x86.c 120 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/debugreg.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/msr.h>
  45. #include <asm/desc.h>
  46. #include <asm/mtrr.h>
  47. #include <asm/mce.h>
  48. #define MAX_IO_MSRS 256
  49. #define CR0_RESERVED_BITS \
  50. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  51. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  52. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  53. #define CR4_RESERVED_BITS \
  54. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  55. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  56. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  57. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  58. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  59. #define KVM_MAX_MCE_BANKS 32
  60. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  61. /* EFER defaults:
  62. * - enable syscall per default because its emulated by KVM
  63. * - enable LME and LMA per default on 64 bit KVM
  64. */
  65. #ifdef CONFIG_X86_64
  66. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  67. #else
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  69. #endif
  70. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  71. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  72. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  73. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  74. struct kvm_cpuid_entry2 __user *entries);
  75. struct kvm_x86_ops *kvm_x86_ops;
  76. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  77. int ignore_msrs = 0;
  78. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  79. struct kvm_stats_debugfs_item debugfs_entries[] = {
  80. { "pf_fixed", VCPU_STAT(pf_fixed) },
  81. { "pf_guest", VCPU_STAT(pf_guest) },
  82. { "tlb_flush", VCPU_STAT(tlb_flush) },
  83. { "invlpg", VCPU_STAT(invlpg) },
  84. { "exits", VCPU_STAT(exits) },
  85. { "io_exits", VCPU_STAT(io_exits) },
  86. { "mmio_exits", VCPU_STAT(mmio_exits) },
  87. { "signal_exits", VCPU_STAT(signal_exits) },
  88. { "irq_window", VCPU_STAT(irq_window_exits) },
  89. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  90. { "halt_exits", VCPU_STAT(halt_exits) },
  91. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  92. { "hypercalls", VCPU_STAT(hypercalls) },
  93. { "request_irq", VCPU_STAT(request_irq_exits) },
  94. { "irq_exits", VCPU_STAT(irq_exits) },
  95. { "host_state_reload", VCPU_STAT(host_state_reload) },
  96. { "efer_reload", VCPU_STAT(efer_reload) },
  97. { "fpu_reload", VCPU_STAT(fpu_reload) },
  98. { "insn_emulation", VCPU_STAT(insn_emulation) },
  99. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  100. { "irq_injections", VCPU_STAT(irq_injections) },
  101. { "nmi_injections", VCPU_STAT(nmi_injections) },
  102. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  103. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  104. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  105. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  106. { "mmu_flooded", VM_STAT(mmu_flooded) },
  107. { "mmu_recycled", VM_STAT(mmu_recycled) },
  108. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  109. { "mmu_unsync", VM_STAT(mmu_unsync) },
  110. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  111. { "largepages", VM_STAT(lpages) },
  112. { NULL }
  113. };
  114. unsigned long segment_base(u16 selector)
  115. {
  116. struct descriptor_table gdt;
  117. struct desc_struct *d;
  118. unsigned long table_base;
  119. unsigned long v;
  120. if (selector == 0)
  121. return 0;
  122. kvm_get_gdt(&gdt);
  123. table_base = gdt.base;
  124. if (selector & 4) { /* from ldt */
  125. u16 ldt_selector = kvm_read_ldt();
  126. table_base = segment_base(ldt_selector);
  127. }
  128. d = (struct desc_struct *)(table_base + (selector & ~7));
  129. v = get_desc_base(d);
  130. #ifdef CONFIG_X86_64
  131. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  132. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  133. #endif
  134. return v;
  135. }
  136. EXPORT_SYMBOL_GPL(segment_base);
  137. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  138. {
  139. if (irqchip_in_kernel(vcpu->kvm))
  140. return vcpu->arch.apic_base;
  141. else
  142. return vcpu->arch.apic_base;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  145. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  146. {
  147. /* TODO: reserve bits check */
  148. if (irqchip_in_kernel(vcpu->kvm))
  149. kvm_lapic_set_base(vcpu, data);
  150. else
  151. vcpu->arch.apic_base = data;
  152. }
  153. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  154. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  155. {
  156. WARN_ON(vcpu->arch.exception.pending);
  157. vcpu->arch.exception.pending = true;
  158. vcpu->arch.exception.has_error_code = false;
  159. vcpu->arch.exception.nr = nr;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  162. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  163. u32 error_code)
  164. {
  165. ++vcpu->stat.pf_guest;
  166. if (vcpu->arch.exception.pending) {
  167. switch(vcpu->arch.exception.nr) {
  168. case DF_VECTOR:
  169. /* triple fault -> shutdown */
  170. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  171. return;
  172. case PF_VECTOR:
  173. vcpu->arch.exception.nr = DF_VECTOR;
  174. vcpu->arch.exception.error_code = 0;
  175. return;
  176. default:
  177. /* replace previous exception with a new one in a hope
  178. that instruction re-execution will regenerate lost
  179. exception */
  180. vcpu->arch.exception.pending = false;
  181. break;
  182. }
  183. }
  184. vcpu->arch.cr2 = addr;
  185. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  186. }
  187. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  188. {
  189. vcpu->arch.nmi_pending = 1;
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  192. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  193. {
  194. WARN_ON(vcpu->arch.exception.pending);
  195. vcpu->arch.exception.pending = true;
  196. vcpu->arch.exception.has_error_code = true;
  197. vcpu->arch.exception.nr = nr;
  198. vcpu->arch.exception.error_code = error_code;
  199. }
  200. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  201. /*
  202. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  203. * a #GP and return false.
  204. */
  205. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  206. {
  207. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  208. return true;
  209. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  210. return false;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  213. /*
  214. * Load the pae pdptrs. Return true is they are all valid.
  215. */
  216. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  217. {
  218. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  219. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  220. int i;
  221. int ret;
  222. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  223. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  224. offset * sizeof(u64), sizeof(pdpte));
  225. if (ret < 0) {
  226. ret = 0;
  227. goto out;
  228. }
  229. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  230. if (is_present_gpte(pdpte[i]) &&
  231. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  232. ret = 0;
  233. goto out;
  234. }
  235. }
  236. ret = 1;
  237. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  238. __set_bit(VCPU_EXREG_PDPTR,
  239. (unsigned long *)&vcpu->arch.regs_avail);
  240. __set_bit(VCPU_EXREG_PDPTR,
  241. (unsigned long *)&vcpu->arch.regs_dirty);
  242. out:
  243. return ret;
  244. }
  245. EXPORT_SYMBOL_GPL(load_pdptrs);
  246. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  247. {
  248. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  249. bool changed = true;
  250. int r;
  251. if (is_long_mode(vcpu) || !is_pae(vcpu))
  252. return false;
  253. if (!test_bit(VCPU_EXREG_PDPTR,
  254. (unsigned long *)&vcpu->arch.regs_avail))
  255. return true;
  256. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  257. if (r < 0)
  258. goto out;
  259. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  260. out:
  261. return changed;
  262. }
  263. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  264. {
  265. if (cr0 & CR0_RESERVED_BITS) {
  266. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  267. cr0, vcpu->arch.cr0);
  268. kvm_inject_gp(vcpu, 0);
  269. return;
  270. }
  271. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  272. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  277. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  278. "and a clear PE flag\n");
  279. kvm_inject_gp(vcpu, 0);
  280. return;
  281. }
  282. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  283. #ifdef CONFIG_X86_64
  284. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  285. int cs_db, cs_l;
  286. if (!is_pae(vcpu)) {
  287. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  288. "in long mode while PAE is disabled\n");
  289. kvm_inject_gp(vcpu, 0);
  290. return;
  291. }
  292. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  293. if (cs_l) {
  294. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  295. "in long mode while CS.L == 1\n");
  296. kvm_inject_gp(vcpu, 0);
  297. return;
  298. }
  299. } else
  300. #endif
  301. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  302. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  303. "reserved bits\n");
  304. kvm_inject_gp(vcpu, 0);
  305. return;
  306. }
  307. }
  308. kvm_x86_ops->set_cr0(vcpu, cr0);
  309. vcpu->arch.cr0 = cr0;
  310. kvm_mmu_reset_context(vcpu);
  311. return;
  312. }
  313. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  314. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  315. {
  316. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  317. }
  318. EXPORT_SYMBOL_GPL(kvm_lmsw);
  319. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  320. {
  321. unsigned long old_cr4 = vcpu->arch.cr4;
  322. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  323. if (cr4 & CR4_RESERVED_BITS) {
  324. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  325. kvm_inject_gp(vcpu, 0);
  326. return;
  327. }
  328. if (is_long_mode(vcpu)) {
  329. if (!(cr4 & X86_CR4_PAE)) {
  330. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  331. "in long mode\n");
  332. kvm_inject_gp(vcpu, 0);
  333. return;
  334. }
  335. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  336. && ((cr4 ^ old_cr4) & pdptr_bits)
  337. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  338. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  339. kvm_inject_gp(vcpu, 0);
  340. return;
  341. }
  342. if (cr4 & X86_CR4_VMXE) {
  343. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  344. kvm_inject_gp(vcpu, 0);
  345. return;
  346. }
  347. kvm_x86_ops->set_cr4(vcpu, cr4);
  348. vcpu->arch.cr4 = cr4;
  349. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  350. kvm_mmu_reset_context(vcpu);
  351. }
  352. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  353. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  354. {
  355. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  356. kvm_mmu_sync_roots(vcpu);
  357. kvm_mmu_flush_tlb(vcpu);
  358. return;
  359. }
  360. if (is_long_mode(vcpu)) {
  361. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  362. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  363. kvm_inject_gp(vcpu, 0);
  364. return;
  365. }
  366. } else {
  367. if (is_pae(vcpu)) {
  368. if (cr3 & CR3_PAE_RESERVED_BITS) {
  369. printk(KERN_DEBUG
  370. "set_cr3: #GP, reserved bits\n");
  371. kvm_inject_gp(vcpu, 0);
  372. return;
  373. }
  374. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  375. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  376. "reserved bits\n");
  377. kvm_inject_gp(vcpu, 0);
  378. return;
  379. }
  380. }
  381. /*
  382. * We don't check reserved bits in nonpae mode, because
  383. * this isn't enforced, and VMware depends on this.
  384. */
  385. }
  386. /*
  387. * Does the new cr3 value map to physical memory? (Note, we
  388. * catch an invalid cr3 even in real-mode, because it would
  389. * cause trouble later on when we turn on paging anyway.)
  390. *
  391. * A real CPU would silently accept an invalid cr3 and would
  392. * attempt to use it - with largely undefined (and often hard
  393. * to debug) behavior on the guest side.
  394. */
  395. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  396. kvm_inject_gp(vcpu, 0);
  397. else {
  398. vcpu->arch.cr3 = cr3;
  399. vcpu->arch.mmu.new_cr3(vcpu);
  400. }
  401. }
  402. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  403. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  404. {
  405. if (cr8 & CR8_RESERVED_BITS) {
  406. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  407. kvm_inject_gp(vcpu, 0);
  408. return;
  409. }
  410. if (irqchip_in_kernel(vcpu->kvm))
  411. kvm_lapic_set_tpr(vcpu, cr8);
  412. else
  413. vcpu->arch.cr8 = cr8;
  414. }
  415. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  416. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  417. {
  418. if (irqchip_in_kernel(vcpu->kvm))
  419. return kvm_lapic_get_cr8(vcpu);
  420. else
  421. return vcpu->arch.cr8;
  422. }
  423. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  424. static inline u32 bit(int bitno)
  425. {
  426. return 1 << (bitno & 31);
  427. }
  428. /*
  429. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  430. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  431. *
  432. * This list is modified at module load time to reflect the
  433. * capabilities of the host cpu.
  434. */
  435. static u32 msrs_to_save[] = {
  436. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  437. MSR_K6_STAR,
  438. #ifdef CONFIG_X86_64
  439. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  440. #endif
  441. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  442. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  443. };
  444. static unsigned num_msrs_to_save;
  445. static u32 emulated_msrs[] = {
  446. MSR_IA32_MISC_ENABLE,
  447. };
  448. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  449. {
  450. if (efer & efer_reserved_bits) {
  451. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  452. efer);
  453. kvm_inject_gp(vcpu, 0);
  454. return;
  455. }
  456. if (is_paging(vcpu)
  457. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  458. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  459. kvm_inject_gp(vcpu, 0);
  460. return;
  461. }
  462. if (efer & EFER_FFXSR) {
  463. struct kvm_cpuid_entry2 *feat;
  464. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  465. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  466. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  467. kvm_inject_gp(vcpu, 0);
  468. return;
  469. }
  470. }
  471. if (efer & EFER_SVME) {
  472. struct kvm_cpuid_entry2 *feat;
  473. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  474. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  475. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  476. kvm_inject_gp(vcpu, 0);
  477. return;
  478. }
  479. }
  480. kvm_x86_ops->set_efer(vcpu, efer);
  481. efer &= ~EFER_LMA;
  482. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  483. vcpu->arch.shadow_efer = efer;
  484. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  485. kvm_mmu_reset_context(vcpu);
  486. }
  487. void kvm_enable_efer_bits(u64 mask)
  488. {
  489. efer_reserved_bits &= ~mask;
  490. }
  491. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  492. /*
  493. * Writes msr value into into the appropriate "register".
  494. * Returns 0 on success, non-0 otherwise.
  495. * Assumes vcpu_load() was already called.
  496. */
  497. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  498. {
  499. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  500. }
  501. /*
  502. * Adapt set_msr() to msr_io()'s calling convention
  503. */
  504. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  505. {
  506. return kvm_set_msr(vcpu, index, *data);
  507. }
  508. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  509. {
  510. static int version;
  511. struct pvclock_wall_clock wc;
  512. struct timespec now, sys, boot;
  513. if (!wall_clock)
  514. return;
  515. version++;
  516. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  517. /*
  518. * The guest calculates current wall clock time by adding
  519. * system time (updated by kvm_write_guest_time below) to the
  520. * wall clock specified here. guest system time equals host
  521. * system time for us, thus we must fill in host boot time here.
  522. */
  523. now = current_kernel_time();
  524. ktime_get_ts(&sys);
  525. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  526. wc.sec = boot.tv_sec;
  527. wc.nsec = boot.tv_nsec;
  528. wc.version = version;
  529. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  530. version++;
  531. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  532. }
  533. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  534. {
  535. uint32_t quotient, remainder;
  536. /* Don't try to replace with do_div(), this one calculates
  537. * "(dividend << 32) / divisor" */
  538. __asm__ ( "divl %4"
  539. : "=a" (quotient), "=d" (remainder)
  540. : "0" (0), "1" (dividend), "r" (divisor) );
  541. return quotient;
  542. }
  543. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  544. {
  545. uint64_t nsecs = 1000000000LL;
  546. int32_t shift = 0;
  547. uint64_t tps64;
  548. uint32_t tps32;
  549. tps64 = tsc_khz * 1000LL;
  550. while (tps64 > nsecs*2) {
  551. tps64 >>= 1;
  552. shift--;
  553. }
  554. tps32 = (uint32_t)tps64;
  555. while (tps32 <= (uint32_t)nsecs) {
  556. tps32 <<= 1;
  557. shift++;
  558. }
  559. hv_clock->tsc_shift = shift;
  560. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  561. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  562. __func__, tsc_khz, hv_clock->tsc_shift,
  563. hv_clock->tsc_to_system_mul);
  564. }
  565. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  566. static void kvm_write_guest_time(struct kvm_vcpu *v)
  567. {
  568. struct timespec ts;
  569. unsigned long flags;
  570. struct kvm_vcpu_arch *vcpu = &v->arch;
  571. void *shared_kaddr;
  572. unsigned long this_tsc_khz;
  573. if ((!vcpu->time_page))
  574. return;
  575. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  576. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  577. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  578. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  579. }
  580. put_cpu_var(cpu_tsc_khz);
  581. /* Keep irq disabled to prevent changes to the clock */
  582. local_irq_save(flags);
  583. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  584. ktime_get_ts(&ts);
  585. local_irq_restore(flags);
  586. /* With all the info we got, fill in the values */
  587. vcpu->hv_clock.system_time = ts.tv_nsec +
  588. (NSEC_PER_SEC * (u64)ts.tv_sec);
  589. /*
  590. * The interface expects us to write an even number signaling that the
  591. * update is finished. Since the guest won't see the intermediate
  592. * state, we just increase by 2 at the end.
