fs_enet-main.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/config.h>
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/types.h>
  21. #include <linux/sched.h>
  22. #include <linux/string.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/errno.h>
  25. #include <linux/ioport.h>
  26. #include <linux/slab.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/pci.h>
  29. #include <linux/init.h>
  30. #include <linux/delay.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/etherdevice.h>
  33. #include <linux/skbuff.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/mii.h>
  36. #include <linux/ethtool.h>
  37. #include <linux/bitops.h>
  38. #include <linux/fs.h>
  39. #include <linux/vmalloc.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/pgtable.h>
  42. #include <asm/irq.h>
  43. #include <asm/uaccess.h>
  44. #include "fs_enet.h"
  45. /*************************************************/
  46. static char version[] __devinitdata =
  47. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  48. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  49. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  50. MODULE_LICENSE("GPL");
  51. MODULE_VERSION(DRV_MODULE_VERSION);
  52. MODULE_PARM(fs_enet_debug, "i");
  53. MODULE_PARM_DESC(fs_enet_debug,
  54. "Freescale bitmapped debugging message enable value");
  55. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  56. static void fs_set_multicast_list(struct net_device *dev)
  57. {
  58. struct fs_enet_private *fep = netdev_priv(dev);
  59. (*fep->ops->set_multicast_list)(dev);
  60. }
  61. /* NAPI receive function */
  62. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  63. {
  64. struct fs_enet_private *fep = netdev_priv(dev);
  65. const struct fs_platform_info *fpi = fep->fpi;
  66. cbd_t *bdp;
  67. struct sk_buff *skb, *skbn, *skbt;
  68. int received = 0;
  69. u16 pkt_len, sc;
  70. int curidx;
  71. int rx_work_limit = 0; /* pacify gcc */
  72. rx_work_limit = min(dev->quota, *budget);
  73. if (!netif_running(dev))
  74. return 0;
  75. /*
  76. * First, grab all of the stats for the incoming packet.
  77. * These get messed up if we get called due to a busy condition.
  78. */
  79. bdp = fep->cur_rx;
  80. /* clear RX status bits for napi*/
  81. (*fep->ops->napi_clear_rx_event)(dev);
  82. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  83. curidx = bdp - fep->rx_bd_base;
  84. /*
  85. * Since we have allocated space to hold a complete frame,
  86. * the last indicator should be set.
  87. */
  88. if ((sc & BD_ENET_RX_LAST) == 0)
  89. printk(KERN_WARNING DRV_MODULE_NAME
  90. ": %s rcv is not +last\n",
  91. dev->name);
  92. /*
  93. * Check for errors.
  94. */
  95. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  96. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  97. fep->stats.rx_errors++;
  98. /* Frame too long or too short. */
  99. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  100. fep->stats.rx_length_errors++;
  101. /* Frame alignment */
  102. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  103. fep->stats.rx_frame_errors++;
  104. /* CRC Error */
  105. if (sc & BD_ENET_RX_CR)
  106. fep->stats.rx_crc_errors++;
  107. /* FIFO overrun */
  108. if (sc & BD_ENET_RX_OV)
  109. fep->stats.rx_crc_errors++;
  110. skb = fep->rx_skbuff[curidx];
  111. dma_unmap_single(fep->dev, skb->data,
  112. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  113. DMA_FROM_DEVICE);
  114. skbn = skb;
  115. } else {
  116. /* napi, got packet but no quota */
  117. if (--rx_work_limit < 0)
  118. break;
  119. skb = fep->rx_skbuff[curidx];
  120. dma_unmap_single(fep->dev, skb->data,
  121. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  122. DMA_FROM_DEVICE);
  123. /*
  124. * Process the incoming frame.
  125. */
  126. fep->stats.rx_packets++;
  127. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  128. fep->stats.rx_bytes += pkt_len + 4;
  129. if (pkt_len <= fpi->rx_copybreak) {
  130. /* +2 to make IP header L1 cache aligned */
  131. skbn = dev_alloc_skb(pkt_len + 2);
  132. if (skbn != NULL) {
  133. skb_reserve(skbn, 2); /* align IP header */
  134. memcpy(skbn->data, skb->data, pkt_len);
  135. /* swap */
  136. skbt = skb;
  137. skb = skbn;
  138. skbn = skbt;
  139. }
  140. } else
  141. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  142. if (skbn != NULL) {
  143. skb->dev = dev;
  144. skb_put(skb, pkt_len); /* Make room */
  145. skb->protocol = eth_type_trans(skb, dev);
  146. received++;
  147. netif_receive_skb(skb);
  148. } else {
  149. printk(KERN_WARNING DRV_MODULE_NAME
  150. ": %s Memory squeeze, dropping packet.\n",
  151. dev->name);
  152. fep->stats.rx_dropped++;
  153. skbn = skb;
  154. }
  155. }
  156. fep->rx_skbuff[curidx] = skbn;
  157. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  158. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  159. DMA_FROM_DEVICE));
  160. CBDW_DATLEN(bdp, 0);
  161. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  162. /*
  163. * Update BD pointer to next entry.
