exit.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773
  1. /*
  2. * linux/kernel/exit.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/slab.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/capability.h>
  11. #include <linux/completion.h>
  12. #include <linux/personality.h>
  13. #include <linux/tty.h>
  14. #include <linux/iocontext.h>
  15. #include <linux/key.h>
  16. #include <linux/security.h>
  17. #include <linux/cpu.h>
  18. #include <linux/acct.h>
  19. #include <linux/tsacct_kern.h>
  20. #include <linux/file.h>
  21. #include <linux/fdtable.h>
  22. #include <linux/binfmts.h>
  23. #include <linux/nsproxy.h>
  24. #include <linux/pid_namespace.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/profile.h>
  27. #include <linux/mount.h>
  28. #include <linux/proc_fs.h>
  29. #include <linux/kthread.h>
  30. #include <linux/mempolicy.h>
  31. #include <linux/taskstats_kern.h>
  32. #include <linux/delayacct.h>
  33. #include <linux/freezer.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/signal.h>
  37. #include <linux/posix-timers.h>
  38. #include <linux/cn_proc.h>
  39. #include <linux/mutex.h>
  40. #include <linux/futex.h>
  41. #include <linux/pipe_fs_i.h>
  42. #include <linux/audit.h> /* for audit_free() */
  43. #include <linux/resource.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/task_io_accounting_ops.h>
  46. #include <linux/tracehook.h>
  47. #include <linux/fs_struct.h>
  48. #include <linux/init_task.h>
  49. #include <linux/perf_event.h>
  50. #include <trace/events/sched.h>
  51. #include <linux/hw_breakpoint.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/unistd.h>
  54. #include <asm/pgtable.h>
  55. #include <asm/mmu_context.h>
  56. #include "cred-internals.h"
  57. static void exit_mm(struct task_struct * tsk);
  58. static void __unhash_process(struct task_struct *p)
  59. {
  60. nr_threads--;
  61. detach_pid(p, PIDTYPE_PID);
  62. if (thread_group_leader(p)) {
  63. detach_pid(p, PIDTYPE_PGID);
  64. detach_pid(p, PIDTYPE_SID);
  65. list_del_rcu(&p->tasks);
  66. __get_cpu_var(process_counts)--;
  67. }
  68. list_del_rcu(&p->thread_group);
  69. list_del_init(&p->sibling);
  70. }
  71. /*
  72. * This function expects the tasklist_lock write-locked.
  73. */
  74. static void __exit_signal(struct task_struct *tsk)
  75. {
  76. struct signal_struct *sig = tsk->signal;
  77. struct sighand_struct *sighand;
  78. BUG_ON(!sig);
  79. BUG_ON(!atomic_read(&sig->count));
  80. sighand = rcu_dereference(tsk->sighand);
  81. spin_lock(&sighand->siglock);
  82. posix_cpu_timers_exit(tsk);
  83. if (atomic_dec_and_test(&sig->count))
  84. posix_cpu_timers_exit_group(tsk);
  85. else {
  86. /*
  87. * If there is any task waiting for the group exit
  88. * then notify it:
  89. */
  90. if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
  91. wake_up_process(sig->group_exit_task);
  92. if (tsk == sig->curr_target)
  93. sig->curr_target = next_thread(tsk);
  94. /*
  95. * Accumulate here the counters for all threads but the
  96. * group leader as they die, so they can be added into
  97. * the process-wide totals when those are taken.
  98. * The group leader stays around as a zombie as long
  99. * as there are other threads. When it gets reaped,
  100. * the exit.c code will add its counts into these totals.
  101. * We won't ever get here for the group leader, since it
  102. * will have been the last reference on the signal_struct.
  103. */
  104. sig->utime = cputime_add(sig->utime, task_utime(tsk));
  105. sig->stime = cputime_add(sig->stime, task_stime(tsk));
  106. sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
  107. sig->min_flt += tsk->min_flt;
  108. sig->maj_flt += tsk->maj_flt;
  109. sig->nvcsw += tsk->nvcsw;
  110. sig->nivcsw += tsk->nivcsw;
  111. sig->inblock += task_io_get_inblock(tsk);
  112. sig->oublock += task_io_get_oublock(tsk);
  113. task_io_accounting_add(&sig->ioac, &tsk->ioac);
  114. sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
  115. sig = NULL; /* Marker for below. */
  116. }
  117. __unhash_process(tsk);
  118. /*
  119. * Do this under ->siglock, we can race with another thread
  120. * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
  121. */
  122. flush_sigqueue(&tsk->pending);
  123. tsk->signal = NULL;
  124. tsk->sighand = NULL;
  125. spin_unlock(&sighand->siglock);
  126. __cleanup_sighand(sighand);
  127. clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
  128. if (sig) {
  129. flush_sigqueue(&sig->shared_pending);
  130. taskstats_tgid_free(sig);
  131. /*
  132. * Make sure ->signal can't go away under rq->lock,
  133. * see account_group_exec_runtime().
  134. */
  135. task_rq_unlock_wait(tsk);
  136. __cleanup_signal(sig);
  137. }
  138. }
  139. static void delayed_put_task_struct(struct rcu_head *rhp)
  140. {
  141. struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
  142. #ifdef CONFIG_PERF_EVENTS
  143. WARN_ON_ONCE(tsk->perf_event_ctxp);
  144. #endif
  145. trace_sched_process_free(tsk);
  146. put_task_struct(tsk);
  147. }
  148. void release_task(struct task_struct * p)
  149. {
  150. struct task_struct *leader;
  151. int zap_leader;
  152. repeat:
  153. tracehook_prepare_release_task(p);
  154. /* don't need to get the RCU readlock here - the process is dead and
  155. * can't be modifying its own credentials */
  156. atomic_dec(&__task_cred(p)->user->processes);
  157. proc_flush_task(p);
  158. write_lock_irq(&tasklist_lock);
  159. tracehook_finish_release_task(p);
  160. __exit_signal(p);
  161. /*
  162. * If we are the last non-leader member of the thread
  163. * group, and the leader is zombie, then notify the
  164. * group leader's parent process. (if it wants notification.)
  165. */
  166. zap_leader = 0;
  167. leader = p->group_leader;
  168. if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
  169. BUG_ON(task_detached(leader));
  170. do_notify_parent(leader, leader->exit_signal);
  171. /*
  172. * If we were the last child thread and the leader has
  173. * exited already, and the leader's parent ignores SIGCHLD,
  174. * then we are the one who should release the leader.
  175. *
  176. * do_notify_parent() will have marked it self-reaping in
  177. * that case.
  178. */
  179. zap_leader = task_detached(leader);
  180. /*
  181. * This maintains the invariant that release_task()
  182. * only runs on a task in EXIT_DEAD, just for sanity.
  183. */
  184. if (zap_leader)
  185. leader->exit_state = EXIT_DEAD;
  186. }
  187. write_unlock_irq(&tasklist_lock);
  188. release_thread(p);
  189. call_rcu(&p->rcu, delayed_put_task_struct);
  190. p = leader;
  191. if (unlikely(zap_leader))
  192. goto repeat;
  193. }
  194. /*
  195. * This checks not only the pgrp, but falls back on the pid if no
  196. * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
  197. * without this...