  593. */
  594. vcpu->hv_clock.version += 2;
  595. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  596. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  597. sizeof(vcpu->hv_clock));
  598. kunmap_atomic(shared_kaddr, KM_USER0);
  599. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  600. }
  601. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  602. {
  603. struct kvm_vcpu_arch *vcpu = &v->arch;
  604. if (!vcpu->time_page)
  605. return 0;
  606. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  607. return 1;
  608. }
  609. static bool msr_mtrr_valid(unsigned msr)
  610. {
  611. switch (msr) {
  612. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  613. case MSR_MTRRfix64K_00000:
  614. case MSR_MTRRfix16K_80000:
  615. case MSR_MTRRfix16K_A0000:
  616. case MSR_MTRRfix4K_C0000:
  617. case MSR_MTRRfix4K_C8000:
  618. case MSR_MTRRfix4K_D0000:
  619. case MSR_MTRRfix4K_D8000:
  620. case MSR_MTRRfix4K_E0000:
  621. case MSR_MTRRfix4K_E8000:
  622. case MSR_MTRRfix4K_F0000:
  623. case MSR_MTRRfix4K_F8000:
  624. case MSR_MTRRdefType:
  625. case MSR_IA32_CR_PAT:
  626. return true;
  627. case 0x2f8:
  628. return true;
  629. }
  630. return false;
  631. }
  632. static bool valid_pat_type(unsigned t)
  633. {
  634. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  635. }
  636. static bool valid_mtrr_type(unsigned t)
  637. {
  638. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  639. }
  640. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  641. {
  642. int i;
  643. if (!msr_mtrr_valid(msr))
  644. return false;
  645. if (msr == MSR_IA32_CR_PAT) {
  646. for (i = 0; i < 8; i++)
  647. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  648. return false;
  649. return true;
  650. } else if (msr == MSR_MTRRdefType) {
  651. if (data & ~0xcff)
  652. return false;
  653. return valid_mtrr_type(data & 0xff);
  654. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  655. for (i = 0; i < 8 ; i++)
  656. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  657. return false;
  658. return true;
  659. }
  660. /* variable MTRRs */
  661. return valid_mtrr_type(data & 0xff);
  662. }
  663. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  664. {
  665. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  666. if (!mtrr_valid(vcpu, msr, data))
  667. return 1;
  668. if (msr == MSR_MTRRdefType) {
  669. vcpu->arch.mtrr_state.def_type = data;
  670. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  671. } else if (msr == MSR_MTRRfix64K_00000)
  672. p[0] = data;
  673. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  674. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  675. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  676. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  677. else if (msr == MSR_IA32_CR_PAT)
  678. vcpu->arch.pat = data;
  679. else { /* Variable MTRRs */
  680. int idx, is_mtrr_mask;
  681. u64 *pt;
  682. idx = (msr - 0x200) / 2;
  683. is_mtrr_mask = msr - 0x200 - 2 * idx;
  684. if (!is_mtrr_mask)
  685. pt =
  686. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  687. else
  688. pt =
  689. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  690. *pt = data;
  691. }
  692. kvm_mmu_reset_context(vcpu);
  693. return 0;
  694. }
  695. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  696. {
  697. u64 mcg_cap = vcpu->arch.mcg_cap;
  698. unsigned bank_num = mcg_cap & 0xff;
  699. switch (msr) {
  700. case MSR_IA32_MCG_STATUS:
  701. vcpu->arch.mcg_status = data;
  702. break;
  703. case MSR_IA32_MCG_CTL:
  704. if (!(mcg_cap & MCG_CTL_P))
  705. return 1;
  706. if (data != 0 && data != ~(u64)0)
  707. return -1;
  708. vcpu->arch.mcg_ctl = data;
  709. break;
  710. default:
  711. if (msr >= MSR_IA32_MC0_CTL &&
  712. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  713. u32 offset = msr - MSR_IA32_MC0_CTL;
  714. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  715. if ((offset & 0x3) == 0 &&
  716. data != 0 && data != ~(u64)0)
  717. return -1;
  718. vcpu->arch.mce_banks[offset] = data;
  719. break;
  720. }
  721. return 1;
  722. }
  723. return 0;
  724. }
  725. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  726. {
  727. switch (msr) {
  728. case MSR_EFER:
  729. set_efer(vcpu, data);
  730. break;
  731. case MSR_K7_HWCR:
  732. data &= ~(u64)0x40; /* ignore flush filter disable */
  733. if (data != 0) {
  734. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  735. data);
  736. return 1;
  737. }
  738. break;
  739. case MSR_FAM10H_MMIO_CONF_BASE:
  740. if (data != 0) {
  741. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  742. "0x%llx\n", data);
  743. return 1;
  744. }
  745. break;
  746. case MSR_AMD64_NB_CFG:
  747. break;
  748. case MSR_IA32_DEBUGCTLMSR:
  749. if (!data) {
  750. /* We support the non-activated case already */
  751. break;
  752. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  753. /* Values other than LBR and BTF are vendor-specific,
  754. thus reserved and should throw a #GP */
  755. return 1;
  756. }
  757. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  758. __func__, data);
  759. break;
  760. case MSR_IA32_UCODE_REV:
  761. case MSR_IA32_UCODE_WRITE:
  762. case MSR_VM_HSAVE_PA:
  763. case MSR_AMD64_PATCH_LOADER:
  764. break;
  765. case 0x200 ... 0x2ff:
  766. return set_msr_mtrr(vcpu, msr, data);
  767. case MSR_IA32_APICBASE:
  768. kvm_set_apic_base(vcpu, data);
  769. break;
  770. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  771. return kvm_x2apic_msr_write(vcpu, msr, data);
  772. case MSR_IA32_MISC_ENABLE:
  773. vcpu->arch.ia32_misc_enable_msr = data;
  774. break;
  775. case MSR_KVM_WALL_CLOCK:
  776. vcpu->kvm->arch.wall_clock = data;
  777. kvm_write_wall_clock(vcpu->kvm, data);
  778. break;
  779. case MSR_KVM_SYSTEM_TIME: {
  780. if (vcpu->arch.time_page) {
  781. kvm_release_page_dirty(vcpu->arch.time_page);
  782. vcpu->arch.time_page = NULL;
  783. }
  784. vcpu->arch.time = data;
  785. /* we verify if the enable bit is set... */
  786. if (!(data & 1))
  787. break;
  788. /* ...but clean it before doing the actual write */
  789. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  790. vcpu->arch.time_page =
  791. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  792. if (is_error_page(vcpu->arch.time_page)) {
  793. kvm_release_page_clean(vcpu->arch.time_page);
  794. vcpu->arch.time_page = NULL;
  795. }
  796. kvm_request_guest_time_update(vcpu);
  797. break;
  798. }
  799. case MSR_IA32_MCG_CTL:
  800. case MSR_IA32_MCG_STATUS:
  801. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  802. return set_msr_mce(vcpu, msr, data);
  803. /* Performance counters are not protected by a CPUID bit,
  804. * so we should check all of them in the generic path for the sake of
  805. * cross vendor migration.
  806. * Writing a zero into the event select MSRs disables them,
  807. * which we perfectly emulate ;-). Any other value should be at least
  808. * reported, some guests depend on them.
  809. */
  810. case MSR_P6_EVNTSEL0:
  811. case MSR_P6_EVNTSEL1:
  812. case MSR_K7_EVNTSEL0:
  813. case MSR_K7_EVNTSEL1:
  814. case MSR_K7_EVNTSEL2:
  815. case MSR_K7_EVNTSEL3:
  816. if (data != 0)
  817. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  818. "0x%x data 0x%llx\n", msr, data);
  819. break;
  820. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  821. * so we ignore writes to make it happy.
  822. */
  823. case MSR_P6_PERFCTR0:
  824. case MSR_P6_PERFCTR1:
  825. case MSR_K7_PERFCTR0:
  826. case MSR_K7_PERFCTR1:
  827. case MSR_K7_PERFCTR2:
  828. case MSR_K7_PERFCTR3:
  829. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  830. "0x%x data 0x%llx\n", msr, data);
  831. break;
  832. default:
  833. if (!ignore_msrs) {
  834. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  835. msr, data);
  836. return 1;
  837. } else {
  838. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  839. msr, data);
  840. break;
  841. }
  842. }
  843. return 0;
  844. }
  845. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  846. /*
  847. * Reads an msr value (of 'msr_index') into 'pdata'.
  848. * Returns 0 on success, non-0 otherwise.
  849. * Assumes vcpu_load() was already called.
  850. */
  851. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  852. {
  853. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  854. }
  855. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  856. {
  857. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  858. if (!msr_mtrr_valid(msr))
  859. return 1;
  860. if (msr == MSR_MTRRdefType)
  861. *pdata = vcpu->arch.mtrr_state.def_type +
  862. (vcpu->arch.mtrr_state.enabled << 10);
  863. else if (msr == MSR_MTRRfix64K_00000)
  864. *pdata = p[0];
  865. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  866. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  867. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  868. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  869. else if (msr == MSR_IA32_CR_PAT)
  870. *pdata = vcpu->arch.pat;
  871. else { /* Variable MTRRs */
  872. int idx, is_mtrr_mask;
  873. u64 *pt;
  874. idx = (msr - 0x200) / 2;
  875. is_mtrr_mask = msr - 0x200 - 2 * idx;
  876. if (!is_mtrr_mask)
  877. pt =
  878. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  879. else
  880. pt =
  881. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  882. *pdata = *pt;
  883. }
  884. return 0;
  885. }
  886. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  887. {
  888. u64 data;
  889. u64 mcg_cap = vcpu->arch.mcg_cap;
  890. unsigned bank_num = mcg_cap & 0xff;
  891. switch (msr) {
  892. case MSR_IA32_P5_MC_ADDR:
  893. case MSR_IA32_P5_MC_TYPE:
  894. data = 0;
  895. break;
  896. case MSR_IA32_MCG_CAP:
  897. data = vcpu->arch.mcg_cap;
  898. break;
  899. case MSR_IA32_MCG_CTL:
  900. if (!(mcg_cap & MCG_CTL_P))
  901. return 1;
  902. data = vcpu->arch.mcg_ctl;
  903. break;
  904. case MSR_IA32_MCG_STATUS:
  905. data = vcpu->arch.mcg_status;
  906. break;
  907. default:
  908. if (msr >= MSR_IA32_MC0_CTL &&
  909. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  910. u32 offset = msr - MSR_IA32_MC0_CTL;
  911. data = vcpu->arch.mce_banks[offset];
  912. break;
  913. }
  914. return 1;
  915. }
  916. *pdata = data;
  917. return 0;
  918. }
  919. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  920. {
  921. u64 data;
  922. switch (msr) {
  923. case MSR_IA32_PLATFORM_ID:
  924. case MSR_IA32_UCODE_REV:
  925. case MSR_IA32_EBL_CR_POWERON:
  926. case MSR_IA32_DEBUGCTLMSR:
  927. case MSR_IA32_LASTBRANCHFROMIP:
  928. case MSR_IA32_LASTBRANCHTOIP:
  929. case MSR_IA32_LASTINTFROMIP:
  930. case MSR_IA32_LASTINTTOIP:
  931. case MSR_K8_SYSCFG:
  932. case MSR_K7_HWCR:
  933. case MSR_VM_HSAVE_PA:
  934. case MSR_P6_PERFCTR0:
  935. case MSR_P6_PERFCTR1:
  936. case MSR_P6_EVNTSEL0:
  937. case MSR_P6_EVNTSEL1:
  938. case MSR_K7_EVNTSEL0:
  939. case MSR_K7_PERFCTR0:
  940. case MSR_K8_INT_PENDING_MSG:
  941. case MSR_AMD64_NB_CFG:
  942. case MSR_FAM10H_MMIO_CONF_BASE:
  943. data = 0;
  944. break;
  945. case MSR_MTRRcap:
  946. data = 0x500 | KVM_NR_VAR_MTRR;
  947. break;
  948. case 0x200 ... 0x2ff:
  949. return get_msr_mtrr(vcpu, msr, pdata);
  950. case 0xcd: /* fsb frequency */
  951. data = 3;
  952. break;
  953. case MSR_IA32_APICBASE:
  954. data = kvm_get_apic_base(vcpu);
  955. break;
  956. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  957. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  958. break;
  959. case MSR_IA32_MISC_ENABLE:
  960. data = vcpu->arch.ia32_misc_enable_msr;
  961. break;
  962. case MSR_IA32_PERF_STATUS:
  963. /* TSC increment by tick */
  964. data = 1000ULL;
  965. /* CPU multiplier */
  966. data |= (((uint64_t)4ULL) << 40);
  967. break;
  968. case MSR_EFER:
  969. data = vcpu->arch.shadow_efer;
  970. break;
  971. case MSR_KVM_WALL_CLOCK:
  972. data = vcpu->kvm->arch.wall_clock;
  973. break;
  974. case MSR_KVM_SYSTEM_TIME:
  975. data = vcpu->arch.time;
  976. break;
  977. case MSR_IA32_P5_MC_ADDR:
  978. case MSR_IA32_P5_MC_TYPE:
  979. case MSR_IA32_MCG_CAP:
  980. case MSR_IA32_MCG_CTL:
  981. case MSR_IA32_MCG_STATUS:
  982. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  983. return get_msr_mce(vcpu, msr, pdata);
  984. default:
  985. if (!ignore_msrs) {
  986. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  987. return 1;
  988. } else {
  989. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  990. data = 0;
  991. }
  992. break;
  993. }
  994. *pdata = data;
  995. return 0;
  996. }
  997. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  998. /*
  999. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1000. *
  1001. * @return number of msrs set successfully.
  1002. */
  1003. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1004. struct kvm_msr_entry *entries,
  1005. int (*do_msr)(struct kvm_vcpu *vcpu,
  1006. unsigned index, u64 *data))
  1007. {
  1008. int i;
  1009. vcpu_load(vcpu);
  1010. down_read(&vcpu->kvm->slots_lock);
  1011. for (i = 0; i < msrs->nmsrs; ++i)
  1012. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1013. break;
  1014. up_read(&vcpu->kvm->slots_lock);
  1015. vcpu_put(vcpu);
  1016. return i;
  1017. }
  1018. /*
  1019. * Read or write a bunch of msrs. Parameters are user addresses.
  1020. *
  1021. * @return number of msrs set successfully.
