2573. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2574. if (anon) {
  2575. inc_mm_counter(mm, anon_rss);
  2576. page_add_new_anon_rmap(page, vma, address);
  2577. } else {
  2578. inc_mm_counter(mm, file_rss);
  2579. page_add_file_rmap(page);
  2580. if (flags & FAULT_FLAG_WRITE) {
  2581. dirty_page = page;
  2582. get_page(dirty_page);
  2583. }
  2584. }
  2585. set_pte_at(mm, address, page_table, entry);
  2586. /* no need to invalidate: a not-present page won't be cached */
  2587. update_mmu_cache(vma, address, entry);
  2588. } else {
  2589. if (charged)
  2590. mem_cgroup_uncharge_page(page);
  2591. if (anon)
  2592. page_cache_release(page);
  2593. else
  2594. anon = 1; /* no anon but release faulted_page */
  2595. }
  2596. pte_unmap_unlock(page_table, ptl);
  2597. out:
  2598. if (dirty_page) {
  2599. struct address_space *mapping = page->mapping;
  2600. if (set_page_dirty(dirty_page))
  2601. page_mkwrite = 1;
  2602. unlock_page(dirty_page);
  2603. put_page(dirty_page);
  2604. if (page_mkwrite && mapping) {
  2605. /*
  2606. * Some device drivers do not set page.mapping but still
  2607. * dirty their pages
  2608. */
  2609. balance_dirty_pages_ratelimited(mapping);
  2610. }
  2611. /* file_update_time outside page_lock */
  2612. if (vma->vm_file)
  2613. file_update_time(vma->vm_file);
  2614. } else {
  2615. unlock_page(vmf.page);
  2616. if (anon)
  2617. page_cache_release(vmf.page);
  2618. }
  2619. return ret;
  2620. unwritable_page:
  2621. page_cache_release(page);
  2622. return ret;
  2623. }
  2624. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2625. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2626. unsigned int flags, pte_t orig_pte)
  2627. {
  2628. pgoff_t pgoff = (((address & PAGE_MASK)
  2629. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2630. pte_unmap(page_table);
  2631. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2632. }
  2633. /*
  2634. * Fault of a previously existing named mapping. Repopulate the pte
  2635. * from the encoded file_pte if possible. This enables swappable
  2636. * nonlinear vmas.
  2637. *
  2638. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2639. * but allow concurrent faults), and pte mapped but not yet locked.
  2640. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2641. */
  2642. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2643. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2644. unsigned int flags, pte_t orig_pte)
  2645. {
  2646. pgoff_t pgoff;
  2647. flags |= FAULT_FLAG_NONLINEAR;
  2648. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2649. return 0;
  2650. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2651. /*
  2652. * Page table corrupted: show pte and kill process.
  2653. */
  2654. print_bad_pte(vma, address, orig_pte, NULL);
  2655. return VM_FAULT_OOM;
  2656. }
  2657. pgoff = pte_to_pgoff(orig_pte);
  2658. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2659. }
  2660. /*
  2661. * These routines also need to handle stuff like marking pages dirty
  2662. * and/or accessed for architectures that don't do it in hardware (most
  2663. * RISC architectures). The early dirtying is also good on the i386.
  2664. *
  2665. * There is also a hook called "update_mmu_cache()" that architectures
  2666. * with external mmu caches can use to update those (ie the Sparc or
  2667. * PowerPC hashed page tables that act as extended TLBs).
  2668. *
  2669. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2670. * but allow concurrent faults), and pte mapped but not yet locked.
  2671. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2672. */
  2673. static inline int handle_pte_fault(struct mm_struct *mm,
  2674. struct vm_area_struct *vma, unsigned long address,
  2675. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2676. {
  2677. pte_t entry;
  2678. spinlock_t *ptl;
  2679. entry = *pte;
  2680. if (!pte_present(entry)) {
  2681. if (pte_none(entry)) {
  2682. if (vma->vm_ops) {
  2683. if (likely(vma->vm_ops->fault))
  2684. return do_linear_fault(mm, vma, address,
  2685. pte, pmd, flags, entry);
  2686. }
  2687. return do_anonymous_page(mm, vma, address,
  2688. pte, pmd, flags);
  2689. }
  2690. if (pte_file(entry))
  2691. return do_nonlinear_fault(mm, vma, address,
  2692. pte, pmd, flags, entry);
  2693. return do_swap_page(mm, vma, address,
  2694. pte, pmd, flags, entry);
  2695. }
  2696. ptl = pte_lockptr(mm, pmd);
  2697. spin_lock(ptl);
  2698. if (unlikely(!pte_same(*pte, entry)))
  2699. goto unlock;
  2700. if (flags & FAULT_FLAG_WRITE) {
  2701. if (!pte_write(entry))
  2702. return do_wp_page(mm, vma, address,
  2703. pte, pmd, ptl, entry);
  2704. entry = pte_mkdirty(entry);
  2705. }
  2706. entry = pte_mkyoung(entry);
  2707. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2708. update_mmu_cache(vma, address, entry);
  2709. } else {
  2710. /*
  2711. * This is needed only for protection faults but the arch code
  2712. * is not yet telling us if this is a protection fault or not.
