slub.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. /*
  30. * Lock order:
  31. * 1. slab_lock(page)
  32. * 2. slab->list_lock
  33. *
  34. * The slab_lock protects operations on the object of a particular
  35. * slab and its metadata in the page struct. If the slab lock
  36. * has been taken then no allocations nor frees can be performed
  37. * on the objects in the slab nor can the slab be added or removed
  38. * from the partial or full lists since this would mean modifying
  39. * the page_struct of the slab.
  40. *
  41. * The list_lock protects the partial and full list on each node and
  42. * the partial slab counter. If taken then no new slabs may be added or
  43. * removed from the lists nor make the number of partial slabs be modified.
  44. * (Note that the total number of slabs is an atomic value that may be
  45. * modified without taking the list lock).
  46. *
  47. * The list_lock is a centralized lock and thus we avoid taking it as
  48. * much as possible. As long as SLUB does not have to handle partial
  49. * slabs, operations can continue without any centralized lock. F.e.
  50. * allocating a long series of objects that fill up slabs does not require
  51. * the list lock.
  52. *
  53. * The lock order is sometimes inverted when we are trying to get a slab
  54. * off a list. We take the list_lock and then look for a page on the list
  55. * to use. While we do that objects in the slabs may be freed. We can
  56. * only operate on the slab if we have also taken the slab_lock. So we use
  57. * a slab_trylock() on the slab. If trylock was successful then no frees
  58. * can occur anymore and we can use the slab for allocations etc. If the
  59. * slab_trylock() does not succeed then frees are in progress in the slab and
  60. * we must stay away from it for a while since we may cause a bouncing
  61. * cacheline if we try to acquire the lock. So go onto the next slab.
  62. * If all pages are busy then we may allocate a new slab instead of reusing
  63. * a partial slab. A new slab has noone operating on it and thus there is
  64. * no danger of cacheline contention.
  65. *
  66. * Interrupts are disabled during allocation and deallocation in order to
  67. * make the slab allocator safe to use in the context of an irq. In addition
  68. * interrupts are disabled to ensure that the processor does not change
  69. * while handling per_cpu slabs, due to kernel preemption.
  70. *
  71. * SLUB assigns one slab for allocation to each processor.
  72. * Allocations only occur from these slabs called cpu slabs.
  73. *
  74. * Slabs with free elements are kept on a partial list and during regular
  75. * operations no list for full slabs is used. If an object in a full slab is
  76. * freed then the slab will show up again on the partial lists.
  77. * We track full slabs for debugging purposes though because otherwise we
  78. * cannot scan all objects.
  79. *
  80. * Slabs are freed when they become empty. Teardown and setup is
  81. * minimal so we rely on the page allocators per cpu caches for
  82. * fast frees and allocs.
  83. *
  84. * Overloading of page flags that are otherwise used for LRU management.
  85. *
  86. * PageActive The slab is frozen and exempt from list processing.
  87. * This means that the slab is dedicated to a purpose
  88. * such as satisfying allocations for a specific
  89. * processor. Objects may be freed in the slab while
  90. * it is frozen but slab_free will then skip the usual
  91. * list operations. It is up to the processor holding
  92. * the slab to integrate the slab into the slab lists
  93. * when the slab is no longer needed.
  94. *
  95. * One use of this flag is to mark slabs that are
  96. * used for allocations. Then such a slab becomes a cpu
  97. * slab. The cpu slab may be equipped with an additional
  98. * freelist that allows lockless access to
  99. * free objects in addition to the regular freelist
  100. * that requires the slab lock.
  101. *
  102. * PageError Slab requires special handling due to debug
  103. * options set. This moves slab handling out of
  104. * the fast path and disables lockless freelists.
  105. */
  106. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  107. SLAB_TRACE | SLAB_DEBUG_FREE)
  108. static inline int kmem_cache_debug(struct kmem_cache *s)
  109. {
  110. #ifdef CONFIG_SLUB_DEBUG
  111. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  112. #else
  113. return 0;
  114. #endif
  115. }
  116. /*
  117. * Issues still to be resolved:
  118. *
  119. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  120. *
  121. * - Variable sizing of the per node arrays
  122. */
  123. /* Enable to test recovery from slab corruption on boot */
  124. #undef SLUB_RESILIENCY_TEST
  125. /*
  126. * Mininum number of partial slabs. These will be left on the partial
  127. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  128. */
  129. #define MIN_PARTIAL 5
  130. /*
  131. * Maximum number of desirable partial slabs.
  132. * The existence of more partial slabs makes kmem_cache_shrink
  133. * sort the partial list by the number of objects in the.
  134. */
  135. #define MAX_PARTIAL 10
  136. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  137. SLAB_POISON | SLAB_STORE_USER)
  138. /*
  139. * Debugging flags that require metadata to be stored in the slab. These get
  140. * disabled when slub_debug=O is used and a cache's min order increases with
  141. * metadata.
  142. */
  143. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Set of flags that will prevent slab merging
  146. */
  147. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  148. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  149. SLAB_FAILSLAB)
  150. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  151. SLAB_CACHE_DMA | SLAB_NOTRACK)
  152. #define OO_SHIFT 16
  153. #define OO_MASK ((1 << OO_SHIFT) - 1)
  154. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  155. /* Internal SLUB flags */
  156. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  157. static int kmem_size = sizeof(struct kmem_cache);
  158. #ifdef CONFIG_SMP
  159. static struct notifier_block slab_notifier;
  160. #endif
  161. static enum {
  162. DOWN, /* No slab functionality available */
  163. PARTIAL, /* Kmem_cache_node works */
  164. UP, /* Everything works but does not show up in sysfs */
  165. SYSFS /* Sysfs up */
  166. } slab_state = DOWN;
  167. /* A list of all slab caches on the system */
  168. static DECLARE_RWSEM(slub_lock);
  169. static LIST_HEAD(slab_caches);
  170. /*
  171. * Tracking user of a slab.
  172. */
  173. struct track {
  174. unsigned long addr; /* Called from address */
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SLUB_DEBUG
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. #else
  185. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s)
  189. {
  190. kfree(s->name);
  191. kfree(s);
  192. }
  193. #endif
  194. static inline void stat(struct kmem_cache *s, enum stat_item si)
  195. {
  196. #ifdef CONFIG_SLUB_STATS
  197. __this_cpu_inc(s->cpu_slab->stat[si]);
  198. #endif
  199. }
  200. /********************************************************************
  201. * Core slab cache functions
  202. *******************************************************************/
  203. int slab_is_available(void)
  204. {
  205. return slab_state >= UP;
  206. }
  207. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  208. {
  209. return s->node[node];
  210. }
  211. /* Verify that a pointer has an address that is valid within a slab page */
  212. static inline int check_valid_pointer(struct kmem_cache *s,
  213. struct page *page, const void *object)
  214. {
  215. void *base;
  216. if (!object)
  217. return 1;
  218. base = page_address(page);
  219. if (object < base || object >= base + page->objects * s->size ||
  220. (object - base) % s->size) {
  221. return 0;
  222. }
  223. return 1;
  224. }
  225. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  226. {
  227. return *(void **)(object + s->offset);
  228. }
  229. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  230. {
  231. *(void **)(object + s->offset) = fp;
  232. }
  233. /* Loop over all objects in a slab */
  234. #define for_each_object(__p, __s, __addr, __objects) \
  235. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  236. __p += (__s)->size)
  237. /* Scan freelist */
  238. #define for_each_free_object(__p, __s, __free) \
  239. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  240. /* Determine object index from a given position */
  241. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  242. {
  243. return (p - addr) / s->size;
  244. }
  245. static inline struct kmem_cache_order_objects oo_make(int order,
  246. unsigned long size)
  247. {
  248. struct kmem_cache_order_objects x = {
  249. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  250. };
  251. return x;
  252. }
  253. static inline int oo_order(struct kmem_cache_order_objects x)
  254. {
  255. return x.x >> OO_SHIFT;
  256. }
  257. static inline int oo_objects(struct kmem_cache_order_objects x)
  258. {
  259. return x.x & OO_MASK;
  260. }
  261. #ifdef CONFIG_SLUB_DEBUG
  262. /*
  263. * Debug settings:
  264. */
  265. #ifdef CONFIG_SLUB_DEBUG_ON
  266. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  267. #else
  268. static int slub_debug;
  269. #endif
  270. static char *slub_debug_slabs;
  271. static int disable_higher_order_debug;
  272. /*
  273. * Object debugging
  274. */
  275. static void print_section(char *text, u8 *addr, unsigned int length)
  276. {
  277. int i, offset;
  278. int newline = 1;
  279. char ascii[17];
  280. ascii[16] = 0;
  281. for (i = 0; i < length; i++) {
  282. if (newline) {
  283. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  284. newline = 0;
  285. }
  286. printk(KERN_CONT " %02x", addr[i]);
  287. offset = i % 16;
  288. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  289. if (offset == 15) {
  290. printk(KERN_CONT " %s\n", ascii);
  291. newline = 1;
  292. }
  293. }
  294. if (!newline) {
  295. i %= 16;
  296. while (i < 16) {
  297. printk(KERN_CONT " ");
  298. ascii[i] = ' ';
  299. i++;
  300. }
  301. printk(KERN_CONT " %s\n", ascii);
  302. }
  303. }
  304. static struct track *get_track(struct kmem_cache *s, void *object,
  305. enum track_item alloc)
  306. {
  307. struct track *p;
  308. if (s->offset)
  309. p = object + s->offset + sizeof(void *);
  310. else
  311. p = object + s->inuse;
  312. return p + alloc;
  313. }
  314. static void set_track(struct kmem_cache *s, void *object,
  315. enum track_item alloc, unsigned long addr)
  316. {
  317. struct track *p = get_track(s, object, alloc);
  318. if (addr) {
  319. p->addr = addr;
  320. p->cpu = smp_processor_id();
  321. p->pid = current->pid;
  322. p->when = jiffies;
  323. } else
  324. memset(p, 0, sizeof(struct track));
  325. }
  326. static void init_tracking(struct kmem_cache *s, void *object)
  327. {
  328. if (!(s->flags & SLAB_STORE_USER))
  329. return;
  330. set_track(s, object, TRACK_FREE, 0UL);
  331. set_track(s, object, TRACK_ALLOC, 0UL);
  332. }
  333. static void print_track(const char *s, struct track *t)
  334. {
  335. if (!t->addr)
  336. return;
  337. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  338. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  339. }
  340. static void print_tracking(struct kmem_cache *s, void *object)
  341. {
  342. if (!(s->flags & SLAB_STORE_USER))
  343. return;
  344. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  345. print_track("Freed", get_track(s, object, TRACK_FREE));
  346. }
  347. static void print_page_info(struct page *page)
  348. {
  349. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  350. page, page->objects, page->inuse, page->freelist, page->flags);
  351. }
  352. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  353. {
  354. va_list args;
  355. char buf[100];
  356. va_start(args, fmt);
  357. vsnprintf(buf, sizeof(buf), fmt, args);
  358. va_end(args);
  359. printk(KERN_ERR "========================================"
  360. "=====================================\n");
  361. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  362. printk(KERN_ERR "----------------------------------------"
  363. "-------------------------------------\n\n");
  364. }
  365. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  366. {
  367. va_list args;
  368. char buf[100];
  369. va_start(args, fmt);
  370. vsnprintf(buf, sizeof(buf), fmt, args);
  371. va_end(args);
  372. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  373. }
  374. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  375. {
  376. unsigned int off; /* Offset of last byte */
  377. u8 *addr = page_address(page);
  378. print_tracking(s, p);
  379. print_page_info(page);
  380. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  381. p, p - addr, get_freepointer(s, p));
  382. if (p > addr + 16)
  383. print_section("Bytes b4", p - 16, 16);
  384. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  385. if (s->flags & SLAB_RED_ZONE)
  386. print_section("Redzone", p + s->objsize,
  387. s->inuse - s->objsize);
  388. if (s->offset)
  389. off = s->offset + sizeof(void *);
  390. else
  391. off = s->inuse;
  392. if (s->flags & SLAB_STORE_USER)
  393. off += 2 * sizeof(struct track);
  394. if (off != s->size)
  395. /* Beginning of the filler is the free pointer */
  396. print_section("Padding", p + off, s->size - off);
  397. dump_stack();
  398. }
  399. static void object_err(struct kmem_cache *s, struct page *page,
  400. u8 *object, char *reason)
  401. {
  402. slab_bug(s, "%s", reason);
  403. print_trailer(s, page, object);
  404. }
  405. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  406. {
  407. va_list args;
  408. char buf[100];
  409. va_start(args, fmt);
  410. vsnprintf(buf, sizeof(buf), fmt, args);
  411. va_end(args);
  412. slab_bug(s, "%s", buf);
  413. print_page_info(page);
  414. dump_stack();
  415. }
  416. static void init_object(struct kmem_cache *s, void *object, u8 val)
  417. {
  418. u8 *p = object;
  419. if (s->flags & __OBJECT_POISON) {
  420. memset(p, POISON_FREE, s->objsize - 1);
  421. p[s->objsize - 1] = POISON_END;
  422. }
  423. if (s->flags & SLAB_RED_ZONE)
  424. memset(p + s->objsize, val, s->inuse - s->objsize);
  425. }
  426. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  427. {
  428. while (bytes) {
  429. if (*start != (u8)value)
  430. return start;
  431. start++;
  432. bytes--;
  433. }
  434. return NULL;
  435. }
  436. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  437. void *from, void *to)
  438. {
  439. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  440. memset(from, data, to - from);
  441. }
  442. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  443. u8 *object, char *what,
  444. u8 *start, unsigned int value, unsigned int bytes)
  445. {
  446. u8 *fault;
  447. u8 *end;
  448. fault = check_bytes(start, value, bytes);
  449. if (!fault)
  450. return 1;
  451. end = start + bytes;
  452. while (end > fault && end[-1] == value)
  453. end--;
  454. slab_bug(s, "%s overwritten", what);
  455. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  456. fault, end - 1, fault[0], value);
  457. print_trailer(s, page, object);
  458. restore_bytes(s, what, value, fault, end);
  459. return 0;
  460. }
  461. /*
  462. * Object layout:
  463. *
  464. * object address
  465. * Bytes of the object to be managed.
  466. * If the freepointer may overlay the object then the free
  467. * pointer is the first word of the object.
  468. *
  469. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  470. * 0xa5 (POISON_END)
  471. *
  472. * object + s->objsize
  473. * Padding to reach word boundary. This is also used for Redzoning.
  474. * Padding is extended by another word if Redzoning is enabled and
  475. * objsize == inuse.
  476. *
  477. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  478. * 0xcc (RED_ACTIVE) for objects in use.
  479. *
  480. * object + s->inuse
  481. * Meta data starts here.
  482. *
  483. * A. Free pointer (if we cannot overwrite object on free)
  484. * B. Tracking data for SLAB_STORE_USER
  485. * C. Padding to reach required alignment boundary or at mininum
  486. * one word if debugging is on to be able to detect writes
  487. * before the word boundary.
  488. *
  489. * Padding is done using 0x5a (POISON_INUSE)
  490. *
  491. * object + s->size
  492. * Nothing is used beyond s->size.
  493. *
  494. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  495. * ignored. And therefore no slab options that rely on these boundaries
  496. * may be used with merged slabcaches.
  497. */
  498. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  499. {
  500. unsigned long off = s->inuse; /* The end of info */
  501. if (s->offset)
  502. /* Freepointer is placed after the object. */
  503. off += sizeof(void *);
  504. if (s->flags & SLAB_STORE_USER)
  505. /* We also have user information there */
  506. off += 2 * sizeof(struct track);
  507. if (s->size == off)
  508. return 1;
  509. return check_bytes_and_report(s, page, p, "Object padding",
  510. p + off, POISON_INUSE, s->size - off);
  511. }
  512. /* Check the pad bytes at the end of a slab page */
  513. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  514. {
  515. u8 *start;
  516. u8 *fault;
  517. u8 *end;
  518. int length;
  519. int remainder;
  520. if (!(s->flags & SLAB_POISON))
  521. return 1;
  522. start = page_address(page);
  523. length = (PAGE_SIZE << compound_order(page));
  524. end = start + length;
  525. remainder = length % s->size;
  526. if (!remainder)
  527. return 1;
  528. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  529. if (!fault)
  530. return 1;
  531. while (end > fault && end[-1] == POISON_INUSE)
  532. end--;
  533. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  534. print_section("Padding", end - remainder, remainder);
  535. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  536. return 0;
  537. }
  538. static int check_object(struct kmem_cache *s, struct page *page,
  539. void *object, u8 val)
  540. {
  541. u8 *p = object;
  542. u8 *endobject = object + s->objsize;
  543. if (s->flags & SLAB_RED_ZONE) {
  544. if (!check_bytes_and_report(s, page, object, "Redzone",
  545. endobject, val, s->inuse - s->objsize))
  546. return 0;
  547. } else {
  548. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  549. check_bytes_and_report(s, page, p, "Alignment padding",
  550. endobject, POISON_INUSE, s->inuse - s->objsize);
  551. }
  552. }
  553. if (s->flags & SLAB_POISON) {
  554. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  555. (!check_bytes_and_report(s, page, p, "Poison", p,
  556. POISON_FREE, s->objsize - 1) ||
  557. !check_bytes_and_report(s, page, p, "Poison",
  558. p + s->objsize - 1, POISON_END, 1)))
  559. return 0;
  560. /*
  561. * check_pad_bytes cleans up on its own.