  1022. */
  1023. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1024. int (*do_msr)(struct kvm_vcpu *vcpu,
  1025. unsigned index, u64 *data),
  1026. int writeback)
  1027. {
  1028. struct kvm_msrs msrs;
  1029. struct kvm_msr_entry *entries;
  1030. int r, n;
  1031. unsigned size;
  1032. r = -EFAULT;
  1033. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1034. goto out;
  1035. r = -E2BIG;
  1036. if (msrs.nmsrs >= MAX_IO_MSRS)
  1037. goto out;
  1038. r = -ENOMEM;
  1039. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1040. entries = vmalloc(size);
  1041. if (!entries)
  1042. goto out;
  1043. r = -EFAULT;
  1044. if (copy_from_user(entries, user_msrs->entries, size))
  1045. goto out_free;
  1046. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1047. if (r < 0)
  1048. goto out_free;
  1049. r = -EFAULT;
  1050. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1051. goto out_free;
  1052. r = n;
  1053. out_free:
  1054. vfree(entries);
  1055. out:
  1056. return r;
  1057. }
  1058. int kvm_dev_ioctl_check_extension(long ext)
  1059. {
  1060. int r;
  1061. switch (ext) {
  1062. case KVM_CAP_IRQCHIP:
  1063. case KVM_CAP_HLT:
  1064. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1065. case KVM_CAP_SET_TSS_ADDR:
  1066. case KVM_CAP_EXT_CPUID:
  1067. case KVM_CAP_CLOCKSOURCE:
  1068. case KVM_CAP_PIT:
  1069. case KVM_CAP_NOP_IO_DELAY:
  1070. case KVM_CAP_MP_STATE:
  1071. case KVM_CAP_SYNC_MMU:
  1072. case KVM_CAP_REINJECT_CONTROL:
  1073. case KVM_CAP_IRQ_INJECT_STATUS:
  1074. case KVM_CAP_ASSIGN_DEV_IRQ:
  1075. case KVM_CAP_IRQFD:
  1076. case KVM_CAP_IOEVENTFD:
  1077. case KVM_CAP_PIT2:
  1078. case KVM_CAP_PIT_STATE2:
  1079. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1080. r = 1;
  1081. break;
  1082. case KVM_CAP_COALESCED_MMIO:
  1083. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1084. break;
  1085. case KVM_CAP_VAPIC:
  1086. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1087. break;
  1088. case KVM_CAP_NR_VCPUS:
  1089. r = KVM_MAX_VCPUS;
  1090. break;
  1091. case KVM_CAP_NR_MEMSLOTS:
  1092. r = KVM_MEMORY_SLOTS;
  1093. break;
  1094. case KVM_CAP_PV_MMU:
  1095. r = !tdp_enabled;
  1096. break;
  1097. case KVM_CAP_IOMMU:
  1098. r = iommu_found();
  1099. break;
  1100. case KVM_CAP_MCE:
  1101. r = KVM_MAX_MCE_BANKS;
  1102. break;
  1103. default:
  1104. r = 0;
  1105. break;
  1106. }
  1107. return r;
  1108. }
  1109. long kvm_arch_dev_ioctl(struct file *filp,
  1110. unsigned int ioctl, unsigned long arg)
  1111. {
  1112. void __user *argp = (void __user *)arg;
  1113. long r;
  1114. switch (ioctl) {
  1115. case KVM_GET_MSR_INDEX_LIST: {
  1116. struct kvm_msr_list __user *user_msr_list = argp;
  1117. struct kvm_msr_list msr_list;
  1118. unsigned n;
  1119. r = -EFAULT;
  1120. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1121. goto out;
  1122. n = msr_list.nmsrs;
  1123. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1124. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1125. goto out;
  1126. r = -E2BIG;
  1127. if (n < msr_list.nmsrs)
  1128. goto out;
  1129. r = -EFAULT;
  1130. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1131. num_msrs_to_save * sizeof(u32)))
  1132. goto out;
  1133. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1134. &emulated_msrs,
  1135. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1136. goto out;
  1137. r = 0;
  1138. break;
  1139. }
  1140. case KVM_GET_SUPPORTED_CPUID: {
  1141. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1142. struct kvm_cpuid2 cpuid;
  1143. r = -EFAULT;
  1144. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1145. goto out;
  1146. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1147. cpuid_arg->entries);
  1148. if (r)
  1149. goto out;
  1150. r = -EFAULT;
  1151. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1152. goto out;
  1153. r = 0;
  1154. break;
  1155. }
  1156. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1157. u64 mce_cap;
  1158. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1159. r = -EFAULT;
  1160. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1161. goto out;
  1162. r = 0;
  1163. break;
  1164. }
  1165. default:
  1166. r = -EINVAL;
  1167. }
  1168. out:
  1169. return r;
  1170. }
  1171. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1172. {
  1173. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1174. kvm_request_guest_time_update(vcpu);
  1175. }
  1176. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1177. {
  1178. kvm_x86_ops->vcpu_put(vcpu);
  1179. kvm_put_guest_fpu(vcpu);
  1180. }
  1181. static int is_efer_nx(void)
  1182. {
  1183. unsigned long long efer = 0;
  1184. rdmsrl_safe(MSR_EFER, &efer);
  1185. return efer & EFER_NX;
  1186. }
  1187. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1188. {
  1189. int i;
  1190. struct kvm_cpuid_entry2 *e, *entry;
  1191. entry = NULL;
  1192. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1193. e = &vcpu->arch.cpuid_entries[i];
  1194. if (e->function == 0x80000001) {
  1195. entry = e;
  1196. break;
  1197. }
  1198. }
  1199. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1200. entry->edx &= ~(1 << 20);
  1201. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1202. }
  1203. }
  1204. /* when an old userspace process fills a new kernel module */
  1205. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1206. struct kvm_cpuid *cpuid,
  1207. struct kvm_cpuid_entry __user *entries)
  1208. {
  1209. int r, i;
  1210. struct kvm_cpuid_entry *cpuid_entries;
  1211. r = -E2BIG;
  1212. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1213. goto out;
  1214. r = -ENOMEM;
  1215. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1216. if (!cpuid_entries)
  1217. goto out;
  1218. r = -EFAULT;
  1219. if (copy_from_user(cpuid_entries, entries,
  1220. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1221. goto out_free;
  1222. for (i = 0; i < cpuid->nent; i++) {
  1223. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1224. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1225. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1226. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1227. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1228. vcpu->arch.cpuid_entries[i].index = 0;
  1229. vcpu->arch.cpuid_entries[i].flags = 0;
  1230. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1231. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1232. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1233. }
  1234. vcpu->arch.cpuid_nent = cpuid->nent;
  1235. cpuid_fix_nx_cap(vcpu);
  1236. r = 0;
  1237. kvm_apic_set_version(vcpu);
  1238. out_free:
  1239. vfree(cpuid_entries);
  1240. out:
  1241. return r;
  1242. }
  1243. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1244. struct kvm_cpuid2 *cpuid,
  1245. struct kvm_cpuid_entry2 __user *entries)
  1246. {
  1247. int r;
  1248. r = -E2BIG;
  1249. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1250. goto out;
  1251. r = -EFAULT;
  1252. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1253. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1254. goto out;
  1255. vcpu->arch.cpuid_nent = cpuid->nent;
  1256. kvm_apic_set_version(vcpu);
  1257. return 0;
  1258. out:
  1259. return r;
  1260. }
  1261. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1262. struct kvm_cpuid2 *cpuid,
  1263. struct kvm_cpuid_entry2 __user *entries)
  1264. {
  1265. int r;
  1266. r = -E2BIG;
  1267. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1268. goto out;
  1269. r = -EFAULT;
  1270. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1271. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1272. goto out;
  1273. return 0;
  1274. out:
  1275. cpuid->nent = vcpu->arch.cpuid_nent;
  1276. return r;
  1277. }
  1278. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1279. u32 index)
  1280. {
  1281. entry->function = function;
  1282. entry->index = index;
  1283. cpuid_count(entry->function, entry->index,
  1284. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1285. entry->flags = 0;
  1286. }
  1287. #define F(x) bit(X86_FEATURE_##x)
  1288. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1289. u32 index, int *nent, int maxnent)
  1290. {
  1291. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1292. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1293. #ifdef CONFIG_X86_64
  1294. unsigned f_lm = F(LM);
  1295. #else
  1296. unsigned f_lm = 0;
  1297. #endif
  1298. /* cpuid 1.edx */
  1299. const u32 kvm_supported_word0_x86_features =
  1300. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1301. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1302. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1303. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1304. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1305. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1306. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1307. 0 /* HTT, TM, Reserved, PBE */;
  1308. /* cpuid 0x80000001.edx */
  1309. const u32 kvm_supported_word1_x86_features =
  1310. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1311. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1312. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1313. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1314. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1315. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1316. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1317. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1318. /* cpuid 1.ecx */
  1319. const u32 kvm_supported_word4_x86_features =
  1320. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1321. 0 /* DS-CPL, VMX, SMX, EST */ |
  1322. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1323. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1324. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1325. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1326. 0 /* Reserved, XSAVE, OSXSAVE */;
  1327. /* cpuid 0x80000001.ecx */
  1328. const u32 kvm_supported_word6_x86_features =
  1329. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1330. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1331. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1332. 0 /* SKINIT */ | 0 /* WDT */;
  1333. /* all calls to cpuid_count() should be made on the same cpu */
  1334. get_cpu();
  1335. do_cpuid_1_ent(entry, function, index);
  1336. ++*nent;
  1337. switch (function) {
  1338. case 0:
  1339. entry->eax = min(entry->eax, (u32)0xb);
  1340. break;
  1341. case 1:
  1342. entry->edx &= kvm_supported_word0_x86_features;
  1343. entry->ecx &= kvm_supported_word4_x86_features;
  1344. /* we support x2apic emulation even if host does not support
  1345. * it since we emulate x2apic in software */
  1346. entry->ecx |= F(X2APIC);
  1347. break;
  1348. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1349. * may return different values. This forces us to get_cpu() before
  1350. * issuing the first command, and also to emulate this annoying behavior
  1351. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1352. case 2: {
  1353. int t, times = entry->eax & 0xff;
  1354. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1355. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1356. for (t = 1; t < times && *nent < maxnent; ++t) {
  1357. do_cpuid_1_ent(&entry[t], function, 0);
  1358. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1359. ++*nent;
  1360. }
  1361. break;
  1362. }
  1363. /* function 4 and 0xb have additional index. */
  1364. case 4: {
  1365. int i, cache_type;
  1366. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1367. /* read more entries until cache_type is zero */
  1368. for (i = 1; *nent < maxnent; ++i) {
  1369. cache_type = entry[i - 1].eax & 0x1f;
  1370. if (!cache_type)
  1371. break;
  1372. do_cpuid_1_ent(&entry[i], function, i);
  1373. entry[i].flags |=
  1374. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1375. ++*nent;
  1376. }
  1377. break;
  1378. }
  1379. case 0xb: {
  1380. int i, level_type;
  1381. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1382. /* read more entries until level_type is zero */
  1383. for (i = 1; *nent < maxnent; ++i) {
  1384. level_type = entry[i - 1].ecx & 0xff00;
  1385. if (!level_type)
  1386. break;
  1387. do_cpuid_1_ent(&entry[i], function, i);
  1388. entry[i].flags |=
  1389. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1390. ++*nent;
  1391. }
  1392. break;
  1393. }
  1394. case 0x80000000:
  1395. entry->eax = min(entry->eax, 0x8000001a);
  1396. break;
  1397. case 0x80000001:
  1398. entry->edx &= kvm_supported_word1_x86_features;
  1399. entry->ecx &= kvm_supported_word6_x86_features;
  1400. break;
  1401. }
  1402. put_cpu();
  1403. }
  1404. #undef F
  1405. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1406. struct kvm_cpuid_entry2 __user *entries)
  1407. {
  1408. struct kvm_cpuid_entry2 *cpuid_entries;
  1409. int limit, nent = 0, r = -E2BIG;
  1410. u32 func;
  1411. if (cpuid->nent < 1)
  1412. goto out;
  1413. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1414. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1415. r = -ENOMEM;
  1416. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1417. if (!cpuid_entries)
  1418. goto out;
  1419. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1420. limit = cpuid_entries[0].eax;
  1421. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1422. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1423. &nent, cpuid->nent);
  1424. r = -E2BIG;
  1425. if (nent >= cpuid->nent)
  1426. goto out_free;
  1427. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1428. limit = cpuid_entries[nent - 1].eax;
  1429. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1430. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1431. &nent, cpuid->nent);
  1432. r = -E2BIG;
  1433. if (nent >= cpuid->nent)
  1434. goto out_free;
  1435. r = -EFAULT;
  1436. if (copy_to_user(entries, cpuid_entries,
  1437. nent * sizeof(struct kvm_cpuid_entry2)))
  1438. goto out_free;
  1439. cpuid->nent = nent;
  1440. r = 0;
  1441. out_free:
  1442. vfree(cpuid_entries);
  1443. out:
  1444. return r;
  1445. }
  1446. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1447. struct kvm_lapic_state *s)
  1448. {
  1449. vcpu_load(vcpu);
  1450. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1451. vcpu_put(vcpu);
  1452. return 0;
  1453. }
  1454. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1455. struct kvm_lapic_state *s)
  1456. {
  1457. vcpu_load(vcpu);
  1458. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1459. kvm_apic_post_state_restore(vcpu);
  1460. update_cr8_intercept(vcpu);
  1461. vcpu_put(vcpu);
  1462. return 0;
  1463. }
  1464. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1465. struct kvm_interrupt *irq)
  1466. {
  1467. if (irq->irq < 0 || irq->irq >= 256)
  1468. return -EINVAL;
  1469. if (irqchip_in_kernel(vcpu->kvm))
  1470. return -ENXIO;
  1471. vcpu_load(vcpu);
  1472. kvm_queue_interrupt(vcpu, irq->irq, false);
  1473. vcpu_put(vcpu);
  1474. return 0;
  1475. }
  1476. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1477. {
  1478. vcpu_load(vcpu);
  1479. kvm_inject_nmi(vcpu);
  1480. vcpu_put(vcpu);
  1481. return 0;
  1482. }
  1483. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1484. struct kvm_tpr_access_ctl *tac)
  1485. {
  1486. if (tac->flags)
  1487. return -EINVAL;
  1488. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1489. return 0;
  1490. }
  1491. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1492. u64 mcg_cap)
  1493. {
  1494. int r;
  1495. unsigned bank_num = mcg_cap & 0xff, bank;
  1496. r = -EINVAL;
  1497. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1498. goto out;
  1499. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1500. goto out;
  1501. r = 0;
  1502. vcpu->arch.mcg_cap = mcg_cap;
  1503. /* Init IA32_MCG_CTL to all 1s */
  1504. if (mcg_cap & MCG_CTL_P)
  1505. vcpu->arch.mcg_ctl = ~(u64)0;
  1506. /* Init IA32_MCi_CTL to all 1s */
  1507. for (bank = 0; bank < bank_num; bank++)
  1508. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1509. out:
  1510. return r;
  1511. }
  1512. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1513. struct kvm_x86_mce *mce)
  1514. {
  1515. u64 mcg_cap = vcpu->arch.mcg_cap;
  1516. unsigned bank_num = mcg_cap & 0xff;
  1517. u64 *banks = vcpu->arch.mce_banks;
  1518. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1519. return -EINVAL;
  1520. /*
  1521. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1522. * reporting is disabled
  1523. */
  1524. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1525. vcpu->arch.mcg_ctl != ~(u64)0)
  1526. return 0;
  1527. banks += 4 * mce->bank;
  1528. /*
  1529. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1530. * reporting is disabled for the bank
  1531. */
  1532. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1533. return 0;
  1534. if (mce->status & MCI_STATUS_UC) {
  1535. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1536. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1537. printk(KERN_DEBUG "kvm: set_mce: "
  1538. "injects mce exception while "
  1539. "previous one is in progress!\n");
  1540. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1541. return 0;
  1542. }
  1543. if (banks[1] & MCI_STATUS_VAL)
  1544. mce->status |= MCI_STATUS_OVER;
  1545. banks[2] = mce->addr;
  1546. banks[3] = mce->misc;
  1547. vcpu->arch.mcg_status = mce->mcg_status;
  1548. banks[1] = mce->status;
  1549. kvm_queue_exception(vcpu, MC_VECTOR);
  1550. } else if (!(banks[1] & MCI_STATUS_VAL)
  1551. || !(banks[1] & MCI_STATUS_UC)) {
  1552. if (banks[1] & MCI_STATUS_VAL)
  1553. mce->status |= MCI_STATUS_OVER;
  1554. banks[2] = mce->addr;
  1555. banks[3] = mce->misc;
  1556. banks[1] = mce->status;
  1557. } else
  1558. banks[1] |= MCI_STATUS_OVER;
  1559. return 0;
  1560. }
  1561. long kvm_arch_vcpu_ioctl(struct file *filp,
  1562. unsigned int ioctl, unsigned long arg)
  1563. {
  1564. struct kvm_vcpu *vcpu = filp->private_data;
  1565. void __user *argp = (void __user *)arg;
  1566. int r;
  1567. struct kvm_lapic_state *lapic = NULL;
  1568. switch (ioctl) {
  1569. case KVM_GET_LAPIC: {
  1570. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1571. r = -ENOMEM;
  1572. if (!lapic)
  1573. goto out;
  1574. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1575. if (r)
  1576. goto out;
  1577. r = -EFAULT;
  1578. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1579. goto out;
  1580. r = 0;
  1581. break;
  1582. }
  1583. case KVM_SET_LAPIC: {
  1584. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1585. r = -ENOMEM;
  1586. if (!lapic)
  1587. goto out;
  1588. r = -EFAULT;
  1589. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1590. goto out;
  1591. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1592. if (r)
  1593. goto out;
  1594. r = 0;
  1595. break;
  1596. }
  1597. case KVM_INTERRUPT: {
  1598. struct kvm_interrupt irq;
  1599. r = -EFAULT;
  1600. if (copy_from_user(&irq, argp, sizeof irq))
  1601. goto out;
  1602. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1603. if (r)
  1604. goto out;
  1605. r = 0;
  1606. break;
  1607. }
  1608. case KVM_NMI: {
  1609. r = kvm_vcpu_ioctl_nmi(vcpu);
  1610. if (r)
  1611. goto out;
  1612. r = 0;
  1613. break;
  1614. }
  1615. case KVM_SET_CPUID: {
  1616. struct kvm_cpuid __user *cpuid_arg = argp;
  1617. struct kvm_cpuid cpuid;
  1618. r = -EFAULT;
  1619. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1620. goto out;
  1621. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1622. if (r)
  1623. goto out;
  1624. break;
  1625. }
  1626. case KVM_SET_CPUID2: {
  1627. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1628. struct kvm_cpuid2 cpuid;
  1629. r = -EFAULT;
  1630. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1631. goto out;
  1632. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1633. cpuid_arg->entries);
  1634. if (r)
  1635. goto out;
  1636. break;
  1637. }
  1638. case KVM_GET_CPUID2: {
  1639. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1640. struct kvm_cpuid2 cpuid;
  1641. r = -EFAULT;
  1642. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1643. goto out;
  1644. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1645. cpuid_arg->entries);
  1646. if (r)
  1647. goto out;
  1648. r = -EFAULT;
  1649. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1650. goto out;
  1651. r = 0;
  1652. break;
  1653. }
  1654. case KVM_GET_MSRS:
  1655. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1656. break;
  1657. case KVM_SET_MSRS:
  1658. r = msr_io(vcpu, argp, do_set_msr, 0);
  1659. break;
  1660. case KVM_TPR_ACCESS_REPORTING: {
  1661. struct kvm_tpr_access_ctl tac;
  1662. r = -EFAULT;
  1663. if (copy_from_user(&tac, argp, sizeof tac))
  1664. goto out;
  1665. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1666. if (r)
  1667. goto out;
  1668. r = -EFAULT;
  1669. if (copy_to_user(argp, &tac, sizeof tac))
  1670. goto out;
  1671. r = 0;
  1672. break;
  1673. };
  1674. case KVM_SET_VAPIC_ADDR: {
  1675. struct kvm_vapic_addr va;
  1676. r = -EINVAL;
  1677. if (!irqchip_in_kernel(vcpu->kvm))
  1678. goto out;
  1679. r = -EFAULT;
  1680. if (copy_from_user(&va, argp, sizeof va))
  1681. goto out;
  1682. r = 0;
  1683. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1684. break;
  1685. }
  1686. case KVM_X86_SETUP_MCE: {
  1687. u64 mcg_cap;
  1688. r = -EFAULT;
  1689. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1690. goto out;
  1691. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1692. break;
  1693. }
  1694. case KVM_X86_SET_MCE: {
  1695. struct kvm_x86_mce mce;
  1696. r = -EFAULT;
  1697. if (copy_from_user(&mce, argp, sizeof mce))
  1698. goto out;
  1699. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1700. break;
  1701. }
  1702. default:
  1703. r = -EINVAL;
  1704. }
  1705. out:
  1706. kfree(lapic);
  1707. return r;
  1708. }
  1709. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1710. {
  1711. int ret;
  1712. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1713. return -1;
  1714. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1715. return ret;
  1716. }
  1717. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1718. u64 ident_addr)
  1719. {
  1720. kvm->arch.ept_identity_map_addr = ident_addr;
  1721. return 0;
  1722. }
  1723. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1724. u32 kvm_nr_mmu_pages)
  1725. {
  1726. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1727. return -EINVAL;
  1728. down_write(&kvm->slots_lock);
  1729. spin_lock(&kvm->mmu_lock);
  1730. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1731. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1732. spin_unlock(&kvm->mmu_lock);
  1733. up_write(&kvm->slots_lock);
  1734. return 0;
  1735. }
  1736. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1737. {
  1738. return kvm->arch.n_alloc_mmu_pages;
  1739. }
  1740. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1741. {
  1742. int i;
  1743. struct kvm_mem_alias *alias;
  1744. for (i = 0; i < kvm->arch.naliases; ++i) {
  1745. alias = &kvm->arch.aliases[i];
  1746. if (gfn >= alias->base_gfn
  1747. && gfn < alias->base_gfn + alias->npages)
  1748. return alias->target_gfn + gfn - alias->base_gfn;
  1749. }
  1750. return gfn;
  1751. }
  1752. /*
  1753. * Set a new alias region. Aliases map a portion of physical memory into
  1754. * another portion. This is useful for memory windows, for example the PC
  1755. * VGA region.