  164. */
  165. if ((sc & BD_ENET_RX_WRAP) == 0)
  166. bdp++;
  167. else
  168. bdp = fep->rx_bd_base;
  169. (*fep->ops->rx_bd_done)(dev);
  170. }
  171. fep->cur_rx = bdp;
  172. dev->quota -= received;
  173. *budget -= received;
  174. if (rx_work_limit < 0)
  175. return 1; /* not done */
  176. /* done */
  177. netif_rx_complete(dev);
  178. (*fep->ops->napi_enable_rx)(dev);
  179. return 0;
  180. }
  181. /* non NAPI receive function */
  182. static int fs_enet_rx_non_napi(struct net_device *dev)
  183. {
  184. struct fs_enet_private *fep = netdev_priv(dev);
  185. const struct fs_platform_info *fpi = fep->fpi;
  186. cbd_t *bdp;
  187. struct sk_buff *skb, *skbn, *skbt;
  188. int received = 0;
  189. u16 pkt_len, sc;
  190. int curidx;
  191. /*
  192. * First, grab all of the stats for the incoming packet.
  193. * These get messed up if we get called due to a busy condition.
  194. */
  195. bdp = fep->cur_rx;
  196. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  197. curidx = bdp - fep->rx_bd_base;
  198. /*
  199. * Since we have allocated space to hold a complete frame,
  200. * the last indicator should be set.
  201. */
  202. if ((sc & BD_ENET_RX_LAST) == 0)
  203. printk(KERN_WARNING DRV_MODULE_NAME
  204. ": %s rcv is not +last\n",
  205. dev->name);
  206. /*
  207. * Check for errors.
  208. */
  209. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  210. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  211. fep->stats.rx_errors++;
  212. /* Frame too long or too short. */
  213. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  214. fep->stats.rx_length_errors++;
  215. /* Frame alignment */
  216. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  217. fep->stats.rx_frame_errors++;
  218. /* CRC Error */
  219. if (sc & BD_ENET_RX_CR)
  220. fep->stats.rx_crc_errors++;
  221. /* FIFO overrun */
  222. if (sc & BD_ENET_RX_OV)
  223. fep->stats.rx_crc_errors++;
  224. skb = fep->rx_skbuff[curidx];
  225. dma_unmap_single(fep->dev, skb->data,
  226. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  227. DMA_FROM_DEVICE);
  228. skbn = skb;
  229. } else {
  230. skb = fep->rx_skbuff[curidx];
  231. dma_unmap_single(fep->dev, skb->data,
  232. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  233. DMA_FROM_DEVICE);
  234. /*
  235. * Process the incoming frame.
  236. */
  237. fep->stats.rx_packets++;
  238. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  239. fep->stats.rx_bytes += pkt_len + 4;
  240. if (pkt_len <= fpi->rx_copybreak) {
  241. /* +2 to make IP header L1 cache aligned */
  242. skbn = dev_alloc_skb(pkt_len + 2);
  243. if (skbn != NULL) {
  244. skb_reserve(skbn, 2); /* align IP header */
  245. memcpy(skbn->data, skb->data, pkt_len);
  246. /* swap */
  247. skbt = skb;
  248. skb = skbn;
  249. skbn = skbt;
  250. }
  251. } else
  252. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  253. if (skbn != NULL) {
  254. skb->dev = dev;
  255. skb_put(skb, pkt_len); /* Make room */
  256. skb->protocol = eth_type_trans(skb, dev);
  257. received++;
  258. netif_rx(skb);
  259. } else {
  260. printk(KERN_WARNING DRV_MODULE_NAME
  261. ": %s Memory squeeze, dropping packet.\n",
  262. dev->name);
  263. fep->stats.rx_dropped++;
  264. skbn = skb;
  265. }
  266. }
  267. fep->rx_skbuff[curidx] = skbn;
  268. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  269. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  270. DMA_FROM_DEVICE));
  271. CBDW_DATLEN(bdp, 0);
  272. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  273. /*
  274. * Update BD pointer to next entry.