  198. *
  199. * The caller must hold rcu lock or the tasklist lock.
  200. */
  201. struct pid *session_of_pgrp(struct pid *pgrp)
  202. {
  203. struct task_struct *p;
  204. struct pid *sid = NULL;
  205. p = pid_task(pgrp, PIDTYPE_PGID);
  206. if (p == NULL)
  207. p = pid_task(pgrp, PIDTYPE_PID);
  208. if (p != NULL)
  209. sid = task_session(p);
  210. return sid;
  211. }
  212. /*
  213. * Determine if a process group is "orphaned", according to the POSIX
  214. * definition in 2.2.2.52. Orphaned process groups are not to be affected
  215. * by terminal-generated stop signals. Newly orphaned process groups are
  216. * to receive a SIGHUP and a SIGCONT.
  217. *
  218. * "I ask you, have you ever known what it is to be an orphan?"
  219. */
  220. static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
  221. {
  222. struct task_struct *p;
  223. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  224. if ((p == ignored_task) ||
  225. (p->exit_state && thread_group_empty(p)) ||
  226. is_global_init(p->real_parent))
  227. continue;
  228. if (task_pgrp(p->real_parent) != pgrp &&
  229. task_session(p->real_parent) == task_session(p))
  230. return 0;
  231. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  232. return 1;
  233. }
  234. int is_current_pgrp_orphaned(void)
  235. {
  236. int retval;
  237. read_lock(&tasklist_lock);
  238. retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
  239. read_unlock(&tasklist_lock);
  240. return retval;
  241. }
  242. static int has_stopped_jobs(struct pid *pgrp)
  243. {
  244. int retval = 0;
  245. struct task_struct *p;
  246. do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
  247. if (!task_is_stopped(p))
  248. continue;
  249. retval = 1;
  250. break;
  251. } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
  252. return retval;
  253. }
  254. /*
  255. * Check to see if any process groups have become orphaned as
  256. * a result of our exiting, and if they have any stopped jobs,
  257. * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  258. */
  259. static void
  260. kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
  261. {
  262. struct pid *pgrp = task_pgrp(tsk);
  263. struct task_struct *ignored_task = tsk;
  264. if (!parent)
  265. /* exit: our father is in a different pgrp than
  266. * we are and we were the only connection outside.
  267. */
  268. parent = tsk->real_parent;
  269. else
  270. /* reparent: our child is in a different pgrp than
  271. * we are, and it was the only connection outside.
  272. */
  273. ignored_task = NULL;
  274. if (task_pgrp(parent) != pgrp &&
  275. task_session(parent) == task_session(tsk) &&
  276. will_become_orphaned_pgrp(pgrp, ignored_task) &&
  277. has_stopped_jobs(pgrp)) {
  278. __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
  279. __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
  280. }
  281. }
  282. /**
  283. * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
  284. *
  285. * If a kernel thread is launched as a result of a system call, or if
  286. * it ever exits, it should generally reparent itself to kthreadd so it
  287. * isn't in the way of other processes and is correctly cleaned up on exit.
  288. *
  289. * The various task state such as scheduling policy and priority may have
  290. * been inherited from a user process, so we reset them to sane values here.
  291. *
  292. * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
  293. */
  294. static void reparent_to_kthreadd(void)
  295. {
  296. write_lock_irq(&tasklist_lock);
  297. ptrace_unlink(current);
  298. /* Reparent to init */
  299. current->real_parent = current->parent = kthreadd_task;
  300. list_move_tail(&current->sibling, &current->real_parent->children);
  301. /* Set the exit signal to SIGCHLD so we signal init on exit */
  302. current->exit_signal = SIGCHLD;
  303. if (task_nice(current) < 0)
  304. set_user_nice(current, 0);
  305. /* cpus_allowed? */
  306. /* rt_priority? */
  307. /* signals? */
  308. memcpy(current->signal->rlim, init_task.signal->rlim,
  309. sizeof(current->signal->rlim));
  310. atomic_inc(&init_cred.usage);
  311. commit_creds(&init_cred);
  312. write_unlock_irq(&tasklist_lock);
  313. }
  314. void __set_special_pids(struct pid *pid)
  315. {
  316. struct task_struct *curr = current->group_leader;
  317. if (task_session(curr) != pid)
  318. change_pid(curr, PIDTYPE_SID, pid);
  319. if (task_pgrp(curr) != pid)
  320. change_pid(curr, PIDTYPE_PGID, pid);
  321. }
  322. static void set_special_pids(struct pid *pid)
  323. {
  324. write_lock_irq(&tasklist_lock);
  325. __set_special_pids(pid);
  326. write_unlock_irq(&tasklist_lock);
  327. }
  328. /*
  329. * Let kernel threads use this to say that they allow a certain signal.
  330. * Must not be used if kthread was cloned with CLONE_SIGHAND.
  331. */
  332. int allow_signal(int sig)
  333. {
  334. if (!valid_signal(sig) || sig < 1)
  335. return -EINVAL;
  336. spin_lock_irq(&current->sighand->siglock);
  337. /* This is only needed for daemonize()'ed kthreads */
  338. sigdelset(&current->blocked, sig);
  339. /*
  340. * Kernel threads handle their own signals. Let the signal code
  341. * know it'll be handled, so that they don't get converted to
  342. * SIGKILL or just silently dropped.
  343. */
  344. current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
  345. recalc_sigpending();
  346. spin_unlock_irq(&current->sighand->siglock);
  347. return 0;
  348. }
  349. EXPORT_SYMBOL(allow_signal);
  350. int disallow_signal(int sig)
  351. {
  352. if (!valid_signal(sig) || sig < 1)
  353. return -EINVAL;
  354. spin_lock_irq(&current->sighand->siglock);
  355. current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
  356. recalc_sigpending();
  357. spin_unlock_irq(&current->sighand->siglock);
  358. return 0;
  359. }
  360. EXPORT_SYMBOL(disallow_signal);
  361. /*
  362. * Put all the gunge required to become a kernel thread without
  363. * attached user resources in one place where it belongs.
  364. */
  365. void daemonize(const char *name, ...)
  366. {
  367. va_list args;
  368. sigset_t blocked;
  369. va_start(args, name);
  370. vsnprintf(current->comm, sizeof(current->comm), name, args);
  371. va_end(args);
  372. /*
  373. * If we were started as result of loading a module, close all of the
  374. * user space pages. We don't need them, and if we didn't close them
  375. * they would be locked into memory.
  376. */
  377. exit_mm(current);
  378. /*
  379. * We don't want to have TIF_FREEZE set if the system-wide hibernation
  380. * or suspend transition begins right now.