  1756. */
  1757. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1758. struct kvm_memory_alias *alias)
  1759. {
  1760. int r, n;
  1761. struct kvm_mem_alias *p;
  1762. r = -EINVAL;
  1763. /* General sanity checks */
  1764. if (alias->memory_size & (PAGE_SIZE - 1))
  1765. goto out;
  1766. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1767. goto out;
  1768. if (alias->slot >= KVM_ALIAS_SLOTS)
  1769. goto out;
  1770. if (alias->guest_phys_addr + alias->memory_size
  1771. < alias->guest_phys_addr)
  1772. goto out;
  1773. if (alias->target_phys_addr + alias->memory_size
  1774. < alias->target_phys_addr)
  1775. goto out;
  1776. down_write(&kvm->slots_lock);
  1777. spin_lock(&kvm->mmu_lock);
  1778. p = &kvm->arch.aliases[alias->slot];
  1779. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1780. p->npages = alias->memory_size >> PAGE_SHIFT;
  1781. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1782. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1783. if (kvm->arch.aliases[n - 1].npages)
  1784. break;
  1785. kvm->arch.naliases = n;
  1786. spin_unlock(&kvm->mmu_lock);
  1787. kvm_mmu_zap_all(kvm);
  1788. up_write(&kvm->slots_lock);
  1789. return 0;
  1790. out:
  1791. return r;
  1792. }
  1793. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1794. {
  1795. int r;
  1796. r = 0;
  1797. switch (chip->chip_id) {
  1798. case KVM_IRQCHIP_PIC_MASTER:
  1799. memcpy(&chip->chip.pic,
  1800. &pic_irqchip(kvm)->pics[0],
  1801. sizeof(struct kvm_pic_state));
  1802. break;
  1803. case KVM_IRQCHIP_PIC_SLAVE:
  1804. memcpy(&chip->chip.pic,
  1805. &pic_irqchip(kvm)->pics[1],
  1806. sizeof(struct kvm_pic_state));
  1807. break;
  1808. case KVM_IRQCHIP_IOAPIC:
  1809. memcpy(&chip->chip.ioapic,
  1810. ioapic_irqchip(kvm),
  1811. sizeof(struct kvm_ioapic_state));
  1812. break;
  1813. default:
  1814. r = -EINVAL;
  1815. break;
  1816. }
  1817. return r;
  1818. }
  1819. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1820. {
  1821. int r;
  1822. r = 0;
  1823. switch (chip->chip_id) {
  1824. case KVM_IRQCHIP_PIC_MASTER:
  1825. spin_lock(&pic_irqchip(kvm)->lock);
  1826. memcpy(&pic_irqchip(kvm)->pics[0],
  1827. &chip->chip.pic,
  1828. sizeof(struct kvm_pic_state));
  1829. spin_unlock(&pic_irqchip(kvm)->lock);
  1830. break;
  1831. case KVM_IRQCHIP_PIC_SLAVE:
  1832. spin_lock(&pic_irqchip(kvm)->lock);
  1833. memcpy(&pic_irqchip(kvm)->pics[1],
  1834. &chip->chip.pic,
  1835. sizeof(struct kvm_pic_state));
  1836. spin_unlock(&pic_irqchip(kvm)->lock);
  1837. break;
  1838. case KVM_IRQCHIP_IOAPIC:
  1839. mutex_lock(&kvm->irq_lock);
  1840. memcpy(ioapic_irqchip(kvm),
  1841. &chip->chip.ioapic,
  1842. sizeof(struct kvm_ioapic_state));
  1843. mutex_unlock(&kvm->irq_lock);
  1844. break;
  1845. default:
  1846. r = -EINVAL;
  1847. break;
  1848. }
  1849. kvm_pic_update_irq(pic_irqchip(kvm));
  1850. return r;
  1851. }
  1852. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1853. {
  1854. int r = 0;
  1855. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1856. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1857. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1858. return r;
  1859. }
  1860. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1861. {
  1862. int r = 0;
  1863. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1864. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1865. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1866. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1867. return r;
  1868. }
  1869. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1870. {
  1871. int r = 0;
  1872. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1873. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1874. sizeof(ps->channels));
  1875. ps->flags = kvm->arch.vpit->pit_state.flags;
  1876. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1877. return r;
  1878. }
  1879. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1880. {
  1881. int r = 0, start = 0;
  1882. u32 prev_legacy, cur_legacy;
  1883. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1884. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1885. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1886. if (!prev_legacy && cur_legacy)
  1887. start = 1;
  1888. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1889. sizeof(kvm->arch.vpit->pit_state.channels));
  1890. kvm->arch.vpit->pit_state.flags = ps->flags;
  1891. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1892. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1893. return r;
  1894. }
  1895. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1896. struct kvm_reinject_control *control)
  1897. {
  1898. if (!kvm->arch.vpit)
  1899. return -ENXIO;
  1900. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1901. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1902. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1903. return 0;
  1904. }
  1905. /*
  1906. * Get (and clear) the dirty memory log for a memory slot.
  1907. */
  1908. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1909. struct kvm_dirty_log *log)
  1910. {
  1911. int r;
  1912. int n;
  1913. struct kvm_memory_slot *memslot;
  1914. int is_dirty = 0;
  1915. down_write(&kvm->slots_lock);
  1916. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1917. if (r)
  1918. goto out;
  1919. /* If nothing is dirty, don't bother messing with page tables. */
  1920. if (is_dirty) {
  1921. spin_lock(&kvm->mmu_lock);
  1922. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1923. spin_unlock(&kvm->mmu_lock);
  1924. memslot = &kvm->memslots[log->slot];
  1925. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1926. memset(memslot->dirty_bitmap, 0, n);
  1927. }
  1928. r = 0;
  1929. out:
  1930. up_write(&kvm->slots_lock);
  1931. return r;
  1932. }
  1933. long kvm_arch_vm_ioctl(struct file *filp,
  1934. unsigned int ioctl, unsigned long arg)
  1935. {
  1936. struct kvm *kvm = filp->private_data;
  1937. void __user *argp = (void __user *)arg;
  1938. int r = -EINVAL;
  1939. /*
  1940. * This union makes it completely explicit to gcc-3.x
  1941. * that these two variables' stack usage should be
  1942. * combined, not added together.
  1943. */
  1944. union {
  1945. struct kvm_pit_state ps;
  1946. struct kvm_pit_state2 ps2;
  1947. struct kvm_memory_alias alias;
  1948. struct kvm_pit_config pit_config;
  1949. } u;
  1950. switch (ioctl) {
  1951. case KVM_SET_TSS_ADDR:
  1952. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1953. if (r < 0)
  1954. goto out;
  1955. break;
  1956. case KVM_SET_IDENTITY_MAP_ADDR: {
  1957. u64 ident_addr;
  1958. r = -EFAULT;
  1959. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  1960. goto out;
  1961. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  1962. if (r < 0)
  1963. goto out;
  1964. break;
  1965. }
  1966. case KVM_SET_MEMORY_REGION: {
  1967. struct kvm_memory_region kvm_mem;
  1968. struct kvm_userspace_memory_region kvm_userspace_mem;
  1969. r = -EFAULT;
  1970. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1971. goto out;
  1972. kvm_userspace_mem.slot = kvm_mem.slot;
  1973. kvm_userspace_mem.flags = kvm_mem.flags;
  1974. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1975. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1976. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1977. if (r)
  1978. goto out;
  1979. break;
  1980. }
  1981. case KVM_SET_NR_MMU_PAGES:
  1982. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1983. if (r)
  1984. goto out;
  1985. break;
  1986. case KVM_GET_NR_MMU_PAGES:
  1987. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1988. break;
  1989. case KVM_SET_MEMORY_ALIAS:
  1990. r = -EFAULT;
  1991. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1992. goto out;
  1993. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1994. if (r)
  1995. goto out;
  1996. break;
  1997. case KVM_CREATE_IRQCHIP:
  1998. r = -ENOMEM;
  1999. kvm->arch.vpic = kvm_create_pic(kvm);
  2000. if (kvm->arch.vpic) {
  2001. r = kvm_ioapic_init(kvm);
  2002. if (r) {
  2003. kfree(kvm->arch.vpic);
  2004. kvm->arch.vpic = NULL;
  2005. goto out;
  2006. }
  2007. } else
  2008. goto out;
  2009. r = kvm_setup_default_irq_routing(kvm);
  2010. if (r) {
  2011. kfree(kvm->arch.vpic);
  2012. kfree(kvm->arch.vioapic);
  2013. goto out;
  2014. }
  2015. break;
  2016. case KVM_CREATE_PIT:
  2017. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2018. goto create_pit;
  2019. case KVM_CREATE_PIT2:
  2020. r = -EFAULT;
  2021. if (copy_from_user(&u.pit_config, argp,
  2022. sizeof(struct kvm_pit_config)))
  2023. goto out;
  2024. create_pit:
  2025. down_write(&kvm->slots_lock);
  2026. r = -EEXIST;
  2027. if (kvm->arch.vpit)
  2028. goto create_pit_unlock;
  2029. r = -ENOMEM;
  2030. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2031. if (kvm->arch.vpit)
  2032. r = 0;
  2033. create_pit_unlock:
  2034. up_write(&kvm->slots_lock);
  2035. break;
  2036. case KVM_IRQ_LINE_STATUS:
  2037. case KVM_IRQ_LINE: {
  2038. struct kvm_irq_level irq_event;
  2039. r = -EFAULT;
  2040. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2041. goto out;
  2042. if (irqchip_in_kernel(kvm)) {
  2043. __s32 status;
  2044. mutex_lock(&kvm->irq_lock);
  2045. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2046. irq_event.irq, irq_event.level);
  2047. mutex_unlock(&kvm->irq_lock);
  2048. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2049. irq_event.status = status;
  2050. if (copy_to_user(argp, &irq_event,
  2051. sizeof irq_event))
  2052. goto out;
  2053. }
  2054. r = 0;
  2055. }
  2056. break;
  2057. }
  2058. case KVM_GET_IRQCHIP: {
  2059. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2060. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2061. r = -ENOMEM;
  2062. if (!chip)
  2063. goto out;
  2064. r = -EFAULT;
  2065. if (copy_from_user(chip, argp, sizeof *chip))
  2066. goto get_irqchip_out;
  2067. r = -ENXIO;
  2068. if (!irqchip_in_kernel(kvm))
  2069. goto get_irqchip_out;
  2070. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2071. if (r)
  2072. goto get_irqchip_out;
  2073. r = -EFAULT;
  2074. if (copy_to_user(argp, chip, sizeof *chip))
  2075. goto get_irqchip_out;
  2076. r = 0;
  2077. get_irqchip_out:
  2078. kfree(chip);
  2079. if (r)
  2080. goto out;
  2081. break;
  2082. }
  2083. case KVM_SET_IRQCHIP: {
  2084. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2085. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2086. r = -ENOMEM;
  2087. if (!chip)
  2088. goto out;
  2089. r = -EFAULT;
  2090. if (copy_from_user(chip, argp, sizeof *chip))
  2091. goto set_irqchip_out;
  2092. r = -ENXIO;
  2093. if (!irqchip_in_kernel(kvm))
  2094. goto set_irqchip_out;
  2095. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2096. if (r)
  2097. goto set_irqchip_out;
  2098. r = 0;
  2099. set_irqchip_out:
  2100. kfree(chip);
  2101. if (r)
  2102. goto out;
  2103. break;
  2104. }
  2105. case KVM_GET_PIT: {
  2106. r = -EFAULT;
  2107. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2108. goto out;
  2109. r = -ENXIO;
  2110. if (!kvm->arch.vpit)
  2111. goto out;
  2112. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2113. if (r)
  2114. goto out;
  2115. r = -EFAULT;
  2116. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2117. goto out;
  2118. r = 0;
  2119. break;
  2120. }
  2121. case KVM_SET_PIT: {
  2122. r = -EFAULT;
  2123. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2124. goto out;
  2125. r = -ENXIO;
  2126. if (!kvm->arch.vpit)
  2127. goto out;
  2128. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2129. if (r)
  2130. goto out;
  2131. r = 0;
  2132. break;
  2133. }
  2134. case KVM_GET_PIT2: {
  2135. r = -ENXIO;
  2136. if (!kvm->arch.vpit)
  2137. goto out;
  2138. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2139. if (r)
  2140. goto out;
  2141. r = -EFAULT;
  2142. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2143. goto out;
  2144. r = 0;
  2145. break;
  2146. }
  2147. case KVM_SET_PIT2: {
  2148. r = -EFAULT;
  2149. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2150. goto out;
  2151. r = -ENXIO;
  2152. if (!kvm->arch.vpit)
  2153. goto out;
  2154. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2155. if (r)
  2156. goto out;
  2157. r = 0;
  2158. break;
  2159. }
  2160. case KVM_REINJECT_CONTROL: {
  2161. struct kvm_reinject_control control;
  2162. r = -EFAULT;
  2163. if (copy_from_user(&control, argp, sizeof(control)))
  2164. goto out;
  2165. r = kvm_vm_ioctl_reinject(kvm, &control);
  2166. if (r)
  2167. goto out;
  2168. r = 0;
  2169. break;
  2170. }
  2171. default:
  2172. ;
  2173. }
  2174. out:
  2175. return r;
  2176. }
  2177. static void kvm_init_msr_list(void)
  2178. {
  2179. u32 dummy[2];
  2180. unsigned i, j;
  2181. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2182. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2183. continue;
  2184. if (j < i)
  2185. msrs_to_save[j] = msrs_to_save[i];
  2186. j++;
  2187. }
  2188. num_msrs_to_save = j;
  2189. }
  2190. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2191. const void *v)
  2192. {
  2193. if (vcpu->arch.apic &&
  2194. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2195. return 0;
  2196. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2197. }
  2198. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2199. {
  2200. if (vcpu->arch.apic &&
  2201. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2202. return 0;
  2203. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2204. }
  2205. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2206. struct kvm_vcpu *vcpu)
  2207. {
  2208. void *data = val;
  2209. int r = X86EMUL_CONTINUE;
  2210. while (bytes) {
  2211. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2212. unsigned offset = addr & (PAGE_SIZE-1);
  2213. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2214. int ret;
  2215. if (gpa == UNMAPPED_GVA) {
  2216. r = X86EMUL_PROPAGATE_FAULT;
  2217. goto out;
  2218. }
  2219. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2220. if (ret < 0) {
  2221. r = X86EMUL_UNHANDLEABLE;
  2222. goto out;
  2223. }
  2224. bytes -= toread;
  2225. data += toread;
  2226. addr += toread;
  2227. }
  2228. out:
  2229. return r;
  2230. }
  2231. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2232. struct kvm_vcpu *vcpu)
  2233. {
  2234. void *data = val;
  2235. int r = X86EMUL_CONTINUE;
  2236. while (bytes) {
  2237. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2238. unsigned offset = addr & (PAGE_SIZE-1);
  2239. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2240. int ret;
  2241. if (gpa == UNMAPPED_GVA) {
  2242. r = X86EMUL_PROPAGATE_FAULT;
  2243. goto out;
  2244. }
  2245. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2246. if (ret < 0) {
  2247. r = X86EMUL_UNHANDLEABLE;
  2248. goto out;
  2249. }
  2250. bytes -= towrite;
  2251. data += towrite;
  2252. addr += towrite;
  2253. }
  2254. out:
  2255. return r;
  2256. }
  2257. static int emulator_read_emulated(unsigned long addr,
  2258. void *val,
  2259. unsigned int bytes,
  2260. struct kvm_vcpu *vcpu)
  2261. {
  2262. gpa_t gpa;
  2263. if (vcpu->mmio_read_completed) {
  2264. memcpy(val, vcpu->mmio_data, bytes);
  2265. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2266. vcpu->mmio_phys_addr, *(u64 *)val);
  2267. vcpu->mmio_read_completed = 0;
  2268. return X86EMUL_CONTINUE;
  2269. }
  2270. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2271. /* For APIC access vmexit */
  2272. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2273. goto mmio;
  2274. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2275. == X86EMUL_CONTINUE)
  2276. return X86EMUL_CONTINUE;
  2277. if (gpa == UNMAPPED_GVA)
  2278. return X86EMUL_PROPAGATE_FAULT;
  2279. mmio:
  2280. /*
  2281. * Is this MMIO handled locally?