  275. */
  276. if ((sc & BD_ENET_RX_WRAP) == 0)
  277. bdp++;
  278. else
  279. bdp = fep->rx_bd_base;
  280. (*fep->ops->rx_bd_done)(dev);
  281. }
  282. fep->cur_rx = bdp;
  283. return 0;
  284. }
  285. static void fs_enet_tx(struct net_device *dev)
  286. {
  287. struct fs_enet_private *fep = netdev_priv(dev);
  288. cbd_t *bdp;
  289. struct sk_buff *skb;
  290. int dirtyidx, do_wake, do_restart;
  291. u16 sc;
  292. spin_lock(&fep->lock);
  293. bdp = fep->dirty_tx;
  294. do_wake = do_restart = 0;
  295. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  296. dirtyidx = bdp - fep->tx_bd_base;
  297. if (fep->tx_free == fep->tx_ring)
  298. break;
  299. skb = fep->tx_skbuff[dirtyidx];
  300. /*
  301. * Check for errors.
  302. */
  303. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  304. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  305. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  306. fep->stats.tx_heartbeat_errors++;
  307. if (sc & BD_ENET_TX_LC) /* Late collision */
  308. fep->stats.tx_window_errors++;
  309. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  310. fep->stats.tx_aborted_errors++;
  311. if (sc & BD_ENET_TX_UN) /* Underrun */
  312. fep->stats.tx_fifo_errors++;
  313. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  314. fep->stats.tx_carrier_errors++;
  315. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  316. fep->stats.tx_errors++;
  317. do_restart = 1;
  318. }
  319. } else
  320. fep->stats.tx_packets++;
  321. if (sc & BD_ENET_TX_READY)
  322. printk(KERN_WARNING DRV_MODULE_NAME
  323. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  324. dev->name);
  325. /*
  326. * Deferred means some collisions occurred during transmit,
  327. * but we eventually sent the packet OK.
  328. */
  329. if (sc & BD_ENET_TX_DEF)
  330. fep->stats.collisions++;
  331. /* unmap */
  332. dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE);
  333. /*
  334. * Free the sk buffer associated with this last transmit.
  335. */
  336. dev_kfree_skb_irq(skb);
  337. fep->tx_skbuff[dirtyidx] = NULL;
  338. /*
  339. * Update pointer to next buffer descriptor to be transmitted.
  340. */
  341. if ((sc & BD_ENET_TX_WRAP) == 0)
  342. bdp++;
  343. else
  344. bdp = fep->tx_bd_base;
  345. /*
  346. * Since we have freed up a buffer, the ring is no longer
  347. * full.
  348. */
  349. if (!fep->tx_free++)
  350. do_wake = 1;
  351. }
  352. fep->dirty_tx = bdp;
  353. if (do_restart)
  354. (*fep->ops->tx_restart)(dev);
  355. spin_unlock(&fep->lock);
  356. if (do_wake)
  357. netif_wake_queue(dev);
  358. }
  359. /*
  360. * The interrupt handler.
  361. * This is called from the MPC core interrupt.
  362. */
  363. static irqreturn_t
  364. fs_enet_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  365. {
  366. struct net_device *dev = dev_id;
  367. struct fs_enet_private *fep;
  368. const struct fs_platform_info *fpi;
  369. u32 int_events;
  370. u32 int_clr_events;
  371. int nr, napi_ok;
  372. int handled;
  373. fep = netdev_priv(dev);
  374. fpi = fep->fpi;
  375. nr = 0;
  376. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  377. nr++;
  378. int_clr_events = int_events;
  379. if (fpi->use_napi)
  380. int_clr_events &= ~fep->ev_napi_rx;
  381. (*fep->ops->clear_int_events)(dev, int_clr_events);
  382. if (int_events & fep->ev_err)
  383. (*fep->ops->ev_error)(dev, int_events);
  384. if (int_events & fep->ev_rx) {
  385. if (!fpi->use_napi)
  386. fs_enet_rx_non_napi(dev);
  387. else {
  388. napi_ok = netif_rx_schedule_prep(dev);
  389. (*fep->ops->napi_disable_rx)(dev);
  390. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  391. /* NOTE: it is possible for FCCs in NAPI mode */
  392. /* to submit a spurious interrupt while in poll */
  393. if (napi_ok)
  394. __netif_rx_schedule(dev);
  395. }
  396. }
  397. if (int_events & fep->ev_tx)
  398. fs_enet_tx(dev);
  399. }
  400. handled = nr > 0;
  401. return IRQ_RETVAL(handled);
  402. }
  403. void fs_init_bds(struct net_device *dev)
  404. {
  405. struct fs_enet_private *fep = netdev_priv(dev);
  406. cbd_t *bdp;
  407. struct sk_buff *skb;
  408. int i;
  409. fs_cleanup_bds(dev);
  410. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  411. fep->tx_free = fep->tx_ring;
  412. fep->cur_rx = fep->rx_bd_base;
  413. /*
  414. * Initialize the receive buffer descriptors.
