cfq-iosched.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queus average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. };
  190. /*
  191. * Per block device queue structure
  192. */
  193. struct cfq_data {
  194. struct request_queue *queue;
  195. /* Root service tree for cfq_groups */
  196. struct cfq_rb_root grp_service_tree;
  197. struct cfq_group root_group;
  198. /*
  199. * The priority currently being served
  200. */
  201. enum wl_prio_t serving_prio;
  202. enum wl_type_t serving_type;
  203. unsigned long workload_expires;
  204. struct cfq_group *serving_group;
  205. /*
  206. * Each priority tree is sorted by next_request position. These
  207. * trees are used when determining if two or more queues are
  208. * interleaving requests (see cfq_close_cooperator).
  209. */
  210. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  211. unsigned int busy_queues;
  212. unsigned int busy_sync_queues;
  213. int rq_in_driver;
  214. int rq_in_flight[2];
  215. /*
  216. * queue-depth detection
  217. */
  218. int rq_queued;
  219. int hw_tag;
  220. /*
  221. * hw_tag can be
  222. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  223. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  224. * 0 => no NCQ
  225. */
  226. int hw_tag_est_depth;
  227. unsigned int hw_tag_samples;
  228. /*
  229. * idle window management
  230. */
  231. struct timer_list idle_slice_timer;
  232. struct work_struct unplug_work;
  233. struct cfq_queue *active_queue;
  234. struct cfq_io_context *active_cic;
  235. /*
  236. * async queue for each priority case
  237. */
  238. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  239. struct cfq_queue *async_idle_cfqq;
  240. sector_t last_position;
  241. /*
  242. * tunables, see top of file
  243. */
  244. unsigned int cfq_quantum;
  245. unsigned int cfq_fifo_expire[2];
  246. unsigned int cfq_back_penalty;
  247. unsigned int cfq_back_max;
  248. unsigned int cfq_slice[2];
  249. unsigned int cfq_slice_async_rq;
  250. unsigned int cfq_slice_idle;
  251. unsigned int cfq_group_idle;
  252. unsigned int cfq_latency;
  253. unsigned int cic_index;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. struct rcu_head rcu;
  263. };
  264. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  265. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  266. enum wl_prio_t prio,
  267. enum wl_type_t type)
  268. {
  269. if (!cfqg)
  270. return NULL;
  271. if (prio == IDLE_WORKLOAD)
  272. return &cfqg->service_tree_idle;
  273. return &cfqg->service_trees[prio][type];
  274. }
  275. enum cfqq_state_flags {
  276. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  277. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  278. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  279. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  280. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  281. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  282. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  283. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  284. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  285. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  286. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  287. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  288. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  289. };
  290. #define CFQ_CFQQ_FNS(name) \
  291. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  292. { \
  293. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  294. } \
  295. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  296. { \
  297. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  298. } \
  299. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  300. { \
  301. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  302. }
  303. CFQ_CFQQ_FNS(on_rr);
  304. CFQ_CFQQ_FNS(wait_request);
  305. CFQ_CFQQ_FNS(must_dispatch);
  306. CFQ_CFQQ_FNS(must_alloc_slice);
  307. CFQ_CFQQ_FNS(fifo_expire);
  308. CFQ_CFQQ_FNS(idle_window);
  309. CFQ_CFQQ_FNS(prio_changed);
  310. CFQ_CFQQ_FNS(slice_new);
  311. CFQ_CFQQ_FNS(sync);
  312. CFQ_CFQQ_FNS(coop);
  313. CFQ_CFQQ_FNS(split_coop);
  314. CFQ_CFQQ_FNS(deep);
  315. CFQ_CFQQ_FNS(wait_busy);
  316. #undef CFQ_CFQQ_FNS
  317. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  318. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  319. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  320. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  321. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  322. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  323. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  324. blkg_path(&(cfqg)->blkg), ##args); \
  325. #else
  326. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  327. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  328. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  329. #endif
  330. #define cfq_log(cfqd, fmt, args...) \
  331. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  332. /* Traverses through cfq group service trees */
  333. #define for_each_cfqg_st(cfqg, i, j, st) \
  334. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  335. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  336. : &cfqg->service_tree_idle; \
  337. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  338. (i == IDLE_WORKLOAD && j == 0); \
  339. j++, st = i < IDLE_WORKLOAD ? \
  340. &cfqg->service_trees[i][j]: NULL) \
  341. static inline bool iops_mode(struct cfq_data *cfqd)
  342. {
  343. /*
  344. * If we are not idling on queues and it is a NCQ drive, parallel
  345. * execution of requests is on and measuring time is not possible
  346. * in most of the cases until and unless we drive shallower queue
  347. * depths and that becomes a performance bottleneck. In such cases
  348. * switch to start providing fairness in terms of number of IOs.
  349. */
  350. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  351. return true;
  352. else
  353. return false;
  354. }
  355. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  356. {
  357. if (cfq_class_idle(cfqq))
  358. return IDLE_WORKLOAD;
  359. if (cfq_class_rt(cfqq))
  360. return RT_WORKLOAD;
  361. return BE_WORKLOAD;
  362. }
  363. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  364. {
  365. if (!cfq_cfqq_sync(cfqq))
  366. return ASYNC_WORKLOAD;
  367. if (!cfq_cfqq_idle_window(cfqq))
  368. return SYNC_NOIDLE_WORKLOAD;
  369. return SYNC_WORKLOAD;
  370. }
  371. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  372. struct cfq_data *cfqd,
  373. struct cfq_group *cfqg)
  374. {
  375. if (wl == IDLE_WORKLOAD)
  376. return cfqg->service_tree_idle.count;
  377. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  378. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  379. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  380. }
  381. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  382. struct cfq_group *cfqg)
  383. {
  384. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  385. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  386. }
  387. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  388. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  389. struct io_context *, gfp_t);
  390. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  391. struct io_context *);
  392. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  393. bool is_sync)
  394. {
  395. return cic->cfqq[is_sync];
  396. }
  397. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  398. struct cfq_queue *cfqq, bool is_sync)
  399. {
  400. cic->cfqq[is_sync] = cfqq;
  401. }
  402. #define CIC_DEAD_KEY 1ul
  403. #define CIC_DEAD_INDEX_SHIFT 1
  404. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  405. {
  406. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  407. }
  408. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  409. {
  410. struct cfq_data *cfqd = cic->key;
  411. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  412. return NULL;
  413. return cfqd;
  414. }
  415. /*
  416. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  417. * set (in which case it could also be direct WRITE).