  381. */
  382. current->flags |= (PF_NOFREEZE | PF_KTHREAD);
  383. if (current->nsproxy != &init_nsproxy) {
  384. get_nsproxy(&init_nsproxy);
  385. switch_task_namespaces(current, &init_nsproxy);
  386. }
  387. set_special_pids(&init_struct_pid);
  388. proc_clear_tty(current);
  389. /* Block and flush all signals */
  390. sigfillset(&blocked);
  391. sigprocmask(SIG_BLOCK, &blocked, NULL);
  392. flush_signals(current);
  393. /* Become as one with the init task */
  394. daemonize_fs_struct();
  395. exit_files(current);
  396. current->files = init_task.files;
  397. atomic_inc(&current->files->count);
  398. reparent_to_kthreadd();
  399. }
  400. EXPORT_SYMBOL(daemonize);
  401. static void close_files(struct files_struct * files)
  402. {
  403. int i, j;
  404. struct fdtable *fdt;
  405. j = 0;
  406. /*
  407. * It is safe to dereference the fd table without RCU or
  408. * ->file_lock because this is the last reference to the
  409. * files structure.
  410. */
  411. fdt = files_fdtable(files);
  412. for (;;) {
  413. unsigned long set;
  414. i = j * __NFDBITS;
  415. if (i >= fdt->max_fds)
  416. break;
  417. set = fdt->open_fds->fds_bits[j++];
  418. while (set) {
  419. if (set & 1) {
  420. struct file * file = xchg(&fdt->fd[i], NULL);
  421. if (file) {
  422. filp_close(file, files);
  423. cond_resched();
  424. }
  425. }
  426. i++;
  427. set >>= 1;
  428. }
  429. }
  430. }
  431. struct files_struct *get_files_struct(struct task_struct *task)
  432. {
  433. struct files_struct *files;
  434. task_lock(task);
  435. files = task->files;
  436. if (files)
  437. atomic_inc(&files->count);
  438. task_unlock(task);
  439. return files;
  440. }
  441. void put_files_struct(struct files_struct *files)
  442. {
  443. struct fdtable *fdt;
  444. if (atomic_dec_and_test(&files->count)) {
  445. close_files(files);
  446. /*
  447. * Free the fd and fdset arrays if we expanded them.
  448. * If the fdtable was embedded, pass files for freeing
  449. * at the end of the RCU grace period. Otherwise,
  450. * you can free files immediately.
  451. */
  452. fdt = files_fdtable(files);
  453. if (fdt != &files->fdtab)
  454. kmem_cache_free(files_cachep, files);
  455. free_fdtable(fdt);
  456. }
  457. }
  458. void reset_files_struct(struct files_struct *files)
  459. {
  460. struct task_struct *tsk = current;
  461. struct files_struct *old;
  462. old = tsk->files;
  463. task_lock(tsk);
  464. tsk->files = files;
  465. task_unlock(tsk);
  466. put_files_struct(old);
  467. }
  468. void exit_files(struct task_struct *tsk)
  469. {
  470. struct files_struct * files = tsk->files;
  471. if (files) {
  472. task_lock(tsk);
  473. tsk->files = NULL;
  474. task_unlock(tsk);
  475. put_files_struct(files);
  476. }
  477. }
  478. #ifdef CONFIG_MM_OWNER
  479. /*
  480. * Task p is exiting and it owned mm, lets find a new owner for it
  481. */
  482. static inline int
  483. mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
  484. {
  485. /*
  486. * If there are other users of the mm and the owner (us) is exiting
  487. * we need to find a new owner to take on the responsibility.
  488. */
  489. if (atomic_read(&mm->mm_users) <= 1)
  490. return 0;
  491. if (mm->owner != p)
  492. return 0;
  493. return 1;
  494. }
  495. void mm_update_next_owner(struct mm_struct *mm)
  496. {
  497. struct task_struct *c, *g, *p = current;
  498. retry:
  499. if (!mm_need_new_owner(mm, p))
  500. return;
  501. read_lock(&tasklist_lock);
  502. /*
  503. * Search in the children
  504. */
  505. list_for_each_entry(c, &p->children, sibling) {
  506. if (c->mm == mm)
  507. goto assign_new_owner;
  508. }
  509. /*
  510. * Search in the siblings
  511. */
  512. list_for_each_entry(c, &p->real_parent->children, sibling) {
  513. if (c->mm == mm)
  514. goto assign_new_owner;
  515. }
  516. /*
  517. * Search through everything else. We should not get
  518. * here often
  519. */
  520. do_each_thread(g, c) {
  521. if (c->mm == mm)
  522. goto assign_new_owner;
  523. } while_each_thread(g, c);
  524. read_unlock(&tasklist_lock);
  525. /*
  526. * We found no owner yet mm_users > 1: this implies that we are
  527. * most likely racing with swapoff (try_to_unuse()) or /proc or
  528. * ptrace or page migration (get_task_mm()). Mark owner as NULL.
  529. */
  530. mm->owner = NULL;
  531. return;
  532. assign_new_owner:
  533. BUG_ON(c == p);
  534. get_task_struct(c);
  535. /*
  536. * The task_lock protects c->mm from changing.
  537. * We always want mm->owner->mm == mm
  538. */
  539. task_lock(c);
  540. /*
  541. * Delay read_unlock() till we have the task_lock()
  542. * to ensure that c does not slip away underneath us
  543. */
  544. read_unlock(&tasklist_lock);
  545. if (c->mm != mm) {
  546. task_unlock(c);
  547. put_task_struct(c);
  548. goto retry;
  549. }
  550. mm->owner = c;
  551. task_unlock(c);
  552. put_task_struct(c);
  553. }
  554. #endif /* CONFIG_MM_OWNER */
  555. /*
  556. * Turn us into a lazy TLB process if we
  557. * aren't already..
  558. */
  559. static void exit_mm(struct task_struct * tsk)
  560. {
  561. struct mm_struct *mm = tsk->mm;
  562. struct core_state *core_state;
  563. mm_release(tsk, mm);
  564. if (!mm)
  565. return;
  566. /*
  567. * Serialize with any possible pending coredump.
  568. * We must hold mmap_sem around checking core_state
  569. * and clearing tsk->mm. The core-inducing thread
  570. * will increment ->nr_threads for each thread in the
  571. * group with ->mm != NULL.
  572. */
  573. down_read(&mm->mmap_sem);
  574. core_state = mm->core_state;
  575. if (core_state) {
  576. struct core_thread self;
  577. up_read(&mm->mmap_sem);
  578. self.task = tsk;
  579. self.next = xchg(&core_state->dumper.next, &self);
  580. /*
  581. * Implies mb(), the result of xchg() must be visible
  582. * to core_state->dumper.
  583. */
  584. if (atomic_dec_and_test(&core_state->nr_threads))
  585. complete(&core_state->startup);
  586. for (;;) {
  587. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  588. if (!self.task) /* see coredump_finish() */
  589. break;
  590. schedule();
  591. }
  592. __set_task_state(tsk, TASK_RUNNING);
  593. down_read(&mm->mmap_sem);
  594. }
  595. atomic_inc(&mm->mm_count);
  596. BUG_ON(mm != tsk->active_mm);
  597. /* more a memory barrier than a real lock */
  598. task_lock(tsk);
  599. tsk->mm = NULL;
  600. up_read(&mm->mmap_sem);
  601. enter_lazy_tlb(mm, current);
  602. /* We don't want this task to be frozen prematurely */
  603. clear_freeze_flag(tsk);
  604. task_unlock(tsk);
  605. mm_update_next_owner(mm);
  606. mmput(mm);
  607. }
  608. /*
  609. * When we die, we re-parent all our children.