  415. */
  416. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  417. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  418. if (skb == NULL) {
  419. printk(KERN_WARNING DRV_MODULE_NAME
  420. ": %s Memory squeeze, unable to allocate skb\n",
  421. dev->name);
  422. break;
  423. }
  424. fep->rx_skbuff[i] = skb;
  425. skb->dev = dev;
  426. CBDW_BUFADDR(bdp,
  427. dma_map_single(fep->dev, skb->data,
  428. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  429. DMA_FROM_DEVICE));
  430. CBDW_DATLEN(bdp, 0); /* zero */
  431. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  432. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  433. }
  434. /*
  435. * if we failed, fillup remainder
  436. */
  437. for (; i < fep->rx_ring; i++, bdp++) {
  438. fep->rx_skbuff[i] = NULL;
  439. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  440. }
  441. /*
  442. * ...and the same for transmit.
  443. */
  444. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  445. fep->tx_skbuff[i] = NULL;
  446. CBDW_BUFADDR(bdp, 0);
  447. CBDW_DATLEN(bdp, 0);
  448. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  449. }
  450. }
  451. void fs_cleanup_bds(struct net_device *dev)
  452. {
  453. struct fs_enet_private *fep = netdev_priv(dev);
  454. struct sk_buff *skb;
  455. int i;
  456. /*
  457. * Reset SKB transmit buffers.
  458. */
  459. for (i = 0; i < fep->tx_ring; i++) {
  460. if ((skb = fep->tx_skbuff[i]) == NULL)
  461. continue;
  462. /* unmap */
  463. dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE);
  464. fep->tx_skbuff[i] = NULL;
  465. dev_kfree_skb(skb);
  466. }
  467. /*
  468. * Reset SKB receive buffers
  469. */
  470. for (i = 0; i < fep->rx_ring; i++) {
  471. if ((skb = fep->rx_skbuff[i]) == NULL)
  472. continue;
  473. /* unmap */
  474. dma_unmap_single(fep->dev, skb->data,
  475. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  476. DMA_FROM_DEVICE);
  477. fep->rx_skbuff[i] = NULL;
  478. dev_kfree_skb(skb);
  479. }
  480. }
  481. /**********************************************************************************/
  482. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  483. {
  484. struct fs_enet_private *fep = netdev_priv(dev);
  485. cbd_t *bdp;
  486. int curidx;
  487. u16 sc;
  488. unsigned long flags;
  489. spin_lock_irqsave(&fep->tx_lock, flags);
  490. /*
  491. * Fill in a Tx ring entry
  492. */
  493. bdp = fep->cur_tx;
  494. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  495. netif_stop_queue(dev);
  496. spin_unlock_irqrestore(&fep->tx_lock, flags);
  497. /*
  498. * Ooops. All transmit buffers are full. Bail out.
  499. * This should not happen, since the tx queue should be stopped.
  500. */
  501. printk(KERN_WARNING DRV_MODULE_NAME
  502. ": %s tx queue full!.\n", dev->name);
  503. return NETDEV_TX_BUSY;
  504. }
  505. curidx = bdp - fep->tx_bd_base;
  506. /*
  507. * Clear all of the status flags.
  508. */
  509. CBDC_SC(bdp, BD_ENET_TX_STATS);
  510. /*
  511. * Save skb pointer.
  512. */
  513. fep->tx_skbuff[curidx] = skb;
  514. fep->stats.tx_bytes += skb->len;
  515. /*
  516. * Push the data cache so the CPM does not get stale memory data.
  517. */
  518. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  519. skb->data, skb->len, DMA_TO_DEVICE));
  520. CBDW_DATLEN(bdp, skb->len);
  521. dev->trans_start = jiffies;
  522. /*
  523. * If this was the last BD in the ring, start at the beginning again.