  418. */
  419. static inline bool cfq_bio_sync(struct bio *bio)
  420. {
  421. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  422. }
  423. /*
  424. * scheduler run of queue, if there are requests pending and no one in the
  425. * driver that will restart queueing
  426. */
  427. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  428. {
  429. if (cfqd->busy_queues) {
  430. cfq_log(cfqd, "schedule dispatch");
  431. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  432. }
  433. }
  434. /*
  435. * Scale schedule slice based on io priority. Use the sync time slice only
  436. * if a queue is marked sync and has sync io queued. A sync queue with async
  437. * io only, should not get full sync slice length.
  438. */
  439. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  440. unsigned short prio)
  441. {
  442. const int base_slice = cfqd->cfq_slice[sync];
  443. WARN_ON(prio >= IOPRIO_BE_NR);
  444. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  445. }
  446. static inline int
  447. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  448. {
  449. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  450. }
  451. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  452. {
  453. u64 d = delta << CFQ_SERVICE_SHIFT;
  454. d = d * BLKIO_WEIGHT_DEFAULT;
  455. do_div(d, cfqg->weight);
  456. return d;
  457. }
  458. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  459. {
  460. s64 delta = (s64)(vdisktime - min_vdisktime);
  461. if (delta > 0)
  462. min_vdisktime = vdisktime;
  463. return min_vdisktime;
  464. }
  465. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  466. {
  467. s64 delta = (s64)(vdisktime - min_vdisktime);
  468. if (delta < 0)
  469. min_vdisktime = vdisktime;
  470. return min_vdisktime;
  471. }
  472. static void update_min_vdisktime(struct cfq_rb_root *st)
  473. {
  474. struct cfq_group *cfqg;
  475. if (st->left) {
  476. cfqg = rb_entry_cfqg(st->left);
  477. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  478. cfqg->vdisktime);
  479. }
  480. }
  481. /*
  482. * get averaged number of queues of RT/BE priority.
  483. * average is updated, with a formula that gives more weight to higher numbers,
  484. * to quickly follows sudden increases and decrease slowly
  485. */
  486. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  487. struct cfq_group *cfqg, bool rt)
  488. {
  489. unsigned min_q, max_q;
  490. unsigned mult = cfq_hist_divisor - 1;
  491. unsigned round = cfq_hist_divisor / 2;
  492. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  493. min_q = min(cfqg->busy_queues_avg[rt], busy);
  494. max_q = max(cfqg->busy_queues_avg[rt], busy);
  495. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  496. cfq_hist_divisor;
  497. return cfqg->busy_queues_avg[rt];
  498. }
  499. static inline unsigned
  500. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  501. {
  502. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  503. return cfq_target_latency * cfqg->weight / st->total_weight;
  504. }
  505. static inline unsigned
  506. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  507. {
  508. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  509. if (cfqd->cfq_latency) {
  510. /*
  511. * interested queues (we consider only the ones with the same
  512. * priority class in the cfq group)
  513. */
  514. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  515. cfq_class_rt(cfqq));
  516. unsigned sync_slice = cfqd->cfq_slice[1];
  517. unsigned expect_latency = sync_slice * iq;
  518. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  519. if (expect_latency > group_slice) {
  520. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  521. /* scale low_slice according to IO priority
  522. * and sync vs async */
  523. unsigned low_slice =
  524. min(slice, base_low_slice * slice / sync_slice);
  525. /* the adapted slice value is scaled to fit all iqs
  526. * into the target latency */
  527. slice = max(slice * group_slice / expect_latency,
  528. low_slice);
  529. }
  530. }
  531. return slice;
  532. }
  533. static inline void
  534. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  535. {
  536. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  537. cfqq->slice_start = jiffies;
  538. cfqq->slice_end = jiffies + slice;
  539. cfqq->allocated_slice = slice;
  540. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  541. }
  542. /*
  543. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  544. * isn't valid until the first request from the dispatch is activated
  545. * and the slice time set.
  546. */
  547. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  548. {
  549. if (cfq_cfqq_slice_new(cfqq))
  550. return false;
  551. if (time_before(jiffies, cfqq->slice_end))
  552. return false;
  553. return true;
  554. }
  555. /*
  556. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  557. * We choose the request that is closest to the head right now. Distance
  558. * behind the head is penalized and only allowed to a certain extent.
  559. */
  560. static struct request *
  561. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  562. {
  563. sector_t s1, s2, d1 = 0, d2 = 0;
  564. unsigned long back_max;
  565. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  566. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  567. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  568. if (rq1 == NULL || rq1 == rq2)
  569. return rq2;
  570. if (rq2 == NULL)
  571. return rq1;
  572. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  573. return rq1;
  574. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  575. return rq2;
  576. if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
  577. return rq1;
  578. else if ((rq2->cmd_flags & REQ_META) &&
  579. !(rq1->cmd_flags & REQ_META))
  580. return rq2;
  581. s1 = blk_rq_pos(rq1);
  582. s2 = blk_rq_pos(rq2);
  583. /*
  584. * by definition, 1KiB is 2 sectors
  585. */
  586. back_max = cfqd->cfq_back_max * 2;
  587. /*
  588. * Strict one way elevator _except_ in the case where we allow
  589. * short backward seeks which are biased as twice the cost of a
  590. * similar forward seek.
  591. */
  592. if (s1 >= last)
  593. d1 = s1 - last;
  594. else if (s1 + back_max >= last)
  595. d1 = (last - s1) * cfqd->cfq_back_penalty;
  596. else
  597. wrap |= CFQ_RQ1_WRAP;
  598. if (s2 >= last)
  599. d2 = s2 - last;
  600. else if (s2 + back_max >= last)
  601. d2 = (last - s2) * cfqd->cfq_back_penalty;
  602. else
  603. wrap |= CFQ_RQ2_WRAP;
  604. /* Found required data */
  605. /*
  606. * By doing switch() on the bit mask "wrap" we avoid having to
  607. * check two variables for all permutations: --> faster!
  608. */
  609. switch (wrap) {
  610. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  611. if (d1 < d2)
  612. return rq1;
  613. else if (d2 < d1)
  614. return rq2;
  615. else {
  616. if (s1 >= s2)
  617. return rq1;
  618. else
  619. return rq2;
  620. }
  621. case CFQ_RQ2_WRAP:
  622. return rq1;
  623. case CFQ_RQ1_WRAP:
  624. return rq2;
  625. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  626. default:
  627. /*
  628. * Since both rqs are wrapped,
  629. * start with the one that's further behind head
  630. * (--> only *one* back seek required),
  631. * since back seek takes more time than forward.