  2282. */
  2283. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2284. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2285. return X86EMUL_CONTINUE;
  2286. }
  2287. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2288. vcpu->mmio_needed = 1;
  2289. vcpu->mmio_phys_addr = gpa;
  2290. vcpu->mmio_size = bytes;
  2291. vcpu->mmio_is_write = 0;
  2292. return X86EMUL_UNHANDLEABLE;
  2293. }
  2294. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2295. const void *val, int bytes)
  2296. {
  2297. int ret;
  2298. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2299. if (ret < 0)
  2300. return 0;
  2301. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2302. return 1;
  2303. }
  2304. static int emulator_write_emulated_onepage(unsigned long addr,
  2305. const void *val,
  2306. unsigned int bytes,
  2307. struct kvm_vcpu *vcpu)
  2308. {
  2309. gpa_t gpa;
  2310. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2311. if (gpa == UNMAPPED_GVA) {
  2312. kvm_inject_page_fault(vcpu, addr, 2);
  2313. return X86EMUL_PROPAGATE_FAULT;
  2314. }
  2315. /* For APIC access vmexit */
  2316. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2317. goto mmio;
  2318. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2319. return X86EMUL_CONTINUE;
  2320. mmio:
  2321. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2322. /*
  2323. * Is this MMIO handled locally?
  2324. */
  2325. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2326. return X86EMUL_CONTINUE;
  2327. vcpu->mmio_needed = 1;
  2328. vcpu->mmio_phys_addr = gpa;
  2329. vcpu->mmio_size = bytes;
  2330. vcpu->mmio_is_write = 1;
  2331. memcpy(vcpu->mmio_data, val, bytes);
  2332. return X86EMUL_CONTINUE;
  2333. }
  2334. int emulator_write_emulated(unsigned long addr,
  2335. const void *val,
  2336. unsigned int bytes,
  2337. struct kvm_vcpu *vcpu)
  2338. {
  2339. /* Crossing a page boundary? */
  2340. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2341. int rc, now;
  2342. now = -addr & ~PAGE_MASK;
  2343. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2344. if (rc != X86EMUL_CONTINUE)
  2345. return rc;
  2346. addr += now;
  2347. val += now;
  2348. bytes -= now;
  2349. }
  2350. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2351. }
  2352. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2353. static int emulator_cmpxchg_emulated(unsigned long addr,
  2354. const void *old,
  2355. const void *new,
  2356. unsigned int bytes,
  2357. struct kvm_vcpu *vcpu)
  2358. {
  2359. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2360. #ifndef CONFIG_X86_64
  2361. /* guests cmpxchg8b have to be emulated atomically */
  2362. if (bytes == 8) {
  2363. gpa_t gpa;
  2364. struct page *page;
  2365. char *kaddr;
  2366. u64 val;
  2367. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2368. if (gpa == UNMAPPED_GVA ||
  2369. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2370. goto emul_write;
  2371. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2372. goto emul_write;
  2373. val = *(u64 *)new;
  2374. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2375. kaddr = kmap_atomic(page, KM_USER0);
  2376. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2377. kunmap_atomic(kaddr, KM_USER0);
  2378. kvm_release_page_dirty(page);
  2379. }
  2380. emul_write:
  2381. #endif
  2382. return emulator_write_emulated(addr, new, bytes, vcpu);
  2383. }
  2384. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2385. {
  2386. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2387. }
  2388. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2389. {
  2390. kvm_mmu_invlpg(vcpu, address);
  2391. return X86EMUL_CONTINUE;
  2392. }
  2393. int emulate_clts(struct kvm_vcpu *vcpu)
  2394. {
  2395. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2396. return X86EMUL_CONTINUE;
  2397. }
  2398. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2399. {
  2400. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2401. switch (dr) {
  2402. case 0 ... 3:
  2403. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2404. return X86EMUL_CONTINUE;
  2405. default:
  2406. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2407. return X86EMUL_UNHANDLEABLE;
  2408. }
  2409. }
  2410. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2411. {
  2412. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2413. int exception;
  2414. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2415. if (exception) {
  2416. /* FIXME: better handling */
  2417. return X86EMUL_UNHANDLEABLE;
  2418. }
  2419. return X86EMUL_CONTINUE;
  2420. }
  2421. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2422. {
  2423. u8 opcodes[4];
  2424. unsigned long rip = kvm_rip_read(vcpu);
  2425. unsigned long rip_linear;
  2426. if (!printk_ratelimit())
  2427. return;
  2428. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2429. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2430. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2431. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2432. }
  2433. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2434. static struct x86_emulate_ops emulate_ops = {
  2435. .read_std = kvm_read_guest_virt,
  2436. .read_emulated = emulator_read_emulated,
  2437. .write_emulated = emulator_write_emulated,
  2438. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2439. };
  2440. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2441. {
  2442. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2443. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2444. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2445. vcpu->arch.regs_dirty = ~0;
  2446. }
  2447. int emulate_instruction(struct kvm_vcpu *vcpu,
  2448. struct kvm_run *run,
  2449. unsigned long cr2,
  2450. u16 error_code,
  2451. int emulation_type)
  2452. {
  2453. int r, shadow_mask;
  2454. struct decode_cache *c;
  2455. kvm_clear_exception_queue(vcpu);
  2456. vcpu->arch.mmio_fault_cr2 = cr2;
  2457. /*
  2458. * TODO: fix emulate.c to use guest_read/write_register
  2459. * instead of direct ->regs accesses, can save hundred cycles
  2460. * on Intel for instructions that don't read/change RSP, for
  2461. * for example.
  2462. */
  2463. cache_all_regs(vcpu);
  2464. vcpu->mmio_is_write = 0;
  2465. vcpu->arch.pio.string = 0;
  2466. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2467. int cs_db, cs_l;
  2468. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2469. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2470. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2471. vcpu->arch.emulate_ctxt.mode =
  2472. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2473. ? X86EMUL_MODE_REAL : cs_l
  2474. ? X86EMUL_MODE_PROT64 : cs_db
  2475. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2476. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2477. /* Only allow emulation of specific instructions on #UD
  2478. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2479. c = &vcpu->arch.emulate_ctxt.decode;
  2480. if (emulation_type & EMULTYPE_TRAP_UD) {
  2481. if (!c->twobyte)
  2482. return EMULATE_FAIL;
  2483. switch (c->b) {
  2484. case 0x01: /* VMMCALL */
  2485. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2486. return EMULATE_FAIL;
  2487. break;
  2488. case 0x34: /* sysenter */
  2489. case 0x35: /* sysexit */
  2490. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2491. return EMULATE_FAIL;
  2492. break;
  2493. case 0x05: /* syscall */
  2494. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2495. return EMULATE_FAIL;
  2496. break;
  2497. default:
  2498. return EMULATE_FAIL;
  2499. }
  2500. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2501. return EMULATE_FAIL;
  2502. }
  2503. ++vcpu->stat.insn_emulation;
  2504. if (r) {
  2505. ++vcpu->stat.insn_emulation_fail;
  2506. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2507. return EMULATE_DONE;
  2508. return EMULATE_FAIL;
  2509. }
  2510. }
  2511. if (emulation_type & EMULTYPE_SKIP) {
  2512. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2513. return EMULATE_DONE;
  2514. }
  2515. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2516. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2517. if (r == 0)
  2518. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2519. if (vcpu->arch.pio.string)
  2520. return EMULATE_DO_MMIO;
  2521. if ((r || vcpu->mmio_is_write) && run) {
  2522. run->exit_reason = KVM_EXIT_MMIO;
  2523. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2524. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2525. run->mmio.len = vcpu->mmio_size;
  2526. run->mmio.is_write = vcpu->mmio_is_write;
  2527. }
  2528. if (r) {
  2529. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2530. return EMULATE_DONE;
  2531. if (!vcpu->mmio_needed) {
  2532. kvm_report_emulation_failure(vcpu, "mmio");
  2533. return EMULATE_FAIL;
  2534. }
  2535. return EMULATE_DO_MMIO;
  2536. }
  2537. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2538. if (vcpu->mmio_is_write) {
  2539. vcpu->mmio_needed = 0;
  2540. return EMULATE_DO_MMIO;
  2541. }
  2542. return EMULATE_DONE;
  2543. }
  2544. EXPORT_SYMBOL_GPL(emulate_instruction);
  2545. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2546. {
  2547. void *p = vcpu->arch.pio_data;
  2548. gva_t q = vcpu->arch.pio.guest_gva;
  2549. unsigned bytes;
  2550. int ret;
  2551. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2552. if (vcpu->arch.pio.in)
  2553. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2554. else
  2555. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2556. return ret;
  2557. }
  2558. int complete_pio(struct kvm_vcpu *vcpu)
  2559. {
  2560. struct kvm_pio_request *io = &vcpu->arch.pio;
  2561. long delta;
  2562. int r;
  2563. unsigned long val;
  2564. if (!io->string) {
  2565. if (io->in) {
  2566. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2567. memcpy(&val, vcpu->arch.pio_data, io->size);
  2568. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2569. }
  2570. } else {
  2571. if (io->in) {
  2572. r = pio_copy_data(vcpu);
  2573. if (r)
  2574. return r;
  2575. }
  2576. delta = 1;
  2577. if (io->rep) {
  2578. delta *= io->cur_count;
  2579. /*
  2580. * The size of the register should really depend on
  2581. * current address size.
  2582. */
  2583. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2584. val -= delta;
  2585. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2586. }
  2587. if (io->down)
  2588. delta = -delta;
  2589. delta *= io->size;
  2590. if (io->in) {
  2591. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2592. val += delta;
  2593. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2594. } else {
  2595. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2596. val += delta;
  2597. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2598. }
  2599. }
  2600. io->count -= io->cur_count;
  2601. io->cur_count = 0;
  2602. return 0;
  2603. }
  2604. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2605. {
  2606. /* TODO: String I/O for in kernel device */
  2607. int r;
  2608. if (vcpu->arch.pio.in)
  2609. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2610. vcpu->arch.pio.size, pd);
  2611. else
  2612. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2613. vcpu->arch.pio.size, pd);
  2614. return r;
  2615. }
  2616. static int pio_string_write(struct kvm_vcpu *vcpu)
  2617. {
  2618. struct kvm_pio_request *io = &vcpu->arch.pio;
  2619. void *pd = vcpu->arch.pio_data;
  2620. int i, r = 0;
  2621. for (i = 0; i < io->cur_count; i++) {
  2622. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2623. io->port, io->size, pd)) {
  2624. r = -EOPNOTSUPP;
  2625. break;
  2626. }
  2627. pd += io->size;
  2628. }
  2629. return r;
  2630. }
  2631. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2632. int size, unsigned port)
  2633. {
  2634. unsigned long val;
  2635. vcpu->run->exit_reason = KVM_EXIT_IO;
  2636. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2637. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2638. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2639. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2640. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2641. vcpu->arch.pio.in = in;
  2642. vcpu->arch.pio.string = 0;
  2643. vcpu->arch.pio.down = 0;
  2644. vcpu->arch.pio.rep = 0;
  2645. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2646. size, 1);
  2647. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2648. memcpy(vcpu->arch.pio_data, &val, 4);
  2649. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2650. complete_pio(vcpu);
  2651. return 1;
  2652. }
  2653. return 0;
  2654. }
  2655. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2656. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2657. int size, unsigned long count, int down,
  2658. gva_t address, int rep, unsigned port)
  2659. {
  2660. unsigned now, in_page;
  2661. int ret = 0;
  2662. vcpu->run->exit_reason = KVM_EXIT_IO;
  2663. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2664. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2665. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2666. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2667. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2668. vcpu->arch.pio.in = in;
  2669. vcpu->arch.pio.string = 1;
  2670. vcpu->arch.pio.down = down;
  2671. vcpu->arch.pio.rep = rep;
  2672. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2673. size, count);
  2674. if (!count) {
  2675. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2676. return 1;
  2677. }
  2678. if (!down)
  2679. in_page = PAGE_SIZE - offset_in_page(address);
  2680. else
  2681. in_page = offset_in_page(address) + size;
  2682. now = min(count, (unsigned long)in_page / size);
  2683. if (!now)
  2684. now = 1;
  2685. if (down) {
  2686. /*
  2687. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2688. */
  2689. pr_unimpl(vcpu, "guest string pio down\n");
  2690. kvm_inject_gp(vcpu, 0);
  2691. return 1;
  2692. }
  2693. vcpu->run->io.count = now;
  2694. vcpu->arch.pio.cur_count = now;
  2695. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2696. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2697. vcpu->arch.pio.guest_gva = address;
  2698. if (!vcpu->arch.pio.in) {
  2699. /* string PIO write */
  2700. ret = pio_copy_data(vcpu);
  2701. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2702. kvm_inject_gp(vcpu, 0);
  2703. return 1;
  2704. }
  2705. if (ret == 0 && !pio_string_write(vcpu)) {
  2706. complete_pio(vcpu);
  2707. if (vcpu->arch.pio.count == 0)
  2708. ret = 1;
  2709. }
  2710. }
  2711. /* no string PIO read support yet */
  2712. return ret;
  2713. }
  2714. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2715. static void bounce_off(void *info)
  2716. {
  2717. /* nothing */
  2718. }
  2719. static unsigned int ref_freq;
  2720. static unsigned long tsc_khz_ref;
  2721. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2722. void *data)
  2723. {
  2724. struct cpufreq_freqs *freq = data;
  2725. struct kvm *kvm;
  2726. struct kvm_vcpu *vcpu;
  2727. int i, send_ipi = 0;
  2728. if (!ref_freq)
  2729. ref_freq = freq->old;
  2730. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2731. return 0;
  2732. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2733. return 0;
  2734. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2735. spin_lock(&kvm_lock);
  2736. list_for_each_entry(kvm, &vm_list, vm_list) {
  2737. kvm_for_each_vcpu(i, vcpu, kvm) {
  2738. if (vcpu->cpu != freq->cpu)
  2739. continue;
  2740. if (!kvm_request_guest_time_update(vcpu))
  2741. continue;
  2742. if (vcpu->cpu != smp_processor_id())
  2743. send_ipi++;
  2744. }
  2745. }
  2746. spin_unlock(&kvm_lock);
  2747. if (freq->old < freq->new && send_ipi) {
  2748. /*
  2749. * We upscale the frequency. Must make the guest
  2750. * doesn't see old kvmclock values while running with
  2751. * the new frequency, otherwise we risk the guest sees
  2752. * time go backwards.