  524. */
  525. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  526. fep->cur_tx++;
  527. else
  528. fep->cur_tx = fep->tx_bd_base;
  529. if (!--fep->tx_free)
  530. netif_stop_queue(dev);
  531. /* Trigger transmission start */
  532. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  533. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  534. /* note that while FEC does not have this bit
  535. * it marks it as available for software use
  536. * yay for hw reuse :) */
  537. if (skb->len <= 60)
  538. sc |= BD_ENET_TX_PAD;
  539. CBDS_SC(bdp, sc);
  540. (*fep->ops->tx_kickstart)(dev);
  541. spin_unlock_irqrestore(&fep->tx_lock, flags);
  542. return NETDEV_TX_OK;
  543. }
  544. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  545. irqreturn_t (*irqf)(int irq, void *dev_id, struct pt_regs *regs))
  546. {
  547. struct fs_enet_private *fep = netdev_priv(dev);
  548. (*fep->ops->pre_request_irq)(dev, irq);
  549. return request_irq(irq, irqf, SA_SHIRQ, name, dev);
  550. }
  551. static void fs_free_irq(struct net_device *dev, int irq)
  552. {
  553. struct fs_enet_private *fep = netdev_priv(dev);
  554. free_irq(irq, dev);
  555. (*fep->ops->post_free_irq)(dev, irq);
  556. }
  557. /**********************************************************************************/
  558. /* This interrupt occurs when the PHY detects a link change. */
  559. static irqreturn_t
  560. fs_mii_link_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  561. {
  562. struct net_device *dev = dev_id;
  563. struct fs_enet_private *fep;
  564. const struct fs_platform_info *fpi;
  565. fep = netdev_priv(dev);
  566. fpi = fep->fpi;
  567. /*
  568. * Acknowledge the interrupt if possible. If we have not
  569. * found the PHY yet we can't process or acknowledge the
  570. * interrupt now. Instead we ignore this interrupt for now,
  571. * which we can do since it is edge triggered. It will be
  572. * acknowledged later by fs_enet_open().
  573. */
  574. if (!fep->phy)
  575. return IRQ_NONE;
  576. fs_mii_ack_int(dev);
  577. fs_mii_link_status_change_check(dev, 0);
  578. return IRQ_HANDLED;
  579. }
  580. static void fs_timeout(struct net_device *dev)
  581. {
  582. struct fs_enet_private *fep = netdev_priv(dev);
  583. unsigned long flags;
  584. int wake = 0;
  585. fep->stats.tx_errors++;
  586. spin_lock_irqsave(&fep->lock, flags);
  587. if (dev->flags & IFF_UP) {
  588. (*fep->ops->stop)(dev);
  589. (*fep->ops->restart)(dev);
  590. }
  591. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  592. spin_unlock_irqrestore(&fep->lock, flags);
  593. if (wake)
  594. netif_wake_queue(dev);
  595. }
  596. static int fs_enet_open(struct net_device *dev)
  597. {
  598. struct fs_enet_private *fep = netdev_priv(dev);
  599. const struct fs_platform_info *fpi = fep->fpi;
  600. int r;
  601. /* Install our interrupt handler. */
  602. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  603. if (r != 0) {
  604. printk(KERN_ERR DRV_MODULE_NAME
  605. ": %s Could not allocate FEC IRQ!", dev->name);
  606. return -EINVAL;
  607. }
  608. /* Install our phy interrupt handler */
  609. if (fpi->phy_irq != -1) {
  610. r = fs_request_irq(dev, fpi->phy_irq, "fs_enet-phy", fs_mii_link_interrupt);
  611. if (r != 0) {
  612. printk(KERN_ERR DRV_MODULE_NAME
  613. ": %s Could not allocate PHY IRQ!", dev->name);
  614. fs_free_irq(dev, fep->interrupt);
  615. return -EINVAL;
  616. }
  617. }
  618. fs_mii_startup(dev);
  619. netif_carrier_off(dev);
  620. fs_mii_link_status_change_check(dev, 1);
  621. return 0;
  622. }
  623. static int fs_enet_close(struct net_device *dev)
  624. {
  625. struct fs_enet_private *fep = netdev_priv(dev);
  626. const struct fs_platform_info *fpi = fep->fpi;
  627. unsigned long flags;
  628. netif_stop_queue(dev);
  629. netif_carrier_off(dev);
  630. fs_mii_shutdown(dev);