  562. */
  563. check_pad_bytes(s, page, p);
  564. }
  565. if (!s->offset && val == SLUB_RED_ACTIVE)
  566. /*
  567. * Object and freepointer overlap. Cannot check
  568. * freepointer while object is allocated.
  569. */
  570. return 1;
  571. /* Check free pointer validity */
  572. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  573. object_err(s, page, p, "Freepointer corrupt");
  574. /*
  575. * No choice but to zap it and thus lose the remainder
  576. * of the free objects in this slab. May cause
  577. * another error because the object count is now wrong.
  578. */
  579. set_freepointer(s, p, NULL);
  580. return 0;
  581. }
  582. return 1;
  583. }
  584. static int check_slab(struct kmem_cache *s, struct page *page)
  585. {
  586. int maxobj;
  587. VM_BUG_ON(!irqs_disabled());
  588. if (!PageSlab(page)) {
  589. slab_err(s, page, "Not a valid slab page");
  590. return 0;
  591. }
  592. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  593. if (page->objects > maxobj) {
  594. slab_err(s, page, "objects %u > max %u",
  595. s->name, page->objects, maxobj);
  596. return 0;
  597. }
  598. if (page->inuse > page->objects) {
  599. slab_err(s, page, "inuse %u > max %u",
  600. s->name, page->inuse, page->objects);
  601. return 0;
  602. }
  603. /* Slab_pad_check fixes things up after itself */
  604. slab_pad_check(s, page);
  605. return 1;
  606. }
  607. /*
  608. * Determine if a certain object on a page is on the freelist. Must hold the
  609. * slab lock to guarantee that the chains are in a consistent state.
  610. */
  611. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  612. {
  613. int nr = 0;
  614. void *fp = page->freelist;
  615. void *object = NULL;
  616. unsigned long max_objects;
  617. while (fp && nr <= page->objects) {
  618. if (fp == search)
  619. return 1;
  620. if (!check_valid_pointer(s, page, fp)) {
  621. if (object) {
  622. object_err(s, page, object,
  623. "Freechain corrupt");
  624. set_freepointer(s, object, NULL);
  625. break;
  626. } else {
  627. slab_err(s, page, "Freepointer corrupt");
  628. page->freelist = NULL;
  629. page->inuse = page->objects;
  630. slab_fix(s, "Freelist cleared");
  631. return 0;
  632. }
  633. break;
  634. }
  635. object = fp;
  636. fp = get_freepointer(s, object);
  637. nr++;
  638. }
  639. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  640. if (max_objects > MAX_OBJS_PER_PAGE)
  641. max_objects = MAX_OBJS_PER_PAGE;
  642. if (page->objects != max_objects) {
  643. slab_err(s, page, "Wrong number of objects. Found %d but "
  644. "should be %d", page->objects, max_objects);
  645. page->objects = max_objects;
  646. slab_fix(s, "Number of objects adjusted.");
  647. }
  648. if (page->inuse != page->objects - nr) {
  649. slab_err(s, page, "Wrong object count. Counter is %d but "
  650. "counted were %d", page->inuse, page->objects - nr);
  651. page->inuse = page->objects - nr;
  652. slab_fix(s, "Object count adjusted.");
  653. }
  654. return search == NULL;
  655. }
  656. static void trace(struct kmem_cache *s, struct page *page, void *object,
  657. int alloc)
  658. {
  659. if (s->flags & SLAB_TRACE) {
  660. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  661. s->name,
  662. alloc ? "alloc" : "free",
  663. object, page->inuse,
  664. page->freelist);
  665. if (!alloc)
  666. print_section("Object", (void *)object, s->objsize);
  667. dump_stack();
  668. }
  669. }
  670. /*
  671. * Hooks for other subsystems that check memory allocations. In a typical
  672. * production configuration these hooks all should produce no code at all.
  673. */
  674. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  675. {
  676. flags &= gfp_allowed_mask;
  677. lockdep_trace_alloc(flags);
  678. might_sleep_if(flags & __GFP_WAIT);
  679. return should_failslab(s->objsize, flags, s->flags);
  680. }
  681. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  682. {
  683. flags &= gfp_allowed_mask;
  684. kmemcheck_slab_alloc(s, flags, object, s->objsize);
  685. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  686. }
  687. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  688. {
  689. kmemleak_free_recursive(x, s->flags);
  690. }
  691. static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
  692. {
  693. kmemcheck_slab_free(s, object, s->objsize);
  694. debug_check_no_locks_freed(object, s->objsize);
  695. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  696. debug_check_no_obj_freed(object, s->objsize);
  697. }
  698. /*
  699. * Tracking of fully allocated slabs for debugging purposes.
  700. */
  701. static void add_full(struct kmem_cache_node *n, struct page *page)
  702. {
  703. spin_lock(&n->list_lock);
  704. list_add(&page->lru, &n->full);
  705. spin_unlock(&n->list_lock);
  706. }
  707. static void remove_full(struct kmem_cache *s, struct page *page)
  708. {
  709. struct kmem_cache_node *n;
  710. if (!(s->flags & SLAB_STORE_USER))
  711. return;
  712. n = get_node(s, page_to_nid(page));
  713. spin_lock(&n->list_lock);
  714. list_del(&page->lru);
  715. spin_unlock(&n->list_lock);
  716. }
  717. /* Tracking of the number of slabs for debugging purposes */
  718. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  719. {
  720. struct kmem_cache_node *n = get_node(s, node);
  721. return atomic_long_read(&n->nr_slabs);
  722. }
  723. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  724. {
  725. return atomic_long_read(&n->nr_slabs);
  726. }
  727. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  728. {
  729. struct kmem_cache_node *n = get_node(s, node);
  730. /*
  731. * May be called early in order to allocate a slab for the
  732. * kmem_cache_node structure. Solve the chicken-egg
  733. * dilemma by deferring the increment of the count during
  734. * bootstrap (see early_kmem_cache_node_alloc).
  735. */
  736. if (n) {
  737. atomic_long_inc(&n->nr_slabs);
  738. atomic_long_add(objects, &n->total_objects);
  739. }
  740. }
  741. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  742. {
  743. struct kmem_cache_node *n = get_node(s, node);
  744. atomic_long_dec(&n->nr_slabs);
  745. atomic_long_sub(objects, &n->total_objects);
  746. }
  747. /* Object debug checks for alloc/free paths */
  748. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  749. void *object)
  750. {
  751. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  752. return;
  753. init_object(s, object, SLUB_RED_INACTIVE);
  754. init_tracking(s, object);
  755. }
  756. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  757. void *object, unsigned long addr)
  758. {
  759. if (!check_slab(s, page))
  760. goto bad;
  761. if (!on_freelist(s, page, object)) {
  762. object_err(s, page, object, "Object already allocated");
  763. goto bad;
  764. }
  765. if (!check_valid_pointer(s, page, object)) {
  766. object_err(s, page, object, "Freelist Pointer check fails");
  767. goto bad;
  768. }
  769. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  770. goto bad;
  771. /* Success perform special debug activities for allocs */
  772. if (s->flags & SLAB_STORE_USER)
  773. set_track(s, object, TRACK_ALLOC, addr);
  774. trace(s, page, object, 1);
  775. init_object(s, object, SLUB_RED_ACTIVE);
  776. return 1;
  777. bad:
  778. if (PageSlab(page)) {
  779. /*
  780. * If this is a slab page then lets do the best we can
  781. * to avoid issues in the future. Marking all objects
  782. * as used avoids touching the remaining objects.
  783. */
  784. slab_fix(s, "Marking all objects used");
  785. page->inuse = page->objects;
  786. page->freelist = NULL;
  787. }
  788. return 0;
  789. }
  790. static noinline int free_debug_processing(struct kmem_cache *s,
  791. struct page *page, void *object, unsigned long addr)
  792. {
  793. if (!check_slab(s, page))
  794. goto fail;
  795. if (!check_valid_pointer(s, page, object)) {
  796. slab_err(s, page, "Invalid object pointer 0x%p", object);
  797. goto fail;
  798. }
  799. if (on_freelist(s, page, object)) {
  800. object_err(s, page, object, "Object already free");
  801. goto fail;
  802. }
  803. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  804. return 0;
  805. if (unlikely(s != page->slab)) {
  806. if (!PageSlab(page)) {
  807. slab_err(s, page, "Attempt to free object(0x%p) "
  808. "outside of slab", object);
  809. } else if (!page->slab) {
  810. printk(KERN_ERR
  811. "SLUB <none>: no slab for object 0x%p.\n",
  812. object);
  813. dump_stack();
  814. } else
  815. object_err(s, page, object,
  816. "page slab pointer corrupt.");
  817. goto fail;
  818. }
  819. /* Special debug activities for freeing objects */
  820. if (!PageSlubFrozen(page) && !page->freelist)
  821. remove_full(s, page);
  822. if (s->flags & SLAB_STORE_USER)
  823. set_track(s, object, TRACK_FREE, addr);
  824. trace(s, page, object, 0);
  825. init_object(s, object, SLUB_RED_INACTIVE);
  826. return 1;
  827. fail:
  828. slab_fix(s, "Object at 0x%p not freed", object);
  829. return 0;
  830. }
  831. static int __init setup_slub_debug(char *str)
  832. {
  833. slub_debug = DEBUG_DEFAULT_FLAGS;
  834. if (*str++ != '=' || !*str)
  835. /*
  836. * No options specified. Switch on full debugging.
  837. */
  838. goto out;
  839. if (*str == ',')
  840. /*
  841. * No options but restriction on slabs. This means full
  842. * debugging for slabs matching a pattern.
  843. */
  844. goto check_slabs;
  845. if (tolower(*str) == 'o') {
  846. /*
  847. * Avoid enabling debugging on caches if its minimum order
  848. * would increase as a result.
  849. */
  850. disable_higher_order_debug = 1;
  851. goto out;
  852. }
  853. slub_debug = 0;
  854. if (*str == '-')
  855. /*
  856. * Switch off all debugging measures.
  857. */
  858. goto out;
  859. /*
  860. * Determine which debug features should be switched on
  861. */
  862. for (; *str && *str != ','; str++) {
  863. switch (tolower(*str)) {
  864. case 'f':
  865. slub_debug |= SLAB_DEBUG_FREE;
  866. break;
  867. case 'z':
  868. slub_debug |= SLAB_RED_ZONE;
  869. break;
  870. case 'p':
  871. slub_debug |= SLAB_POISON;
  872. break;
  873. case 'u':
  874. slub_debug |= SLAB_STORE_USER;
  875. break;
  876. case 't':
  877. slub_debug |= SLAB_TRACE;
  878. break;
  879. case 'a':
  880. slub_debug |= SLAB_FAILSLAB;
  881. break;
  882. default:
  883. printk(KERN_ERR "slub_debug option '%c' "
  884. "unknown. skipped\n", *str);
  885. }
  886. }
  887. check_slabs:
  888. if (*str == ',')
  889. slub_debug_slabs = str + 1;
  890. out:
  891. return 1;
  892. }
  893. __setup("slub_debug", setup_slub_debug);
  894. static unsigned long kmem_cache_flags(unsigned long objsize,
  895. unsigned long flags, const char *name,
  896. void (*ctor)(void *))
  897. {
  898. /*
  899. * Enable debugging if selected on the kernel commandline.
  900. */
  901. if (slub_debug && (!slub_debug_slabs ||
  902. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  903. flags |= slub_debug;
  904. return flags;
  905. }
  906. #else
  907. static inline void setup_object_debug(struct kmem_cache *s,
  908. struct page *page, void *object) {}
  909. static inline int alloc_debug_processing(struct kmem_cache *s,
  910. struct page *page, void *object, unsigned long addr) { return 0; }
  911. static inline int free_debug_processing(struct kmem_cache *s,
  912. struct page *page, void *object, unsigned long addr) { return 0; }
  913. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  914. { return 1; }
  915. static inline int check_object(struct kmem_cache *s, struct page *page,
  916. void *object, u8 val) { return 1; }
  917. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  918. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  919. unsigned long flags, const char *name,
  920. void (*ctor)(void *))
  921. {
  922. return flags;
  923. }
  924. #define slub_debug 0
  925. #define disable_higher_order_debug 0
  926. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  927. { return 0; }
  928. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  929. { return 0; }
  930. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  931. int objects) {}
  932. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  933. int objects) {}
  934. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  935. { return 0; }
  936. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  937. void *object) {}
  938. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  939. static inline void slab_free_hook_irq(struct kmem_cache *s,
  940. void *object) {}
  941. #endif
  942. /*
  943. * Slab allocation and freeing
  944. */
  945. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  946. struct kmem_cache_order_objects oo)
  947. {
  948. int order = oo_order(oo);
  949. flags |= __GFP_NOTRACK;
  950. if (node == NUMA_NO_NODE)
  951. return alloc_pages(flags, order);
  952. else
  953. return alloc_pages_exact_node(node, flags, order);
  954. }
  955. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  956. {
  957. struct page *page;
  958. struct kmem_cache_order_objects oo = s->oo;
  959. gfp_t alloc_gfp;
  960. flags |= s->allocflags;
  961. /*
  962. * Let the initial higher-order allocation fail under memory pressure
  963. * so we fall-back to the minimum order allocation.
  964. */
  965. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  966. page = alloc_slab_page(alloc_gfp, node, oo);
  967. if (unlikely(!page)) {
  968. oo = s->min;
  969. /*
  970. * Allocation may have failed due to fragmentation.
  971. * Try a lower order alloc if possible
  972. */
  973. page = alloc_slab_page(flags, node, oo);
  974. if (!page)
  975. return NULL;
  976. stat(s, ORDER_FALLBACK);
  977. }
  978. if (kmemcheck_enabled
  979. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  980. int pages = 1 << oo_order(oo);
  981. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  982. /*
  983. * Objects from caches that have a constructor don't get
  984. * cleared when they're allocated, so we need to do it here.