  632. */
  633. if (s1 <= s2)
  634. return rq1;
  635. else
  636. return rq2;
  637. }
  638. }
  639. /*
  640. * The below is leftmost cache rbtree addon
  641. */
  642. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  643. {
  644. /* Service tree is empty */
  645. if (!root->count)
  646. return NULL;
  647. if (!root->left)
  648. root->left = rb_first(&root->rb);
  649. if (root->left)
  650. return rb_entry(root->left, struct cfq_queue, rb_node);
  651. return NULL;
  652. }
  653. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  654. {
  655. if (!root->left)
  656. root->left = rb_first(&root->rb);
  657. if (root->left)
  658. return rb_entry_cfqg(root->left);
  659. return NULL;
  660. }
  661. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  662. {
  663. rb_erase(n, root);
  664. RB_CLEAR_NODE(n);
  665. }
  666. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  667. {
  668. if (root->left == n)
  669. root->left = NULL;
  670. rb_erase_init(n, &root->rb);
  671. --root->count;
  672. }
  673. /*
  674. * would be nice to take fifo expire time into account as well
  675. */
  676. static struct request *
  677. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  678. struct request *last)
  679. {
  680. struct rb_node *rbnext = rb_next(&last->rb_node);
  681. struct rb_node *rbprev = rb_prev(&last->rb_node);
  682. struct request *next = NULL, *prev = NULL;
  683. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  684. if (rbprev)
  685. prev = rb_entry_rq(rbprev);
  686. if (rbnext)
  687. next = rb_entry_rq(rbnext);
  688. else {
  689. rbnext = rb_first(&cfqq->sort_list);
  690. if (rbnext && rbnext != &last->rb_node)
  691. next = rb_entry_rq(rbnext);
  692. }
  693. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  694. }
  695. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  696. struct cfq_queue *cfqq)
  697. {
  698. /*
  699. * just an approximation, should be ok.
  700. */
  701. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  702. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  703. }
  704. static inline s64
  705. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  706. {
  707. return cfqg->vdisktime - st->min_vdisktime;
  708. }
  709. static void
  710. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  711. {
  712. struct rb_node **node = &st->rb.rb_node;
  713. struct rb_node *parent = NULL;
  714. struct cfq_group *__cfqg;
  715. s64 key = cfqg_key(st, cfqg);
  716. int left = 1;
  717. while (*node != NULL) {
  718. parent = *node;
  719. __cfqg = rb_entry_cfqg(parent);
  720. if (key < cfqg_key(st, __cfqg))
  721. node = &parent->rb_left;
  722. else {
  723. node = &parent->rb_right;
  724. left = 0;
  725. }
  726. }
  727. if (left)
  728. st->left = &cfqg->rb_node;
  729. rb_link_node(&cfqg->rb_node, parent, node);
  730. rb_insert_color(&cfqg->rb_node, &st->rb);
  731. }
  732. static void
  733. cfq_update_group_weight(struct cfq_group *cfqg)
  734. {
  735. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  736. if (cfqg->needs_update) {
  737. cfqg->weight = cfqg->new_weight;
  738. cfqg->needs_update = false;
  739. }
  740. }
  741. static void
  742. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  743. {
  744. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  745. cfq_update_group_weight(cfqg);
  746. __cfq_group_service_tree_add(st, cfqg);
  747. st->total_weight += cfqg->weight;
  748. }
  749. static void
  750. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  751. {
  752. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  753. struct cfq_group *__cfqg;
  754. struct rb_node *n;
  755. cfqg->nr_cfqq++;
  756. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  757. return;
  758. /*
  759. * Currently put the group at the end. Later implement something
  760. * so that groups get lesser vtime based on their weights, so that
  761. * if group does not loose all if it was not continously backlogged.
  762. */
  763. n = rb_last(&st->rb);
  764. if (n) {
  765. __cfqg = rb_entry_cfqg(n);
  766. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  767. } else
  768. cfqg->vdisktime = st->min_vdisktime;
  769. cfq_group_service_tree_add(st, cfqg);
  770. }
  771. static void
  772. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  773. {
  774. st->total_weight -= cfqg->weight;
  775. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  776. cfq_rb_erase(&cfqg->rb_node, st);
  777. }
  778. static void
  779. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  780. {
  781. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  782. BUG_ON(cfqg->nr_cfqq < 1);
  783. cfqg->nr_cfqq--;
  784. /* If there are other cfq queues under this group, don't delete it */
  785. if (cfqg->nr_cfqq)
  786. return;
  787. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  788. cfq_group_service_tree_del(st, cfqg);
  789. cfqg->saved_workload_slice = 0;
  790. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  791. }
  792. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  793. unsigned int *unaccounted_time)
  794. {
  795. unsigned int slice_used;
  796. /*
  797. * Queue got expired before even a single request completed or
  798. * got expired immediately after first request completion.
  799. */
  800. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  801. /*
  802. * Also charge the seek time incurred to the group, otherwise
  803. * if there are mutiple queues in the group, each can dispatch
  804. * a single request on seeky media and cause lots of seek time
  805. * and group will never know it.
  806. */
  807. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  808. 1);
  809. } else {
  810. slice_used = jiffies - cfqq->slice_start;
  811. if (slice_used > cfqq->allocated_slice) {
  812. *unaccounted_time = slice_used - cfqq->allocated_slice;
  813. slice_used = cfqq->allocated_slice;
  814. }
  815. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  816. *unaccounted_time += cfqq->slice_start -
  817. cfqq->dispatch_start;
  818. }
  819. return slice_used;
  820. }
  821. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  822. struct cfq_queue *cfqq)
  823. {
  824. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  825. unsigned int used_sl, charge, unaccounted_sl = 0;
  826. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  827. - cfqg->service_tree_idle.count;
  828. BUG_ON(nr_sync < 0);
  829. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  830. if (iops_mode(cfqd))
  831. charge = cfqq->slice_dispatch;
  832. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  833. charge = cfqq->allocated_slice;
  834. /* Can't update vdisktime while group is on service tree */
  835. cfq_group_service_tree_del(st, cfqg);
  836. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  837. /* If a new weight was requested, update now, off tree */
  838. cfq_group_service_tree_add(st, cfqg);
  839. /* This group is being expired. Save the context */
  840. if (time_after(cfqd->workload_expires, jiffies)) {
  841. cfqg->saved_workload_slice = cfqd->workload_expires
  842. - jiffies;
  843. cfqg->saved_workload = cfqd->serving_type;
  844. cfqg->saved_serving_prio = cfqd->serving_prio;
  845. } else
  846. cfqg->saved_workload_slice = 0;
  847. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  848. st->min_vdisktime);
  849. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
  850. " sect=%u", used_sl, cfqq->slice_dispatch, charge,
  851. iops_mode(cfqd), cfqq->nr_sectors);
  852. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  853. unaccounted_sl);
  854. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  855. }
  856. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  857. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  858. {
  859. if (blkg)
  860. return container_of(blkg, struct cfq_group, blkg);
  861. return NULL;
  862. }
  863. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  864. unsigned int weight)
  865. {
  866. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  867. cfqg->new_weight = weight;
  868. cfqg->needs_update = true;
  869. }
  870. static struct cfq_group *
  871. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  872. {
  873. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  874. struct cfq_group *cfqg = NULL;
  875. void *key = cfqd;
  876. int i, j;
  877. struct cfq_rb_root *st;
  878. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  879. unsigned int major, minor;
  880. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  881. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  882. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  883. cfqg->blkg.dev = MKDEV(major, minor);
  884. goto done;
  885. }
  886. if (cfqg || !create)
  887. goto done;
  888. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  889. if (!cfqg)
  890. goto done;
  891. for_each_cfqg_st(cfqg, i, j, st)
  892. *st = CFQ_RB_ROOT;
  893. RB_CLEAR_NODE(&cfqg->rb_node);
  894. /*
  895. * Take the initial reference that will be released on destroy
  896. * This can be thought of a joint reference by cgroup and
  897. * elevator which will be dropped by either elevator exit
  898. * or cgroup deletion path depending on who is exiting first.