  631. spin_lock_irqsave(&fep->lock, flags);
  632. (*fep->ops->stop)(dev);
  633. spin_unlock_irqrestore(&fep->lock, flags);
  634. /* release any irqs */
  635. if (fpi->phy_irq != -1)
  636. fs_free_irq(dev, fpi->phy_irq);
  637. fs_free_irq(dev, fep->interrupt);
  638. return 0;
  639. }
  640. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  641. {
  642. struct fs_enet_private *fep = netdev_priv(dev);
  643. return &fep->stats;
  644. }
  645. /*************************************************************************/
  646. static void fs_get_drvinfo(struct net_device *dev,
  647. struct ethtool_drvinfo *info)
  648. {
  649. strcpy(info->driver, DRV_MODULE_NAME);
  650. strcpy(info->version, DRV_MODULE_VERSION);
  651. }
  652. static int fs_get_regs_len(struct net_device *dev)
  653. {
  654. struct fs_enet_private *fep = netdev_priv(dev);
  655. return (*fep->ops->get_regs_len)(dev);
  656. }
  657. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  658. void *p)
  659. {
  660. struct fs_enet_private *fep = netdev_priv(dev);
  661. unsigned long flags;
  662. int r, len;
  663. len = regs->len;
  664. spin_lock_irqsave(&fep->lock, flags);
  665. r = (*fep->ops->get_regs)(dev, p, &len);
  666. spin_unlock_irqrestore(&fep->lock, flags);
  667. if (r == 0)
  668. regs->version = 0;
  669. }
  670. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  671. {
  672. struct fs_enet_private *fep = netdev_priv(dev);
  673. unsigned long flags;
  674. int rc;
  675. spin_lock_irqsave(&fep->lock, flags);
  676. rc = mii_ethtool_gset(&fep->mii_if, cmd);
  677. spin_unlock_irqrestore(&fep->lock, flags);
  678. return rc;
  679. }
  680. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  681. {
  682. struct fs_enet_private *fep = netdev_priv(dev);
  683. unsigned long flags;
  684. int rc;
  685. spin_lock_irqsave(&fep->lock, flags);
  686. rc = mii_ethtool_sset(&fep->mii_if, cmd);
  687. spin_unlock_irqrestore(&fep->lock, flags);
  688. return rc;
  689. }
  690. static int fs_nway_reset(struct net_device *dev)
  691. {
  692. struct fs_enet_private *fep = netdev_priv(dev);
  693. return mii_nway_restart(&fep->mii_if);
  694. }
  695. static u32 fs_get_msglevel(struct net_device *dev)
  696. {
  697. struct fs_enet_private *fep = netdev_priv(dev);
  698. return fep->msg_enable;
  699. }
  700. static void fs_set_msglevel(struct net_device *dev, u32 value)
  701. {
  702. struct fs_enet_private *fep = netdev_priv(dev);
  703. fep->msg_enable = value;
  704. }
  705. static struct ethtool_ops fs_ethtool_ops = {
  706. .get_drvinfo = fs_get_drvinfo,
  707. .get_regs_len = fs_get_regs_len,
  708. .get_settings = fs_get_settings,
  709. .set_settings = fs_set_settings,
  710. .nway_reset = fs_nway_reset,
  711. .get_link = ethtool_op_get_link,
  712. .get_msglevel = fs_get_msglevel,
  713. .set_msglevel = fs_set_msglevel,
  714. .get_tx_csum = ethtool_op_get_tx_csum,
  715. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  716. .get_sg = ethtool_op_get_sg,
  717. .set_sg = ethtool_op_set_sg,
  718. .get_regs = fs_get_regs,
  719. };
  720. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  721. {
  722. struct fs_enet_private *fep = netdev_priv(dev);
  723. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  724. unsigned long flags;
  725. int rc;
  726. if (!netif_running(dev))
  727. return -EINVAL;
  728. spin_lock_irqsave(&fep->lock, flags);
  729. rc = generic_mii_ioctl(&fep->mii_if, mii, cmd, NULL);
  730. spin_unlock_irqrestore(&fep->lock, flags);
  731. return rc;
  732. }
  733. extern int fs_mii_connect(struct net_device *dev);
  734. extern void fs_mii_disconnect(struct net_device *dev);
  735. static struct net_device *fs_init_instance(struct device *dev,
  736. const struct fs_platform_info *fpi)
  737. {
  738. struct net_device *ndev = NULL;
  739. struct fs_enet_private *fep = NULL;