  985. */
  986. if (s->ctor)
  987. kmemcheck_mark_uninitialized_pages(page, pages);
  988. else
  989. kmemcheck_mark_unallocated_pages(page, pages);
  990. }
  991. page->objects = oo_objects(oo);
  992. mod_zone_page_state(page_zone(page),
  993. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  994. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  995. 1 << oo_order(oo));
  996. return page;
  997. }
  998. static void setup_object(struct kmem_cache *s, struct page *page,
  999. void *object)
  1000. {
  1001. setup_object_debug(s, page, object);
  1002. if (unlikely(s->ctor))
  1003. s->ctor(object);
  1004. }
  1005. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1006. {
  1007. struct page *page;
  1008. void *start;
  1009. void *last;
  1010. void *p;
  1011. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1012. page = allocate_slab(s,
  1013. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1014. if (!page)
  1015. goto out;
  1016. inc_slabs_node(s, page_to_nid(page), page->objects);
  1017. page->slab = s;
  1018. page->flags |= 1 << PG_slab;
  1019. start = page_address(page);
  1020. if (unlikely(s->flags & SLAB_POISON))
  1021. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1022. last = start;
  1023. for_each_object(p, s, start, page->objects) {
  1024. setup_object(s, page, last);
  1025. set_freepointer(s, last, p);
  1026. last = p;
  1027. }
  1028. setup_object(s, page, last);
  1029. set_freepointer(s, last, NULL);
  1030. page->freelist = start;
  1031. page->inuse = 0;
  1032. out:
  1033. return page;
  1034. }
  1035. static void __free_slab(struct kmem_cache *s, struct page *page)
  1036. {
  1037. int order = compound_order(page);
  1038. int pages = 1 << order;
  1039. if (kmem_cache_debug(s)) {
  1040. void *p;
  1041. slab_pad_check(s, page);
  1042. for_each_object(p, s, page_address(page),
  1043. page->objects)
  1044. check_object(s, page, p, SLUB_RED_INACTIVE);
  1045. }
  1046. kmemcheck_free_shadow(page, compound_order(page));
  1047. mod_zone_page_state(page_zone(page),
  1048. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1049. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1050. -pages);
  1051. __ClearPageSlab(page);
  1052. reset_page_mapcount(page);
  1053. if (current->reclaim_state)
  1054. current->reclaim_state->reclaimed_slab += pages;
  1055. __free_pages(page, order);
  1056. }
  1057. static void rcu_free_slab(struct rcu_head *h)
  1058. {
  1059. struct page *page;
  1060. page = container_of((struct list_head *)h, struct page, lru);
  1061. __free_slab(page->slab, page);
  1062. }
  1063. static void free_slab(struct kmem_cache *s, struct page *page)
  1064. {
  1065. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1066. /*
  1067. * RCU free overloads the RCU head over the LRU
  1068. */
  1069. struct rcu_head *head = (void *)&page->lru;
  1070. call_rcu(head, rcu_free_slab);
  1071. } else
  1072. __free_slab(s, page);
  1073. }
  1074. static void discard_slab(struct kmem_cache *s, struct page *page)
  1075. {
  1076. dec_slabs_node(s, page_to_nid(page), page->objects);
  1077. free_slab(s, page);
  1078. }
  1079. /*
  1080. * Per slab locking using the pagelock
  1081. */
  1082. static __always_inline void slab_lock(struct page *page)
  1083. {
  1084. bit_spin_lock(PG_locked, &page->flags);
  1085. }
  1086. static __always_inline void slab_unlock(struct page *page)
  1087. {
  1088. __bit_spin_unlock(PG_locked, &page->flags);
  1089. }
  1090. static __always_inline int slab_trylock(struct page *page)
  1091. {
  1092. int rc = 1;
  1093. rc = bit_spin_trylock(PG_locked, &page->flags);
  1094. return rc;
  1095. }
  1096. /*
  1097. * Management of partially allocated slabs
  1098. */
  1099. static void add_partial(struct kmem_cache_node *n,
  1100. struct page *page, int tail)
  1101. {
  1102. spin_lock(&n->list_lock);
  1103. n->nr_partial++;
  1104. if (tail)
  1105. list_add_tail(&page->lru, &n->partial);
  1106. else
  1107. list_add(&page->lru, &n->partial);
  1108. spin_unlock(&n->list_lock);
  1109. }
  1110. static inline void __remove_partial(struct kmem_cache_node *n,
  1111. struct page *page)
  1112. {
  1113. list_del(&page->lru);
  1114. n->nr_partial--;
  1115. }
  1116. static void remove_partial(struct kmem_cache *s, struct page *page)
  1117. {
  1118. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1119. spin_lock(&n->list_lock);
  1120. __remove_partial(n, page);
  1121. spin_unlock(&n->list_lock);
  1122. }
  1123. /*
  1124. * Lock slab and remove from the partial list.
  1125. *
  1126. * Must hold list_lock.
  1127. */
  1128. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1129. struct page *page)
  1130. {
  1131. if (slab_trylock(page)) {
  1132. __remove_partial(n, page);
  1133. __SetPageSlubFrozen(page);
  1134. return 1;
  1135. }
  1136. return 0;
  1137. }
  1138. /*
  1139. * Try to allocate a partial slab from a specific node.
  1140. */
  1141. static struct page *get_partial_node(struct kmem_cache_node *n)
  1142. {
  1143. struct page *page;
  1144. /*
  1145. * Racy check. If we mistakenly see no partial slabs then we
  1146. * just allocate an empty slab. If we mistakenly try to get a
  1147. * partial slab and there is none available then get_partials()
  1148. * will return NULL.
  1149. */
  1150. if (!n || !n->nr_partial)
  1151. return NULL;
  1152. spin_lock(&n->list_lock);
  1153. list_for_each_entry(page, &n->partial, lru)
  1154. if (lock_and_freeze_slab(n, page))
  1155. goto out;
  1156. page = NULL;
  1157. out:
  1158. spin_unlock(&n->list_lock);
  1159. return page;
  1160. }
  1161. /*
  1162. * Get a page from somewhere. Search in increasing NUMA distances.
  1163. */
  1164. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1165. {
  1166. #ifdef CONFIG_NUMA
  1167. struct zonelist *zonelist;
  1168. struct zoneref *z;
  1169. struct zone *zone;
  1170. enum zone_type high_zoneidx = gfp_zone(flags);
  1171. struct page *page;
  1172. /*
  1173. * The defrag ratio allows a configuration of the tradeoffs between
  1174. * inter node defragmentation and node local allocations. A lower
  1175. * defrag_ratio increases the tendency to do local allocations
  1176. * instead of attempting to obtain partial slabs from other nodes.
  1177. *
  1178. * If the defrag_ratio is set to 0 then kmalloc() always
  1179. * returns node local objects. If the ratio is higher then kmalloc()
  1180. * may return off node objects because partial slabs are obtained
  1181. * from other nodes and filled up.
  1182. *
  1183. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1184. * defrag_ratio = 1000) then every (well almost) allocation will
  1185. * first attempt to defrag slab caches on other nodes. This means
  1186. * scanning over all nodes to look for partial slabs which may be
  1187. * expensive if we do it every time we are trying to find a slab
  1188. * with available objects.
  1189. */
  1190. if (!s->remote_node_defrag_ratio ||
  1191. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1192. return NULL;
  1193. get_mems_allowed();
  1194. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1195. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1196. struct kmem_cache_node *n;
  1197. n = get_node(s, zone_to_nid(zone));
  1198. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1199. n->nr_partial > s->min_partial) {
  1200. page = get_partial_node(n);
  1201. if (page) {
  1202. put_mems_allowed();
  1203. return page;
  1204. }
  1205. }
  1206. }
  1207. put_mems_allowed();
  1208. #endif
  1209. return NULL;
  1210. }
  1211. /*
  1212. * Get a partial page, lock it and return it.
  1213. */
  1214. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1215. {
  1216. struct page *page;
  1217. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1218. page = get_partial_node(get_node(s, searchnode));
  1219. if (page || node != -1)
  1220. return page;
  1221. return get_any_partial(s, flags);
  1222. }
  1223. /*
  1224. * Move a page back to the lists.
  1225. *
  1226. * Must be called with the slab lock held.
  1227. *
  1228. * On exit the slab lock will have been dropped.
  1229. */
  1230. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1231. {
  1232. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1233. __ClearPageSlubFrozen(page);
  1234. if (page->inuse) {
  1235. if (page->freelist) {
  1236. add_partial(n, page, tail);
  1237. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1238. } else {
  1239. stat(s, DEACTIVATE_FULL);
  1240. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1241. add_full(n, page);
  1242. }
  1243. slab_unlock(page);
  1244. } else {
  1245. stat(s, DEACTIVATE_EMPTY);
  1246. if (n->nr_partial < s->min_partial) {
  1247. /*
  1248. * Adding an empty slab to the partial slabs in order
  1249. * to avoid page allocator overhead. This slab needs
  1250. * to come after the other slabs with objects in
  1251. * so that the others get filled first. That way the
  1252. * size of the partial list stays small.
  1253. *
  1254. * kmem_cache_shrink can reclaim any empty slabs from
  1255. * the partial list.
  1256. */
  1257. add_partial(n, page, 1);
  1258. slab_unlock(page);
  1259. } else {
  1260. slab_unlock(page);
  1261. stat(s, FREE_SLAB);
  1262. discard_slab(s, page);
  1263. }
  1264. }
  1265. }
  1266. /*
  1267. * Remove the cpu slab
  1268. */
  1269. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1270. {
  1271. struct page *page = c->page;
  1272. int tail = 1;
  1273. if (page->freelist)
  1274. stat(s, DEACTIVATE_REMOTE_FREES);
  1275. /*
  1276. * Merge cpu freelist into slab freelist. Typically we get here
  1277. * because both freelists are empty. So this is unlikely
  1278. * to occur.
  1279. */
  1280. while (unlikely(c->freelist)) {
  1281. void **object;
  1282. tail = 0; /* Hot objects. Put the slab first */
  1283. /* Retrieve object from cpu_freelist */
  1284. object = c->freelist;
  1285. c->freelist = get_freepointer(s, c->freelist);
  1286. /* And put onto the regular freelist */
  1287. set_freepointer(s, object, page->freelist);
  1288. page->freelist = object;
  1289. page->inuse--;
  1290. }
  1291. c->page = NULL;
  1292. unfreeze_slab(s, page, tail);
  1293. }
  1294. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1295. {
  1296. stat(s, CPUSLAB_FLUSH);
  1297. slab_lock(c->page);
  1298. deactivate_slab(s, c);
  1299. }
  1300. /*
  1301. * Flush cpu slab.
  1302. *
  1303. * Called from IPI handler with interrupts disabled.
  1304. */
  1305. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1306. {
  1307. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1308. if (likely(c && c->page))
  1309. flush_slab(s, c);
  1310. }
  1311. static void flush_cpu_slab(void *d)
  1312. {
  1313. struct kmem_cache *s = d;
  1314. __flush_cpu_slab(s, smp_processor_id());
  1315. }
  1316. static void flush_all(struct kmem_cache *s)
  1317. {
  1318. on_each_cpu(flush_cpu_slab, s, 1);
  1319. }
  1320. /*
  1321. * Check if the objects in a per cpu structure fit numa
  1322. * locality expectations.
  1323. */
  1324. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1325. {
  1326. #ifdef CONFIG_NUMA
  1327. if (node != NUMA_NO_NODE && c->node != node)
  1328. return 0;
  1329. #endif
  1330. return 1;
  1331. }
  1332. static int count_free(struct page *page)
  1333. {
  1334. return page->objects - page->inuse;
  1335. }
  1336. static unsigned long count_partial(struct kmem_cache_node *n,
  1337. int (*get_count)(struct page *))
  1338. {
  1339. unsigned long flags;
  1340. unsigned long x = 0;
  1341. struct page *page;
  1342. spin_lock_irqsave(&n->list_lock, flags);
  1343. list_for_each_entry(page, &n->partial, lru)
  1344. x += get_count(page);
  1345. spin_unlock_irqrestore(&n->list_lock, flags);
  1346. return x;
  1347. }
  1348. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1349. {
  1350. #ifdef CONFIG_SLUB_DEBUG
  1351. return atomic_long_read(&n->total_objects);
  1352. #else
  1353. return 0;
  1354. #endif
  1355. }
  1356. static noinline void
  1357. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1358. {
  1359. int node;
  1360. printk(KERN_WARNING
  1361. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1362. nid, gfpflags);
  1363. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1364. "default order: %d, min order: %d\n", s->name, s->objsize,
  1365. s->size, oo_order(s->oo), oo_order(s->min));
  1366. if (oo_order(s->min) > get_order(s->objsize))
  1367. printk(KERN_WARNING " %s debugging increased min order, use "
  1368. "slub_debug=O to disable.\n", s->name);
  1369. for_each_online_node(node) {
  1370. struct kmem_cache_node *n = get_node(s, node);
  1371. unsigned long nr_slabs;
  1372. unsigned long nr_objs;
  1373. unsigned long nr_free;
  1374. if (!n)
  1375. continue;
  1376. nr_free = count_partial(n, count_free);
  1377. nr_slabs = node_nr_slabs(n);
  1378. nr_objs = node_nr_objs(n);
  1379. printk(KERN_WARNING
  1380. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1381. node, nr_slabs, nr_objs, nr_free);
  1382. }
  1383. }
  1384. /*
  1385. * Slow path. The lockless freelist is empty or we need to perform
  1386. * debugging duties.
  1387. *
  1388. * Interrupts are disabled.
  1389. *
  1390. * Processing is still very fast if new objects have been freed to the
  1391. * regular freelist. In that case we simply take over the regular freelist
  1392. * as the lockless freelist and zap the regular freelist.
  1393. *
  1394. * If that is not working then we fall back to the partial lists. We take the
  1395. * first element of the freelist as the object to allocate now and move the
  1396. * rest of the freelist to the lockless freelist.
  1397. *
  1398. * And if we were unable to get a new slab from the partial slab lists then
  1399. * we need to allocate a new slab. This is the slowest path since it involves
  1400. * a call to the page allocator and the setup of a new slab.
  1401. */
  1402. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1403. unsigned long addr, struct kmem_cache_cpu *c)
  1404. {
  1405. void **object;
  1406. struct page *new;
  1407. /* We handle __GFP_ZERO in the caller */
  1408. gfpflags &= ~__GFP_ZERO;
  1409. if (!c->page)
  1410. goto new_slab;
  1411. slab_lock(c->page);
  1412. if (unlikely(!node_match(c, node)))
  1413. goto another_slab;
  1414. stat(s, ALLOC_REFILL);
  1415. load_freelist:
  1416. object = c->page->freelist;
  1417. if (unlikely(!object))
  1418. goto another_slab;
  1419. if (kmem_cache_debug(s))
  1420. goto debug;
  1421. c->freelist = get_freepointer(s, object);
  1422. c->page->inuse = c->page->objects;
  1423. c->page->freelist = NULL;
  1424. c->node = page_to_nid(c->page);
  1425. unlock_out:
  1426. slab_unlock(c->page);
  1427. stat(s, ALLOC_SLOWPATH);
  1428. return object;
  1429. another_slab:
  1430. deactivate_slab(s, c);
  1431. new_slab:
  1432. new = get_partial(s, gfpflags, node);
  1433. if (new) {
  1434. c->page = new;
  1435. stat(s, ALLOC_FROM_PARTIAL);
  1436. goto load_freelist;
  1437. }
  1438. gfpflags &= gfp_allowed_mask;
  1439. if (gfpflags & __GFP_WAIT)
  1440. local_irq_enable();
  1441. new = new_slab(s, gfpflags, node);
  1442. if (gfpflags & __GFP_WAIT)
  1443. local_irq_disable();
  1444. if (new) {
  1445. c = __this_cpu_ptr(s->cpu_slab);
  1446. stat(s, ALLOC_SLAB);
  1447. if (c->page)
  1448. flush_slab(s, c);
  1449. slab_lock(new);
  1450. __SetPageSlubFrozen(new);
  1451. c->page = new;
  1452. goto load_freelist;
  1453. }
  1454. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1455. slab_out_of_memory(s, gfpflags, node);
  1456. return NULL;
  1457. debug:
  1458. if (!alloc_debug_processing(s, c->page, object, addr))
  1459. goto another_slab;
  1460. c->page->inuse++;
  1461. c->page->freelist = get_freepointer(s, object);
  1462. c->node = -1;
  1463. goto unlock_out;
  1464. }
  1465. /*
  1466. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1467. * have the fastpath folded into their functions. So no function call
  1468. * overhead for requests that can be satisfied on the fastpath.
  1469. *
  1470. * The fastpath works by first checking if the lockless freelist can be used.
  1471. * If not then __slab_alloc is called for slow processing.
  1472. *
  1473. * Otherwise we can simply pick the next object from the lockless free list.
  1474. */
  1475. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1476. gfp_t gfpflags, int node, unsigned long addr)
  1477. {
  1478. void **object;
  1479. struct kmem_cache_cpu *c;
  1480. unsigned long flags;
  1481. if (slab_pre_alloc_hook(s, gfpflags))
  1482. return NULL;
  1483. local_irq_save(flags);
  1484. c = __this_cpu_ptr(s->cpu_slab);
  1485. object = c->freelist;
  1486. if (unlikely(!object || !node_match(c, node)))
  1487. object = __slab_alloc(s, gfpflags, node, addr, c);
  1488. else {
  1489. c->freelist = get_freepointer(s, object);
  1490. stat(s, ALLOC_FASTPATH);
  1491. }
  1492. local_irq_restore(flags);
  1493. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1494. memset(object, 0, s->objsize);
  1495. slab_post_alloc_hook(s, gfpflags, object);
  1496. return object;
  1497. }
  1498. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1499. {
  1500. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1501. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1502. return ret;
  1503. }
  1504. EXPORT_SYMBOL(kmem_cache_alloc);
  1505. #ifdef CONFIG_TRACING
  1506. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1507. {
  1508. return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1509. }
  1510. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1511. #endif
  1512. #ifdef CONFIG_NUMA
  1513. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1514. {
  1515. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1516. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1517. s->objsize, s->size, gfpflags, node);
  1518. return ret;
  1519. }
  1520. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1521. #endif
  1522. #ifdef CONFIG_TRACING
  1523. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1524. gfp_t gfpflags,
  1525. int node)
  1526. {
  1527. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1528. }
  1529. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1530. #endif
  1531. /*
  1532. * Slow patch handling. This may still be called frequently since objects
  1533. * have a longer lifetime than the cpu slabs in most processing loads.