  2753. *
  2754. * In case we update the frequency for another cpu
  2755. * (which might be in guest context) send an interrupt
  2756. * to kick the cpu out of guest context. Next time
  2757. * guest context is entered kvmclock will be updated,
  2758. * so the guest will not see stale values.
  2759. */
  2760. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2761. }
  2762. return 0;
  2763. }
  2764. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2765. .notifier_call = kvmclock_cpufreq_notifier
  2766. };
  2767. int kvm_arch_init(void *opaque)
  2768. {
  2769. int r, cpu;
  2770. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2771. if (kvm_x86_ops) {
  2772. printk(KERN_ERR "kvm: already loaded the other module\n");
  2773. r = -EEXIST;
  2774. goto out;
  2775. }
  2776. if (!ops->cpu_has_kvm_support()) {
  2777. printk(KERN_ERR "kvm: no hardware support\n");
  2778. r = -EOPNOTSUPP;
  2779. goto out;
  2780. }
  2781. if (ops->disabled_by_bios()) {
  2782. printk(KERN_ERR "kvm: disabled by bios\n");
  2783. r = -EOPNOTSUPP;
  2784. goto out;
  2785. }
  2786. r = kvm_mmu_module_init();
  2787. if (r)
  2788. goto out;
  2789. kvm_init_msr_list();
  2790. kvm_x86_ops = ops;
  2791. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2792. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2793. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2794. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2795. for_each_possible_cpu(cpu)
  2796. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2797. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2798. tsc_khz_ref = tsc_khz;
  2799. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2800. CPUFREQ_TRANSITION_NOTIFIER);
  2801. }
  2802. return 0;
  2803. out:
  2804. return r;
  2805. }
  2806. void kvm_arch_exit(void)
  2807. {
  2808. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2809. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2810. CPUFREQ_TRANSITION_NOTIFIER);
  2811. kvm_x86_ops = NULL;
  2812. kvm_mmu_module_exit();
  2813. }
  2814. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2815. {
  2816. ++vcpu->stat.halt_exits;
  2817. if (irqchip_in_kernel(vcpu->kvm)) {
  2818. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2819. return 1;
  2820. } else {
  2821. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2822. return 0;
  2823. }
  2824. }
  2825. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2826. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2827. unsigned long a1)
  2828. {
  2829. if (is_long_mode(vcpu))
  2830. return a0;
  2831. else
  2832. return a0 | ((gpa_t)a1 << 32);
  2833. }
  2834. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2835. {
  2836. unsigned long nr, a0, a1, a2, a3, ret;
  2837. int r = 1;
  2838. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2839. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2840. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2841. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2842. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2843. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2844. if (!is_long_mode(vcpu)) {
  2845. nr &= 0xFFFFFFFF;
  2846. a0 &= 0xFFFFFFFF;
  2847. a1 &= 0xFFFFFFFF;
  2848. a2 &= 0xFFFFFFFF;
  2849. a3 &= 0xFFFFFFFF;
  2850. }
  2851. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  2852. ret = -KVM_EPERM;
  2853. goto out;
  2854. }
  2855. switch (nr) {
  2856. case KVM_HC_VAPIC_POLL_IRQ:
  2857. ret = 0;
  2858. break;
  2859. case KVM_HC_MMU_OP:
  2860. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2861. break;
  2862. default:
  2863. ret = -KVM_ENOSYS;
  2864. break;
  2865. }
  2866. out:
  2867. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2868. ++vcpu->stat.hypercalls;
  2869. return r;
  2870. }
  2871. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2872. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2873. {
  2874. char instruction[3];
  2875. int ret = 0;
  2876. unsigned long rip = kvm_rip_read(vcpu);
  2877. /*
  2878. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2879. * to ensure that the updated hypercall appears atomically across all
  2880. * VCPUs.
  2881. */
  2882. kvm_mmu_zap_all(vcpu->kvm);
  2883. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2884. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2885. != X86EMUL_CONTINUE)
  2886. ret = -EFAULT;
  2887. return ret;
  2888. }
  2889. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2890. {
  2891. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2892. }
  2893. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2894. {
  2895. struct descriptor_table dt = { limit, base };
  2896. kvm_x86_ops->set_gdt(vcpu, &dt);
  2897. }
  2898. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2899. {
  2900. struct descriptor_table dt = { limit, base };
  2901. kvm_x86_ops->set_idt(vcpu, &dt);
  2902. }
  2903. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2904. unsigned long *rflags)
  2905. {
  2906. kvm_lmsw(vcpu, msw);
  2907. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2908. }
  2909. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2910. {
  2911. unsigned long value;
  2912. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2913. switch (cr) {
  2914. case 0:
  2915. value = vcpu->arch.cr0;
  2916. break;
  2917. case 2:
  2918. value = vcpu->arch.cr2;
  2919. break;
  2920. case 3:
  2921. value = vcpu->arch.cr3;
  2922. break;
  2923. case 4:
  2924. value = vcpu->arch.cr4;
  2925. break;
  2926. case 8:
  2927. value = kvm_get_cr8(vcpu);
  2928. break;
  2929. default:
  2930. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2931. return 0;
  2932. }
  2933. return value;
  2934. }
  2935. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2936. unsigned long *rflags)
  2937. {
  2938. switch (cr) {
  2939. case 0:
  2940. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2941. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2942. break;
  2943. case 2:
  2944. vcpu->arch.cr2 = val;
  2945. break;
  2946. case 3:
  2947. kvm_set_cr3(vcpu, val);
  2948. break;
  2949. case 4:
  2950. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2951. break;
  2952. case 8:
  2953. kvm_set_cr8(vcpu, val & 0xfUL);
  2954. break;
  2955. default:
  2956. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2957. }
  2958. }
  2959. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2960. {
  2961. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2962. int j, nent = vcpu->arch.cpuid_nent;
  2963. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2964. /* when no next entry is found, the current entry[i] is reselected */
  2965. for (j = i + 1; ; j = (j + 1) % nent) {
  2966. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2967. if (ej->function == e->function) {
  2968. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2969. return j;
  2970. }
  2971. }
  2972. return 0; /* silence gcc, even though control never reaches here */
  2973. }
  2974. /* find an entry with matching function, matching index (if needed), and that
  2975. * should be read next (if it's stateful) */
  2976. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2977. u32 function, u32 index)
  2978. {
  2979. if (e->function != function)
  2980. return 0;
  2981. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2982. return 0;
  2983. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2984. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2985. return 0;
  2986. return 1;
  2987. }
  2988. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2989. u32 function, u32 index)
  2990. {
  2991. int i;
  2992. struct kvm_cpuid_entry2 *best = NULL;
  2993. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2994. struct kvm_cpuid_entry2 *e;
  2995. e = &vcpu->arch.cpuid_entries[i];
  2996. if (is_matching_cpuid_entry(e, function, index)) {
  2997. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2998. move_to_next_stateful_cpuid_entry(vcpu, i);
  2999. best = e;
  3000. break;
  3001. }
  3002. /*
  3003. * Both basic or both extended?
  3004. */
  3005. if (((e->function ^ function) & 0x80000000) == 0)
  3006. if (!best || e->function > best->function)
  3007. best = e;
  3008. }
  3009. return best;
  3010. }
  3011. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3012. {
  3013. struct kvm_cpuid_entry2 *best;
  3014. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3015. if (best)
  3016. return best->eax & 0xff;
  3017. return 36;
  3018. }
  3019. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3020. {
  3021. u32 function, index;
  3022. struct kvm_cpuid_entry2 *best;
  3023. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3024. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3025. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3026. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3027. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3028. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3029. best = kvm_find_cpuid_entry(vcpu, function, index);
  3030. if (best) {
  3031. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3032. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3033. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3034. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3035. }
  3036. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3037. trace_kvm_cpuid(function,
  3038. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3039. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3040. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3041. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3042. }
  3043. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3044. /*
  3045. * Check if userspace requested an interrupt window, and that the
  3046. * interrupt window is open.
  3047. *
  3048. * No need to exit to userspace if we already have an interrupt queued.
  3049. */
  3050. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  3051. struct kvm_run *kvm_run)
  3052. {
  3053. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3054. kvm_run->request_interrupt_window &&
  3055. kvm_arch_interrupt_allowed(vcpu));
  3056. }
  3057. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  3058. struct kvm_run *kvm_run)
  3059. {
  3060. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3061. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3062. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3063. if (irqchip_in_kernel(vcpu->kvm))
  3064. kvm_run->ready_for_interrupt_injection = 1;
  3065. else
  3066. kvm_run->ready_for_interrupt_injection =
  3067. kvm_arch_interrupt_allowed(vcpu) &&
  3068. !kvm_cpu_has_interrupt(vcpu) &&
  3069. !kvm_event_needs_reinjection(vcpu);
  3070. }
  3071. static void vapic_enter(struct kvm_vcpu *vcpu)
  3072. {
  3073. struct kvm_lapic *apic = vcpu->arch.apic;
  3074. struct page *page;
  3075. if (!apic || !apic->vapic_addr)
  3076. return;
  3077. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3078. vcpu->arch.apic->vapic_page = page;
  3079. }
  3080. static void vapic_exit(struct kvm_vcpu *vcpu)
  3081. {
  3082. struct kvm_lapic *apic = vcpu->arch.apic;
  3083. if (!apic || !apic->vapic_addr)
  3084. return;
  3085. down_read(&vcpu->kvm->slots_lock);
  3086. kvm_release_page_dirty(apic->vapic_page);
  3087. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3088. up_read(&vcpu->kvm->slots_lock);
  3089. }
  3090. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3091. {
  3092. int max_irr, tpr;
  3093. if (!kvm_x86_ops->update_cr8_intercept)
  3094. return;
  3095. if (!vcpu->arch.apic)
  3096. return;
  3097. if (!vcpu->arch.apic->vapic_addr)
  3098. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3099. else
  3100. max_irr = -1;
  3101. if (max_irr != -1)
  3102. max_irr >>= 4;
  3103. tpr = kvm_lapic_get_cr8(vcpu);
  3104. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3105. }
  3106. static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3107. {
  3108. /* try to reinject previous events if any */
  3109. if (vcpu->arch.exception.pending) {
  3110. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3111. vcpu->arch.exception.has_error_code,
  3112. vcpu->arch.exception.error_code);
  3113. return;
  3114. }
  3115. if (vcpu->arch.nmi_injected) {
  3116. kvm_x86_ops->set_nmi(vcpu);
  3117. return;
  3118. }
  3119. if (vcpu->arch.interrupt.pending) {
  3120. kvm_x86_ops->set_irq(vcpu);
  3121. return;
  3122. }
  3123. /* try to inject new event if pending */
  3124. if (vcpu->arch.nmi_pending) {
  3125. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3126. vcpu->arch.nmi_pending = false;
  3127. vcpu->arch.nmi_injected = true;
  3128. kvm_x86_ops->set_nmi(vcpu);
  3129. }
  3130. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3131. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3132. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3133. false);
  3134. kvm_x86_ops->set_irq(vcpu);
  3135. }
  3136. }
  3137. }
  3138. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3139. {
  3140. int r;
  3141. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3142. kvm_run->request_interrupt_window;
  3143. if (vcpu->requests)
  3144. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3145. kvm_mmu_unload(vcpu);
  3146. r = kvm_mmu_reload(vcpu);
  3147. if (unlikely(r))
  3148. goto out;
  3149. if (vcpu->requests) {
  3150. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3151. __kvm_migrate_timers(vcpu);
  3152. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3153. kvm_write_guest_time(vcpu);
  3154. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3155. kvm_mmu_sync_roots(vcpu);
  3156. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3157. kvm_x86_ops->tlb_flush(vcpu);
  3158. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3159. &vcpu->requests)) {
  3160. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3161. r = 0;
  3162. goto out;
  3163. }
  3164. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3165. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3166. r = 0;
  3167. goto out;
  3168. }
  3169. }
  3170. preempt_disable();
  3171. kvm_x86_ops->prepare_guest_switch(vcpu);
  3172. kvm_load_guest_fpu(vcpu);
  3173. local_irq_disable();
  3174. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3175. smp_mb__after_clear_bit();
  3176. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3177. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3178. local_irq_enable();
  3179. preempt_enable();
  3180. r = 1;
  3181. goto out;
  3182. }
  3183. inject_pending_event(vcpu, kvm_run);
  3184. /* enable NMI/IRQ window open exits if needed */
  3185. if (vcpu->arch.nmi_pending)
  3186. kvm_x86_ops->enable_nmi_window(vcpu);
  3187. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3188. kvm_x86_ops->enable_irq_window(vcpu);
  3189. if (kvm_lapic_enabled(vcpu)) {
  3190. update_cr8_intercept(vcpu);
  3191. kvm_lapic_sync_to_vapic(vcpu);
  3192. }
  3193. up_read(&vcpu->kvm->slots_lock);
  3194. kvm_guest_enter();
  3195. if (unlikely(vcpu->arch.switch_db_regs)) {
  3196. set_debugreg(0, 7);
  3197. set_debugreg(vcpu->arch.eff_db[0], 0);
  3198. set_debugreg(vcpu->arch.eff_db[1], 1);
  3199. set_debugreg(vcpu->arch.eff_db[2], 2);
  3200. set_debugreg(vcpu->arch.eff_db[3], 3);
  3201. }
  3202. trace_kvm_entry(vcpu->vcpu_id);
  3203. kvm_x86_ops->run(vcpu, kvm_run);
  3204. /*
  3205. * If the guest has used debug registers, at least dr7
  3206. * will be disabled while returning to the host.
  3207. * If we don't have active breakpoints in the host, we don't
  3208. * care about the messed up debug address registers. But if
  3209. * we have some of them active, restore the old state.
  3210. */
  3211. if (hw_breakpoint_active())
  3212. hw_breakpoint_restore();
  3213. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3214. local_irq_enable();
  3215. ++vcpu->stat.exits;
  3216. /*
  3217. * We must have an instruction between local_irq_enable() and
  3218. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3219. * the interrupt shadow. The stat.exits increment will do nicely.