  610. * Try to give them to another thread in our thread
  611. * group, and if no such member exists, give it to
  612. * the child reaper process (ie "init") in our pid
  613. * space.
  614. */
  615. static struct task_struct *find_new_reaper(struct task_struct *father)
  616. {
  617. struct pid_namespace *pid_ns = task_active_pid_ns(father);
  618. struct task_struct *thread;
  619. thread = father;
  620. while_each_thread(father, thread) {
  621. if (thread->flags & PF_EXITING)
  622. continue;
  623. if (unlikely(pid_ns->child_reaper == father))
  624. pid_ns->child_reaper = thread;
  625. return thread;
  626. }
  627. if (unlikely(pid_ns->child_reaper == father)) {
  628. write_unlock_irq(&tasklist_lock);
  629. if (unlikely(pid_ns == &init_pid_ns))
  630. panic("Attempted to kill init!");
  631. zap_pid_ns_processes(pid_ns);
  632. write_lock_irq(&tasklist_lock);
  633. /*
  634. * We can not clear ->child_reaper or leave it alone.
  635. * There may by stealth EXIT_DEAD tasks on ->children,
  636. * forget_original_parent() must move them somewhere.
  637. */
  638. pid_ns->child_reaper = init_pid_ns.child_reaper;
  639. }
  640. return pid_ns->child_reaper;
  641. }
  642. /*
  643. * Any that need to be release_task'd are put on the @dead list.
  644. */
  645. static void reparent_thread(struct task_struct *father, struct task_struct *p,
  646. struct list_head *dead)
  647. {
  648. if (p->pdeath_signal)
  649. group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
  650. list_move_tail(&p->sibling, &p->real_parent->children);
  651. if (task_detached(p))
  652. return;
  653. /*
  654. * If this is a threaded reparent there is no need to
  655. * notify anyone anything has happened.
  656. */
  657. if (same_thread_group(p->real_parent, father))
  658. return;
  659. /* We don't want people slaying init. */
  660. p->exit_signal = SIGCHLD;
  661. /* If it has exited notify the new parent about this child's death. */
  662. if (!task_ptrace(p) &&
  663. p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
  664. do_notify_parent(p, p->exit_signal);
  665. if (task_detached(p)) {
  666. p->exit_state = EXIT_DEAD;
  667. list_move_tail(&p->sibling, dead);
  668. }
  669. }
  670. kill_orphaned_pgrp(p, father);
  671. }
  672. static void forget_original_parent(struct task_struct *father)
  673. {
  674. struct task_struct *p, *n, *reaper;
  675. LIST_HEAD(dead_children);
  676. exit_ptrace(father);
  677. write_lock_irq(&tasklist_lock);
  678. reaper = find_new_reaper(father);
  679. list_for_each_entry_safe(p, n, &father->children, sibling) {
  680. p->real_parent = reaper;
  681. if (p->parent == father) {
  682. BUG_ON(task_ptrace(p));
  683. p->parent = p->real_parent;
  684. }
  685. reparent_thread(father, p, &dead_children);
  686. }
  687. write_unlock_irq(&tasklist_lock);
  688. BUG_ON(!list_empty(&father->children));
  689. list_for_each_entry_safe(p, n, &dead_children, sibling) {
  690. list_del_init(&p->sibling);
  691. release_task(p);
  692. }
  693. }
  694. /*
  695. * Send signals to all our closest relatives so that they know
  696. * to properly mourn us..
  697. */
  698. static void exit_notify(struct task_struct *tsk, int group_dead)
  699. {
  700. int signal;
  701. void *cookie;
  702. /*
  703. * This does two things:
  704. *
  705. * A. Make init inherit all the child processes
  706. * B. Check to see if any process groups have become orphaned
  707. * as a result of our exiting, and if they have any stopped
  708. * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
  709. */
  710. forget_original_parent(tsk);
  711. exit_task_namespaces(tsk);
  712. write_lock_irq(&tasklist_lock);
  713. if (group_dead)
  714. kill_orphaned_pgrp(tsk->group_leader, NULL);
  715. /* Let father know we died
  716. *
  717. * Thread signals are configurable, but you aren't going to use
  718. * that to send signals to arbitary processes.
  719. * That stops right now.
  720. *
  721. * If the parent exec id doesn't match the exec id we saved
  722. * when we started then we know the parent has changed security
  723. * domain.
  724. *
  725. * If our self_exec id doesn't match our parent_exec_id then
  726. * we have changed execution domain as these two values started
  727. * the same after a fork.
  728. */
  729. if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
  730. (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
  731. tsk->self_exec_id != tsk->parent_exec_id))
  732. tsk->exit_signal = SIGCHLD;
  733. signal = tracehook_notify_death(tsk, &cookie, group_dead);
  734. if (signal >= 0)
  735. signal = do_notify_parent(tsk, signal);
  736. tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
  737. /* mt-exec, de_thread() is waiting for us */
  738. if (thread_group_leader(tsk) &&
  739. tsk->signal->group_exit_task &&
  740. tsk->signal->notify_count < 0)
  741. wake_up_process(tsk->signal->group_exit_task);
  742. write_unlock_irq(&tasklist_lock);
  743. tracehook_report_death(tsk, signal, cookie, group_dead);
  744. /* If the process is dead, release it - nobody will wait for it */
  745. if (signal == DEATH_REAP)
  746. release_task(tsk);
  747. }
  748. #ifdef CONFIG_DEBUG_STACK_USAGE
  749. static void check_stack_usage(void)
  750. {
  751. static DEFINE_SPINLOCK(low_water_lock);
  752. static int lowest_to_date = THREAD_SIZE;
  753. unsigned long free;
  754. free = stack_not_used(current);
  755. if (free >= lowest_to_date)
  756. return;
  757. spin_lock(&low_water_lock);
  758. if (free < lowest_to_date) {
  759. printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
  760. "left\n",
  761. current->comm, free);
  762. lowest_to_date = free;
  763. }
  764. spin_unlock(&low_water_lock);
  765. }
  766. #else
  767. static inline void check_stack_usage(void) {}
  768. #endif
  769. NORET_TYPE void do_exit(long code)
  770. {
  771. struct task_struct *tsk = current;
  772. int group_dead;
  773. profile_task_exit(tsk);
  774. WARN_ON(atomic_read(&tsk->fs_excl));
  775. if (unlikely(in_interrupt()))
  776. panic("Aiee, killing interrupt handler!");
  777. if (unlikely(!tsk->pid))
  778. panic("Attempted to kill the idle task!");
  779. tracehook_report_exit(&code);
  780. validate_creds_for_do_exit(tsk);
  781. /*
  782. * We're taking recursive faults here in do_exit. Safest is to just
  783. * leave this task alone and wait for reboot.