  1534. *
  1535. * So we still attempt to reduce cache line usage. Just take the slab
  1536. * lock and free the item. If there is no additional partial page
  1537. * handling required then we can return immediately.
  1538. */
  1539. static void __slab_free(struct kmem_cache *s, struct page *page,
  1540. void *x, unsigned long addr)
  1541. {
  1542. void *prior;
  1543. void **object = (void *)x;
  1544. stat(s, FREE_SLOWPATH);
  1545. slab_lock(page);
  1546. if (kmem_cache_debug(s))
  1547. goto debug;
  1548. checks_ok:
  1549. prior = page->freelist;
  1550. set_freepointer(s, object, prior);
  1551. page->freelist = object;
  1552. page->inuse--;
  1553. if (unlikely(PageSlubFrozen(page))) {
  1554. stat(s, FREE_FROZEN);
  1555. goto out_unlock;
  1556. }
  1557. if (unlikely(!page->inuse))
  1558. goto slab_empty;
  1559. /*
  1560. * Objects left in the slab. If it was not on the partial list before
  1561. * then add it.
  1562. */
  1563. if (unlikely(!prior)) {
  1564. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1565. stat(s, FREE_ADD_PARTIAL);
  1566. }
  1567. out_unlock:
  1568. slab_unlock(page);
  1569. return;
  1570. slab_empty:
  1571. if (prior) {
  1572. /*
  1573. * Slab still on the partial list.
  1574. */
  1575. remove_partial(s, page);
  1576. stat(s, FREE_REMOVE_PARTIAL);
  1577. }
  1578. slab_unlock(page);
  1579. stat(s, FREE_SLAB);
  1580. discard_slab(s, page);
  1581. return;
  1582. debug:
  1583. if (!free_debug_processing(s, page, x, addr))
  1584. goto out_unlock;
  1585. goto checks_ok;
  1586. }
  1587. /*
  1588. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1589. * can perform fastpath freeing without additional function calls.
  1590. *
  1591. * The fastpath is only possible if we are freeing to the current cpu slab
  1592. * of this processor. This typically the case if we have just allocated
  1593. * the item before.
  1594. *
  1595. * If fastpath is not possible then fall back to __slab_free where we deal
  1596. * with all sorts of special processing.
  1597. */
  1598. static __always_inline void slab_free(struct kmem_cache *s,
  1599. struct page *page, void *x, unsigned long addr)
  1600. {
  1601. void **object = (void *)x;
  1602. struct kmem_cache_cpu *c;
  1603. unsigned long flags;
  1604. slab_free_hook(s, x);
  1605. local_irq_save(flags);
  1606. c = __this_cpu_ptr(s->cpu_slab);
  1607. slab_free_hook_irq(s, x);
  1608. if (likely(page == c->page && c->node >= 0)) {
  1609. set_freepointer(s, object, c->freelist);
  1610. c->freelist = object;
  1611. stat(s, FREE_FASTPATH);
  1612. } else
  1613. __slab_free(s, page, x, addr);
  1614. local_irq_restore(flags);
  1615. }
  1616. void kmem_cache_free(struct kmem_cache *s, void *x)
  1617. {
  1618. struct page *page;
  1619. page = virt_to_head_page(x);
  1620. slab_free(s, page, x, _RET_IP_);
  1621. trace_kmem_cache_free(_RET_IP_, x);
  1622. }
  1623. EXPORT_SYMBOL(kmem_cache_free);
  1624. /* Figure out on which slab page the object resides */
  1625. static struct page *get_object_page(const void *x)
  1626. {
  1627. struct page *page = virt_to_head_page(x);
  1628. if (!PageSlab(page))
  1629. return NULL;
  1630. return page;
  1631. }
  1632. /*
  1633. * Object placement in a slab is made very easy because we always start at
  1634. * offset 0. If we tune the size of the object to the alignment then we can
  1635. * get the required alignment by putting one properly sized object after
  1636. * another.
  1637. *
  1638. * Notice that the allocation order determines the sizes of the per cpu
  1639. * caches. Each processor has always one slab available for allocations.
  1640. * Increasing the allocation order reduces the number of times that slabs
  1641. * must be moved on and off the partial lists and is therefore a factor in
  1642. * locking overhead.
  1643. */
  1644. /*
  1645. * Mininum / Maximum order of slab pages. This influences locking overhead
  1646. * and slab fragmentation. A higher order reduces the number of partial slabs
  1647. * and increases the number of allocations possible without having to
  1648. * take the list_lock.
  1649. */
  1650. static int slub_min_order;
  1651. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1652. static int slub_min_objects;
  1653. /*
  1654. * Merge control. If this is set then no merging of slab caches will occur.
  1655. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1656. */
  1657. static int slub_nomerge;
  1658. /*
  1659. * Calculate the order of allocation given an slab object size.
  1660. *
  1661. * The order of allocation has significant impact on performance and other
  1662. * system components. Generally order 0 allocations should be preferred since
  1663. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1664. * be problematic to put into order 0 slabs because there may be too much
  1665. * unused space left. We go to a higher order if more than 1/16th of the slab
  1666. * would be wasted.
  1667. *
  1668. * In order to reach satisfactory performance we must ensure that a minimum
  1669. * number of objects is in one slab. Otherwise we may generate too much
  1670. * activity on the partial lists which requires taking the list_lock. This is
  1671. * less a concern for large slabs though which are rarely used.
  1672. *
  1673. * slub_max_order specifies the order where we begin to stop considering the
  1674. * number of objects in a slab as critical. If we reach slub_max_order then
  1675. * we try to keep the page order as low as possible. So we accept more waste
  1676. * of space in favor of a small page order.
  1677. *
  1678. * Higher order allocations also allow the placement of more objects in a
  1679. * slab and thereby reduce object handling overhead. If the user has
  1680. * requested a higher mininum order then we start with that one instead of
  1681. * the smallest order which will fit the object.
  1682. */
  1683. static inline int slab_order(int size, int min_objects,
  1684. int max_order, int fract_leftover)
  1685. {
  1686. int order;
  1687. int rem;
  1688. int min_order = slub_min_order;
  1689. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1690. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1691. for (order = max(min_order,
  1692. fls(min_objects * size - 1) - PAGE_SHIFT);
  1693. order <= max_order; order++) {
  1694. unsigned long slab_size = PAGE_SIZE << order;
  1695. if (slab_size < min_objects * size)
  1696. continue;
  1697. rem = slab_size % size;
  1698. if (rem <= slab_size / fract_leftover)
  1699. break;
  1700. }
  1701. return order;
  1702. }
  1703. static inline int calculate_order(int size)
  1704. {
  1705. int order;
  1706. int min_objects;
  1707. int fraction;
  1708. int max_objects;
  1709. /*
  1710. * Attempt to find best configuration for a slab. This
  1711. * works by first attempting to generate a layout with
  1712. * the best configuration and backing off gradually.
  1713. *
  1714. * First we reduce the acceptable waste in a slab. Then
  1715. * we reduce the minimum objects required in a slab.
  1716. */
  1717. min_objects = slub_min_objects;
  1718. if (!min_objects)
  1719. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1720. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1721. min_objects = min(min_objects, max_objects);
  1722. while (min_objects > 1) {
  1723. fraction = 16;
  1724. while (fraction >= 4) {
  1725. order = slab_order(size, min_objects,
  1726. slub_max_order, fraction);
  1727. if (order <= slub_max_order)
  1728. return order;
  1729. fraction /= 2;
  1730. }
  1731. min_objects--;
  1732. }
  1733. /*
  1734. * We were unable to place multiple objects in a slab. Now
  1735. * lets see if we can place a single object there.
  1736. */
  1737. order = slab_order(size, 1, slub_max_order, 1);
  1738. if (order <= slub_max_order)
  1739. return order;
  1740. /*
  1741. * Doh this slab cannot be placed using slub_max_order.
  1742. */
  1743. order = slab_order(size, 1, MAX_ORDER, 1);
  1744. if (order < MAX_ORDER)
  1745. return order;
  1746. return -ENOSYS;
  1747. }
  1748. /*
  1749. * Figure out what the alignment of the objects will be.
  1750. */
  1751. static unsigned long calculate_alignment(unsigned long flags,
  1752. unsigned long align, unsigned long size)
  1753. {
  1754. /*
  1755. * If the user wants hardware cache aligned objects then follow that
  1756. * suggestion if the object is sufficiently large.
  1757. *
  1758. * The hardware cache alignment cannot override the specified
  1759. * alignment though. If that is greater then use it.
  1760. */
  1761. if (flags & SLAB_HWCACHE_ALIGN) {
  1762. unsigned long ralign = cache_line_size();
  1763. while (size <= ralign / 2)
  1764. ralign /= 2;
  1765. align = max(align, ralign);
  1766. }
  1767. if (align < ARCH_SLAB_MINALIGN)
  1768. align = ARCH_SLAB_MINALIGN;
  1769. return ALIGN(align, sizeof(void *));
  1770. }
  1771. static void
  1772. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1773. {
  1774. n->nr_partial = 0;
  1775. spin_lock_init(&n->list_lock);
  1776. INIT_LIST_HEAD(&n->partial);
  1777. #ifdef CONFIG_SLUB_DEBUG
  1778. atomic_long_set(&n->nr_slabs, 0);
  1779. atomic_long_set(&n->total_objects, 0);
  1780. INIT_LIST_HEAD(&n->full);
  1781. #endif
  1782. }
  1783. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1784. {
  1785. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1786. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1787. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1788. return s->cpu_slab != NULL;
  1789. }
  1790. static struct kmem_cache *kmem_cache_node;
  1791. /*
  1792. * No kmalloc_node yet so do it by hand. We know that this is the first
  1793. * slab on the node for this slabcache. There are no concurrent accesses
  1794. * possible.
  1795. *
  1796. * Note that this function only works on the kmalloc_node_cache
  1797. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1798. * memory on a fresh node that has no slab structures yet.
  1799. */
  1800. static void early_kmem_cache_node_alloc(int node)
  1801. {
  1802. struct page *page;
  1803. struct kmem_cache_node *n;
  1804. unsigned long flags;
  1805. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1806. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1807. BUG_ON(!page);
  1808. if (page_to_nid(page) != node) {
  1809. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1810. "node %d\n", node);
  1811. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1812. "in order to be able to continue\n");
  1813. }
  1814. n = page->freelist;
  1815. BUG_ON(!n);
  1816. page->freelist = get_freepointer(kmem_cache_node, n);
  1817. page->inuse++;
  1818. kmem_cache_node->node[node] = n;
  1819. #ifdef CONFIG_SLUB_DEBUG
  1820. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  1821. init_tracking(kmem_cache_node, n);
  1822. #endif
  1823. init_kmem_cache_node(n, kmem_cache_node);
  1824. inc_slabs_node(kmem_cache_node, node, page->objects);
  1825. /*
  1826. * lockdep requires consistent irq usage for each lock
  1827. * so even though there cannot be a race this early in
  1828. * the boot sequence, we still disable irqs.
  1829. */
  1830. local_irq_save(flags);
  1831. add_partial(n, page, 0);
  1832. local_irq_restore(flags);
  1833. }
  1834. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1835. {
  1836. int node;
  1837. for_each_node_state(node, N_NORMAL_MEMORY) {
  1838. struct kmem_cache_node *n = s->node[node];
  1839. if (n)
  1840. kmem_cache_free(kmem_cache_node, n);
  1841. s->node[node] = NULL;
  1842. }
  1843. }
  1844. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1845. {
  1846. int node;
  1847. for_each_node_state(node, N_NORMAL_MEMORY) {
  1848. struct kmem_cache_node *n;
  1849. if (slab_state == DOWN) {
  1850. early_kmem_cache_node_alloc(node);
  1851. continue;
  1852. }
  1853. n = kmem_cache_alloc_node(kmem_cache_node,
  1854. GFP_KERNEL, node);
  1855. if (!n) {
  1856. free_kmem_cache_nodes(s);
  1857. return 0;
  1858. }
  1859. s->node[node] = n;
  1860. init_kmem_cache_node(n, s);
  1861. }
  1862. return 1;
  1863. }
  1864. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1865. {
  1866. if (min < MIN_PARTIAL)
  1867. min = MIN_PARTIAL;
  1868. else if (min > MAX_PARTIAL)
  1869. min = MAX_PARTIAL;
  1870. s->min_partial = min;
  1871. }
  1872. /*
  1873. * calculate_sizes() determines the order and the distribution of data within
  1874. * a slab object.
  1875. */
  1876. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1877. {
  1878. unsigned long flags = s->flags;
  1879. unsigned long size = s->objsize;
  1880. unsigned long align = s->align;
  1881. int order;
  1882. /*
  1883. * Round up object size to the next word boundary. We can only
  1884. * place the free pointer at word boundaries and this determines
  1885. * the possible location of the free pointer.
  1886. */
  1887. size = ALIGN(size, sizeof(void *));
  1888. #ifdef CONFIG_SLUB_DEBUG
  1889. /*
  1890. * Determine if we can poison the object itself. If the user of
  1891. * the slab may touch the object after free or before allocation
  1892. * then we should never poison the object itself.
  1893. */
  1894. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1895. !s->ctor)
  1896. s->flags |= __OBJECT_POISON;
  1897. else
  1898. s->flags &= ~__OBJECT_POISON;
  1899. /*
  1900. * If we are Redzoning then check if there is some space between the
  1901. * end of the object and the free pointer. If not then add an
  1902. * additional word to have some bytes to store Redzone information.
  1903. */
  1904. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1905. size += sizeof(void *);
  1906. #endif
  1907. /*
  1908. * With that we have determined the number of bytes in actual use
  1909. * by the object. This is the potential offset to the free pointer.
  1910. */
  1911. s->inuse = size;
  1912. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1913. s->ctor)) {
  1914. /*
  1915. * Relocate free pointer after the object if it is not
  1916. * permitted to overwrite the first word of the object on
  1917. * kmem_cache_free.
  1918. *
  1919. * This is the case if we do RCU, have a constructor or
  1920. * destructor or are poisoning the objects.
  1921. */
  1922. s->offset = size;
  1923. size += sizeof(void *);
  1924. }
  1925. #ifdef CONFIG_SLUB_DEBUG
  1926. if (flags & SLAB_STORE_USER)
  1927. /*
  1928. * Need to store information about allocs and frees after
  1929. * the object.
  1930. */
  1931. size += 2 * sizeof(struct track);
  1932. if (flags & SLAB_RED_ZONE)
  1933. /*
  1934. * Add some empty padding so that we can catch
  1935. * overwrites from earlier objects rather than let
  1936. * tracking information or the free pointer be
  1937. * corrupted if a user writes before the start
  1938. * of the object.
  1939. */
  1940. size += sizeof(void *);
  1941. #endif
  1942. /*
  1943. * Determine the alignment based on various parameters that the
  1944. * user specified and the dynamic determination of cache line size
  1945. * on bootup.
  1946. */
  1947. align = calculate_alignment(flags, align, s->objsize);
  1948. s->align = align;
  1949. /*
  1950. * SLUB stores one object immediately after another beginning from
  1951. * offset 0. In order to align the objects we have to simply size
  1952. * each object to conform to the alignment.
  1953. */
  1954. size = ALIGN(size, align);
  1955. s->size = size;
  1956. if (forced_order >= 0)
  1957. order = forced_order;
  1958. else
  1959. order = calculate_order(size);
  1960. if (order < 0)
  1961. return 0;
  1962. s->allocflags = 0;
  1963. if (order)
  1964. s->allocflags |= __GFP_COMP;
  1965. if (s->flags & SLAB_CACHE_DMA)
  1966. s->allocflags |= SLUB_DMA;
  1967. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1968. s->allocflags |= __GFP_RECLAIMABLE;
  1969. /*
  1970. * Determine the number of objects per slab
  1971. */
  1972. s->oo = oo_make(order, size);
  1973. s->min = oo_make(get_order(size), size);
  1974. if (oo_objects(s->oo) > oo_objects(s->max))
  1975. s->max = s->oo;
  1976. return !!oo_objects(s->oo);
  1977. }
  1978. static int kmem_cache_open(struct kmem_cache *s,
  1979. const char *name, size_t size,
  1980. size_t align, unsigned long flags,
  1981. void (*ctor)(void *))
  1982. {
  1983. memset(s, 0, kmem_size);
  1984. s->name = name;
  1985. s->ctor = ctor;
  1986. s->objsize = size;
  1987. s->align = align;
  1988. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1989. if (!calculate_sizes(s, -1))
  1990. goto error;
  1991. if (disable_higher_order_debug) {
  1992. /*
  1993. * Disable debugging flags that store metadata if the min slab
  1994. * order increased.