  3220. * But we need to prevent reordering, hence this barrier():
  3221. */
  3222. barrier();
  3223. kvm_guest_exit();
  3224. preempt_enable();
  3225. down_read(&vcpu->kvm->slots_lock);
  3226. /*
  3227. * Profile KVM exit RIPs:
  3228. */
  3229. if (unlikely(prof_on == KVM_PROFILING)) {
  3230. unsigned long rip = kvm_rip_read(vcpu);
  3231. profile_hit(KVM_PROFILING, (void *)rip);
  3232. }
  3233. kvm_lapic_sync_from_vapic(vcpu);
  3234. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3235. out:
  3236. return r;
  3237. }
  3238. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3239. {
  3240. int r;
  3241. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3242. pr_debug("vcpu %d received sipi with vector # %x\n",
  3243. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3244. kvm_lapic_reset(vcpu);
  3245. r = kvm_arch_vcpu_reset(vcpu);
  3246. if (r)
  3247. return r;
  3248. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3249. }
  3250. down_read(&vcpu->kvm->slots_lock);
  3251. vapic_enter(vcpu);
  3252. r = 1;
  3253. while (r > 0) {
  3254. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3255. r = vcpu_enter_guest(vcpu, kvm_run);
  3256. else {
  3257. up_read(&vcpu->kvm->slots_lock);
  3258. kvm_vcpu_block(vcpu);
  3259. down_read(&vcpu->kvm->slots_lock);
  3260. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3261. {
  3262. switch(vcpu->arch.mp_state) {
  3263. case KVM_MP_STATE_HALTED:
  3264. vcpu->arch.mp_state =
  3265. KVM_MP_STATE_RUNNABLE;
  3266. case KVM_MP_STATE_RUNNABLE:
  3267. break;
  3268. case KVM_MP_STATE_SIPI_RECEIVED:
  3269. default:
  3270. r = -EINTR;
  3271. break;
  3272. }
  3273. }
  3274. }
  3275. if (r <= 0)
  3276. break;
  3277. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3278. if (kvm_cpu_has_pending_timer(vcpu))
  3279. kvm_inject_pending_timer_irqs(vcpu);
  3280. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3281. r = -EINTR;
  3282. kvm_run->exit_reason = KVM_EXIT_INTR;
  3283. ++vcpu->stat.request_irq_exits;
  3284. }
  3285. if (signal_pending(current)) {
  3286. r = -EINTR;
  3287. kvm_run->exit_reason = KVM_EXIT_INTR;
  3288. ++vcpu->stat.signal_exits;
  3289. }
  3290. if (need_resched()) {
  3291. up_read(&vcpu->kvm->slots_lock);
  3292. kvm_resched(vcpu);
  3293. down_read(&vcpu->kvm->slots_lock);
  3294. }
  3295. }
  3296. up_read(&vcpu->kvm->slots_lock);
  3297. post_kvm_run_save(vcpu, kvm_run);
  3298. vapic_exit(vcpu);
  3299. return r;
  3300. }
  3301. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3302. {
  3303. int r;
  3304. sigset_t sigsaved;
  3305. vcpu_load(vcpu);
  3306. if (vcpu->sigset_active)
  3307. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3308. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3309. kvm_vcpu_block(vcpu);
  3310. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3311. r = -EAGAIN;
  3312. goto out;
  3313. }
  3314. /* re-sync apic's tpr */
  3315. if (!irqchip_in_kernel(vcpu->kvm))
  3316. kvm_set_cr8(vcpu, kvm_run->cr8);
  3317. if (vcpu->arch.pio.cur_count) {
  3318. r = complete_pio(vcpu);
  3319. if (r)
  3320. goto out;
  3321. }
  3322. #if CONFIG_HAS_IOMEM
  3323. if (vcpu->mmio_needed) {
  3324. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3325. vcpu->mmio_read_completed = 1;
  3326. vcpu->mmio_needed = 0;
  3327. down_read(&vcpu->kvm->slots_lock);
  3328. r = emulate_instruction(vcpu, kvm_run,
  3329. vcpu->arch.mmio_fault_cr2, 0,
  3330. EMULTYPE_NO_DECODE);
  3331. up_read(&vcpu->kvm->slots_lock);
  3332. if (r == EMULATE_DO_MMIO) {
  3333. /*
  3334. * Read-modify-write. Back to userspace.
  3335. */
  3336. r = 0;
  3337. goto out;
  3338. }
  3339. }
  3340. #endif
  3341. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3342. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3343. kvm_run->hypercall.ret);
  3344. r = __vcpu_run(vcpu, kvm_run);
  3345. out:
  3346. if (vcpu->sigset_active)
  3347. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3348. vcpu_put(vcpu);
  3349. return r;
  3350. }
  3351. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3352. {
  3353. vcpu_load(vcpu);
  3354. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3355. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3356. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3357. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3358. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3359. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3360. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3361. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3362. #ifdef CONFIG_X86_64
  3363. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3364. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3365. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3366. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3367. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3368. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3369. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3370. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3371. #endif
  3372. regs->rip = kvm_rip_read(vcpu);
  3373. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3374. /*
  3375. * Don't leak debug flags in case they were set for guest debugging
  3376. */
  3377. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3378. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3379. vcpu_put(vcpu);
  3380. return 0;
  3381. }
  3382. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3383. {
  3384. vcpu_load(vcpu);
  3385. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3386. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3387. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3388. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3389. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3390. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3391. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3392. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3393. #ifdef CONFIG_X86_64
  3394. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3395. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3396. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3397. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3398. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3399. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3400. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3401. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3402. #endif
  3403. kvm_rip_write(vcpu, regs->rip);
  3404. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3405. vcpu->arch.exception.pending = false;
  3406. vcpu_put(vcpu);
  3407. return 0;
  3408. }
  3409. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3410. struct kvm_segment *var, int seg)
  3411. {
  3412. kvm_x86_ops->get_segment(vcpu, var, seg);
  3413. }
  3414. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3415. {
  3416. struct kvm_segment cs;
  3417. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3418. *db = cs.db;
  3419. *l = cs.l;
  3420. }
  3421. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3422. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3423. struct kvm_sregs *sregs)
  3424. {
  3425. struct descriptor_table dt;
  3426. vcpu_load(vcpu);
  3427. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3428. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3429. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3430. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3431. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3432. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3433. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3434. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3435. kvm_x86_ops->get_idt(vcpu, &dt);
  3436. sregs->idt.limit = dt.limit;
  3437. sregs->idt.base = dt.base;
  3438. kvm_x86_ops->get_gdt(vcpu, &dt);
  3439. sregs->gdt.limit = dt.limit;
  3440. sregs->gdt.base = dt.base;
  3441. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3442. sregs->cr0 = vcpu->arch.cr0;
  3443. sregs->cr2 = vcpu->arch.cr2;
  3444. sregs->cr3 = vcpu->arch.cr3;
  3445. sregs->cr4 = vcpu->arch.cr4;
  3446. sregs->cr8 = kvm_get_cr8(vcpu);
  3447. sregs->efer = vcpu->arch.shadow_efer;
  3448. sregs->apic_base = kvm_get_apic_base(vcpu);
  3449. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3450. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3451. set_bit(vcpu->arch.interrupt.nr,
  3452. (unsigned long *)sregs->interrupt_bitmap);
  3453. vcpu_put(vcpu);
  3454. return 0;
  3455. }
  3456. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3457. struct kvm_mp_state *mp_state)
  3458. {
  3459. vcpu_load(vcpu);
  3460. mp_state->mp_state = vcpu->arch.mp_state;
  3461. vcpu_put(vcpu);
  3462. return 0;
  3463. }
  3464. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3465. struct kvm_mp_state *mp_state)
  3466. {
  3467. vcpu_load(vcpu);
  3468. vcpu->arch.mp_state = mp_state->mp_state;
  3469. vcpu_put(vcpu);
  3470. return 0;
  3471. }
  3472. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3473. struct kvm_segment *var, int seg)
  3474. {
  3475. kvm_x86_ops->set_segment(vcpu, var, seg);
  3476. }
  3477. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3478. struct kvm_segment *kvm_desct)
  3479. {
  3480. kvm_desct->base = get_desc_base(seg_desc);
  3481. kvm_desct->limit = get_desc_limit(seg_desc);
  3482. if (seg_desc->g) {
  3483. kvm_desct->limit <<= 12;
  3484. kvm_desct->limit |= 0xfff;
  3485. }
  3486. kvm_desct->selector = selector;
  3487. kvm_desct->type = seg_desc->type;
  3488. kvm_desct->present = seg_desc->p;
  3489. kvm_desct->dpl = seg_desc->dpl;
  3490. kvm_desct->db = seg_desc->d;
  3491. kvm_desct->s = seg_desc->s;
  3492. kvm_desct->l = seg_desc->l;
  3493. kvm_desct->g = seg_desc->g;
  3494. kvm_desct->avl = seg_desc->avl;
  3495. if (!selector)
  3496. kvm_desct->unusable = 1;
  3497. else
  3498. kvm_desct->unusable = 0;
  3499. kvm_desct->padding = 0;
  3500. }
  3501. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3502. u16 selector,
  3503. struct descriptor_table *dtable)
  3504. {
  3505. if (selector & 1 << 2) {
  3506. struct kvm_segment kvm_seg;
  3507. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3508. if (kvm_seg.unusable)
  3509. dtable->limit = 0;
  3510. else
  3511. dtable->limit = kvm_seg.limit;
  3512. dtable->base = kvm_seg.base;
  3513. }
  3514. else
  3515. kvm_x86_ops->get_gdt(vcpu, dtable);
  3516. }
  3517. /* allowed just for 8 bytes segments */
  3518. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3519. struct desc_struct *seg_desc)
  3520. {
  3521. struct descriptor_table dtable;
  3522. u16 index = selector >> 3;
  3523. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3524. if (dtable.limit < index * 8 + 7) {
  3525. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3526. return 1;
  3527. }
  3528. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3529. }
  3530. /* allowed just for 8 bytes segments */
  3531. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3532. struct desc_struct *seg_desc)
  3533. {
  3534. struct descriptor_table dtable;
  3535. u16 index = selector >> 3;
  3536. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3537. if (dtable.limit < index * 8 + 7)
  3538. return 1;
  3539. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3540. }
  3541. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3542. struct desc_struct *seg_desc)
  3543. {
  3544. u32 base_addr = get_desc_base(seg_desc);
  3545. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3546. }
  3547. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3548. {
  3549. struct kvm_segment kvm_seg;
  3550. kvm_get_segment(vcpu, &kvm_seg, seg);
  3551. return kvm_seg.selector;
  3552. }
  3553. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3554. u16 selector,
  3555. struct kvm_segment *kvm_seg)
  3556. {
  3557. struct desc_struct seg_desc;
  3558. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3559. return 1;
  3560. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3561. return 0;
  3562. }
  3563. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3564. {
  3565. struct kvm_segment segvar = {
  3566. .base = selector << 4,
  3567. .limit = 0xffff,
  3568. .selector = selector,
  3569. .type = 3,
  3570. .present = 1,
  3571. .dpl = 3,
  3572. .db = 0,
  3573. .s = 1,
  3574. .l = 0,
  3575. .g = 0,
  3576. .avl = 0,
  3577. .unusable = 0,
  3578. };
  3579. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3580. return 0;
  3581. }
  3582. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3583. {
  3584. return (seg != VCPU_SREG_LDTR) &&
  3585. (seg != VCPU_SREG_TR) &&
  3586. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
  3587. }
  3588. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3589. int type_bits, int seg)
  3590. {
  3591. struct kvm_segment kvm_seg;
  3592. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3593. return kvm_load_realmode_segment(vcpu, selector, seg);
  3594. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3595. return 1;
  3596. kvm_seg.type |= type_bits;
  3597. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3598. seg != VCPU_SREG_LDTR)
  3599. if (!kvm_seg.s)
  3600. kvm_seg.unusable = 1;
  3601. kvm_set_segment(vcpu, &kvm_seg, seg);
  3602. return 0;
  3603. }
  3604. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3605. struct tss_segment_32 *tss)
  3606. {
  3607. tss->cr3 = vcpu->arch.cr3;
  3608. tss->eip = kvm_rip_read(vcpu);
  3609. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3610. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3611. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3612. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3613. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3614. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3615. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3616. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3617. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3618. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3619. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3620. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3621. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3622. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3623. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3624. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3625. }
  3626. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3627. struct tss_segment_32 *tss)
  3628. {
  3629. kvm_set_cr3(vcpu, tss->cr3);
  3630. kvm_rip_write(vcpu, tss->eip);
  3631. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3632. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3633. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3634. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3635. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3636. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3637. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3638. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3639. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3640. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3641. return 1;
  3642. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3643. return 1;
  3644. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3645. return 1;
  3646. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3647. return 1;
  3648. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3649. return 1;
  3650. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3651. return 1;
  3652. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3653. return 1;
  3654. return 0;
  3655. }
  3656. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3657. struct tss_segment_16 *tss)
  3658. {
  3659. tss->ip = kvm_rip_read(vcpu);
  3660. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3661. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3662. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3663. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3664. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3665. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3666. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3667. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3668. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3669. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3670. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3671. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3672. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3673. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3674. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3675. }
  3676. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3677. struct tss_segment_16 *tss)
  3678. {
  3679. kvm_rip_write(vcpu, tss->ip);
  3680. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3681. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3682. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3683. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3684. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3685. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3686. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3687. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3688. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3689. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3690. return 1;
  3691. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3692. return 1;
  3693. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3694. return 1;
  3695. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3696. return 1;
  3697. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3698. return 1;
  3699. return 0;
  3700. }
  3701. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3702. u16 old_tss_sel, u32 old_tss_base,
  3703. struct desc_struct *nseg_desc)
  3704. {
  3705. struct tss_segment_16 tss_segment_16;
  3706. int ret = 0;
  3707. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3708. sizeof tss_segment_16))
  3709. goto out;
  3710. save_state_to_tss16(vcpu, &tss_segment_16);
  3711. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3712. sizeof tss_segment_16))
  3713. goto out;
  3714. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3715. &tss_segment_16, sizeof tss_segment_16))
  3716. goto out;
  3717. if (old_tss_sel != 0xffff) {
  3718. tss_segment_16.prev_task_link = old_tss_sel;
  3719. if (kvm_write_guest(vcpu->kvm,
  3720. get_tss_base_addr(vcpu, nseg_desc),
  3721. &tss_segment_16.prev_task_link,
  3722. sizeof tss_segment_16.prev_task_link))
  3723. goto out;
  3724. }
  3725. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3726. goto out;
  3727. ret = 1;
  3728. out:
  3729. return ret;
  3730. }
  3731. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3732. u16 old_tss_sel, u32 old_tss_base,
  3733. struct desc_struct *nseg_desc)
  3734. {
  3735. struct tss_segment_32 tss_segment_32;
  3736. int ret = 0;
  3737. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3738. sizeof tss_segment_32))
  3739. goto out;
  3740. save_state_to_tss32(vcpu, &tss_segment_32);
  3741. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3742. sizeof tss_segment_32))
  3743. goto out;
  3744. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3745. &tss_segment_32, sizeof tss_segment_32))
  3746. goto out;
  3747. if (old_tss_sel != 0xffff) {
  3748. tss_segment_32.prev_task_link = old_tss_sel;
  3749. if (kvm_write_guest(vcpu->kvm,
  3750. get_tss_base_addr(vcpu, nseg_desc),
  3751. &tss_segment_32.prev_task_link,
  3752. sizeof tss_segment_32.prev_task_link))
  3753. goto out;
  3754. }
  3755. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3756. goto out;
  3757. ret = 1;
  3758. out:
  3759. return ret;
  3760. }
  3761. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3762. {
  3763. struct kvm_segment tr_seg;
  3764. struct desc_struct cseg_desc;
  3765. struct desc_struct nseg_desc;
  3766. int ret = 0;
  3767. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3768. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3769. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3770. /* FIXME: Handle errors. Failure to read either TSS or their
  3771. * descriptors should generate a pagefault.