  784. */
  785. if (unlikely(tsk->flags & PF_EXITING)) {
  786. printk(KERN_ALERT
  787. "Fixing recursive fault but reboot is needed!\n");
  788. /*
  789. * We can do this unlocked here. The futex code uses
  790. * this flag just to verify whether the pi state
  791. * cleanup has been done or not. In the worst case it
  792. * loops once more. We pretend that the cleanup was
  793. * done as there is no way to return. Either the
  794. * OWNER_DIED bit is set by now or we push the blocked
  795. * task into the wait for ever nirwana as well.
  796. */
  797. tsk->flags |= PF_EXITPIDONE;
  798. set_current_state(TASK_UNINTERRUPTIBLE);
  799. schedule();
  800. }
  801. exit_irq_thread();
  802. exit_signals(tsk); /* sets PF_EXITING */
  803. /*
  804. * tsk->flags are checked in the futex code to protect against
  805. * an exiting task cleaning up the robust pi futexes.
  806. */
  807. smp_mb();
  808. spin_unlock_wait(&tsk->pi_lock);
  809. if (unlikely(in_atomic()))
  810. printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
  811. current->comm, task_pid_nr(current),
  812. preempt_count());
  813. acct_update_integrals(tsk);
  814. group_dead = atomic_dec_and_test(&tsk->signal->live);
  815. if (group_dead) {
  816. hrtimer_cancel(&tsk->signal->real_timer);
  817. exit_itimers(tsk->signal);
  818. if (tsk->mm)
  819. setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
  820. }
  821. acct_collect(code, group_dead);
  822. if (group_dead)
  823. tty_audit_exit();
  824. if (unlikely(tsk->audit_context))
  825. audit_free(tsk);
  826. tsk->exit_code = code;
  827. taskstats_exit(tsk, group_dead);
  828. exit_mm(tsk);
  829. if (group_dead)
  830. acct_process();
  831. trace_sched_process_exit(tsk);
  832. exit_sem(tsk);
  833. exit_files(tsk);
  834. exit_fs(tsk);
  835. check_stack_usage();
  836. exit_thread();
  837. cgroup_exit(tsk, 1);
  838. if (group_dead && tsk->signal->leader)
  839. disassociate_ctty(1);
  840. module_put(task_thread_info(tsk)->exec_domain->module);
  841. proc_exit_connector(tsk);
  842. /*
  843. * FIXME: do that only when needed, using sched_exit tracepoint
  844. */
  845. flush_ptrace_hw_breakpoint(tsk);
  846. /*
  847. * Flush inherited counters to the parent - before the parent
  848. * gets woken up by child-exit notifications.
  849. */
  850. perf_event_exit_task(tsk);
  851. exit_notify(tsk, group_dead);
  852. #ifdef CONFIG_NUMA
  853. mpol_put(tsk->mempolicy);
  854. tsk->mempolicy = NULL;
  855. #endif
  856. #ifdef CONFIG_FUTEX
  857. if (unlikely(current->pi_state_cache))
  858. kfree(current->pi_state_cache);
  859. #endif
  860. /*
  861. * Make sure we are holding no locks:
  862. */
  863. debug_check_no_locks_held(tsk);
  864. /*
  865. * We can do this unlocked here. The futex code uses this flag
  866. * just to verify whether the pi state cleanup has been done
  867. * or not. In the worst case it loops once more.
  868. */
  869. tsk->flags |= PF_EXITPIDONE;
  870. if (tsk->io_context)
  871. exit_io_context();
  872. if (tsk->splice_pipe)
  873. __free_pipe_info(tsk->splice_pipe);
  874. validate_creds_for_do_exit(tsk);
  875. preempt_disable();
  876. exit_rcu();
  877. /* causes final put_task_struct in finish_task_switch(). */
  878. tsk->state = TASK_DEAD;
  879. schedule();
  880. BUG();
  881. /* Avoid "noreturn function does return". */
  882. for (;;)
  883. cpu_relax(); /* For when BUG is null */
  884. }
  885. EXPORT_SYMBOL_GPL(do_exit);
  886. NORET_TYPE void complete_and_exit(struct completion *comp, long code)
  887. {
  888. if (comp)
  889. complete(comp);
  890. do_exit(code);
  891. }
  892. EXPORT_SYMBOL(complete_and_exit);
  893. SYSCALL_DEFINE1(exit, int, error_code)
  894. {
  895. do_exit((error_code&0xff)<<8);
  896. }
  897. /*
  898. * Take down every thread in the group. This is called by fatal signals
  899. * as well as by sys_exit_group (below).
  900. */
  901. NORET_TYPE void
  902. do_group_exit(int exit_code)
  903. {
  904. struct signal_struct *sig = current->signal;
  905. BUG_ON(exit_code & 0x80); /* core dumps don't get here */
  906. if (signal_group_exit(sig))
  907. exit_code = sig->group_exit_code;
  908. else if (!thread_group_empty(current)) {
  909. struct sighand_struct *const sighand = current->sighand;
  910. spin_lock_irq(&sighand->siglock);
  911. if (signal_group_exit(sig))
  912. /* Another thread got here before we took the lock. */
  913. exit_code = sig->group_exit_code;
  914. else {
  915. sig->group_exit_code = exit_code;
  916. sig->flags = SIGNAL_GROUP_EXIT;
  917. zap_other_threads(current);
  918. }
  919. spin_unlock_irq(&sighand->siglock);
  920. }
  921. do_exit(exit_code);
  922. /* NOTREACHED */
  923. }
  924. /*
  925. * this kills every thread in the thread group. Note that any externally
  926. * wait4()-ing process will get the correct exit code - even if this
  927. * thread is not the thread group leader.
  928. */
  929. SYSCALL_DEFINE1(exit_group, int, error_code)
  930. {
  931. do_group_exit((error_code & 0xff) << 8);
  932. /* NOTREACHED */
  933. return 0;
  934. }
  935. struct wait_opts {
  936. enum pid_type wo_type;
  937. int wo_flags;
  938. struct pid *wo_pid;
  939. struct siginfo __user *wo_info;
  940. int __user *wo_stat;
  941. struct rusage __user *wo_rusage;
  942. wait_queue_t child_wait;
  943. int notask_error;
  944. };
  945. static inline
  946. struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
  947. {
  948. if (type != PIDTYPE_PID)
  949. task = task->group_leader;
  950. return task->pids[type].pid;
  951. }
  952. static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
  953. {
  954. return wo->wo_type == PIDTYPE_MAX ||
  955. task_pid_type(p, wo->wo_type) == wo->wo_pid;
  956. }
  957. static int eligible_child(struct wait_opts *wo, struct task_struct *p)
  958. {
  959. if (!eligible_pid(wo, p))
  960. return 0;
  961. /* Wait for all children (clone and not) if __WALL is set;
  962. * otherwise, wait for clone children *only* if __WCLONE is
  963. * set; otherwise, wait for non-clone children *only*. (Note:
  964. * A "clone" child here is one that reports to its parent
  965. * using a signal other than SIGCHLD.) */
  966. if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
  967. && !(wo->wo_flags & __WALL))
  968. return 0;
  969. return 1;
  970. }
  971. static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
  972. pid_t pid, uid_t uid, int why, int status)
  973. {
  974. struct siginfo __user *infop;
  975. int retval = wo->wo_rusage
  976. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  977. put_task_struct(p);
  978. infop = wo->wo_info;
  979. if (infop) {
  980. if (!retval)
  981. retval = put_user(SIGCHLD, &infop->si_signo);
  982. if (!retval)
  983. retval = put_user(0, &infop->si_errno);
  984. if (!retval)
  985. retval = put_user((short)why, &infop->si_code);
  986. if (!retval)
  987. retval = put_user(pid, &infop->si_pid);
  988. if (!retval)
  989. retval = put_user(uid, &infop->si_uid);
  990. if (!retval)
  991. retval = put_user(status, &infop->si_status);
  992. }
  993. if (!retval)
  994. retval = pid;
  995. return retval;
  996. }
  997. /*
  998. * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
  999. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1000. * the lock and this task is uninteresting. If we return nonzero, we have
  1001. * released the lock and the system call should return.