  1995. */
  1996. if (get_order(s->size) > get_order(s->objsize)) {
  1997. s->flags &= ~DEBUG_METADATA_FLAGS;
  1998. s->offset = 0;
  1999. if (!calculate_sizes(s, -1))
  2000. goto error;
  2001. }
  2002. }
  2003. /*
  2004. * The larger the object size is, the more pages we want on the partial
  2005. * list to avoid pounding the page allocator excessively.
  2006. */
  2007. set_min_partial(s, ilog2(s->size));
  2008. s->refcount = 1;
  2009. #ifdef CONFIG_NUMA
  2010. s->remote_node_defrag_ratio = 1000;
  2011. #endif
  2012. if (!init_kmem_cache_nodes(s))
  2013. goto error;
  2014. if (alloc_kmem_cache_cpus(s))
  2015. return 1;
  2016. free_kmem_cache_nodes(s);
  2017. error:
  2018. if (flags & SLAB_PANIC)
  2019. panic("Cannot create slab %s size=%lu realsize=%u "
  2020. "order=%u offset=%u flags=%lx\n",
  2021. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2022. s->offset, flags);
  2023. return 0;
  2024. }
  2025. /*
  2026. * Check if a given pointer is valid
  2027. */
  2028. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2029. {
  2030. struct page *page;
  2031. if (!kern_ptr_validate(object, s->size))
  2032. return 0;
  2033. page = get_object_page(object);
  2034. if (!page || s != page->slab)
  2035. /* No slab or wrong slab */
  2036. return 0;
  2037. if (!check_valid_pointer(s, page, object))
  2038. return 0;
  2039. /*
  2040. * We could also check if the object is on the slabs freelist.
  2041. * But this would be too expensive and it seems that the main
  2042. * purpose of kmem_ptr_valid() is to check if the object belongs
  2043. * to a certain slab.
  2044. */
  2045. return 1;
  2046. }
  2047. EXPORT_SYMBOL(kmem_ptr_validate);
  2048. /*
  2049. * Determine the size of a slab object
  2050. */
  2051. unsigned int kmem_cache_size(struct kmem_cache *s)
  2052. {
  2053. return s->objsize;
  2054. }
  2055. EXPORT_SYMBOL(kmem_cache_size);
  2056. const char *kmem_cache_name(struct kmem_cache *s)
  2057. {
  2058. return s->name;
  2059. }
  2060. EXPORT_SYMBOL(kmem_cache_name);
  2061. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2062. const char *text)
  2063. {
  2064. #ifdef CONFIG_SLUB_DEBUG
  2065. void *addr = page_address(page);
  2066. void *p;
  2067. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2068. GFP_ATOMIC);
  2069. if (!map)
  2070. return;
  2071. slab_err(s, page, "%s", text);
  2072. slab_lock(page);
  2073. for_each_free_object(p, s, page->freelist)
  2074. set_bit(slab_index(p, s, addr), map);
  2075. for_each_object(p, s, addr, page->objects) {
  2076. if (!test_bit(slab_index(p, s, addr), map)) {
  2077. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2078. p, p - addr);
  2079. print_tracking(s, p);
  2080. }
  2081. }
  2082. slab_unlock(page);
  2083. kfree(map);
  2084. #endif
  2085. }
  2086. /*
  2087. * Attempt to free all partial slabs on a node.
  2088. */
  2089. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2090. {
  2091. unsigned long flags;
  2092. struct page *page, *h;
  2093. spin_lock_irqsave(&n->list_lock, flags);
  2094. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2095. if (!page->inuse) {
  2096. __remove_partial(n, page);
  2097. discard_slab(s, page);
  2098. } else {
  2099. list_slab_objects(s, page,
  2100. "Objects remaining on kmem_cache_close()");
  2101. }
  2102. }
  2103. spin_unlock_irqrestore(&n->list_lock, flags);
  2104. }
  2105. /*
  2106. * Release all resources used by a slab cache.
  2107. */
  2108. static inline int kmem_cache_close(struct kmem_cache *s)
  2109. {
  2110. int node;
  2111. flush_all(s);
  2112. free_percpu(s->cpu_slab);
  2113. /* Attempt to free all objects */
  2114. for_each_node_state(node, N_NORMAL_MEMORY) {
  2115. struct kmem_cache_node *n = get_node(s, node);
  2116. free_partial(s, n);
  2117. if (n->nr_partial || slabs_node(s, node))
  2118. return 1;
  2119. }
  2120. free_kmem_cache_nodes(s);
  2121. return 0;
  2122. }
  2123. /*
  2124. * Close a cache and release the kmem_cache structure
  2125. * (must be used for caches created using kmem_cache_create)
  2126. */
  2127. void kmem_cache_destroy(struct kmem_cache *s)
  2128. {
  2129. down_write(&slub_lock);
  2130. s->refcount--;
  2131. if (!s->refcount) {
  2132. list_del(&s->list);
  2133. if (kmem_cache_close(s)) {
  2134. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2135. "still has objects.\n", s->name, __func__);
  2136. dump_stack();
  2137. }
  2138. if (s->flags & SLAB_DESTROY_BY_RCU)
  2139. rcu_barrier();
  2140. sysfs_slab_remove(s);
  2141. }
  2142. up_write(&slub_lock);
  2143. }
  2144. EXPORT_SYMBOL(kmem_cache_destroy);
  2145. /********************************************************************
  2146. * Kmalloc subsystem
  2147. *******************************************************************/
  2148. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2149. EXPORT_SYMBOL(kmalloc_caches);
  2150. static struct kmem_cache *kmem_cache;
  2151. #ifdef CONFIG_ZONE_DMA
  2152. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2153. #endif
  2154. static int __init setup_slub_min_order(char *str)
  2155. {
  2156. get_option(&str, &slub_min_order);
  2157. return 1;
  2158. }
  2159. __setup("slub_min_order=", setup_slub_min_order);
  2160. static int __init setup_slub_max_order(char *str)
  2161. {
  2162. get_option(&str, &slub_max_order);
  2163. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2164. return 1;
  2165. }
  2166. __setup("slub_max_order=", setup_slub_max_order);
  2167. static int __init setup_slub_min_objects(char *str)
  2168. {
  2169. get_option(&str, &slub_min_objects);
  2170. return 1;
  2171. }
  2172. __setup("slub_min_objects=", setup_slub_min_objects);
  2173. static int __init setup_slub_nomerge(char *str)
  2174. {
  2175. slub_nomerge = 1;
  2176. return 1;
  2177. }
  2178. __setup("slub_nomerge", setup_slub_nomerge);
  2179. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2180. int size, unsigned int flags)
  2181. {
  2182. struct kmem_cache *s;
  2183. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2184. /*
  2185. * This function is called with IRQs disabled during early-boot on
  2186. * single CPU so there's no need to take slub_lock here.
  2187. */
  2188. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2189. flags, NULL))
  2190. goto panic;
  2191. list_add(&s->list, &slab_caches);
  2192. return s;
  2193. panic:
  2194. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2195. return NULL;
  2196. }
  2197. /*
  2198. * Conversion table for small slabs sizes / 8 to the index in the
  2199. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2200. * of two cache sizes there. The size of larger slabs can be determined using
  2201. * fls.
  2202. */
  2203. static s8 size_index[24] = {
  2204. 3, /* 8 */
  2205. 4, /* 16 */
  2206. 5, /* 24 */
  2207. 5, /* 32 */
  2208. 6, /* 40 */
  2209. 6, /* 48 */
  2210. 6, /* 56 */
  2211. 6, /* 64 */
  2212. 1, /* 72 */
  2213. 1, /* 80 */
  2214. 1, /* 88 */
  2215. 1, /* 96 */
  2216. 7, /* 104 */
  2217. 7, /* 112 */
  2218. 7, /* 120 */
  2219. 7, /* 128 */
  2220. 2, /* 136 */
  2221. 2, /* 144 */
  2222. 2, /* 152 */
  2223. 2, /* 160 */
  2224. 2, /* 168 */
  2225. 2, /* 176 */
  2226. 2, /* 184 */
  2227. 2 /* 192 */
  2228. };
  2229. static inline int size_index_elem(size_t bytes)
  2230. {
  2231. return (bytes - 1) / 8;
  2232. }
  2233. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2234. {
  2235. int index;
  2236. if (size <= 192) {
  2237. if (!size)
  2238. return ZERO_SIZE_PTR;
  2239. index = size_index[size_index_elem(size)];
  2240. } else
  2241. index = fls(size - 1);
  2242. #ifdef CONFIG_ZONE_DMA
  2243. if (unlikely((flags & SLUB_DMA)))
  2244. return kmalloc_dma_caches[index];
  2245. #endif
  2246. return kmalloc_caches[index];
  2247. }
  2248. void *__kmalloc(size_t size, gfp_t flags)
  2249. {
  2250. struct kmem_cache *s;
  2251. void *ret;
  2252. if (unlikely(size > SLUB_MAX_SIZE))
  2253. return kmalloc_large(size, flags);
  2254. s = get_slab(size, flags);
  2255. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2256. return s;
  2257. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2258. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2259. return ret;
  2260. }
  2261. EXPORT_SYMBOL(__kmalloc);
  2262. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2263. {
  2264. struct page *page;
  2265. void *ptr = NULL;
  2266. flags |= __GFP_COMP | __GFP_NOTRACK;
  2267. page = alloc_pages_node(node, flags, get_order(size));
  2268. if (page)
  2269. ptr = page_address(page);
  2270. kmemleak_alloc(ptr, size, 1, flags);
  2271. return ptr;
  2272. }
  2273. #ifdef CONFIG_NUMA
  2274. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2275. {
  2276. struct kmem_cache *s;
  2277. void *ret;
  2278. if (unlikely(size > SLUB_MAX_SIZE)) {
  2279. ret = kmalloc_large_node(size, flags, node);
  2280. trace_kmalloc_node(_RET_IP_, ret,
  2281. size, PAGE_SIZE << get_order(size),
  2282. flags, node);
  2283. return ret;
  2284. }
  2285. s = get_slab(size, flags);
  2286. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2287. return s;
  2288. ret = slab_alloc(s, flags, node, _RET_IP_);
  2289. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2290. return ret;
  2291. }
  2292. EXPORT_SYMBOL(__kmalloc_node);
  2293. #endif
  2294. size_t ksize(const void *object)
  2295. {
  2296. struct page *page;
  2297. struct kmem_cache *s;
  2298. if (unlikely(object == ZERO_SIZE_PTR))
  2299. return 0;
  2300. page = virt_to_head_page(object);
  2301. if (unlikely(!PageSlab(page))) {
  2302. WARN_ON(!PageCompound(page));
  2303. return PAGE_SIZE << compound_order(page);
  2304. }
  2305. s = page->slab;
  2306. #ifdef CONFIG_SLUB_DEBUG
  2307. /*
  2308. * Debugging requires use of the padding between object
  2309. * and whatever may come after it.
  2310. */
  2311. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2312. return s->objsize;
  2313. #endif
  2314. /*
  2315. * If we have the need to store the freelist pointer
  2316. * back there or track user information then we can
  2317. * only use the space before that information.
  2318. */
  2319. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2320. return s->inuse;
  2321. /*
  2322. * Else we can use all the padding etc for the allocation
  2323. */
  2324. return s->size;
  2325. }
  2326. EXPORT_SYMBOL(ksize);
  2327. void kfree(const void *x)
  2328. {
  2329. struct page *page;
  2330. void *object = (void *)x;
  2331. trace_kfree(_RET_IP_, x);
  2332. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2333. return;
  2334. page = virt_to_head_page(x);
  2335. if (unlikely(!PageSlab(page))) {
  2336. BUG_ON(!PageCompound(page));
  2337. kmemleak_free(x);
  2338. put_page(page);
  2339. return;
  2340. }
  2341. slab_free(page->slab, page, object, _RET_IP_);
  2342. }
  2343. EXPORT_SYMBOL(kfree);
  2344. /*
  2345. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2346. * the remaining slabs by the number of items in use. The slabs with the
  2347. * most items in use come first. New allocations will then fill those up
  2348. * and thus they can be removed from the partial lists.
  2349. *
  2350. * The slabs with the least items are placed last. This results in them
  2351. * being allocated from last increasing the chance that the last objects
  2352. * are freed in them.
  2353. */
  2354. int kmem_cache_shrink(struct kmem_cache *s)
  2355. {
  2356. int node;
  2357. int i;
  2358. struct kmem_cache_node *n;
  2359. struct page *page;
  2360. struct page *t;
  2361. int objects = oo_objects(s->max);
  2362. struct list_head *slabs_by_inuse =
  2363. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2364. unsigned long flags;
  2365. if (!slabs_by_inuse)
  2366. return -ENOMEM;
  2367. flush_all(s);
  2368. for_each_node_state(node, N_NORMAL_MEMORY) {
  2369. n = get_node(s, node);
  2370. if (!n->nr_partial)
  2371. continue;
  2372. for (i = 0; i < objects; i++)
  2373. INIT_LIST_HEAD(slabs_by_inuse + i);
  2374. spin_lock_irqsave(&n->list_lock, flags);
  2375. /*
  2376. * Build lists indexed by the items in use in each slab.
  2377. *
  2378. * Note that concurrent frees may occur while we hold the
  2379. * list_lock. page->inuse here is the upper limit.
  2380. */
  2381. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2382. if (!page->inuse && slab_trylock(page)) {
  2383. /*
  2384. * Must hold slab lock here because slab_free
  2385. * may have freed the last object and be
  2386. * waiting to release the slab.
  2387. */
  2388. __remove_partial(n, page);
  2389. slab_unlock(page);
  2390. discard_slab(s, page);
  2391. } else {
  2392. list_move(&page->lru,
  2393. slabs_by_inuse + page->inuse);
  2394. }
  2395. }
  2396. /*
  2397. * Rebuild the partial list with the slabs filled up most
  2398. * first and the least used slabs at the end.
  2399. */
  2400. for (i = objects - 1; i >= 0; i--)
  2401. list_splice(slabs_by_inuse + i, n->partial.prev);
  2402. spin_unlock_irqrestore(&n->list_lock, flags);
  2403. }
  2404. kfree(slabs_by_inuse);
  2405. return 0;
  2406. }
  2407. EXPORT_SYMBOL(kmem_cache_shrink);
  2408. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2409. static int slab_mem_going_offline_callback(void *arg)
  2410. {
  2411. struct kmem_cache *s;
  2412. down_read(&slub_lock);
  2413. list_for_each_entry(s, &slab_caches, list)
  2414. kmem_cache_shrink(s);
  2415. up_read(&slub_lock);
  2416. return 0;
  2417. }
  2418. static void slab_mem_offline_callback(void *arg)
  2419. {
  2420. struct kmem_cache_node *n;
  2421. struct kmem_cache *s;
  2422. struct memory_notify *marg = arg;
  2423. int offline_node;
  2424. offline_node = marg->status_change_nid;
  2425. /*
  2426. * If the node still has available memory. we need kmem_cache_node
  2427. * for it yet.
  2428. */
  2429. if (offline_node < 0)
  2430. return;
  2431. down_read(&slub_lock);
  2432. list_for_each_entry(s, &slab_caches, list) {
  2433. n = get_node(s, offline_node);
  2434. if (n) {
  2435. /*
  2436. * if n->nr_slabs > 0, slabs still exist on the node
  2437. * that is going down. We were unable to free them,
  2438. * and offline_pages() function shouldn't call this
  2439. * callback. So, we must fail.
  2440. */
  2441. BUG_ON(slabs_node(s, offline_node));
  2442. s->node[offline_node] = NULL;
  2443. kmem_cache_free(kmem_cache_node, n);
  2444. }
  2445. }
  2446. up_read(&slub_lock);
  2447. }
  2448. static int slab_mem_going_online_callback(void *arg)
  2449. {
  2450. struct kmem_cache_node *n;
  2451. struct kmem_cache *s;
  2452. struct memory_notify *marg = arg;
  2453. int nid = marg->status_change_nid;
  2454. int ret = 0;
  2455. /*
  2456. * If the node's memory is already available, then kmem_cache_node is
  2457. * already created. Nothing to do.
  2458. */
  2459. if (nid < 0)
  2460. return 0;
  2461. /*
  2462. * We are bringing a node online. No memory is available yet. We must
  2463. * allocate a kmem_cache_node structure in order to bring the node
  2464. * online.
  2465. */
  2466. down_read(&slub_lock);
  2467. list_for_each_entry(s, &slab_caches, list) {
  2468. /*
  2469. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2470. * since memory is not yet available from the node that
  2471. * is brought up.