  740. int privsize, i, r, err = 0, registered = 0;
  741. /* guard */
  742. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  743. return ERR_PTR(-EINVAL);
  744. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  745. (fpi->rx_ring + fpi->tx_ring));
  746. ndev = alloc_etherdev(privsize);
  747. if (!ndev) {
  748. err = -ENOMEM;
  749. goto err;
  750. }
  751. SET_MODULE_OWNER(ndev);
  752. fep = netdev_priv(ndev);
  753. memset(fep, 0, privsize); /* clear everything */
  754. fep->dev = dev;
  755. dev_set_drvdata(dev, ndev);
  756. fep->fpi = fpi;
  757. if (fpi->init_ioports)
  758. fpi->init_ioports();
  759. #ifdef CONFIG_FS_ENET_HAS_FEC
  760. if (fs_get_fec_index(fpi->fs_no) >= 0)
  761. fep->ops = &fs_fec_ops;
  762. #endif
  763. #ifdef CONFIG_FS_ENET_HAS_SCC
  764. if (fs_get_scc_index(fpi->fs_no) >=0 )
  765. fep->ops = &fs_scc_ops;
  766. #endif
  767. #ifdef CONFIG_FS_ENET_HAS_FCC
  768. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  769. fep->ops = &fs_fcc_ops;
  770. #endif
  771. if (fep->ops == NULL) {
  772. printk(KERN_ERR DRV_MODULE_NAME
  773. ": %s No matching ops found (%d).\n",
  774. ndev->name, fpi->fs_no);
  775. err = -EINVAL;
  776. goto err;
  777. }
  778. r = (*fep->ops->setup_data)(ndev);
  779. if (r != 0) {
  780. printk(KERN_ERR DRV_MODULE_NAME
  781. ": %s setup_data failed\n",
  782. ndev->name);
  783. err = r;
  784. goto err;
  785. }
  786. /* point rx_skbuff, tx_skbuff */
  787. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  788. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  789. /* init locks */
  790. spin_lock_init(&fep->lock);
  791. spin_lock_init(&fep->tx_lock);
  792. /*
  793. * Set the Ethernet address.
  794. */
  795. for (i = 0; i < 6; i++)
  796. ndev->dev_addr[i] = fpi->macaddr[i];
  797. r = (*fep->ops->allocate_bd)(ndev);
  798. if (fep->ring_base == NULL) {
  799. printk(KERN_ERR DRV_MODULE_NAME
  800. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  801. err = r;
  802. goto err;
  803. }
  804. /*
  805. * Set receive and transmit descriptor base.
  806. */
  807. fep->rx_bd_base = fep->ring_base;
  808. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  809. /* initialize ring size variables */
  810. fep->tx_ring = fpi->tx_ring;
  811. fep->rx_ring = fpi->rx_ring;
  812. /*
  813. * The FEC Ethernet specific entries in the device structure.
  814. */
  815. ndev->open = fs_enet_open;
  816. ndev->hard_start_xmit = fs_enet_start_xmit;
  817. ndev->tx_timeout = fs_timeout;
  818. ndev->watchdog_timeo = 2 * HZ;
  819. ndev->stop = fs_enet_close;
  820. ndev->get_stats = fs_enet_get_stats;
  821. ndev->set_multicast_list = fs_set_multicast_list;
  822. if (fpi->use_napi) {
  823. ndev->poll = fs_enet_rx_napi;
  824. ndev->weight = fpi->napi_weight;
  825. }
  826. ndev->ethtool_ops = &fs_ethtool_ops;
  827. ndev->do_ioctl = fs_ioctl;
  828. init_timer(&fep->phy_timer_list);
  829. netif_carrier_off(ndev);
  830. err = register_netdev(ndev);
  831. if (err != 0) {
  832. printk(KERN_ERR DRV_MODULE_NAME
  833. ": %s register_netdev failed.\n", ndev->name);
  834. goto err;
  835. }
  836. registered = 1;
  837. err = fs_mii_connect(ndev);
  838. if (err != 0) {
  839. printk(KERN_ERR DRV_MODULE_NAME
  840. ": %s fs_mii_connect failed.\n", ndev->name);
  841. goto err;
  842. }
  843. return ndev;
  844. err:
  845. if (ndev != NULL) {
  846. if (registered)
  847. unregister_netdev(ndev);
  848. if (fep != NULL) {
  849. (*fep->ops->free_bd)(ndev);
  850. (*fep->ops->cleanup_data)(ndev);
  851. }
  852. free_netdev(ndev);
  853. }
  854. dev_set_drvdata(dev, NULL);
  855. return ERR_PTR(err);
  856. }
  857. static int fs_cleanup_instance(struct net_device *ndev)
  858. {
  859. struct fs_enet_private *fep;
  860. const struct fs_platform_info *fpi;
  861. struct device *dev;
  862. if (ndev == NULL)
