btree.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * linux/fs/hfs/btree.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle opening/closing btree
  9. */
  10. #include <linux/pagemap.h>
  11. #include <linux/log2.h>
  12. #include "btree.h"
  13. /* Get a reference to a B*Tree and do some initial checks */
  14. struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id, btree_keycmp keycmp)
  15. {
  16. struct hfs_btree *tree;
  17. struct hfs_btree_header_rec *head;
  18. struct address_space *mapping;
  19. struct page *page;
  20. unsigned int size;
  21. tree = kzalloc(sizeof(*tree), GFP_KERNEL);
  22. if (!tree)
  23. return NULL;
  24. init_MUTEX(&tree->tree_lock);
  25. spin_lock_init(&tree->hash_lock);
  26. /* Set the correct compare function */
  27. tree->sb = sb;
  28. tree->cnid = id;
  29. tree->keycmp = keycmp;
  30. tree->inode = iget_locked(sb, id);
  31. if (!tree->inode)
  32. goto free_tree;
  33. BUG_ON(!(tree->inode->i_state & I_NEW));
  34. {
  35. struct hfs_mdb *mdb = HFS_SB(sb)->mdb;
  36. HFS_I(tree->inode)->flags = 0;
  37. mutex_init(&HFS_I(tree->inode)->extents_lock);
  38. switch (id) {
  39. case HFS_EXT_CNID:
  40. hfs_inode_read_fork(tree->inode, mdb->drXTExtRec, mdb->drXTFlSize,
  41. mdb->drXTFlSize, be32_to_cpu(mdb->drXTClpSiz));
  42. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  43. break;
  44. case HFS_CAT_CNID:
  45. hfs_inode_read_fork(tree->inode, mdb->drCTExtRec, mdb->drCTFlSize,
  46. mdb->drCTFlSize, be32_to_cpu(mdb->drCTClpSiz));
  47. tree->inode->i_mapping->a_ops = &hfs_btree_aops;
  48. break;
  49. default:
  50. BUG();
  51. }
  52. }
  53. unlock_new_inode(tree->inode);
  54. if (!HFS_I(tree->inode)->first_blocks) {
  55. printk(KERN_ERR "hfs: invalid btree extent records (0 size).\n");
  56. goto free_inode;
  57. }
  58. mapping = tree->inode->i_mapping;
  59. page = read_mapping_page(mapping, 0, NULL);
  60. if (IS_ERR(page))
  61. goto free_inode;
  62. /* Load the header */
  63. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  64. tree->root = be32_to_cpu(head->root);
  65. tree->leaf_count = be32_to_cpu(head->leaf_count);
  66. tree->leaf_head = be32_to_cpu(head->leaf_head);
  67. tree->leaf_tail = be32_to_cpu(head->leaf_tail);
  68. tree->node_count = be32_to_cpu(head->node_count);
  69. tree->free_nodes = be32_to_cpu(head->free_nodes);
  70. tree->attributes = be32_to_cpu(head->attributes);
  71. tree->node_size = be16_to_cpu(head->node_size);
  72. tree->max_key_len = be16_to_cpu(head->max_key_len);
  73. tree->depth = be16_to_cpu(head->depth);
  74. size = tree->node_size;
  75. if (!is_power_of_2(size))
  76. goto fail_page;
  77. if (!tree->node_count)
  78. goto fail_page;
  79. switch (id) {
  80. case HFS_EXT_CNID:
  81. if (tree->max_key_len != HFS_MAX_EXT_KEYLEN) {
  82. printk(KERN_ERR "hfs: invalid extent max_key_len %d\n",
  83. tree->max_key_len);
  84. goto fail_page;
  85. }
  86. break;
  87. case HFS_CAT_CNID:
  88. if (tree->max_key_len != HFS_MAX_CAT_KEYLEN) {
  89. printk(KERN_ERR "hfs: invalid catalog max_key_len %d\n",
  90. tree->max_key_len);
  91. goto fail_page;
  92. }
  93. break;
  94. default:
  95. BUG();
  96. }
  97. tree->node_size_shift = ffs(size) - 1;
  98. tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  99. kunmap(page);
  100. page_cache_release(page);