  2713. * This still avoids useless tlb flushes for .text page faults
  2714. * with threads.
  2715. */
  2716. if (flags & FAULT_FLAG_WRITE)
  2717. flush_tlb_page(vma, address);
  2718. }
  2719. unlock:
  2720. pte_unmap_unlock(pte, ptl);
  2721. return 0;
  2722. }
  2723. /*
  2724. * By the time we get here, we already hold the mm semaphore
  2725. */
  2726. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2727. unsigned long address, unsigned int flags)
  2728. {
  2729. pgd_t *pgd;
  2730. pud_t *pud;
  2731. pmd_t *pmd;
  2732. pte_t *pte;
  2733. __set_current_state(TASK_RUNNING);
  2734. count_vm_event(PGFAULT);
  2735. if (unlikely(is_vm_hugetlb_page(vma)))
  2736. return hugetlb_fault(mm, vma, address, flags);
  2737. pgd = pgd_offset(mm, address);
  2738. pud = pud_alloc(mm, pgd, address);
  2739. if (!pud)
  2740. return VM_FAULT_OOM;
  2741. pmd = pmd_alloc(mm, pud, address);
  2742. if (!pmd)
  2743. return VM_FAULT_OOM;
  2744. pte = pte_alloc_map(mm, pmd, address);
  2745. if (!pte)
  2746. return VM_FAULT_OOM;
  2747. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2748. }
  2749. #ifndef __PAGETABLE_PUD_FOLDED
  2750. /*
  2751. * Allocate page upper directory.
  2752. * We've already handled the fast-path in-line.
  2753. */
  2754. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2755. {
  2756. pud_t *new = pud_alloc_one(mm, address);
  2757. if (!new)
  2758. return -ENOMEM;
  2759. smp_wmb(); /* See comment in __pte_alloc */
  2760. spin_lock(&mm->page_table_lock);
  2761. if (pgd_present(*pgd)) /* Another has populated it */
  2762. pud_free(mm, new);
  2763. else
  2764. pgd_populate(mm, pgd, new);
  2765. spin_unlock(&mm->page_table_lock);
  2766. return 0;
  2767. }
  2768. #endif /* __PAGETABLE_PUD_FOLDED */
  2769. #ifndef __PAGETABLE_PMD_FOLDED
  2770. /*
  2771. * Allocate page middle directory.
  2772. * We've already handled the fast-path in-line.
  2773. */
  2774. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2775. {
  2776. pmd_t *new = pmd_alloc_one(mm, address);
  2777. if (!new)
  2778. return -ENOMEM;
  2779. smp_wmb(); /* See comment in __pte_alloc */
  2780. spin_lock(&mm->page_table_lock);
  2781. #ifndef __ARCH_HAS_4LEVEL_HACK
  2782. if (pud_present(*pud)) /* Another has populated it */
  2783. pmd_free(mm, new);
  2784. else
  2785. pud_populate(mm, pud, new);
  2786. #else
  2787. if (pgd_present(*pud)) /* Another has populated it */
  2788. pmd_free(mm, new);
  2789. else
  2790. pgd_populate(mm, pud, new);
  2791. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2792. spin_unlock(&mm->page_table_lock);
  2793. return 0;
  2794. }
  2795. #endif /* __PAGETABLE_PMD_FOLDED */
  2796. int make_pages_present(unsigned long addr, unsigned long end)
  2797. {
  2798. int ret, len, write;
  2799. struct vm_area_struct * vma;
  2800. vma = find_vma(current->mm, addr);
  2801. if (!vma)
  2802. return -ENOMEM;
  2803. write = (vma->vm_flags & VM_WRITE) != 0;
  2804. BUG_ON(addr >= end);
  2805. BUG_ON(end > vma->vm_end);
  2806. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2807. ret = get_user_pages(current, current->mm, addr,
  2808. len, write, 0, NULL, NULL);
  2809. if (ret < 0)
  2810. return ret;
  2811. return ret == len ? 0 : -EFAULT;
  2812. }
  2813. #if !defined(__HAVE_ARCH_GATE_AREA)
  2814. #if defined(AT_SYSINFO_EHDR)
  2815. static struct vm_area_struct gate_vma;
  2816. static int __init gate_vma_init(void)
  2817. {
  2818. gate_vma.vm_mm = NULL;
  2819. gate_vma.vm_start = FIXADDR_USER_START;
  2820. gate_vma.vm_end = FIXADDR_USER_END;
  2821. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2822. gate_vma.vm_page_prot = __P101;
  2823. /*
  2824. * Make sure the vDSO gets into every core dump.