  863. return -EINVAL;
  864. fep = netdev_priv(ndev);
  865. if (fep == NULL)
  866. return -EINVAL;
  867. fpi = fep->fpi;
  868. fs_mii_disconnect(ndev);
  869. unregister_netdev(ndev);
  870. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  871. fep->ring_base, fep->ring_mem_addr);
  872. /* reset it */
  873. (*fep->ops->cleanup_data)(ndev);
  874. dev = fep->dev;
  875. if (dev != NULL) {
  876. dev_set_drvdata(dev, NULL);
  877. fep->dev = NULL;
  878. }
  879. free_netdev(ndev);
  880. return 0;
  881. }
  882. /**************************************************************************************/
  883. /* handy pointer to the immap */
  884. void *fs_enet_immap = NULL;
  885. static int setup_immap(void)
  886. {
  887. phys_addr_t paddr = 0;
  888. unsigned long size = 0;
  889. #ifdef CONFIG_CPM1
  890. paddr = IMAP_ADDR;
  891. size = 0x10000; /* map 64K */
  892. #endif
  893. #ifdef CONFIG_CPM2
  894. paddr = CPM_MAP_ADDR;
  895. size = 0x40000; /* map 256 K */
  896. #endif
  897. fs_enet_immap = ioremap(paddr, size);
  898. if (fs_enet_immap == NULL)
  899. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  900. return 0;
  901. }
  902. static void cleanup_immap(void)
  903. {
  904. if (fs_enet_immap != NULL) {
  905. iounmap(fs_enet_immap);
  906. fs_enet_immap = NULL;
  907. }
  908. }
  909. /**************************************************************************************/
  910. static int __devinit fs_enet_probe(struct device *dev)
  911. {
  912. struct net_device *ndev;
  913. /* no fixup - no device */
  914. if (dev->platform_data == NULL) {
  915. printk(KERN_INFO "fs_enet: "
  916. "probe called with no platform data; "
  917. "remove unused devices\n");
  918. return -ENODEV;
  919. }
  920. ndev = fs_init_instance(dev, dev->platform_data);
  921. if (IS_ERR(ndev))
  922. return PTR_ERR(ndev);
  923. return 0;
  924. }
  925. static int fs_enet_remove(struct device *dev)
  926. {
  927. return fs_cleanup_instance(dev_get_drvdata(dev));
  928. }
  929. static struct device_driver fs_enet_fec_driver = {
  930. .name = "fsl-cpm-fec",
  931. .bus = &platform_bus_type,
  932. .probe = fs_enet_probe,
  933. .remove = fs_enet_remove,
  934. #ifdef CONFIG_PM
  935. /* .suspend = fs_enet_suspend, TODO */
  936. /* .resume = fs_enet_resume, TODO */
  937. #endif
  938. };
  939. static struct device_driver fs_enet_scc_driver = {
  940. .name = "fsl-cpm-scc",
  941. .bus = &platform_bus_type,
  942. .probe = fs_enet_probe,
  943. .remove = fs_enet_remove,
  944. #ifdef CONFIG_PM
  945. /* .suspend = fs_enet_suspend, TODO */
  946. /* .resume = fs_enet_resume, TODO */
  947. #endif
  948. };
  949. static struct device_driver fs_enet_fcc_driver = {
  950. .name = "fsl-cpm-fcc",
  951. .bus = &platform_bus_type,
  952. .probe = fs_enet_probe,
  953. .remove = fs_enet_remove,
  954. #ifdef CONFIG_PM
  955. /* .suspend = fs_enet_suspend, TODO */
  956. /* .resume = fs_enet_resume, TODO */
  957. #endif
  958. };
  959. static int __init fs_init(void)
  960. {
  961. int r;
  962. printk(KERN_INFO
  963. "%s", version);
  964. r = setup_immap();
  965. if (r != 0)
  966. return r;
  967. r = driver_register(&fs_enet_fec_driver);
  968. if (r != 0)
  969. goto err;
  970. r = driver_register(&fs_enet_fcc_driver);
  971. if (r != 0)
  972. goto err;
  973. r = driver_register(&fs_enet_scc_driver);
  974. if (r != 0)
  975. goto err;
  976. return 0;
  977. err:
  978. cleanup_immap();
  979. return r;
  980. }
  981. static void __exit fs_cleanup(void)
  982. {
  983. driver_unregister(&fs_enet_fec_driver);
  984. driver_unregister(&fs_enet_fcc_driver);
  985. driver_unregister(&fs_enet_scc_driver);
  986. cleanup_immap();
  987. }
  988. /**************************************************************************************/
  989. module_init(fs_init);
  990. module_exit(fs_cleanup);