  1002. */
  1003. static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
  1004. {
  1005. unsigned long state;
  1006. int retval, status, traced;
  1007. pid_t pid = task_pid_vnr(p);
  1008. uid_t uid = __task_cred(p)->uid;
  1009. struct siginfo __user *infop;
  1010. if (!likely(wo->wo_flags & WEXITED))
  1011. return 0;
  1012. if (unlikely(wo->wo_flags & WNOWAIT)) {
  1013. int exit_code = p->exit_code;
  1014. int why, status;
  1015. get_task_struct(p);
  1016. read_unlock(&tasklist_lock);
  1017. if ((exit_code & 0x7f) == 0) {
  1018. why = CLD_EXITED;
  1019. status = exit_code >> 8;
  1020. } else {
  1021. why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1022. status = exit_code & 0x7f;
  1023. }
  1024. return wait_noreap_copyout(wo, p, pid, uid, why, status);
  1025. }
  1026. /*
  1027. * Try to move the task's state to DEAD
  1028. * only one thread is allowed to do this:
  1029. */
  1030. state = xchg(&p->exit_state, EXIT_DEAD);
  1031. if (state != EXIT_ZOMBIE) {
  1032. BUG_ON(state != EXIT_DEAD);
  1033. return 0;
  1034. }
  1035. traced = ptrace_reparented(p);
  1036. /*
  1037. * It can be ptraced but not reparented, check
  1038. * !task_detached() to filter out sub-threads.
  1039. */
  1040. if (likely(!traced) && likely(!task_detached(p))) {
  1041. struct signal_struct *psig;
  1042. struct signal_struct *sig;
  1043. unsigned long maxrss;
  1044. /*
  1045. * The resource counters for the group leader are in its
  1046. * own task_struct. Those for dead threads in the group
  1047. * are in its signal_struct, as are those for the child
  1048. * processes it has previously reaped. All these
  1049. * accumulate in the parent's signal_struct c* fields.
  1050. *
  1051. * We don't bother to take a lock here to protect these
  1052. * p->signal fields, because they are only touched by
  1053. * __exit_signal, which runs with tasklist_lock
  1054. * write-locked anyway, and so is excluded here. We do
  1055. * need to protect the access to parent->signal fields,
  1056. * as other threads in the parent group can be right
  1057. * here reaping other children at the same time.
  1058. */
  1059. spin_lock_irq(&p->real_parent->sighand->siglock);
  1060. psig = p->real_parent->signal;
  1061. sig = p->signal;
  1062. psig->cutime =
  1063. cputime_add(psig->cutime,
  1064. cputime_add(p->utime,
  1065. cputime_add(sig->utime,
  1066. sig->cutime)));
  1067. psig->cstime =
  1068. cputime_add(psig->cstime,
  1069. cputime_add(p->stime,
  1070. cputime_add(sig->stime,
  1071. sig->cstime)));
  1072. psig->cgtime =
  1073. cputime_add(psig->cgtime,
  1074. cputime_add(p->gtime,
  1075. cputime_add(sig->gtime,
  1076. sig->cgtime)));
  1077. psig->cmin_flt +=
  1078. p->min_flt + sig->min_flt + sig->cmin_flt;
  1079. psig->cmaj_flt +=
  1080. p->maj_flt + sig->maj_flt + sig->cmaj_flt;
  1081. psig->cnvcsw +=
  1082. p->nvcsw + sig->nvcsw + sig->cnvcsw;
  1083. psig->cnivcsw +=
  1084. p->nivcsw + sig->nivcsw + sig->cnivcsw;
  1085. psig->cinblock +=
  1086. task_io_get_inblock(p) +
  1087. sig->inblock + sig->cinblock;
  1088. psig->coublock +=
  1089. task_io_get_oublock(p) +
  1090. sig->oublock + sig->coublock;
  1091. maxrss = max(sig->maxrss, sig->cmaxrss);
  1092. if (psig->cmaxrss < maxrss)
  1093. psig->cmaxrss = maxrss;
  1094. task_io_accounting_add(&psig->ioac, &p->ioac);
  1095. task_io_accounting_add(&psig->ioac, &sig->ioac);
  1096. spin_unlock_irq(&p->real_parent->sighand->siglock);
  1097. }
  1098. /*
  1099. * Now we are sure this task is interesting, and no other
  1100. * thread can reap it because we set its state to EXIT_DEAD.
  1101. */
  1102. read_unlock(&tasklist_lock);
  1103. retval = wo->wo_rusage
  1104. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1105. status = (p->signal->flags & SIGNAL_GROUP_EXIT)
  1106. ? p->signal->group_exit_code : p->exit_code;
  1107. if (!retval && wo->wo_stat)
  1108. retval = put_user(status, wo->wo_stat);
  1109. infop = wo->wo_info;
  1110. if (!retval && infop)
  1111. retval = put_user(SIGCHLD, &infop->si_signo);
  1112. if (!retval && infop)
  1113. retval = put_user(0, &infop->si_errno);
  1114. if (!retval && infop) {
  1115. int why;
  1116. if ((status & 0x7f) == 0) {
  1117. why = CLD_EXITED;
  1118. status >>= 8;
  1119. } else {
  1120. why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
  1121. status &= 0x7f;
  1122. }
  1123. retval = put_user((short)why, &infop->si_code);
  1124. if (!retval)
  1125. retval = put_user(status, &infop->si_status);
  1126. }
  1127. if (!retval && infop)
  1128. retval = put_user(pid, &infop->si_pid);
  1129. if (!retval && infop)
  1130. retval = put_user(uid, &infop->si_uid);
  1131. if (!retval)
  1132. retval = pid;
  1133. if (traced) {
  1134. write_lock_irq(&tasklist_lock);
  1135. /* We dropped tasklist, ptracer could die and untrace */
  1136. ptrace_unlink(p);
  1137. /*
  1138. * If this is not a detached task, notify the parent.
  1139. * If it's still not detached after that, don't release
  1140. * it now.