  2472. */
  2473. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2474. if (!n) {
  2475. ret = -ENOMEM;
  2476. goto out;
  2477. }
  2478. init_kmem_cache_node(n, s);
  2479. s->node[nid] = n;
  2480. }
  2481. out:
  2482. up_read(&slub_lock);
  2483. return ret;
  2484. }
  2485. static int slab_memory_callback(struct notifier_block *self,
  2486. unsigned long action, void *arg)
  2487. {
  2488. int ret = 0;
  2489. switch (action) {
  2490. case MEM_GOING_ONLINE:
  2491. ret = slab_mem_going_online_callback(arg);
  2492. break;
  2493. case MEM_GOING_OFFLINE:
  2494. ret = slab_mem_going_offline_callback(arg);
  2495. break;
  2496. case MEM_OFFLINE:
  2497. case MEM_CANCEL_ONLINE:
  2498. slab_mem_offline_callback(arg);
  2499. break;
  2500. case MEM_ONLINE:
  2501. case MEM_CANCEL_OFFLINE:
  2502. break;
  2503. }
  2504. if (ret)
  2505. ret = notifier_from_errno(ret);
  2506. else
  2507. ret = NOTIFY_OK;
  2508. return ret;
  2509. }
  2510. #endif /* CONFIG_MEMORY_HOTPLUG */
  2511. /********************************************************************
  2512. * Basic setup of slabs
  2513. *******************************************************************/
  2514. /*
  2515. * Used for early kmem_cache structures that were allocated using
  2516. * the page allocator
  2517. */
  2518. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2519. {
  2520. int node;
  2521. list_add(&s->list, &slab_caches);
  2522. s->refcount = -1;
  2523. for_each_node_state(node, N_NORMAL_MEMORY) {
  2524. struct kmem_cache_node *n = get_node(s, node);
  2525. struct page *p;
  2526. if (n) {
  2527. list_for_each_entry(p, &n->partial, lru)
  2528. p->slab = s;
  2529. #ifdef CONFIG_SLAB_DEBUG
  2530. list_for_each_entry(p, &n->full, lru)
  2531. p->slab = s;
  2532. #endif
  2533. }
  2534. }
  2535. }
  2536. void __init kmem_cache_init(void)
  2537. {
  2538. int i;
  2539. int caches = 0;
  2540. struct kmem_cache *temp_kmem_cache;
  2541. int order;
  2542. struct kmem_cache *temp_kmem_cache_node;
  2543. unsigned long kmalloc_size;
  2544. kmem_size = offsetof(struct kmem_cache, node) +
  2545. nr_node_ids * sizeof(struct kmem_cache_node *);
  2546. /* Allocate two kmem_caches from the page allocator */
  2547. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2548. order = get_order(2 * kmalloc_size);
  2549. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2550. /*
  2551. * Must first have the slab cache available for the allocations of the
  2552. * struct kmem_cache_node's. There is special bootstrap code in
  2553. * kmem_cache_open for slab_state == DOWN.
  2554. */
  2555. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2556. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2557. sizeof(struct kmem_cache_node),
  2558. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2559. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2560. /* Able to allocate the per node structures */
  2561. slab_state = PARTIAL;
  2562. temp_kmem_cache = kmem_cache;
  2563. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2564. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2565. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2566. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2567. /*
  2568. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2569. * kmem_cache_node is separately allocated so no need to
  2570. * update any list pointers.
  2571. */
  2572. temp_kmem_cache_node = kmem_cache_node;
  2573. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2574. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2575. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2576. caches++;
  2577. kmem_cache_bootstrap_fixup(kmem_cache);
  2578. caches++;
  2579. /* Free temporary boot structure */
  2580. free_pages((unsigned long)temp_kmem_cache, order);
  2581. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2582. /*
  2583. * Patch up the size_index table if we have strange large alignment
  2584. * requirements for the kmalloc array. This is only the case for
  2585. * MIPS it seems. The standard arches will not generate any code here.
  2586. *
  2587. * Largest permitted alignment is 256 bytes due to the way we
  2588. * handle the index determination for the smaller caches.
  2589. *
  2590. * Make sure that nothing crazy happens if someone starts tinkering
  2591. * around with ARCH_KMALLOC_MINALIGN
  2592. */
  2593. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2594. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2595. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2596. int elem = size_index_elem(i);
  2597. if (elem >= ARRAY_SIZE(size_index))
  2598. break;
  2599. size_index[elem] = KMALLOC_SHIFT_LOW;
  2600. }
  2601. if (KMALLOC_MIN_SIZE == 64) {
  2602. /*
  2603. * The 96 byte size cache is not used if the alignment
  2604. * is 64 byte.
  2605. */
  2606. for (i = 64 + 8; i <= 96; i += 8)
  2607. size_index[size_index_elem(i)] = 7;
  2608. } else if (KMALLOC_MIN_SIZE == 128) {
  2609. /*
  2610. * The 192 byte sized cache is not used if the alignment
  2611. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2612. * instead.
  2613. */
  2614. for (i = 128 + 8; i <= 192; i += 8)
  2615. size_index[size_index_elem(i)] = 8;
  2616. }
  2617. /* Caches that are not of the two-to-the-power-of size */
  2618. if (KMALLOC_MIN_SIZE <= 32) {
  2619. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2620. caches++;
  2621. }
  2622. if (KMALLOC_MIN_SIZE <= 64) {
  2623. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2624. caches++;
  2625. }
  2626. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2627. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2628. caches++;
  2629. }
  2630. slab_state = UP;
  2631. /* Provide the correct kmalloc names now that the caches are up */
  2632. if (KMALLOC_MIN_SIZE <= 32) {
  2633. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  2634. BUG_ON(!kmalloc_caches[1]->name);
  2635. }
  2636. if (KMALLOC_MIN_SIZE <= 64) {
  2637. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  2638. BUG_ON(!kmalloc_caches[2]->name);
  2639. }
  2640. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2641. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2642. BUG_ON(!s);
  2643. kmalloc_caches[i]->name = s;
  2644. }
  2645. #ifdef CONFIG_SMP
  2646. register_cpu_notifier(&slab_notifier);
  2647. #endif
  2648. #ifdef CONFIG_ZONE_DMA
  2649. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2650. struct kmem_cache *s = kmalloc_caches[i];
  2651. if (s && s->size) {
  2652. char *name = kasprintf(GFP_NOWAIT,
  2653. "dma-kmalloc-%d", s->objsize);
  2654. BUG_ON(!name);
  2655. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2656. s->objsize, SLAB_CACHE_DMA);
  2657. }
  2658. }
  2659. #endif
  2660. printk(KERN_INFO
  2661. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2662. " CPUs=%d, Nodes=%d\n",
  2663. caches, cache_line_size(),
  2664. slub_min_order, slub_max_order, slub_min_objects,
  2665. nr_cpu_ids, nr_node_ids);
  2666. }
  2667. void __init kmem_cache_init_late(void)
  2668. {
  2669. }
  2670. /*
  2671. * Find a mergeable slab cache
  2672. */
  2673. static int slab_unmergeable(struct kmem_cache *s)
  2674. {
  2675. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2676. return 1;
  2677. if (s->ctor)
  2678. return 1;
  2679. /*
  2680. * We may have set a slab to be unmergeable during bootstrap.
  2681. */
  2682. if (s->refcount < 0)
  2683. return 1;
  2684. return 0;
  2685. }
  2686. static struct kmem_cache *find_mergeable(size_t size,
  2687. size_t align, unsigned long flags, const char *name,
  2688. void (*ctor)(void *))
  2689. {
  2690. struct kmem_cache *s;
  2691. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2692. return NULL;
  2693. if (ctor)
  2694. return NULL;
  2695. size = ALIGN(size, sizeof(void *));
  2696. align = calculate_alignment(flags, align, size);
  2697. size = ALIGN(size, align);
  2698. flags = kmem_cache_flags(size, flags, name, NULL);
  2699. list_for_each_entry(s, &slab_caches, list) {
  2700. if (slab_unmergeable(s))
  2701. continue;
  2702. if (size > s->size)
  2703. continue;
  2704. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2705. continue;
  2706. /*
  2707. * Check if alignment is compatible.
  2708. * Courtesy of Adrian Drzewiecki
  2709. */
  2710. if ((s->size & ~(align - 1)) != s->size)
  2711. continue;
  2712. if (s->size - size >= sizeof(void *))
  2713. continue;
  2714. return s;
  2715. }
  2716. return NULL;
  2717. }
  2718. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2719. size_t align, unsigned long flags, void (*ctor)(void *))
  2720. {
  2721. struct kmem_cache *s;
  2722. char *n;
  2723. if (WARN_ON(!name))
  2724. return NULL;
  2725. down_write(&slub_lock);
  2726. s = find_mergeable(size, align, flags, name, ctor);
  2727. if (s) {
  2728. s->refcount++;
  2729. /*
  2730. * Adjust the object sizes so that we clear
  2731. * the complete object on kzalloc.
  2732. */
  2733. s->objsize = max(s->objsize, (int)size);
  2734. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2735. if (sysfs_slab_alias(s, name)) {
  2736. s->refcount--;
  2737. goto err;
  2738. }
  2739. up_write(&slub_lock);
  2740. return s;
  2741. }
  2742. n = kstrdup(name, GFP_KERNEL);
  2743. if (!n)
  2744. goto err;
  2745. s = kmalloc(kmem_size, GFP_KERNEL);
  2746. if (s) {
  2747. if (kmem_cache_open(s, n,
  2748. size, align, flags, ctor)) {
  2749. list_add(&s->list, &slab_caches);
  2750. if (sysfs_slab_add(s)) {
  2751. list_del(&s->list);
  2752. kfree(n);
  2753. kfree(s);
  2754. goto err;
  2755. }
  2756. up_write(&slub_lock);
  2757. return s;
  2758. }
  2759. kfree(n);
  2760. kfree(s);
  2761. }
  2762. up_write(&slub_lock);
  2763. err:
  2764. if (flags & SLAB_PANIC)
  2765. panic("Cannot create slabcache %s\n", name);
  2766. else
  2767. s = NULL;
  2768. return s;
  2769. }
  2770. EXPORT_SYMBOL(kmem_cache_create);
  2771. #ifdef CONFIG_SMP
  2772. /*
  2773. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2774. * necessary.
  2775. */
  2776. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2777. unsigned long action, void *hcpu)
  2778. {
  2779. long cpu = (long)hcpu;
  2780. struct kmem_cache *s;
  2781. unsigned long flags;
  2782. switch (action) {
  2783. case CPU_UP_CANCELED:
  2784. case CPU_UP_CANCELED_FROZEN:
  2785. case CPU_DEAD:
  2786. case CPU_DEAD_FROZEN:
  2787. down_read(&slub_lock);
  2788. list_for_each_entry(s, &slab_caches, list) {
  2789. local_irq_save(flags);
  2790. __flush_cpu_slab(s, cpu);
  2791. local_irq_restore(flags);
  2792. }
  2793. up_read(&slub_lock);
  2794. break;
  2795. default:
  2796. break;
  2797. }
  2798. return NOTIFY_OK;
  2799. }
  2800. static struct notifier_block __cpuinitdata slab_notifier = {
  2801. .notifier_call = slab_cpuup_callback
  2802. };
  2803. #endif
  2804. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2805. {
  2806. struct kmem_cache *s;
  2807. void *ret;
  2808. if (unlikely(size > SLUB_MAX_SIZE))
  2809. return kmalloc_large(size, gfpflags);
  2810. s = get_slab(size, gfpflags);
  2811. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2812. return s;
  2813. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2814. /* Honor the call site pointer we recieved. */
  2815. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2816. return ret;
  2817. }
  2818. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2819. int node, unsigned long caller)
  2820. {
  2821. struct kmem_cache *s;
  2822. void *ret;
  2823. if (unlikely(size > SLUB_MAX_SIZE)) {
  2824. ret = kmalloc_large_node(size, gfpflags, node);
  2825. trace_kmalloc_node(caller, ret,
  2826. size, PAGE_SIZE << get_order(size),
  2827. gfpflags, node);
  2828. return ret;
  2829. }
  2830. s = get_slab(size, gfpflags);
  2831. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2832. return s;
  2833. ret = slab_alloc(s, gfpflags, node, caller);
  2834. /* Honor the call site pointer we recieved. */
  2835. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2836. return ret;
  2837. }
  2838. #ifdef CONFIG_SLUB_DEBUG
  2839. static int count_inuse(struct page *page)
  2840. {
  2841. return page->inuse;
  2842. }
  2843. static int count_total(struct page *page)
  2844. {
  2845. return page->objects;
  2846. }
  2847. static int validate_slab(struct kmem_cache *s, struct page *page,
  2848. unsigned long *map)
  2849. {
  2850. void *p;
  2851. void *addr = page_address(page);
  2852. if (!check_slab(s, page) ||
  2853. !on_freelist(s, page, NULL))
  2854. return 0;
  2855. /* Now we know that a valid freelist exists */
  2856. bitmap_zero(map, page->objects);
  2857. for_each_free_object(p, s, page->freelist) {
  2858. set_bit(slab_index(p, s, addr), map);
  2859. if (!check_object(s, page, p, 0))
  2860. return 0;
  2861. }
  2862. for_each_object(p, s, addr, page->objects)
  2863. if (!test_bit(slab_index(p, s, addr), map))
  2864. if (!check_object(s, page, p, 1))
  2865. return 0;
  2866. return 1;
  2867. }
  2868. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2869. unsigned long *map)
  2870. {
  2871. if (slab_trylock(page)) {
  2872. validate_slab(s, page, map);
  2873. slab_unlock(page);
  2874. } else
  2875. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2876. s->name, page);
  2877. }
  2878. static int validate_slab_node(struct kmem_cache *s,
  2879. struct kmem_cache_node *n, unsigned long *map)
  2880. {
  2881. unsigned long count = 0;
  2882. struct page *page;
  2883. unsigned long flags;
  2884. spin_lock_irqsave(&n->list_lock, flags);
  2885. list_for_each_entry(page, &n->partial, lru) {
  2886. validate_slab_slab(s, page, map);
  2887. count++;
  2888. }
  2889. if (count != n->nr_partial)
  2890. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2891. "counter=%ld\n", s->name, count, n->nr_partial);
  2892. if (!(s->flags & SLAB_STORE_USER))
  2893. goto out;
  2894. list_for_each_entry(page, &n->full, lru) {
  2895. validate_slab_slab(s, page, map);
  2896. count++;
  2897. }
  2898. if (count != atomic_long_read(&n->nr_slabs))
  2899. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2900. "counter=%ld\n", s->name, count,
  2901. atomic_long_read(&n->nr_slabs));
  2902. out:
  2903. spin_unlock_irqrestore(&n->list_lock, flags);
  2904. return count;
  2905. }
  2906. static long validate_slab_cache(struct kmem_cache *s)
  2907. {
  2908. int node;
  2909. unsigned long count = 0;
  2910. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2911. sizeof(unsigned long), GFP_KERNEL);
  2912. if (!map)
  2913. return -ENOMEM;
  2914. flush_all(s);
  2915. for_each_node_state(node, N_NORMAL_MEMORY) {
  2916. struct kmem_cache_node *n = get_node(s, node);
  2917. count += validate_slab_node(s, n, map);
  2918. }
  2919. kfree(map);
  2920. return count;
  2921. }
  2922. #ifdef SLUB_RESILIENCY_TEST
  2923. static void resiliency_test(void)
  2924. {
  2925. u8 *p;
  2926. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  2927. printk(KERN_ERR "SLUB resiliency testing\n");
  2928. printk(KERN_ERR "-----------------------\n");
  2929. printk(KERN_ERR "A. Corruption after allocation\n");
  2930. p = kzalloc(16, GFP_KERNEL);
  2931. p[16] = 0x12;
  2932. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2933. " 0x12->0x%p\n\n", p + 16);
  2934. validate_slab_cache(kmalloc_caches[4]);
  2935. /* Hmmm... The next two are dangerous */
  2936. p = kzalloc(32, GFP_KERNEL);
  2937. p[32 + sizeof(void *)] = 0x34;
  2938. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2939. " 0x34 -> -0x%p\n", p);
  2940. printk(KERN_ERR
  2941. "If allocated object is overwritten then not detectable\n\n");
  2942. validate_slab_cache(kmalloc_caches[5]);
  2943. p = kzalloc(64, GFP_KERNEL);
  2944. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2945. *p = 0x56;
  2946. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2947. p);
  2948. printk(KERN_ERR
  2949. "If allocated object is overwritten then not detectable\n\n");
  2950. validate_slab_cache(kmalloc_caches[6]);
  2951. printk(KERN_ERR "\nB. Corruption after free\n");
  2952. p = kzalloc(128, GFP_KERNEL);
  2953. kfree(p);
  2954. *p = 0x78;
  2955. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2956. validate_slab_cache(kmalloc_caches[7]);
  2957. p = kzalloc(256, GFP_KERNEL);
  2958. kfree(p);
  2959. p[50] = 0x9a;
  2960. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2961. p);
  2962. validate_slab_cache(kmalloc_caches[8]);
  2963. p = kzalloc(512, GFP_KERNEL);
  2964. kfree(p);
  2965. p[512] = 0xab;
  2966. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2967. validate_slab_cache(kmalloc_caches[9]);
  2968. }
  2969. #else
  2970. static void resiliency_test(void) {};
  2971. #endif
  2972. /*
  2973. * Generate lists of code addresses where slabcache objects are allocated
  2974. * and freed.