  101. return tree;
  102. fail_page:
  103. page_cache_release(page);
  104. free_inode:
  105. tree->inode->i_mapping->a_ops = &hfs_aops;
  106. iput(tree->inode);
  107. free_tree:
  108. kfree(tree);
  109. return NULL;
  110. }
  111. /* Release resources used by a btree */
  112. void hfs_btree_close(struct hfs_btree *tree)
  113. {
  114. struct hfs_bnode *node;
  115. int i;
  116. if (!tree)
  117. return;
  118. for (i = 0; i < NODE_HASH_SIZE; i++) {
  119. while ((node = tree->node_hash[i])) {
  120. tree->node_hash[i] = node->next_hash;
  121. if (atomic_read(&node->refcnt))
  122. printk(KERN_ERR "hfs: node %d:%d still has %d user(s)!\n",
  123. node->tree->cnid, node->this, atomic_read(&node->refcnt));
  124. hfs_bnode_free(node);
  125. tree->node_hash_cnt--;
  126. }
  127. }
  128. iput(tree->inode);
  129. kfree(tree);
  130. }
  131. void hfs_btree_write(struct hfs_btree *tree)
  132. {
  133. struct hfs_btree_header_rec *head;
  134. struct hfs_bnode *node;
  135. struct page *page;
  136. node = hfs_bnode_find(tree, 0);
  137. if (IS_ERR(node))
  138. /* panic? */
  139. return;
  140. /* Load the header */
  141. page = node->page[0];
  142. head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
  143. head->root = cpu_to_be32(tree->root);
  144. head->leaf_count = cpu_to_be32(tree->leaf_count);
  145. head->leaf_head = cpu_to_be32(tree->leaf_head);
  146. head->leaf_tail = cpu_to_be32(tree->leaf_tail);
  147. head->node_count = cpu_to_be32(tree->node_count);
  148. head->free_nodes = cpu_to_be32(tree->free_nodes);
  149. head->attributes = cpu_to_be32(tree->attributes);
  150. head->depth = cpu_to_be16(tree->depth);
  151. kunmap(page);
  152. set_page_dirty(page);
  153. hfs_bnode_put(node);
  154. }
  155. static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
  156. {
  157. struct hfs_btree *tree = prev->tree;
  158. struct hfs_bnode *node;
  159. struct hfs_bnode_desc desc;
  160. __be32 cnid;
  161. node = hfs_bnode_create(tree, idx);
  162. if (IS_ERR(node))
  163. return node;
  164. if (!tree->free_nodes)
  165. panic("FIXME!!!");
  166. tree->free_nodes--;
  167. prev->next = idx;
  168. cnid = cpu_to_be32(idx);
  169. hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
  170. node->type = HFS_NODE_MAP;
  171. node->num_recs = 1;
  172. hfs_bnode_clear(node, 0, tree->node_size);
  173. desc.next = 0;
  174. desc.prev = 0;
  175. desc.type = HFS_NODE_MAP;
  176. desc.height = 0;
  177. desc.num_recs = cpu_to_be16(1);
  178. desc.reserved = 0;
  179. hfs_bnode_write(node, &desc, 0, sizeof(desc));
  180. hfs_bnode_write_u16(node, 14, 0x8000);
  181. hfs_bnode_write_u16(node, tree->node_size - 2, 14);
  182. hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
  183. return node;
  184. }
  185. struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
  186. {
  187. struct hfs_bnode *node, *next_node;
  188. struct page **pagep;
  189. u32 nidx, idx;
  190. unsigned off;
  191. u16 off16;
  192. u16 len;
  193. u8 *data, byte, m;
  194. int i;
  195. while (!tree->free_nodes) {
  196. struct inode *inode = tree->inode;
  197. u32 count;
  198. int res;
  199. res = hfs_extend_file(inode);
  200. if (res)
  201. return ERR_PTR(res);
  202. HFS_I(inode)->phys_size = inode->i_size =
  203. (loff_t)HFS_I(inode)->alloc_blocks *