  899. */
  900. cfqg->ref = 1;
  901. /*
  902. * Add group onto cgroup list. It might happen that bdi->dev is
  903. * not initialized yet. Initialize this new group without major
  904. * and minor info and this info will be filled in once a new thread
  905. * comes for IO. See code above.
  906. */
  907. if (bdi->dev) {
  908. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  909. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  910. MKDEV(major, minor));
  911. } else
  912. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  913. 0);
  914. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  915. /* Add group on cfqd list */
  916. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  917. done:
  918. return cfqg;
  919. }
  920. /*
  921. * Search for the cfq group current task belongs to. If create = 1, then also
  922. * create the cfq group if it does not exist. request_queue lock must be held.
  923. */
  924. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  925. {
  926. struct cgroup *cgroup;
  927. struct cfq_group *cfqg = NULL;
  928. rcu_read_lock();
  929. cgroup = task_cgroup(current, blkio_subsys_id);
  930. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  931. if (!cfqg && create)
  932. cfqg = &cfqd->root_group;
  933. rcu_read_unlock();
  934. return cfqg;
  935. }
  936. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  937. {
  938. cfqg->ref++;
  939. return cfqg;
  940. }
  941. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  942. {
  943. /* Currently, all async queues are mapped to root group */
  944. if (!cfq_cfqq_sync(cfqq))
  945. cfqg = &cfqq->cfqd->root_group;
  946. cfqq->cfqg = cfqg;
  947. /* cfqq reference on cfqg */
  948. cfqq->cfqg->ref++;
  949. }
  950. static void cfq_put_cfqg(struct cfq_group *cfqg)
  951. {
  952. struct cfq_rb_root *st;
  953. int i, j;
  954. BUG_ON(cfqg->ref <= 0);
  955. cfqg->ref--;
  956. if (cfqg->ref)
  957. return;
  958. for_each_cfqg_st(cfqg, i, j, st)
  959. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  960. kfree(cfqg);
  961. }
  962. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  963. {
  964. /* Something wrong if we are trying to remove same group twice */
  965. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  966. hlist_del_init(&cfqg->cfqd_node);
  967. /*
  968. * Put the reference taken at the time of creation so that when all
  969. * queues are gone, group can be destroyed.
  970. */
  971. cfq_put_cfqg(cfqg);
  972. }
  973. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  974. {
  975. struct hlist_node *pos, *n;
  976. struct cfq_group *cfqg;
  977. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  978. /*
  979. * If cgroup removal path got to blk_group first and removed
  980. * it from cgroup list, then it will take care of destroying
  981. * cfqg also.
  982. */
  983. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  984. cfq_destroy_cfqg(cfqd, cfqg);
  985. }
  986. }
  987. /*
  988. * Blk cgroup controller notification saying that blkio_group object is being
  989. * delinked as associated cgroup object is going away. That also means that
  990. * no new IO will come in this group. So get rid of this group as soon as
  991. * any pending IO in the group is finished.
  992. *
  993. * This function is called under rcu_read_lock(). key is the rcu protected
  994. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  995. * read lock.
  996. *
  997. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  998. * it should not be NULL as even if elevator was exiting, cgroup deltion
  999. * path got to it first.
  1000. */
  1001. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1002. {
  1003. unsigned long flags;
  1004. struct cfq_data *cfqd = key;
  1005. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1006. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1007. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1008. }
  1009. #else /* GROUP_IOSCHED */
  1010. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  1011. {
  1012. return &cfqd->root_group;
  1013. }
  1014. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1015. {
  1016. return cfqg;
  1017. }
  1018. static inline void
  1019. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1020. cfqq->cfqg = cfqg;
  1021. }
  1022. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1023. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1024. #endif /* GROUP_IOSCHED */
  1025. /*
  1026. * The cfqd->service_trees holds all pending cfq_queue's that have
  1027. * requests waiting to be processed. It is sorted in the order that
  1028. * we will service the queues.
  1029. */
  1030. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1031. bool add_front)
  1032. {
  1033. struct rb_node **p, *parent;
  1034. struct cfq_queue *__cfqq;
  1035. unsigned long rb_key;
  1036. struct cfq_rb_root *service_tree;
  1037. int left;
  1038. int new_cfqq = 1;
  1039. int group_changed = 0;
  1040. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1041. cfqq_type(cfqq));
  1042. if (cfq_class_idle(cfqq)) {
  1043. rb_key = CFQ_IDLE_DELAY;
  1044. parent = rb_last(&service_tree->rb);
  1045. if (parent && parent != &cfqq->rb_node) {
  1046. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1047. rb_key += __cfqq->rb_key;
  1048. } else
  1049. rb_key += jiffies;
  1050. } else if (!add_front) {
  1051. /*
  1052. * Get our rb key offset. Subtract any residual slice
  1053. * value carried from last service. A negative resid
  1054. * count indicates slice overrun, and this should position
  1055. * the next service time further away in the tree.