  2975. */
  2976. struct location {
  2977. unsigned long count;
  2978. unsigned long addr;
  2979. long long sum_time;
  2980. long min_time;
  2981. long max_time;
  2982. long min_pid;
  2983. long max_pid;
  2984. DECLARE_BITMAP(cpus, NR_CPUS);
  2985. nodemask_t nodes;
  2986. };
  2987. struct loc_track {
  2988. unsigned long max;
  2989. unsigned long count;
  2990. struct location *loc;
  2991. };
  2992. static void free_loc_track(struct loc_track *t)
  2993. {
  2994. if (t->max)
  2995. free_pages((unsigned long)t->loc,
  2996. get_order(sizeof(struct location) * t->max));
  2997. }
  2998. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2999. {
  3000. struct location *l;
  3001. int order;
  3002. order = get_order(sizeof(struct location) * max);
  3003. l = (void *)__get_free_pages(flags, order);
  3004. if (!l)
  3005. return 0;
  3006. if (t->count) {
  3007. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3008. free_loc_track(t);
  3009. }
  3010. t->max = max;
  3011. t->loc = l;
  3012. return 1;
  3013. }
  3014. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3015. const struct track *track)
  3016. {
  3017. long start, end, pos;
  3018. struct location *l;
  3019. unsigned long caddr;
  3020. unsigned long age = jiffies - track->when;
  3021. start = -1;
  3022. end = t->count;
  3023. for ( ; ; ) {
  3024. pos = start + (end - start + 1) / 2;
  3025. /*
  3026. * There is nothing at "end". If we end up there
  3027. * we need to add something to before end.
  3028. */
  3029. if (pos == end)
  3030. break;
  3031. caddr = t->loc[pos].addr;
  3032. if (track->addr == caddr) {
  3033. l = &t->loc[pos];
  3034. l->count++;
  3035. if (track->when) {
  3036. l->sum_time += age;
  3037. if (age < l->min_time)
  3038. l->min_time = age;
  3039. if (age > l->max_time)
  3040. l->max_time = age;
  3041. if (track->pid < l->min_pid)
  3042. l->min_pid = track->pid;
  3043. if (track->pid > l->max_pid)
  3044. l->max_pid = track->pid;
  3045. cpumask_set_cpu(track->cpu,
  3046. to_cpumask(l->cpus));
  3047. }
  3048. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3049. return 1;
  3050. }
  3051. if (track->addr < caddr)
  3052. end = pos;
  3053. else
  3054. start = pos;
  3055. }
  3056. /*
  3057. * Not found. Insert new tracking element.
  3058. */
  3059. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3060. return 0;
  3061. l = t->loc + pos;
  3062. if (pos < t->count)
  3063. memmove(l + 1, l,
  3064. (t->count - pos) * sizeof(struct location));
  3065. t->count++;
  3066. l->count = 1;
  3067. l->addr = track->addr;
  3068. l->sum_time = age;
  3069. l->min_time = age;
  3070. l->max_time = age;
  3071. l->min_pid = track->pid;
  3072. l->max_pid = track->pid;
  3073. cpumask_clear(to_cpumask(l->cpus));
  3074. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3075. nodes_clear(l->nodes);
  3076. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3077. return 1;
  3078. }
  3079. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3080. struct page *page, enum track_item alloc,
  3081. long *map)
  3082. {
  3083. void *addr = page_address(page);
  3084. void *p;
  3085. bitmap_zero(map, page->objects);
  3086. for_each_free_object(p, s, page->freelist)
  3087. set_bit(slab_index(p, s, addr), map);
  3088. for_each_object(p, s, addr, page->objects)
  3089. if (!test_bit(slab_index(p, s, addr), map))
  3090. add_location(t, s, get_track(s, p, alloc));
  3091. }
  3092. static int list_locations(struct kmem_cache *s, char *buf,
  3093. enum track_item alloc)
  3094. {
  3095. int len = 0;
  3096. unsigned long i;
  3097. struct loc_track t = { 0, 0, NULL };
  3098. int node;
  3099. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3100. sizeof(unsigned long), GFP_KERNEL);
  3101. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3102. GFP_TEMPORARY)) {
  3103. kfree(map);
  3104. return sprintf(buf, "Out of memory\n");
  3105. }
  3106. /* Push back cpu slabs */
  3107. flush_all(s);
  3108. for_each_node_state(node, N_NORMAL_MEMORY) {
  3109. struct kmem_cache_node *n = get_node(s, node);
  3110. unsigned long flags;
  3111. struct page *page;
  3112. if (!atomic_long_read(&n->nr_slabs))
  3113. continue;
  3114. spin_lock_irqsave(&n->list_lock, flags);
  3115. list_for_each_entry(page, &n->partial, lru)
  3116. process_slab(&t, s, page, alloc, map);
  3117. list_for_each_entry(page, &n->full, lru)
  3118. process_slab(&t, s, page, alloc, map);
  3119. spin_unlock_irqrestore(&n->list_lock, flags);
  3120. }
  3121. for (i = 0; i < t.count; i++) {
  3122. struct location *l = &t.loc[i];
  3123. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3124. break;
  3125. len += sprintf(buf + len, "%7ld ", l->count);
  3126. if (l->addr)
  3127. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3128. else
  3129. len += sprintf(buf + len, "<not-available>");
  3130. if (l->sum_time != l->min_time) {
  3131. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3132. l->min_time,
  3133. (long)div_u64(l->sum_time, l->count),
  3134. l->max_time);
  3135. } else
  3136. len += sprintf(buf + len, " age=%ld",
  3137. l->min_time);
  3138. if (l->min_pid != l->max_pid)
  3139. len += sprintf(buf + len, " pid=%ld-%ld",
  3140. l->min_pid, l->max_pid);
  3141. else
  3142. len += sprintf(buf + len, " pid=%ld",
  3143. l->min_pid);
  3144. if (num_online_cpus() > 1 &&
  3145. !cpumask_empty(to_cpumask(l->cpus)) &&
  3146. len < PAGE_SIZE - 60) {
  3147. len += sprintf(buf + len, " cpus=");
  3148. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3149. to_cpumask(l->cpus));
  3150. }
  3151. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3152. len < PAGE_SIZE - 60) {
  3153. len += sprintf(buf + len, " nodes=");
  3154. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3155. l->nodes);
  3156. }
  3157. len += sprintf(buf + len, "\n");
  3158. }
  3159. free_loc_track(&t);
  3160. kfree(map);
  3161. if (!t.count)
  3162. len += sprintf(buf, "No data\n");
  3163. return len;
  3164. }
  3165. enum slab_stat_type {
  3166. SL_ALL, /* All slabs */
  3167. SL_PARTIAL, /* Only partially allocated slabs */
  3168. SL_CPU, /* Only slabs used for cpu caches */
  3169. SL_OBJECTS, /* Determine allocated objects not slabs */
  3170. SL_TOTAL /* Determine object capacity not slabs */
  3171. };
  3172. #define SO_ALL (1 << SL_ALL)
  3173. #define SO_PARTIAL (1 << SL_PARTIAL)
  3174. #define SO_CPU (1 << SL_CPU)
  3175. #define SO_OBJECTS (1 << SL_OBJECTS)
  3176. #define SO_TOTAL (1 << SL_TOTAL)
  3177. static ssize_t show_slab_objects(struct kmem_cache *s,
  3178. char *buf, unsigned long flags)
  3179. {
  3180. unsigned long total = 0;
  3181. int node;
  3182. int x;
  3183. unsigned long *nodes;
  3184. unsigned long *per_cpu;
  3185. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3186. if (!nodes)
  3187. return -ENOMEM;
  3188. per_cpu = nodes + nr_node_ids;
  3189. if (flags & SO_CPU) {
  3190. int cpu;
  3191. for_each_possible_cpu(cpu) {
  3192. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3193. if (!c || c->node < 0)
  3194. continue;
  3195. if (c->page) {
  3196. if (flags & SO_TOTAL)
  3197. x = c->page->objects;
  3198. else if (flags & SO_OBJECTS)
  3199. x = c->page->inuse;
  3200. else
  3201. x = 1;
  3202. total += x;
  3203. nodes[c->node] += x;
  3204. }
  3205. per_cpu[c->node]++;
  3206. }
  3207. }
  3208. if (flags & SO_ALL) {
  3209. for_each_node_state(node, N_NORMAL_MEMORY) {
  3210. struct kmem_cache_node *n = get_node(s, node);
  3211. if (flags & SO_TOTAL)
  3212. x = atomic_long_read(&n->total_objects);
  3213. else if (flags & SO_OBJECTS)
  3214. x = atomic_long_read(&n->total_objects) -
  3215. count_partial(n, count_free);
  3216. else
  3217. x = atomic_long_read(&n->nr_slabs);
  3218. total += x;
  3219. nodes[node] += x;
  3220. }
  3221. } else if (flags & SO_PARTIAL) {
  3222. for_each_node_state(node, N_NORMAL_MEMORY) {
  3223. struct kmem_cache_node *n = get_node(s, node);
  3224. if (flags & SO_TOTAL)
  3225. x = count_partial(n, count_total);
  3226. else if (flags & SO_OBJECTS)
  3227. x = count_partial(n, count_inuse);
  3228. else
  3229. x = n->nr_partial;
  3230. total += x;
  3231. nodes[node] += x;
  3232. }
  3233. }
  3234. x = sprintf(buf, "%lu", total);
  3235. #ifdef CONFIG_NUMA
  3236. for_each_node_state(node, N_NORMAL_MEMORY)
  3237. if (nodes[node])
  3238. x += sprintf(buf + x, " N%d=%lu",
  3239. node, nodes[node]);
  3240. #endif
  3241. kfree(nodes);
  3242. return x + sprintf(buf + x, "\n");
  3243. }
  3244. static int any_slab_objects(struct kmem_cache *s)
  3245. {
  3246. int node;
  3247. for_each_online_node(node) {
  3248. struct kmem_cache_node *n = get_node(s, node);
  3249. if (!n)
  3250. continue;
  3251. if (atomic_long_read(&n->total_objects))
  3252. return 1;
  3253. }
  3254. return 0;
  3255. }
  3256. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3257. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3258. struct slab_attribute {
  3259. struct attribute attr;
  3260. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3261. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3262. };
  3263. #define SLAB_ATTR_RO(_name) \
  3264. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3265. #define SLAB_ATTR(_name) \
  3266. static struct slab_attribute _name##_attr = \
  3267. __ATTR(_name, 0644, _name##_show, _name##_store)
  3268. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3269. {
  3270. return sprintf(buf, "%d\n", s->size);
  3271. }
  3272. SLAB_ATTR_RO(slab_size);
  3273. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3274. {
  3275. return sprintf(buf, "%d\n", s->align);
  3276. }
  3277. SLAB_ATTR_RO(align);
  3278. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3279. {
  3280. return sprintf(buf, "%d\n", s->objsize);
  3281. }
  3282. SLAB_ATTR_RO(object_size);
  3283. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3284. {
  3285. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3286. }
  3287. SLAB_ATTR_RO(objs_per_slab);
  3288. static ssize_t order_store(struct kmem_cache *s,
  3289. const char *buf, size_t length)
  3290. {
  3291. unsigned long order;
  3292. int err;
  3293. err = strict_strtoul(buf, 10, &order);
  3294. if (err)
  3295. return err;
  3296. if (order > slub_max_order || order < slub_min_order)
  3297. return -EINVAL;
  3298. calculate_sizes(s, order);
  3299. return length;
  3300. }
  3301. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3302. {
  3303. return sprintf(buf, "%d\n", oo_order(s->oo));
  3304. }
  3305. SLAB_ATTR(order);
  3306. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3307. {
  3308. return sprintf(buf, "%lu\n", s->min_partial);
  3309. }
  3310. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3311. size_t length)
  3312. {
  3313. unsigned long min;
  3314. int err;
  3315. err = strict_strtoul(buf, 10, &min);
  3316. if (err)
  3317. return err;
  3318. set_min_partial(s, min);
  3319. return length;
  3320. }
  3321. SLAB_ATTR(min_partial);
  3322. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3323. {
  3324. if (s->ctor) {
  3325. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3326. return n + sprintf(buf + n, "\n");
  3327. }
  3328. return 0;
  3329. }
  3330. SLAB_ATTR_RO(ctor);
  3331. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3332. {
  3333. return sprintf(buf, "%d\n", s->refcount - 1);
  3334. }
  3335. SLAB_ATTR_RO(aliases);
  3336. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3337. {
  3338. return show_slab_objects(s, buf, SO_ALL);
  3339. }
  3340. SLAB_ATTR_RO(slabs);
  3341. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3342. {
  3343. return show_slab_objects(s, buf, SO_PARTIAL);
  3344. }
  3345. SLAB_ATTR_RO(partial);
  3346. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3347. {
  3348. return show_slab_objects(s, buf, SO_CPU);
  3349. }
  3350. SLAB_ATTR_RO(cpu_slabs);
  3351. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3352. {
  3353. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3354. }
  3355. SLAB_ATTR_RO(objects);
  3356. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3357. {
  3358. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3359. }
  3360. SLAB_ATTR_RO(objects_partial);
  3361. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3362. {
  3363. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3364. }
  3365. SLAB_ATTR_RO(total_objects);
  3366. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3367. {
  3368. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3369. }
  3370. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3371. const char *buf, size_t length)
  3372. {
  3373. s->flags &= ~SLAB_DEBUG_FREE;
  3374. if (buf[0] == '1')
  3375. s->flags |= SLAB_DEBUG_FREE;
  3376. return length;
  3377. }
  3378. SLAB_ATTR(sanity_checks);
  3379. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3380. {
  3381. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3382. }
  3383. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3384. size_t length)
  3385. {
  3386. s->flags &= ~SLAB_TRACE;
  3387. if (buf[0] == '1')
  3388. s->flags |= SLAB_TRACE;
  3389. return length;
  3390. }
  3391. SLAB_ATTR(trace);
  3392. #ifdef CONFIG_FAILSLAB
  3393. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3394. {
  3395. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3396. }
  3397. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3398. size_t length)
  3399. {
  3400. s->flags &= ~SLAB_FAILSLAB;
  3401. if (buf[0] == '1')
  3402. s->flags |= SLAB_FAILSLAB;
  3403. return length;
  3404. }
  3405. SLAB_ATTR(failslab);
  3406. #endif
  3407. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3408. {
  3409. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3410. }
  3411. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3412. const char *buf, size_t length)
  3413. {
  3414. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3415. if (buf[0] == '1')
  3416. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3417. return length;
  3418. }
  3419. SLAB_ATTR(reclaim_account);
  3420. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3421. {
  3422. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3423. }
  3424. SLAB_ATTR_RO(hwcache_align);
  3425. #ifdef CONFIG_ZONE_DMA
  3426. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3427. {
  3428. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3429. }
  3430. SLAB_ATTR_RO(cache_dma);
  3431. #endif
  3432. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3433. {
  3434. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3435. }
  3436. SLAB_ATTR_RO(destroy_by_rcu);
  3437. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3438. {
  3439. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3440. }
  3441. static ssize_t red_zone_store(struct kmem_cache *s,
  3442. const char *buf, size_t length)
  3443. {
  3444. if (any_slab_objects(s))
  3445. return -EBUSY;
  3446. s->flags &= ~SLAB_RED_ZONE;
  3447. if (buf[0] == '1')
  3448. s->flags |= SLAB_RED_ZONE;
  3449. calculate_sizes(s, -1);
  3450. return length;
  3451. }
  3452. SLAB_ATTR(red_zone);
  3453. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3454. {
  3455. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3456. }
  3457. static ssize_t poison_store(struct kmem_cache *s,
  3458. const char *buf, size_t length)
  3459. {
  3460. if (any_slab_objects(s))
  3461. return -EBUSY;
  3462. s->flags &= ~SLAB_POISON;
  3463. if (buf[0] == '1')