  1141. */
  1142. if (!task_detached(p)) {
  1143. do_notify_parent(p, p->exit_signal);
  1144. if (!task_detached(p)) {
  1145. p->exit_state = EXIT_ZOMBIE;
  1146. p = NULL;
  1147. }
  1148. }
  1149. write_unlock_irq(&tasklist_lock);
  1150. }
  1151. if (p != NULL)
  1152. release_task(p);
  1153. return retval;
  1154. }
  1155. static int *task_stopped_code(struct task_struct *p, bool ptrace)
  1156. {
  1157. if (ptrace) {
  1158. if (task_is_stopped_or_traced(p))
  1159. return &p->exit_code;
  1160. } else {
  1161. if (p->signal->flags & SIGNAL_STOP_STOPPED)
  1162. return &p->signal->group_exit_code;
  1163. }
  1164. return NULL;
  1165. }
  1166. /*
  1167. * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
  1168. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1169. * the lock and this task is uninteresting. If we return nonzero, we have
  1170. * released the lock and the system call should return.
  1171. */
  1172. static int wait_task_stopped(struct wait_opts *wo,
  1173. int ptrace, struct task_struct *p)
  1174. {
  1175. struct siginfo __user *infop;
  1176. int retval, exit_code, *p_code, why;
  1177. uid_t uid = 0; /* unneeded, required by compiler */
  1178. pid_t pid;
  1179. /*
  1180. * Traditionally we see ptrace'd stopped tasks regardless of options.
  1181. */
  1182. if (!ptrace && !(wo->wo_flags & WUNTRACED))
  1183. return 0;
  1184. exit_code = 0;
  1185. spin_lock_irq(&p->sighand->siglock);
  1186. p_code = task_stopped_code(p, ptrace);
  1187. if (unlikely(!p_code))
  1188. goto unlock_sig;
  1189. exit_code = *p_code;
  1190. if (!exit_code)
  1191. goto unlock_sig;
  1192. if (!unlikely(wo->wo_flags & WNOWAIT))
  1193. *p_code = 0;
  1194. /* don't need the RCU readlock here as we're holding a spinlock */
  1195. uid = __task_cred(p)->uid;
  1196. unlock_sig:
  1197. spin_unlock_irq(&p->sighand->siglock);
  1198. if (!exit_code)
  1199. return 0;
  1200. /*
  1201. * Now we are pretty sure this task is interesting.
  1202. * Make sure it doesn't get reaped out from under us while we
  1203. * give up the lock and then examine it below. We don't want to
  1204. * keep holding onto the tasklist_lock while we call getrusage and
  1205. * possibly take page faults for user memory.
  1206. */
  1207. get_task_struct(p);
  1208. pid = task_pid_vnr(p);
  1209. why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
  1210. read_unlock(&tasklist_lock);
  1211. if (unlikely(wo->wo_flags & WNOWAIT))
  1212. return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
  1213. retval = wo->wo_rusage
  1214. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1215. if (!retval && wo->wo_stat)
  1216. retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
  1217. infop = wo->wo_info;
  1218. if (!retval && infop)
  1219. retval = put_user(SIGCHLD, &infop->si_signo);
  1220. if (!retval && infop)
  1221. retval = put_user(0, &infop->si_errno);
  1222. if (!retval && infop)
  1223. retval = put_user((short)why, &infop->si_code);
  1224. if (!retval && infop)
  1225. retval = put_user(exit_code, &infop->si_status);
  1226. if (!retval && infop)
  1227. retval = put_user(pid, &infop->si_pid);
  1228. if (!retval && infop)
  1229. retval = put_user(uid, &infop->si_uid);
  1230. if (!retval)
  1231. retval = pid;
  1232. put_task_struct(p);
  1233. BUG_ON(!retval);
  1234. return retval;
  1235. }
  1236. /*
  1237. * Handle do_wait work for one task in a live, non-stopped state.
  1238. * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
  1239. * the lock and this task is uninteresting. If we return nonzero, we have
  1240. * released the lock and the system call should return.
  1241. */
  1242. static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
  1243. {
  1244. int retval;
  1245. pid_t pid;
  1246. uid_t uid;
  1247. if (!unlikely(wo->wo_flags & WCONTINUED))
  1248. return 0;
  1249. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
  1250. return 0;
  1251. spin_lock_irq(&p->sighand->siglock);
  1252. /* Re-check with the lock held. */
  1253. if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
  1254. spin_unlock_irq(&p->sighand->siglock);
  1255. return 0;
  1256. }
  1257. if (!unlikely(wo->wo_flags & WNOWAIT))
  1258. p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
  1259. uid = __task_cred(p)->uid;
  1260. spin_unlock_irq(&p->sighand->siglock);
  1261. pid = task_pid_vnr(p);
  1262. get_task_struct(p);
  1263. read_unlock(&tasklist_lock);
  1264. if (!wo->wo_info) {
  1265. retval = wo->wo_rusage
  1266. ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
  1267. put_task_struct(p);
  1268. if (!retval && wo->wo_stat)
  1269. retval = put_user(0xffff, wo->wo_stat);
  1270. if (!retval)
  1271. retval = pid;
  1272. } else {
  1273. retval = wait_noreap_copyout(wo, p, pid, uid,
  1274. CLD_CONTINUED, SIGCONT);
  1275. BUG_ON(retval == 0);
  1276. }
  1277. return retval;
  1278. }
  1279. /*
  1280. * Consider @p for a wait by @parent.
  1281. *
  1282. * -ECHILD should be in ->notask_error before the first call.
  1283. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1284. * Returns zero if the search for a child should continue;
  1285. * then ->notask_error is 0 if @p is an eligible child,
  1286. * or another error from security_task_wait(), or still -ECHILD.
  1287. */
  1288. static int wait_consider_task(struct wait_opts *wo, int ptrace,
  1289. struct task_struct *p)
  1290. {
  1291. int ret = eligible_child(wo, p);
  1292. if (!ret)
  1293. return ret;
  1294. ret = security_task_wait(p);
  1295. if (unlikely(ret < 0)) {
  1296. /*
  1297. * If we have not yet seen any eligible child,
  1298. * then let this error code replace -ECHILD.
  1299. * A permission error will give the user a clue
  1300. * to look for security policy problems, rather
  1301. * than for mysterious wait bugs.
  1302. */
  1303. if (wo->notask_error)
  1304. wo->notask_error = ret;
  1305. return 0;
  1306. }
  1307. if (likely(!ptrace) && unlikely(task_ptrace(p))) {
  1308. /*
  1309. * This child is hidden by ptrace.
  1310. * We aren't allowed to see it now, but eventually we will.
  1311. */
  1312. wo->notask_error = 0;
  1313. return 0;
  1314. }
  1315. if (p->exit_state == EXIT_DEAD)
  1316. return 0;
  1317. /*
  1318. * We don't reap group leaders with subthreads.
  1319. */
  1320. if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
  1321. return wait_task_zombie(wo, p);
  1322. /*
  1323. * It's stopped or running now, so it might
  1324. * later continue, exit, or stop again.
  1325. */
  1326. wo->notask_error = 0;
  1327. if (task_stopped_code(p, ptrace))
  1328. return wait_task_stopped(wo, ptrace, p);
  1329. return wait_task_continued(wo, p);
  1330. }
  1331. /*
  1332. * Do the work of do_wait() for one thread in the group, @tsk.
  1333. *
  1334. * -ECHILD should be in ->notask_error before the first call.
  1335. * Returns nonzero for a final return, when we have unlocked tasklist_lock.