  1056. */
  1057. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1058. rb_key -= cfqq->slice_resid;
  1059. cfqq->slice_resid = 0;
  1060. } else {
  1061. rb_key = -HZ;
  1062. __cfqq = cfq_rb_first(service_tree);
  1063. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1064. }
  1065. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1066. new_cfqq = 0;
  1067. /*
  1068. * same position, nothing more to do
  1069. */
  1070. if (rb_key == cfqq->rb_key &&
  1071. cfqq->service_tree == service_tree)
  1072. return;
  1073. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1074. cfqq->service_tree = NULL;
  1075. }
  1076. left = 1;
  1077. parent = NULL;
  1078. cfqq->service_tree = service_tree;
  1079. p = &service_tree->rb.rb_node;
  1080. while (*p) {
  1081. struct rb_node **n;
  1082. parent = *p;
  1083. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1084. /*
  1085. * sort by key, that represents service time.
  1086. */
  1087. if (time_before(rb_key, __cfqq->rb_key))
  1088. n = &(*p)->rb_left;
  1089. else {
  1090. n = &(*p)->rb_right;
  1091. left = 0;
  1092. }
  1093. p = n;
  1094. }
  1095. if (left)
  1096. service_tree->left = &cfqq->rb_node;
  1097. cfqq->rb_key = rb_key;
  1098. rb_link_node(&cfqq->rb_node, parent, p);
  1099. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1100. service_tree->count++;
  1101. if ((add_front || !new_cfqq) && !group_changed)
  1102. return;
  1103. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1104. }
  1105. static struct cfq_queue *
  1106. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1107. sector_t sector, struct rb_node **ret_parent,
  1108. struct rb_node ***rb_link)
  1109. {
  1110. struct rb_node **p, *parent;
  1111. struct cfq_queue *cfqq = NULL;
  1112. parent = NULL;
  1113. p = &root->rb_node;
  1114. while (*p) {
  1115. struct rb_node **n;
  1116. parent = *p;
  1117. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1118. /*
  1119. * Sort strictly based on sector. Smallest to the left,
  1120. * largest to the right.
  1121. */
  1122. if (sector > blk_rq_pos(cfqq->next_rq))
  1123. n = &(*p)->rb_right;
  1124. else if (sector < blk_rq_pos(cfqq->next_rq))
  1125. n = &(*p)->rb_left;
  1126. else
  1127. break;
  1128. p = n;
  1129. cfqq = NULL;
  1130. }
  1131. *ret_parent = parent;
  1132. if (rb_link)
  1133. *rb_link = p;
  1134. return cfqq;
  1135. }
  1136. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1137. {
  1138. struct rb_node **p, *parent;
  1139. struct cfq_queue *__cfqq;
  1140. if (cfqq->p_root) {
  1141. rb_erase(&cfqq->p_node, cfqq->p_root);
  1142. cfqq->p_root = NULL;
  1143. }
  1144. if (cfq_class_idle(cfqq))
  1145. return;
  1146. if (!cfqq->next_rq)
  1147. return;
  1148. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1149. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1150. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1151. if (!__cfqq) {
  1152. rb_link_node(&cfqq->p_node, parent, p);
  1153. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1154. } else
  1155. cfqq->p_root = NULL;
  1156. }
  1157. /*
  1158. * Update cfqq's position in the service tree.
  1159. */
  1160. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1161. {
  1162. /*
  1163. * Resorting requires the cfqq to be on the RR list already.
  1164. */
  1165. if (cfq_cfqq_on_rr(cfqq)) {
  1166. cfq_service_tree_add(cfqd, cfqq, 0);
  1167. cfq_prio_tree_add(cfqd, cfqq);
  1168. }
  1169. }
  1170. /*
  1171. * add to busy list of queues for service, trying to be fair in ordering
  1172. * the pending list according to last request service
  1173. */
  1174. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1175. {
  1176. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1177. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1178. cfq_mark_cfqq_on_rr(cfqq);
  1179. cfqd->busy_queues++;
  1180. if (cfq_cfqq_sync(cfqq))
  1181. cfqd->busy_sync_queues++;
  1182. cfq_resort_rr_list(cfqd, cfqq);
  1183. }
  1184. /*
  1185. * Called when the cfqq no longer has requests pending, remove it from
  1186. * the service tree.
  1187. */
  1188. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1189. {
  1190. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1191. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1192. cfq_clear_cfqq_on_rr(cfqq);
  1193. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1194. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1195. cfqq->service_tree = NULL;
  1196. }
  1197. if (cfqq->p_root) {
  1198. rb_erase(&cfqq->p_node, cfqq->p_root);
  1199. cfqq->p_root = NULL;
  1200. }
  1201. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1202. BUG_ON(!cfqd->busy_queues);
  1203. cfqd->busy_queues--;
  1204. if (cfq_cfqq_sync(cfqq))
  1205. cfqd->busy_sync_queues--;
  1206. }
  1207. /*
  1208. * rb tree support functions
  1209. */
  1210. static void cfq_del_rq_rb(struct request *rq)
  1211. {
  1212. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1213. const int sync = rq_is_sync(rq);
  1214. BUG_ON(!cfqq->queued[sync]);
  1215. cfqq->queued[sync]--;
  1216. elv_rb_del(&cfqq->sort_list, rq);
  1217. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1218. /*
  1219. * Queue will be deleted from service tree when we actually
  1220. * expire it later. Right now just remove it from prio tree
  1221. * as it is empty.
  1222. */
  1223. if (cfqq->p_root) {
  1224. rb_erase(&cfqq->p_node, cfqq->p_root);
  1225. cfqq->p_root = NULL;
  1226. }
  1227. }
  1228. }
  1229. static void cfq_add_rq_rb(struct request *rq)
  1230. {
  1231. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1232. struct cfq_data *cfqd = cfqq->cfqd;
  1233. struct request *__alias, *prev;
  1234. cfqq->queued[rq_is_sync(rq)]++;
  1235. /*
  1236. * looks a little odd, but the first insert might return an alias.