  2825. * Dumping its contents makes post-mortem fully interpretable later
  2826. * without matching up the same kernel and hardware config to see
  2827. * what PC values meant.
  2828. */
  2829. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2830. return 0;
  2831. }
  2832. __initcall(gate_vma_init);
  2833. #endif
  2834. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2835. {
  2836. #ifdef AT_SYSINFO_EHDR
  2837. return &gate_vma;
  2838. #else
  2839. return NULL;
  2840. #endif
  2841. }
  2842. int in_gate_area_no_task(unsigned long addr)
  2843. {
  2844. #ifdef AT_SYSINFO_EHDR
  2845. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2846. return 1;
  2847. #endif
  2848. return 0;
  2849. }
  2850. #endif /* __HAVE_ARCH_GATE_AREA */
  2851. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2852. pte_t **ptepp, spinlock_t **ptlp)
  2853. {
  2854. pgd_t *pgd;
  2855. pud_t *pud;
  2856. pmd_t *pmd;
  2857. pte_t *ptep;
  2858. pgd = pgd_offset(mm, address);
  2859. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2860. goto out;
  2861. pud = pud_offset(pgd, address);
  2862. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2863. goto out;
  2864. pmd = pmd_offset(pud, address);
  2865. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2866. goto out;
  2867. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2868. if (pmd_huge(*pmd))
  2869. goto out;
  2870. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2871. if (!ptep)
  2872. goto out;
  2873. if (!pte_present(*ptep))
  2874. goto unlock;
  2875. *ptepp = ptep;
  2876. return 0;
  2877. unlock:
  2878. pte_unmap_unlock(ptep, *ptlp);
  2879. out:
  2880. return -EINVAL;
  2881. }
  2882. /**
  2883. * follow_pfn - look up PFN at a user virtual address
  2884. * @vma: memory mapping
  2885. * @address: user virtual address
  2886. * @pfn: location to store found PFN
  2887. *
  2888. * Only IO mappings and raw PFN mappings are allowed.
  2889. *
  2890. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2891. */
  2892. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2893. unsigned long *pfn)
  2894. {
  2895. int ret = -EINVAL;
  2896. spinlock_t *ptl;
  2897. pte_t *ptep;
  2898. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2899. return ret;
  2900. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2901. if (ret)
  2902. return ret;
  2903. *pfn = pte_pfn(*ptep);
  2904. pte_unmap_unlock(ptep, ptl);
  2905. return 0;
  2906. }
  2907. EXPORT_SYMBOL(follow_pfn);
  2908. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2909. int follow_phys(struct vm_area_struct *vma,
  2910. unsigned long address, unsigned int flags,
  2911. unsigned long *prot, resource_size_t *phys)
  2912. {
  2913. int ret = -EINVAL;
  2914. pte_t *ptep, pte;
  2915. spinlock_t *ptl;
  2916. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2917. goto out;
  2918. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2919. goto out;
  2920. pte = *ptep;
  2921. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2922. goto unlock;
  2923. *prot = pgprot_val(pte_pgprot(pte));
  2924. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2925. ret = 0;
  2926. unlock:
  2927. pte_unmap_unlock(ptep, ptl);
  2928. out:
  2929. return ret;
  2930. }
  2931. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2932. void *buf, int len, int write)
  2933. {
  2934. resource_size_t phys_addr;
  2935. unsigned long prot = 0;
  2936. void __iomem *maddr;
  2937. int offset = addr & (PAGE_SIZE-1);
  2938. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2939. return -EINVAL;
  2940. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2941. if (write)
  2942. memcpy_toio(maddr + offset, buf, len);
  2943. else
  2944. memcpy_fromio(buf, maddr + offset, len);
  2945. iounmap(maddr);
  2946. return len;
  2947. }
  2948. #endif
  2949. /*
  2950. * Access another process' address space.