  204. HFS_SB(tree->sb)->alloc_blksz;
  205. HFS_I(inode)->fs_blocks = inode->i_size >>
  206. tree->sb->s_blocksize_bits;
  207. inode_set_bytes(inode, inode->i_size);
  208. count = inode->i_size >> tree->node_size_shift;
  209. tree->free_nodes = count - tree->node_count;
  210. tree->node_count = count;
  211. }
  212. nidx = 0;
  213. node = hfs_bnode_find(tree, nidx);
  214. if (IS_ERR(node))
  215. return node;
  216. len = hfs_brec_lenoff(node, 2, &off16);
  217. off = off16;
  218. off += node->page_offset;
  219. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  220. data = kmap(*pagep);
  221. off &= ~PAGE_CACHE_MASK;
  222. idx = 0;
  223. for (;;) {
  224. while (len) {
  225. byte = data[off];
  226. if (byte != 0xff) {
  227. for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
  228. if (!(byte & m)) {
  229. idx += i;
  230. data[off] |= m;
  231. set_page_dirty(*pagep);
  232. kunmap(*pagep);
  233. tree->free_nodes--;
  234. mark_inode_dirty(tree->inode);
  235. hfs_bnode_put(node);
  236. return hfs_bnode_create(tree, idx);
  237. }
  238. }
  239. }
  240. if (++off >= PAGE_CACHE_SIZE) {
  241. kunmap(*pagep);
  242. data = kmap(*++pagep);
  243. off = 0;
  244. }
  245. idx += 8;
  246. len--;
  247. }
  248. kunmap(*pagep);
  249. nidx = node->next;
  250. if (!nidx) {
  251. printk(KERN_DEBUG "hfs: create new bmap node...\n");
  252. next_node = hfs_bmap_new_bmap(node, idx);
  253. } else
  254. next_node = hfs_bnode_find(tree, nidx);
  255. hfs_bnode_put(node);
  256. if (IS_ERR(next_node))
  257. return next_node;
  258. node = next_node;
  259. len = hfs_brec_lenoff(node, 0, &off16);
  260. off = off16;
  261. off += node->page_offset;
  262. pagep = node->page + (off >> PAGE_CACHE_SHIFT);
  263. data = kmap(*pagep);
  264. off &= ~PAGE_CACHE_MASK;
  265. }
  266. }
  267. void hfs_bmap_free(struct hfs_bnode *node)
  268. {
  269. struct hfs_btree *tree;
  270. struct page *page;
  271. u16 off, len;
  272. u32 nidx;
  273. u8 *data, byte, m;
  274. dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
  275. tree = node->tree;
  276. nidx = node->this;
  277. node = hfs_bnode_find(tree, 0);
  278. if (IS_ERR(node))
  279. return;
  280. len = hfs_brec_lenoff(node, 2, &off);
  281. while (nidx >= len * 8) {
  282. u32 i;
  283. nidx -= len * 8;
  284. i = node->next;
  285. hfs_bnode_put(node);
  286. if (!i) {
  287. /* panic */;
  288. printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
  289. return;
  290. }
  291. node = hfs_bnode_find(tree, i);
  292. if (IS_ERR(node))
  293. return;
  294. if (node->type != HFS_NODE_MAP) {
  295. /* panic */;
  296. printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
  297. hfs_bnode_put(node);
  298. return;
  299. }
  300. len = hfs_brec_lenoff(node, 0, &off);
  301. }
  302. off += node->page_offset + nidx / 8;
  303. page = node->page[off >> PAGE_CACHE_SHIFT];
  304. data = kmap(page);
  305. off &= ~PAGE_CACHE_MASK;
  306. m = 1 << (~nidx & 7);
  307. byte = data[off];
  308. if (!(byte & m)) {
  309. printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
  310. kunmap(page);
  311. hfs_bnode_put(node);
  312. return;
  313. }
  314. data[off] = byte & ~m;
  315. set_page_dirty(page);
  316. kunmap(page);
  317. hfs_bnode_put(node);
  318. tree->free_nodes++;
  319. mark_inode_dirty(tree->inode);
  320. }