  1237. * if that happens, put the alias on the dispatch list
  1238. */
  1239. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1240. cfq_dispatch_insert(cfqd->queue, __alias);
  1241. if (!cfq_cfqq_on_rr(cfqq))
  1242. cfq_add_cfqq_rr(cfqd, cfqq);
  1243. /*
  1244. * check if this request is a better next-serve candidate
  1245. */
  1246. prev = cfqq->next_rq;
  1247. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1248. /*
  1249. * adjust priority tree position, if ->next_rq changes
  1250. */
  1251. if (prev != cfqq->next_rq)
  1252. cfq_prio_tree_add(cfqd, cfqq);
  1253. BUG_ON(!cfqq->next_rq);
  1254. }
  1255. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1256. {
  1257. elv_rb_del(&cfqq->sort_list, rq);
  1258. cfqq->queued[rq_is_sync(rq)]--;
  1259. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1260. rq_data_dir(rq), rq_is_sync(rq));
  1261. cfq_add_rq_rb(rq);
  1262. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1263. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1264. rq_is_sync(rq));
  1265. }
  1266. static struct request *
  1267. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1268. {
  1269. struct task_struct *tsk = current;
  1270. struct cfq_io_context *cic;
  1271. struct cfq_queue *cfqq;
  1272. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1273. if (!cic)
  1274. return NULL;
  1275. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1276. if (cfqq) {
  1277. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1278. return elv_rb_find(&cfqq->sort_list, sector);
  1279. }
  1280. return NULL;
  1281. }
  1282. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1283. {
  1284. struct cfq_data *cfqd = q->elevator->elevator_data;
  1285. cfqd->rq_in_driver++;
  1286. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1287. cfqd->rq_in_driver);
  1288. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1289. }
  1290. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1291. {
  1292. struct cfq_data *cfqd = q->elevator->elevator_data;
  1293. WARN_ON(!cfqd->rq_in_driver);
  1294. cfqd->rq_in_driver--;
  1295. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1296. cfqd->rq_in_driver);
  1297. }
  1298. static void cfq_remove_request(struct request *rq)
  1299. {
  1300. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1301. if (cfqq->next_rq == rq)
  1302. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1303. list_del_init(&rq->queuelist);
  1304. cfq_del_rq_rb(rq);
  1305. cfqq->cfqd->rq_queued--;
  1306. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1307. rq_data_dir(rq), rq_is_sync(rq));
  1308. if (rq->cmd_flags & REQ_META) {
  1309. WARN_ON(!cfqq->meta_pending);
  1310. cfqq->meta_pending--;
  1311. }
  1312. }
  1313. static int cfq_merge(struct request_queue *q, struct request **req,
  1314. struct bio *bio)
  1315. {
  1316. struct cfq_data *cfqd = q->elevator->elevator_data;
  1317. struct request *__rq;
  1318. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1319. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1320. *req = __rq;
  1321. return ELEVATOR_FRONT_MERGE;
  1322. }
  1323. return ELEVATOR_NO_MERGE;
  1324. }
  1325. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1326. int type)
  1327. {
  1328. if (type == ELEVATOR_FRONT_MERGE) {
  1329. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1330. cfq_reposition_rq_rb(cfqq, req);
  1331. }
  1332. }
  1333. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1334. struct bio *bio)
  1335. {
  1336. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1337. bio_data_dir(bio), cfq_bio_sync(bio));
  1338. }
  1339. static void
  1340. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1341. struct request *next)
  1342. {
  1343. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1344. /*
  1345. * reposition in fifo if next is older than rq
  1346. */
  1347. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1348. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1349. list_move(&rq->queuelist, &next->queuelist);
  1350. rq_set_fifo_time(rq, rq_fifo_time(next));
  1351. }
  1352. if (cfqq->next_rq == next)
  1353. cfqq->next_rq = rq;
  1354. cfq_remove_request(next);
  1355. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1356. rq_data_dir(next), rq_is_sync(next));
  1357. }
  1358. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1359. struct bio *bio)
  1360. {
  1361. struct cfq_data *cfqd = q->elevator->elevator_data;
  1362. struct cfq_io_context *cic;
  1363. struct cfq_queue *cfqq;
  1364. /*
  1365. * Disallow merge of a sync bio into an async request.
  1366. */
  1367. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1368. return false;
  1369. /*
  1370. * Lookup the cfqq that this bio will be queued with. Allow
  1371. * merge only if rq is queued there.
  1372. */
  1373. cic = cfq_cic_lookup(cfqd, current->io_context);
  1374. if (!cic)
  1375. return false;
  1376. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1377. return cfqq == RQ_CFQQ(rq);
  1378. }
  1379. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1380. {
  1381. del_timer(&cfqd->idle_slice_timer);
  1382. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1383. }
  1384. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1385. struct cfq_queue *cfqq)
  1386. {
  1387. if (cfqq) {
  1388. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1389. cfqd->serving_prio, cfqd->serving_type);
  1390. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1391. cfqq->slice_start = 0;
  1392. cfqq->dispatch_start = jiffies;
  1393. cfqq->allocated_slice = 0;
  1394. cfqq->slice_end = 0;
  1395. cfqq->slice_dispatch = 0;
  1396. cfqq->nr_sectors = 0;
  1397. cfq_clear_cfqq_wait_request(cfqq);
  1398. cfq_clear_cfqq_must_dispatch(cfqq);
  1399. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1400. cfq_clear_cfqq_fifo_expire(cfqq);
  1401. cfq_mark_cfqq_slice_new(cfqq);
  1402. cfq_del_timer(cfqd, cfqq);
  1403. }
  1404. cfqd->active_queue = cfqq;
  1405. }
  1406. /*
  1407. * current cfqq expired its slice (or was too idle), select new one
  1408. */
  1409. static void
  1410. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1411. bool timed_out)
  1412. {
  1413. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1414. if (cfq_cfqq_wait_request(cfqq))
  1415. cfq_del_timer(cfqd, cfqq);
  1416. cfq_clear_cfqq_wait_request(cfqq);
  1417. cfq_clear_cfqq_wait_busy(cfqq);
  1418. /*
  1419. * If this cfqq is shared between multiple processes, check to
  1420. * make sure that those processes are still issuing I/Os within
  1421. * the mean seek distance. If not, it may be time to break the
  1422. * queues apart again.
  1423. */
  1424. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1425. cfq_mark_cfqq_split_coop(cfqq);
  1426. /*
  1427. * store what was left of this slice, if the queue idled/timed out
  1428. */
  1429. if (timed_out) {
  1430. if (cfq_cfqq_slice_new(cfqq))
  1431. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1432. else
  1433. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1434. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1435. }
  1436. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1437. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1438. cfq_del_cfqq_rr(cfqd, cfqq);
  1439. cfq_resort_rr_list(cfqd, cfqq);
  1440. if (cfqq == cfqd->active_queue)
  1441. cfqd->active_queue = NULL;
  1442. if (cfqd->active_cic) {
  1443. put_io_context(cfqd->active_cic->ioc);
  1444. cfqd->active_cic = NULL;
  1445. }
  1446. }
  1447. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1448. {
  1449. struct cfq_queue *cfqq = cfqd->active_queue;
  1450. if (cfqq)
  1451. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1452. }
  1453. /*
  1454. * Get next queue for service. Unless we have a queue preemption,
  1455. * we'll simply select the first cfqq in the service tree.