  2951. * Source/target buffer must be kernel space,
  2952. * Do not walk the page table directly, use get_user_pages
  2953. */
  2954. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2955. {
  2956. struct mm_struct *mm;
  2957. struct vm_area_struct *vma;
  2958. void *old_buf = buf;
  2959. mm = get_task_mm(tsk);
  2960. if (!mm)
  2961. return 0;
  2962. down_read(&mm->mmap_sem);
  2963. /* ignore errors, just check how much was successfully transferred */
  2964. while (len) {
  2965. int bytes, ret, offset;
  2966. void *maddr;
  2967. struct page *page = NULL;
  2968. ret = get_user_pages(tsk, mm, addr, 1,
  2969. write, 1, &page, &vma);
  2970. if (ret <= 0) {
  2971. /*
  2972. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2973. * we can access using slightly different code.
  2974. */
  2975. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2976. vma = find_vma(mm, addr);
  2977. if (!vma)
  2978. break;
  2979. if (vma->vm_ops && vma->vm_ops->access)
  2980. ret = vma->vm_ops->access(vma, addr, buf,
  2981. len, write);
  2982. if (ret <= 0)
  2983. #endif
  2984. break;
  2985. bytes = ret;
  2986. } else {
  2987. bytes = len;
  2988. offset = addr & (PAGE_SIZE-1);
  2989. if (bytes > PAGE_SIZE-offset)
  2990. bytes = PAGE_SIZE-offset;
  2991. maddr = kmap(page);
  2992. if (write) {
  2993. copy_to_user_page(vma, page, addr,
  2994. maddr + offset, buf, bytes);
  2995. set_page_dirty_lock(page);
  2996. } else {
  2997. copy_from_user_page(vma, page, addr,
  2998. buf, maddr + offset, bytes);
  2999. }
  3000. kunmap(page);
  3001. page_cache_release(page);
  3002. }
  3003. len -= bytes;
  3004. buf += bytes;
  3005. addr += bytes;
  3006. }
  3007. up_read(&mm->mmap_sem);
  3008. mmput(mm);
  3009. return buf - old_buf;
  3010. }
  3011. /*
  3012. * Print the name of a VMA.
  3013. */
  3014. void print_vma_addr(char *prefix, unsigned long ip)
  3015. {
  3016. struct mm_struct *mm = current->mm;
  3017. struct vm_area_struct *vma;
  3018. /*
  3019. * Do not print if we are in atomic
  3020. * contexts (in exception stacks, etc.):
  3021. */
  3022. if (preempt_count())
  3023. return;
  3024. down_read(&mm->mmap_sem);
  3025. vma = find_vma(mm, ip);
  3026. if (vma && vma->vm_file) {
  3027. struct file *f = vma->vm_file;
  3028. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3029. if (buf) {
  3030. char *p, *s;
  3031. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3032. if (IS_ERR(p))
  3033. p = "?";
  3034. s = strrchr(p, '/');
  3035. if (s)
  3036. p = s+1;
  3037. printk("%s%s[%lx+%lx]", prefix, p,
  3038. vma->vm_start,
  3039. vma->vm_end - vma->vm_start);
  3040. free_page((unsigned long)buf);
  3041. }
  3042. }
  3043. up_read(&current->mm->mmap_sem);
  3044. }
  3045. #ifdef CONFIG_PROVE_LOCKING
  3046. void might_fault(void)
  3047. {
  3048. /*
  3049. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3050. * holding the mmap_sem, this is safe because kernel memory doesn't
  3051. * get paged out, therefore we'll never actually fault, and the
  3052. * below annotations will generate false positives.
  3053. */
  3054. if (segment_eq(get_fs(), KERNEL_DS))
  3055. return;
  3056. might_sleep();
  3057. /*
  3058. * it would be nicer only to annotate paths which are not under
  3059. * pagefault_disable, however that requires a larger audit and
  3060. * providing helpers like get_user_atomic.
  3061. */
  3062. if (!in_atomic() && current->mm)
  3063. might_lock_read(&current->mm->mmap_sem);
  3064. }
  3065. EXPORT_SYMBOL(might_fault);
  3066. #endif