  1336. * Returns zero if the search for a child should continue; then
  1337. * ->notask_error is 0 if there were any eligible children,
  1338. * or another error from security_task_wait(), or still -ECHILD.
  1339. */
  1340. static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
  1341. {
  1342. struct task_struct *p;
  1343. list_for_each_entry(p, &tsk->children, sibling) {
  1344. /*
  1345. * Do not consider detached threads.
  1346. */
  1347. if (!task_detached(p)) {
  1348. int ret = wait_consider_task(wo, 0, p);
  1349. if (ret)
  1350. return ret;
  1351. }
  1352. }
  1353. return 0;
  1354. }
  1355. static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
  1356. {
  1357. struct task_struct *p;
  1358. list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
  1359. int ret = wait_consider_task(wo, 1, p);
  1360. if (ret)
  1361. return ret;
  1362. }
  1363. return 0;
  1364. }
  1365. static int child_wait_callback(wait_queue_t *wait, unsigned mode,
  1366. int sync, void *key)
  1367. {
  1368. struct wait_opts *wo = container_of(wait, struct wait_opts,
  1369. child_wait);
  1370. struct task_struct *p = key;
  1371. if (!eligible_pid(wo, p))
  1372. return 0;
  1373. if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
  1374. return 0;
  1375. return default_wake_function(wait, mode, sync, key);
  1376. }
  1377. void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
  1378. {
  1379. __wake_up_sync_key(&parent->signal->wait_chldexit,
  1380. TASK_INTERRUPTIBLE, 1, p);
  1381. }
  1382. static long do_wait(struct wait_opts *wo)
  1383. {
  1384. struct task_struct *tsk;
  1385. int retval;
  1386. trace_sched_process_wait(wo->wo_pid);
  1387. init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
  1388. wo->child_wait.private = current;
  1389. add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1390. repeat:
  1391. /*
  1392. * If there is nothing that can match our critiera just get out.
  1393. * We will clear ->notask_error to zero if we see any child that
  1394. * might later match our criteria, even if we are not able to reap
  1395. * it yet.
  1396. */
  1397. wo->notask_error = -ECHILD;
  1398. if ((wo->wo_type < PIDTYPE_MAX) &&
  1399. (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
  1400. goto notask;
  1401. set_current_state(TASK_INTERRUPTIBLE);
  1402. read_lock(&tasklist_lock);
  1403. tsk = current;
  1404. do {
  1405. retval = do_wait_thread(wo, tsk);
  1406. if (retval)
  1407. goto end;
  1408. retval = ptrace_do_wait(wo, tsk);
  1409. if (retval)
  1410. goto end;
  1411. if (wo->wo_flags & __WNOTHREAD)
  1412. break;
  1413. } while_each_thread(current, tsk);
  1414. read_unlock(&tasklist_lock);
  1415. notask:
  1416. retval = wo->notask_error;
  1417. if (!retval && !(wo->wo_flags & WNOHANG)) {
  1418. retval = -ERESTARTSYS;
  1419. if (!signal_pending(current)) {
  1420. schedule();
  1421. goto repeat;
  1422. }
  1423. }
  1424. end:
  1425. __set_current_state(TASK_RUNNING);
  1426. remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
  1427. return retval;
  1428. }
  1429. SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
  1430. infop, int, options, struct rusage __user *, ru)
  1431. {
  1432. struct wait_opts wo;
  1433. struct pid *pid = NULL;
  1434. enum pid_type type;
  1435. long ret;
  1436. if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
  1437. return -EINVAL;
  1438. if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
  1439. return -EINVAL;
  1440. switch (which) {
  1441. case P_ALL:
  1442. type = PIDTYPE_MAX;
  1443. break;
  1444. case P_PID:
  1445. type = PIDTYPE_PID;
  1446. if (upid <= 0)
  1447. return -EINVAL;
  1448. break;
  1449. case P_PGID:
  1450. type = PIDTYPE_PGID;
  1451. if (upid <= 0)
  1452. return -EINVAL;
  1453. break;
  1454. default:
  1455. return -EINVAL;
  1456. }
  1457. if (type < PIDTYPE_MAX)
  1458. pid = find_get_pid(upid);
  1459. wo.wo_type = type;
  1460. wo.wo_pid = pid;
  1461. wo.wo_flags = options;
  1462. wo.wo_info = infop;
  1463. wo.wo_stat = NULL;
  1464. wo.wo_rusage = ru;
  1465. ret = do_wait(&wo);
  1466. if (ret > 0) {
  1467. ret = 0;
  1468. } else if (infop) {
  1469. /*
  1470. * For a WNOHANG return, clear out all the fields
  1471. * we would set so the user can easily tell the
  1472. * difference.
  1473. */
  1474. if (!ret)
  1475. ret = put_user(0, &infop->si_signo);
  1476. if (!ret)
  1477. ret = put_user(0, &infop->si_errno);
  1478. if (!ret)
  1479. ret = put_user(0, &infop->si_code);
  1480. if (!ret)
  1481. ret = put_user(0, &infop->si_pid);
  1482. if (!ret)
  1483. ret = put_user(0, &infop->si_uid);
  1484. if (!ret)
  1485. ret = put_user(0, &infop->si_status);
  1486. }
  1487. put_pid(pid);
  1488. /* avoid REGPARM breakage on x86: */
  1489. asmlinkage_protect(5, ret, which, upid, infop, options, ru);
  1490. return ret;
  1491. }
  1492. SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
  1493. int, options, struct rusage __user *, ru)
  1494. {
  1495. struct wait_opts wo;
  1496. struct pid *pid = NULL;
  1497. enum pid_type type;
  1498. long ret;
  1499. if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
  1500. __WNOTHREAD|__WCLONE|__WALL))
  1501. return -EINVAL;
  1502. if (upid == -1)
  1503. type = PIDTYPE_MAX;
  1504. else if (upid < 0) {
  1505. type = PIDTYPE_PGID;
  1506. pid = find_get_pid(-upid);
  1507. } else if (upid == 0) {
  1508. type = PIDTYPE_PGID;
  1509. pid = get_task_pid(current, PIDTYPE_PGID);
  1510. } else /* upid > 0 */ {
  1511. type = PIDTYPE_PID;
  1512. pid = find_get_pid(upid);
  1513. }
  1514. wo.wo_type = type;
  1515. wo.wo_pid = pid;
  1516. wo.wo_flags = options | WEXITED;
  1517. wo.wo_info = NULL;
  1518. wo.wo_stat = stat_addr;
  1519. wo.wo_rusage = ru;
  1520. ret = do_wait(&wo);
  1521. put_pid(pid);
  1522. /* avoid REGPARM breakage on x86: */
  1523. asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
  1524. return ret;
  1525. }
  1526. #ifdef __ARCH_WANT_SYS_WAITPID
  1527. /*
  1528. * sys_waitpid() remains for compatibility. waitpid() should be
  1529. * implemented by calling sys_wait4() from libc.a.
  1530. */
  1531. SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
  1532. {
  1533. return sys_wait4(pid, stat_addr, options, NULL);
  1534. }
  1535. #endif