  1456. */
  1457. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1458. {
  1459. struct cfq_rb_root *service_tree =
  1460. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1461. cfqd->serving_type);
  1462. if (!cfqd->rq_queued)
  1463. return NULL;
  1464. /* There is nothing to dispatch */
  1465. if (!service_tree)
  1466. return NULL;
  1467. if (RB_EMPTY_ROOT(&service_tree->rb))
  1468. return NULL;
  1469. return cfq_rb_first(service_tree);
  1470. }
  1471. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1472. {
  1473. struct cfq_group *cfqg;
  1474. struct cfq_queue *cfqq;
  1475. int i, j;
  1476. struct cfq_rb_root *st;
  1477. if (!cfqd->rq_queued)
  1478. return NULL;
  1479. cfqg = cfq_get_next_cfqg(cfqd);
  1480. if (!cfqg)
  1481. return NULL;
  1482. for_each_cfqg_st(cfqg, i, j, st)
  1483. if ((cfqq = cfq_rb_first(st)) != NULL)
  1484. return cfqq;
  1485. return NULL;
  1486. }
  1487. /*
  1488. * Get and set a new active queue for service.
  1489. */
  1490. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1491. struct cfq_queue *cfqq)
  1492. {
  1493. if (!cfqq)
  1494. cfqq = cfq_get_next_queue(cfqd);
  1495. __cfq_set_active_queue(cfqd, cfqq);
  1496. return cfqq;
  1497. }
  1498. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1499. struct request *rq)
  1500. {
  1501. if (blk_rq_pos(rq) >= cfqd->last_position)
  1502. return blk_rq_pos(rq) - cfqd->last_position;
  1503. else
  1504. return cfqd->last_position - blk_rq_pos(rq);
  1505. }
  1506. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1507. struct request *rq)
  1508. {
  1509. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1510. }
  1511. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1512. struct cfq_queue *cur_cfqq)
  1513. {
  1514. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1515. struct rb_node *parent, *node;
  1516. struct cfq_queue *__cfqq;
  1517. sector_t sector = cfqd->last_position;
  1518. if (RB_EMPTY_ROOT(root))
  1519. return NULL;
  1520. /*
  1521. * First, if we find a request starting at the end of the last
  1522. * request, choose it.
  1523. */
  1524. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1525. if (__cfqq)
  1526. return __cfqq;
  1527. /*
  1528. * If the exact sector wasn't found, the parent of the NULL leaf
  1529. * will contain the closest sector.
  1530. */
  1531. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1532. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1533. return __cfqq;
  1534. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1535. node = rb_next(&__cfqq->p_node);
  1536. else
  1537. node = rb_prev(&__cfqq->p_node);
  1538. if (!node)
  1539. return NULL;
  1540. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1541. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1542. return __cfqq;
  1543. return NULL;
  1544. }
  1545. /*
  1546. * cfqd - obvious
  1547. * cur_cfqq - passed in so that we don't decide that the current queue is
  1548. * closely cooperating with itself.
  1549. *
  1550. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1551. * one request, and that cfqd->last_position reflects a position on the disk
  1552. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1553. * assumption.
  1554. */
  1555. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1556. struct cfq_queue *cur_cfqq)
  1557. {
  1558. struct cfq_queue *cfqq;
  1559. if (cfq_class_idle(cur_cfqq))
  1560. return NULL;
  1561. if (!cfq_cfqq_sync(cur_cfqq))
  1562. return NULL;
  1563. if (CFQQ_SEEKY(cur_cfqq))
  1564. return NULL;
  1565. /*
  1566. * Don't search priority tree if it's the only queue in the group.
  1567. */
  1568. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1569. return NULL;
  1570. /*
  1571. * We should notice if some of the queues are cooperating, eg
  1572. * working closely on the same area of the disk. In that case,
  1573. * we can group them together and don't waste time idling.
  1574. */
  1575. cfqq = cfqq_close(cfqd, cur_cfqq);
  1576. if (!cfqq)
  1577. return NULL;
  1578. /* If new queue belongs to different cfq_group, don't choose it */
  1579. if (cur_cfqq->cfqg != cfqq->cfqg)
  1580. return NULL;
  1581. /*
  1582. * It only makes sense to merge sync queues.
  1583. */
  1584. if (!cfq_cfqq_sync(cfqq))
  1585. return NULL;
  1586. if (CFQQ_SEEKY(cfqq))
  1587. return NULL;
  1588. /*
  1589. * Do not merge queues of different priority classes
  1590. */
  1591. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1592. return NULL;
  1593. return cfqq;
  1594. }
  1595. /*
  1596. * Determine whether we should enforce idle window for this queue.
  1597. */
  1598. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1599. {
  1600. enum wl_prio_t prio = cfqq_prio(cfqq);
  1601. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1602. BUG_ON(!service_tree);
  1603. BUG_ON(!service_tree->count);
  1604. if (!cfqd->cfq_slice_idle)
  1605. return false;
  1606. /* We never do for idle class queues. */
  1607. if (prio == IDLE_WORKLOAD)
  1608. return false;
  1609. /* We do for queues that were marked with idle window flag. */
  1610. if (cfq_cfqq_idle_window(cfqq) &&
  1611. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1612. return true;
  1613. /*
  1614. * Otherwise, we do only if they are the last ones
  1615. * in their service tree.
  1616. */
  1617. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1618. return true;
  1619. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1620. service_tree->count);
  1621. return false;
  1622. }
  1623. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1624. {
  1625. struct cfq_queue *cfqq = cfqd->active_queue;
  1626. struct cfq_io_context *cic;
  1627. unsigned long sl, group_idle = 0;
  1628. /*
  1629. * SSD device without seek penalty, disable idling. But only do so
  1630. * for devices that support queuing, otherwise we still have a problem
  1631. * with sync vs async workloads.
  1632. */
  1633. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1634. return;
  1635. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1636. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1637. /*
  1638. * idle is disabled, either manually or by past process history
  1639. */
  1640. if (!cfq_should_idle(cfqd, cfqq)) {
  1641. /* no queue idling. Check for group idling */
  1642. if (cfqd->cfq_group_idle)
  1643. group_idle = cfqd->cfq_group_idle;
  1644. else
  1645. return;
  1646. }
  1647. /*
  1648. * still active requests from this queue, don't idle
  1649. */
  1650. if (cfqq->dispatched)
  1651. return;
  1652. /*
  1653. * task has exited, don't wait
  1654. */
  1655. cic = cfqd->active_cic;
  1656. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1657. return;
  1658. /*
  1659. * If our average think time is larger than the remaining time
  1660. * slice, then don't idle. This avoids overrunning the allotted
  1661. * time slice.