  3464. s->flags |= SLAB_POISON;
  3465. calculate_sizes(s, -1);
  3466. return length;
  3467. }
  3468. SLAB_ATTR(poison);
  3469. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3470. {
  3471. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3472. }
  3473. static ssize_t store_user_store(struct kmem_cache *s,
  3474. const char *buf, size_t length)
  3475. {
  3476. if (any_slab_objects(s))
  3477. return -EBUSY;
  3478. s->flags &= ~SLAB_STORE_USER;
  3479. if (buf[0] == '1')
  3480. s->flags |= SLAB_STORE_USER;
  3481. calculate_sizes(s, -1);
  3482. return length;
  3483. }
  3484. SLAB_ATTR(store_user);
  3485. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3486. {
  3487. return 0;
  3488. }
  3489. static ssize_t validate_store(struct kmem_cache *s,
  3490. const char *buf, size_t length)
  3491. {
  3492. int ret = -EINVAL;
  3493. if (buf[0] == '1') {
  3494. ret = validate_slab_cache(s);
  3495. if (ret >= 0)
  3496. ret = length;
  3497. }
  3498. return ret;
  3499. }
  3500. SLAB_ATTR(validate);
  3501. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3502. {
  3503. return 0;
  3504. }
  3505. static ssize_t shrink_store(struct kmem_cache *s,
  3506. const char *buf, size_t length)
  3507. {
  3508. if (buf[0] == '1') {
  3509. int rc = kmem_cache_shrink(s);
  3510. if (rc)
  3511. return rc;
  3512. } else
  3513. return -EINVAL;
  3514. return length;
  3515. }
  3516. SLAB_ATTR(shrink);
  3517. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3518. {
  3519. if (!(s->flags & SLAB_STORE_USER))
  3520. return -ENOSYS;
  3521. return list_locations(s, buf, TRACK_ALLOC);
  3522. }
  3523. SLAB_ATTR_RO(alloc_calls);
  3524. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3525. {
  3526. if (!(s->flags & SLAB_STORE_USER))
  3527. return -ENOSYS;
  3528. return list_locations(s, buf, TRACK_FREE);
  3529. }
  3530. SLAB_ATTR_RO(free_calls);
  3531. #ifdef CONFIG_NUMA
  3532. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3533. {
  3534. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3535. }
  3536. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3537. const char *buf, size_t length)
  3538. {
  3539. unsigned long ratio;
  3540. int err;
  3541. err = strict_strtoul(buf, 10, &ratio);
  3542. if (err)
  3543. return err;
  3544. if (ratio <= 100)
  3545. s->remote_node_defrag_ratio = ratio * 10;
  3546. return length;
  3547. }
  3548. SLAB_ATTR(remote_node_defrag_ratio);
  3549. #endif
  3550. #ifdef CONFIG_SLUB_STATS
  3551. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3552. {
  3553. unsigned long sum = 0;
  3554. int cpu;
  3555. int len;
  3556. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3557. if (!data)
  3558. return -ENOMEM;
  3559. for_each_online_cpu(cpu) {
  3560. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3561. data[cpu] = x;
  3562. sum += x;
  3563. }
  3564. len = sprintf(buf, "%lu", sum);
  3565. #ifdef CONFIG_SMP
  3566. for_each_online_cpu(cpu) {
  3567. if (data[cpu] && len < PAGE_SIZE - 20)
  3568. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3569. }
  3570. #endif
  3571. kfree(data);
  3572. return len + sprintf(buf + len, "\n");
  3573. }
  3574. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3575. {
  3576. int cpu;
  3577. for_each_online_cpu(cpu)
  3578. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3579. }
  3580. #define STAT_ATTR(si, text) \
  3581. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3582. { \
  3583. return show_stat(s, buf, si); \
  3584. } \
  3585. static ssize_t text##_store(struct kmem_cache *s, \
  3586. const char *buf, size_t length) \
  3587. { \
  3588. if (buf[0] != '0') \
  3589. return -EINVAL; \
  3590. clear_stat(s, si); \
  3591. return length; \
  3592. } \
  3593. SLAB_ATTR(text); \
  3594. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3595. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3596. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3597. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3598. STAT_ATTR(FREE_FROZEN, free_frozen);
  3599. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3600. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3601. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3602. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3603. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3604. STAT_ATTR(FREE_SLAB, free_slab);
  3605. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3606. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3607. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3608. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3609. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3610. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3611. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3612. #endif
  3613. static struct attribute *slab_attrs[] = {
  3614. &slab_size_attr.attr,
  3615. &object_size_attr.attr,
  3616. &objs_per_slab_attr.attr,
  3617. &order_attr.attr,
  3618. &min_partial_attr.attr,
  3619. &objects_attr.attr,
  3620. &objects_partial_attr.attr,
  3621. &total_objects_attr.attr,
  3622. &slabs_attr.attr,
  3623. &partial_attr.attr,
  3624. &cpu_slabs_attr.attr,
  3625. &ctor_attr.attr,
  3626. &aliases_attr.attr,
  3627. &align_attr.attr,
  3628. &sanity_checks_attr.attr,
  3629. &trace_attr.attr,
  3630. &hwcache_align_attr.attr,
  3631. &reclaim_account_attr.attr,
  3632. &destroy_by_rcu_attr.attr,
  3633. &red_zone_attr.attr,
  3634. &poison_attr.attr,
  3635. &store_user_attr.attr,
  3636. &validate_attr.attr,
  3637. &shrink_attr.attr,
  3638. &alloc_calls_attr.attr,
  3639. &free_calls_attr.attr,
  3640. #ifdef CONFIG_ZONE_DMA
  3641. &cache_dma_attr.attr,
  3642. #endif
  3643. #ifdef CONFIG_NUMA
  3644. &remote_node_defrag_ratio_attr.attr,
  3645. #endif
  3646. #ifdef CONFIG_SLUB_STATS
  3647. &alloc_fastpath_attr.attr,
  3648. &alloc_slowpath_attr.attr,
  3649. &free_fastpath_attr.attr,
  3650. &free_slowpath_attr.attr,
  3651. &free_frozen_attr.attr,
  3652. &free_add_partial_attr.attr,
  3653. &free_remove_partial_attr.attr,
  3654. &alloc_from_partial_attr.attr,
  3655. &alloc_slab_attr.attr,
  3656. &alloc_refill_attr.attr,
  3657. &free_slab_attr.attr,
  3658. &cpuslab_flush_attr.attr,
  3659. &deactivate_full_attr.attr,
  3660. &deactivate_empty_attr.attr,
  3661. &deactivate_to_head_attr.attr,
  3662. &deactivate_to_tail_attr.attr,
  3663. &deactivate_remote_frees_attr.attr,
  3664. &order_fallback_attr.attr,
  3665. #endif
  3666. #ifdef CONFIG_FAILSLAB
  3667. &failslab_attr.attr,
  3668. #endif
  3669. NULL
  3670. };
  3671. static struct attribute_group slab_attr_group = {
  3672. .attrs = slab_attrs,
  3673. };
  3674. static ssize_t slab_attr_show(struct kobject *kobj,
  3675. struct attribute *attr,
  3676. char *buf)
  3677. {
  3678. struct slab_attribute *attribute;
  3679. struct kmem_cache *s;
  3680. int err;
  3681. attribute = to_slab_attr(attr);
  3682. s = to_slab(kobj);
  3683. if (!attribute->show)
  3684. return -EIO;
  3685. err = attribute->show(s, buf);
  3686. return err;
  3687. }
  3688. static ssize_t slab_attr_store(struct kobject *kobj,
  3689. struct attribute *attr,
  3690. const char *buf, size_t len)
  3691. {
  3692. struct slab_attribute *attribute;
  3693. struct kmem_cache *s;
  3694. int err;
  3695. attribute = to_slab_attr(attr);
  3696. s = to_slab(kobj);
  3697. if (!attribute->store)
  3698. return -EIO;
  3699. err = attribute->store(s, buf, len);
  3700. return err;
  3701. }
  3702. static void kmem_cache_release(struct kobject *kobj)
  3703. {
  3704. struct kmem_cache *s = to_slab(kobj);
  3705. kfree(s->name);
  3706. kfree(s);
  3707. }
  3708. static const struct sysfs_ops slab_sysfs_ops = {
  3709. .show = slab_attr_show,
  3710. .store = slab_attr_store,
  3711. };
  3712. static struct kobj_type slab_ktype = {
  3713. .sysfs_ops = &slab_sysfs_ops,
  3714. .release = kmem_cache_release
  3715. };
  3716. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3717. {
  3718. struct kobj_type *ktype = get_ktype(kobj);
  3719. if (ktype == &slab_ktype)
  3720. return 1;
  3721. return 0;
  3722. }
  3723. static const struct kset_uevent_ops slab_uevent_ops = {
  3724. .filter = uevent_filter,
  3725. };
  3726. static struct kset *slab_kset;
  3727. #define ID_STR_LENGTH 64
  3728. /* Create a unique string id for a slab cache:
  3729. *
  3730. * Format :[flags-]size
  3731. */
  3732. static char *create_unique_id(struct kmem_cache *s)
  3733. {
  3734. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3735. char *p = name;
  3736. BUG_ON(!name);
  3737. *p++ = ':';
  3738. /*
  3739. * First flags affecting slabcache operations. We will only
  3740. * get here for aliasable slabs so we do not need to support
  3741. * too many flags. The flags here must cover all flags that
  3742. * are matched during merging to guarantee that the id is
  3743. * unique.
  3744. */
  3745. if (s->flags & SLAB_CACHE_DMA)
  3746. *p++ = 'd';
  3747. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3748. *p++ = 'a';
  3749. if (s->flags & SLAB_DEBUG_FREE)
  3750. *p++ = 'F';
  3751. if (!(s->flags & SLAB_NOTRACK))
  3752. *p++ = 't';
  3753. if (p != name + 1)
  3754. *p++ = '-';
  3755. p += sprintf(p, "%07d", s->size);
  3756. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3757. return name;
  3758. }
  3759. static int sysfs_slab_add(struct kmem_cache *s)
  3760. {
  3761. int err;
  3762. const char *name;
  3763. int unmergeable;
  3764. if (slab_state < SYSFS)
  3765. /* Defer until later */
  3766. return 0;
  3767. unmergeable = slab_unmergeable(s);
  3768. if (unmergeable) {
  3769. /*
  3770. * Slabcache can never be merged so we can use the name proper.
  3771. * This is typically the case for debug situations. In that
  3772. * case we can catch duplicate names easily.
  3773. */
  3774. sysfs_remove_link(&slab_kset->kobj, s->name);
  3775. name = s->name;
  3776. } else {
  3777. /*
  3778. * Create a unique name for the slab as a target
  3779. * for the symlinks.
  3780. */
  3781. name = create_unique_id(s);
  3782. }
  3783. s->kobj.kset = slab_kset;
  3784. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3785. if (err) {
  3786. kobject_put(&s->kobj);
  3787. return err;
  3788. }
  3789. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3790. if (err) {
  3791. kobject_del(&s->kobj);
  3792. kobject_put(&s->kobj);
  3793. return err;
  3794. }
  3795. kobject_uevent(&s->kobj, KOBJ_ADD);
  3796. if (!unmergeable) {
  3797. /* Setup first alias */
  3798. sysfs_slab_alias(s, s->name);
  3799. kfree(name);
  3800. }
  3801. return 0;
  3802. }
  3803. static void sysfs_slab_remove(struct kmem_cache *s)
  3804. {
  3805. if (slab_state < SYSFS)
  3806. /*
  3807. * Sysfs has not been setup yet so no need to remove the
  3808. * cache from sysfs.
  3809. */
  3810. return;
  3811. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3812. kobject_del(&s->kobj);
  3813. kobject_put(&s->kobj);
  3814. }
  3815. /*
  3816. * Need to buffer aliases during bootup until sysfs becomes
  3817. * available lest we lose that information.
  3818. */
  3819. struct saved_alias {
  3820. struct kmem_cache *s;
  3821. const char *name;
  3822. struct saved_alias *next;
  3823. };
  3824. static struct saved_alias *alias_list;
  3825. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3826. {
  3827. struct saved_alias *al;
  3828. if (slab_state == SYSFS) {
  3829. /*
  3830. * If we have a leftover link then remove it.
  3831. */
  3832. sysfs_remove_link(&slab_kset->kobj, name);
  3833. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3834. }
  3835. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3836. if (!al)
  3837. return -ENOMEM;
  3838. al->s = s;
  3839. al->name = name;
  3840. al->next = alias_list;
  3841. alias_list = al;
  3842. return 0;
  3843. }
  3844. static int __init slab_sysfs_init(void)
  3845. {
  3846. struct kmem_cache *s;
  3847. int err;
  3848. down_write(&slub_lock);
  3849. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3850. if (!slab_kset) {
  3851. up_write(&slub_lock);
  3852. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3853. return -ENOSYS;
  3854. }
  3855. slab_state = SYSFS;
  3856. list_for_each_entry(s, &slab_caches, list) {
  3857. err = sysfs_slab_add(s);
  3858. if (err)
  3859. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3860. " to sysfs\n", s->name);
  3861. }
  3862. while (alias_list) {
  3863. struct saved_alias *al = alias_list;
  3864. alias_list = alias_list->next;
  3865. err = sysfs_slab_alias(al->s, al->name);
  3866. if (err)
  3867. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3868. " %s to sysfs\n", s->name);
  3869. kfree(al);
  3870. }
  3871. up_write(&slub_lock);
  3872. resiliency_test();
  3873. return 0;
  3874. }
  3875. __initcall(slab_sysfs_init);
  3876. #endif
  3877. /*
  3878. * The /proc/slabinfo ABI
  3879. */
  3880. #ifdef CONFIG_SLABINFO
  3881. static void print_slabinfo_header(struct seq_file *m)
  3882. {
  3883. seq_puts(m, "slabinfo - version: 2.1\n");
  3884. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3885. "<objperslab> <pagesperslab>");
  3886. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3887. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3888. seq_putc(m, '\n');
  3889. }
  3890. static void *s_start(struct seq_file *m, loff_t *pos)
  3891. {
  3892. loff_t n = *pos;
  3893. down_read(&slub_lock);
  3894. if (!n)
  3895. print_slabinfo_header(m);
  3896. return seq_list_start(&slab_caches, *pos);
  3897. }
  3898. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3899. {
  3900. return seq_list_next(p, &slab_caches, pos);
  3901. }
  3902. static void s_stop(struct seq_file *m, void *p)
  3903. {
  3904. up_read(&slub_lock);
  3905. }
  3906. static int s_show(struct seq_file *m, void *p)
  3907. {
  3908. unsigned long nr_partials = 0;
  3909. unsigned long nr_slabs = 0;
  3910. unsigned long nr_inuse = 0;
  3911. unsigned long nr_objs = 0;
  3912. unsigned long nr_free = 0;
  3913. struct kmem_cache *s;
  3914. int node;
  3915. s = list_entry(p, struct kmem_cache, list);
  3916. for_each_online_node(node) {
  3917. struct kmem_cache_node *n = get_node(s, node);
  3918. if (!n)
  3919. continue;
  3920. nr_partials += n->nr_partial;
  3921. nr_slabs += atomic_long_read(&n->nr_slabs);
  3922. nr_objs += atomic_long_read(&n->total_objects);
  3923. nr_free += count_partial(n, count_free);
  3924. }
  3925. nr_inuse = nr_objs - nr_free;
  3926. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3927. nr_objs, s->size, oo_objects(s->oo),
  3928. (1 << oo_order(s->oo)));
  3929. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3930. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3931. 0UL);
  3932. seq_putc(m, '\n');
  3933. return 0;
  3934. }
  3935. static const struct seq_operations slabinfo_op = {
  3936. .start = s_start,
  3937. .next = s_next,
  3938. .stop = s_stop,
  3939. .show = s_show,
  3940. };
  3941. static int slabinfo_open(struct inode *inode, struct file *file)
  3942. {
  3943. return seq_open(file, &slabinfo_op);
  3944. }
  3945. static const struct file_operations proc_slabinfo_operations = {
  3946. .open = slabinfo_open,
  3947. .read = seq_read,
  3948. .llseek = seq_lseek,
  3949. .release = seq_release,
  3950. };
  3951. static int __init slab_proc_init(void)
  3952. {
  3953. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3954. return 0;
  3955. }
  3956. module_init(slab_proc_init);
  3957. #endif /* CONFIG_SLABINFO */