  3772. */
  3773. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3774. goto out;
  3775. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3776. goto out;
  3777. if (reason != TASK_SWITCH_IRET) {
  3778. int cpl;
  3779. cpl = kvm_x86_ops->get_cpl(vcpu);
  3780. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3781. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3782. return 1;
  3783. }
  3784. }
  3785. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3786. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3787. return 1;
  3788. }
  3789. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3790. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3791. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3792. }
  3793. if (reason == TASK_SWITCH_IRET) {
  3794. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3795. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3796. }
  3797. /* set back link to prev task only if NT bit is set in eflags
  3798. note that old_tss_sel is not used afetr this point */
  3799. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3800. old_tss_sel = 0xffff;
  3801. /* set back link to prev task only if NT bit is set in eflags
  3802. note that old_tss_sel is not used afetr this point */
  3803. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3804. old_tss_sel = 0xffff;
  3805. if (nseg_desc.type & 8)
  3806. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3807. old_tss_base, &nseg_desc);
  3808. else
  3809. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3810. old_tss_base, &nseg_desc);
  3811. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3812. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3813. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3814. }
  3815. if (reason != TASK_SWITCH_IRET) {
  3816. nseg_desc.type |= (1 << 1);
  3817. save_guest_segment_descriptor(vcpu, tss_selector,
  3818. &nseg_desc);
  3819. }
  3820. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3821. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3822. tr_seg.type = 11;
  3823. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3824. out:
  3825. return ret;
  3826. }
  3827. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3828. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3829. struct kvm_sregs *sregs)
  3830. {
  3831. int mmu_reset_needed = 0;
  3832. int pending_vec, max_bits;
  3833. struct descriptor_table dt;
  3834. vcpu_load(vcpu);
  3835. dt.limit = sregs->idt.limit;
  3836. dt.base = sregs->idt.base;
  3837. kvm_x86_ops->set_idt(vcpu, &dt);
  3838. dt.limit = sregs->gdt.limit;
  3839. dt.base = sregs->gdt.base;
  3840. kvm_x86_ops->set_gdt(vcpu, &dt);
  3841. vcpu->arch.cr2 = sregs->cr2;
  3842. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3843. vcpu->arch.cr3 = sregs->cr3;
  3844. kvm_set_cr8(vcpu, sregs->cr8);
  3845. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3846. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3847. kvm_set_apic_base(vcpu, sregs->apic_base);
  3848. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3849. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3850. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3851. vcpu->arch.cr0 = sregs->cr0;
  3852. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3853. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3854. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3855. load_pdptrs(vcpu, vcpu->arch.cr3);
  3856. if (mmu_reset_needed)
  3857. kvm_mmu_reset_context(vcpu);
  3858. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3859. pending_vec = find_first_bit(
  3860. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3861. if (pending_vec < max_bits) {
  3862. kvm_queue_interrupt(vcpu, pending_vec, false);
  3863. pr_debug("Set back pending irq %d\n", pending_vec);
  3864. if (irqchip_in_kernel(vcpu->kvm))
  3865. kvm_pic_clear_isr_ack(vcpu->kvm);
  3866. }
  3867. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3868. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3869. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3870. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3871. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3872. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3873. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3874. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3875. update_cr8_intercept(vcpu);
  3876. /* Older userspace won't unhalt the vcpu on reset. */
  3877. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3878. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3879. !(vcpu->arch.cr0 & X86_CR0_PE))
  3880. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3881. vcpu_put(vcpu);
  3882. return 0;
  3883. }
  3884. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3885. struct kvm_guest_debug *dbg)
  3886. {
  3887. int i, r;
  3888. vcpu_load(vcpu);
  3889. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3890. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3891. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3892. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3893. vcpu->arch.switch_db_regs =
  3894. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3895. } else {
  3896. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3897. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3898. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3899. }
  3900. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3901. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3902. kvm_queue_exception(vcpu, DB_VECTOR);
  3903. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3904. kvm_queue_exception(vcpu, BP_VECTOR);
  3905. vcpu_put(vcpu);
  3906. return r;
  3907. }
  3908. /*
  3909. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3910. * we have asm/x86/processor.h
  3911. */
  3912. struct fxsave {
  3913. u16 cwd;
  3914. u16 swd;
  3915. u16 twd;
  3916. u16 fop;
  3917. u64 rip;
  3918. u64 rdp;
  3919. u32 mxcsr;
  3920. u32 mxcsr_mask;
  3921. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3922. #ifdef CONFIG_X86_64
  3923. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3924. #else
  3925. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3926. #endif
  3927. };
  3928. /*
  3929. * Translate a guest virtual address to a guest physical address.
  3930. */
  3931. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3932. struct kvm_translation *tr)
  3933. {
  3934. unsigned long vaddr = tr->linear_address;
  3935. gpa_t gpa;
  3936. vcpu_load(vcpu);
  3937. down_read(&vcpu->kvm->slots_lock);
  3938. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3939. up_read(&vcpu->kvm->slots_lock);
  3940. tr->physical_address = gpa;
  3941. tr->valid = gpa != UNMAPPED_GVA;
  3942. tr->writeable = 1;
  3943. tr->usermode = 0;
  3944. vcpu_put(vcpu);
  3945. return 0;
  3946. }
  3947. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3948. {
  3949. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3950. vcpu_load(vcpu);
  3951. memcpy(fpu->fpr, fxsave->st_space, 128);
  3952. fpu->fcw = fxsave->cwd;
  3953. fpu->fsw = fxsave->swd;
  3954. fpu->ftwx = fxsave->twd;
  3955. fpu->last_opcode = fxsave->fop;
  3956. fpu->last_ip = fxsave->rip;
  3957. fpu->last_dp = fxsave->rdp;
  3958. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3959. vcpu_put(vcpu);
  3960. return 0;
  3961. }
  3962. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3963. {
  3964. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3965. vcpu_load(vcpu);
  3966. memcpy(fxsave->st_space, fpu->fpr, 128);
  3967. fxsave->cwd = fpu->fcw;
  3968. fxsave->swd = fpu->fsw;
  3969. fxsave->twd = fpu->ftwx;
  3970. fxsave->fop = fpu->last_opcode;
  3971. fxsave->rip = fpu->last_ip;
  3972. fxsave->rdp = fpu->last_dp;
  3973. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3974. vcpu_put(vcpu);
  3975. return 0;
  3976. }
  3977. void fx_init(struct kvm_vcpu *vcpu)
  3978. {
  3979. unsigned after_mxcsr_mask;
  3980. /*
  3981. * Touch the fpu the first time in non atomic context as if
  3982. * this is the first fpu instruction the exception handler
  3983. * will fire before the instruction returns and it'll have to
  3984. * allocate ram with GFP_KERNEL.
  3985. */
  3986. if (!used_math())
  3987. kvm_fx_save(&vcpu->arch.host_fx_image);
  3988. /* Initialize guest FPU by resetting ours and saving into guest's */
  3989. preempt_disable();
  3990. kvm_fx_save(&vcpu->arch.host_fx_image);
  3991. kvm_fx_finit();
  3992. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3993. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3994. preempt_enable();
  3995. vcpu->arch.cr0 |= X86_CR0_ET;
  3996. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3997. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3998. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3999. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4000. }
  4001. EXPORT_SYMBOL_GPL(fx_init);
  4002. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4003. {
  4004. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4005. return;
  4006. vcpu->guest_fpu_loaded = 1;
  4007. kvm_fx_save(&vcpu->arch.host_fx_image);
  4008. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4009. }
  4010. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4011. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4012. {
  4013. if (!vcpu->guest_fpu_loaded)
  4014. return;
  4015. vcpu->guest_fpu_loaded = 0;
  4016. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4017. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4018. ++vcpu->stat.fpu_reload;
  4019. }
  4020. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4021. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4022. {
  4023. if (vcpu->arch.time_page) {
  4024. kvm_release_page_dirty(vcpu->arch.time_page);
  4025. vcpu->arch.time_page = NULL;
  4026. }
  4027. kvm_x86_ops->vcpu_free(vcpu);
  4028. }
  4029. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4030. unsigned int id)
  4031. {
  4032. return kvm_x86_ops->vcpu_create(kvm, id);
  4033. }
  4034. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4035. {
  4036. int r;
  4037. /* We do fxsave: this must be aligned. */
  4038. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4039. vcpu->arch.mtrr_state.have_fixed = 1;
  4040. vcpu_load(vcpu);
  4041. r = kvm_arch_vcpu_reset(vcpu);
  4042. if (r == 0)
  4043. r = kvm_mmu_setup(vcpu);
  4044. vcpu_put(vcpu);
  4045. if (r < 0)
  4046. goto free_vcpu;
  4047. return 0;
  4048. free_vcpu:
  4049. kvm_x86_ops->vcpu_free(vcpu);
  4050. return r;
  4051. }
  4052. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4053. {
  4054. vcpu_load(vcpu);
  4055. kvm_mmu_unload(vcpu);
  4056. vcpu_put(vcpu);
  4057. kvm_x86_ops->vcpu_free(vcpu);
  4058. }
  4059. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4060. {
  4061. vcpu->arch.nmi_pending = false;
  4062. vcpu->arch.nmi_injected = false;
  4063. vcpu->arch.switch_db_regs = 0;
  4064. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4065. vcpu->arch.dr6 = DR6_FIXED_1;
  4066. vcpu->arch.dr7 = DR7_FIXED_1;
  4067. return kvm_x86_ops->vcpu_reset(vcpu);
  4068. }
  4069. void kvm_arch_hardware_enable(void *garbage)
  4070. {
  4071. kvm_x86_ops->hardware_enable(garbage);
  4072. }
  4073. void kvm_arch_hardware_disable(void *garbage)
  4074. {
  4075. kvm_x86_ops->hardware_disable(garbage);
  4076. }
  4077. int kvm_arch_hardware_setup(void)
  4078. {
  4079. return kvm_x86_ops->hardware_setup();
  4080. }
  4081. void kvm_arch_hardware_unsetup(void)
  4082. {
  4083. kvm_x86_ops->hardware_unsetup();
  4084. }
  4085. void kvm_arch_check_processor_compat(void *rtn)
  4086. {
  4087. kvm_x86_ops->check_processor_compatibility(rtn);
  4088. }
  4089. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4090. {
  4091. struct page *page;
  4092. struct kvm *kvm;
  4093. int r;
  4094. BUG_ON(vcpu->kvm == NULL);
  4095. kvm = vcpu->kvm;
  4096. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4097. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4098. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4099. else
  4100. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4101. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4102. if (!page) {
  4103. r = -ENOMEM;
  4104. goto fail;
  4105. }
  4106. vcpu->arch.pio_data = page_address(page);
  4107. r = kvm_mmu_create(vcpu);
  4108. if (r < 0)
  4109. goto fail_free_pio_data;
  4110. if (irqchip_in_kernel(kvm)) {
  4111. r = kvm_create_lapic(vcpu);
  4112. if (r < 0)
  4113. goto fail_mmu_destroy;
  4114. }
  4115. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4116. GFP_KERNEL);
  4117. if (!vcpu->arch.mce_banks) {
  4118. r = -ENOMEM;
  4119. goto fail_mmu_destroy;
  4120. }
  4121. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4122. return 0;
  4123. fail_mmu_destroy:
  4124. kvm_mmu_destroy(vcpu);
  4125. fail_free_pio_data:
  4126. free_page((unsigned long)vcpu->arch.pio_data);
  4127. fail:
  4128. return r;
  4129. }
  4130. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4131. {
  4132. kvm_free_lapic(vcpu);
  4133. down_read(&vcpu->kvm->slots_lock);
  4134. kvm_mmu_destroy(vcpu);
  4135. up_read(&vcpu->kvm->slots_lock);
  4136. free_page((unsigned long)vcpu->arch.pio_data);
  4137. }
  4138. struct kvm *kvm_arch_create_vm(void)
  4139. {
  4140. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4141. if (!kvm)
  4142. return ERR_PTR(-ENOMEM);
  4143. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4144. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4145. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4146. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4147. rdtscll(kvm->arch.vm_init_tsc);
  4148. return kvm;
  4149. }
  4150. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4151. {
  4152. vcpu_load(vcpu);
  4153. kvm_mmu_unload(vcpu);
  4154. vcpu_put(vcpu);
  4155. }
  4156. static void kvm_free_vcpus(struct kvm *kvm)
  4157. {
  4158. unsigned int i;
  4159. struct kvm_vcpu *vcpu;
  4160. /*
  4161. * Unpin any mmu pages first.
  4162. */
  4163. kvm_for_each_vcpu(i, vcpu, kvm)
  4164. kvm_unload_vcpu_mmu(vcpu);
  4165. kvm_for_each_vcpu(i, vcpu, kvm)
  4166. kvm_arch_vcpu_free(vcpu);
  4167. mutex_lock(&kvm->lock);
  4168. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4169. kvm->vcpus[i] = NULL;
  4170. atomic_set(&kvm->online_vcpus, 0);
  4171. mutex_unlock(&kvm->lock);
  4172. }
  4173. void kvm_arch_sync_events(struct kvm *kvm)
  4174. {
  4175. kvm_free_all_assigned_devices(kvm);
  4176. }
  4177. void kvm_arch_destroy_vm(struct kvm *kvm)
  4178. {
  4179. kvm_iommu_unmap_guest(kvm);
  4180. kvm_free_pit(kvm);
  4181. kfree(kvm->arch.vpic);
  4182. kfree(kvm->arch.vioapic);
  4183. kvm_free_vcpus(kvm);
  4184. kvm_free_physmem(kvm);
  4185. if (kvm->arch.apic_access_page)
  4186. put_page(kvm->arch.apic_access_page);
  4187. if (kvm->arch.ept_identity_pagetable)
  4188. put_page(kvm->arch.ept_identity_pagetable);
  4189. kfree(kvm);
  4190. }
  4191. int kvm_arch_set_memory_region(struct kvm *kvm,
  4192. struct kvm_userspace_memory_region *mem,
  4193. struct kvm_memory_slot old,
  4194. int user_alloc)
  4195. {
  4196. int npages = mem->memory_size >> PAGE_SHIFT;
  4197. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4198. /*To keep backward compatibility with older userspace,
  4199. *x86 needs to hanlde !user_alloc case.
  4200. */
  4201. if (!user_alloc) {
  4202. if (npages && !old.rmap) {
  4203. unsigned long userspace_addr;
  4204. down_write(&current->mm->mmap_sem);
  4205. userspace_addr = do_mmap(NULL, 0,
  4206. npages * PAGE_SIZE,
  4207. PROT_READ | PROT_WRITE,
  4208. MAP_PRIVATE | MAP_ANONYMOUS,
  4209. 0);
  4210. up_write(&current->mm->mmap_sem);
  4211. if (IS_ERR((void *)userspace_addr))
  4212. return PTR_ERR((void *)userspace_addr);
  4213. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4214. spin_lock(&kvm->mmu_lock);
  4215. memslot->userspace_addr = userspace_addr;
  4216. spin_unlock(&kvm->mmu_lock);
  4217. } else {
  4218. if (!old.user_alloc && old.rmap) {
  4219. int ret;
  4220. down_write(&current->mm->mmap_sem);
  4221. ret = do_munmap(current->mm, old.userspace_addr,
  4222. old.npages * PAGE_SIZE);
  4223. up_write(&current->mm->mmap_sem);
  4224. if (ret < 0)
  4225. printk(KERN_WARNING
  4226. "kvm_vm_ioctl_set_memory_region: "
  4227. "failed to munmap memory\n");
  4228. }
  4229. }
  4230. }
  4231. spin_lock(&kvm->mmu_lock);
  4232. if (!kvm->arch.n_requested_mmu_pages) {
  4233. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4234. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4235. }
  4236. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4237. spin_unlock(&kvm->mmu_lock);
  4238. return 0;
  4239. }
  4240. void kvm_arch_flush_shadow(struct kvm *kvm)
  4241. {
  4242. kvm_mmu_zap_all(kvm);
  4243. kvm_reload_remote_mmus(kvm);
  4244. }
  4245. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4246. {
  4247. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4248. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4249. || vcpu->arch.nmi_pending ||
  4250. (kvm_arch_interrupt_allowed(vcpu) &&
  4251. kvm_cpu_has_interrupt(vcpu));
  4252. }
  4253. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4254. {
  4255. int me;
  4256. int cpu = vcpu->cpu;
  4257. if (waitqueue_active(&vcpu->wq)) {
  4258. wake_up_interruptible(&vcpu->wq);
  4259. ++vcpu->stat.halt_wakeup;
  4260. }
  4261. me = get_cpu();
  4262. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4263. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4264. smp_send_reschedule(cpu);
  4265. put_cpu();
  4266. }
  4267. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4268. {
  4269. return kvm_x86_ops->interrupt_allowed(vcpu);
  4270. }
  4271. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4272. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4273. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4274. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4275. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);