  1662. */
  1663. if (sample_valid(cic->ttime_samples) &&
  1664. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1665. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
  1666. cic->ttime_mean);
  1667. return;
  1668. }
  1669. /* There are other queues in the group, don't do group idle */
  1670. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1671. return;
  1672. cfq_mark_cfqq_wait_request(cfqq);
  1673. if (group_idle)
  1674. sl = cfqd->cfq_group_idle;
  1675. else
  1676. sl = cfqd->cfq_slice_idle;
  1677. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1678. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1679. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1680. group_idle ? 1 : 0);
  1681. }
  1682. /*
  1683. * Move request from internal lists to the request queue dispatch list.
  1684. */
  1685. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1686. {
  1687. struct cfq_data *cfqd = q->elevator->elevator_data;
  1688. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1689. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1690. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1691. cfq_remove_request(rq);
  1692. cfqq->dispatched++;
  1693. (RQ_CFQG(rq))->dispatched++;
  1694. elv_dispatch_sort(q, rq);
  1695. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1696. cfqq->nr_sectors += blk_rq_sectors(rq);
  1697. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1698. rq_data_dir(rq), rq_is_sync(rq));
  1699. }
  1700. /*
  1701. * return expired entry, or NULL to just start from scratch in rbtree
  1702. */
  1703. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1704. {
  1705. struct request *rq = NULL;
  1706. if (cfq_cfqq_fifo_expire(cfqq))
  1707. return NULL;
  1708. cfq_mark_cfqq_fifo_expire(cfqq);
  1709. if (list_empty(&cfqq->fifo))
  1710. return NULL;
  1711. rq = rq_entry_fifo(cfqq->fifo.next);
  1712. if (time_before(jiffies, rq_fifo_time(rq)))
  1713. rq = NULL;
  1714. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1715. return rq;
  1716. }
  1717. static inline int
  1718. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1719. {
  1720. const int base_rq = cfqd->cfq_slice_async_rq;
  1721. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1722. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1723. }
  1724. /*
  1725. * Must be called with the queue_lock held.
  1726. */
  1727. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1728. {
  1729. int process_refs, io_refs;
  1730. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1731. process_refs = cfqq->ref - io_refs;
  1732. BUG_ON(process_refs < 0);
  1733. return process_refs;
  1734. }
  1735. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1736. {
  1737. int process_refs, new_process_refs;
  1738. struct cfq_queue *__cfqq;
  1739. /*
  1740. * If there are no process references on the new_cfqq, then it is
  1741. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1742. * chain may have dropped their last reference (not just their
  1743. * last process reference).
  1744. */
  1745. if (!cfqq_process_refs(new_cfqq))
  1746. return;
  1747. /* Avoid a circular list and skip interim queue merges */
  1748. while ((__cfqq = new_cfqq->new_cfqq)) {
  1749. if (__cfqq == cfqq)
  1750. return;
  1751. new_cfqq = __cfqq;
  1752. }
  1753. process_refs = cfqq_process_refs(cfqq);
  1754. new_process_refs = cfqq_process_refs(new_cfqq);
  1755. /*
  1756. * If the process for the cfqq has gone away, there is no
  1757. * sense in merging the queues.
  1758. */
  1759. if (process_refs == 0 || new_process_refs == 0)
  1760. return;
  1761. /*
  1762. * Merge in the direction of the lesser amount of work.
  1763. */
  1764. if (new_process_refs >= process_refs) {
  1765. cfqq->new_cfqq = new_cfqq;
  1766. new_cfqq->ref += process_refs;
  1767. } else {
  1768. new_cfqq->new_cfqq = cfqq;
  1769. cfqq->ref += new_process_refs;
  1770. }
  1771. }
  1772. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1773. struct cfq_group *cfqg, enum wl_prio_t prio)
  1774. {
  1775. struct cfq_queue *queue;
  1776. int i;
  1777. bool key_valid = false;
  1778. unsigned long lowest_key = 0;
  1779. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1780. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1781. /* select the one with lowest rb_key */
  1782. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1783. if (queue &&
  1784. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1785. lowest_key = queue->rb_key;
  1786. cur_best = i;
  1787. key_valid = true;
  1788. }
  1789. }
  1790. return cur_best;
  1791. }
  1792. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1793. {
  1794. unsigned slice;
  1795. unsigned count;
  1796. struct cfq_rb_root *st;
  1797. unsigned group_slice;
  1798. enum wl_prio_t original_prio = cfqd->serving_prio;
  1799. /* Choose next priority. RT > BE > IDLE */
  1800. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1801. cfqd->serving_prio = RT_WORKLOAD;
  1802. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1803. cfqd->serving_prio = BE_WORKLOAD;
  1804. else {
  1805. cfqd->serving_prio = IDLE_WORKLOAD;
  1806. cfqd->workload_expires = jiffies + 1;
  1807. return;
  1808. }
  1809. if (original_prio != cfqd->serving_prio)
  1810. goto new_workload;
  1811. /*
  1812. * For RT and BE, we have to choose also the type
  1813. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1814. * expiration time
  1815. */
  1816. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1817. count = st->count;
  1818. /*
  1819. * check workload expiration, and that we still have other queues ready
  1820. */
  1821. if (count && !time_after(jiffies, cfqd->workload_expires))
  1822. return;
  1823. new_workload:
  1824. /* otherwise select new workload type */
  1825. cfqd->serving_type =
  1826. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1827. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1828. count = st->count;
  1829. /*
  1830. * the workload slice is computed as a fraction of target latency
  1831. * proportional to the number of queues in that workload, over
  1832. * all the queues in the same priority class
  1833. */
  1834. group_slice = cfq_group_slice(cfqd, cfqg);
  1835. slice = group_slice * count /
  1836. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1837. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1838. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1839. unsigned int tmp;
  1840. /*
  1841. * Async queues are currently system wide. Just taking
  1842. * proportion of queues with-in same group will lead to higher
  1843. * async ratio system wide as generally root group is going
  1844. * to have higher weight. A more accurate thing would be to
  1845. * calculate system wide asnc/sync ratio.
  1846. */
  1847. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1848. tmp = tmp/cfqd->busy_queues;
  1849. slice = min_t(unsigned, slice, tmp);
  1850. /* async workload slice is scaled down according to
  1851. * the sync/async slice ratio. */
  1852. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1853. } else
  1854. /* sync workload slice is at least 2 * cfq_slice_idle */
  1855. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1856. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1857. cfq_log(cfqd, "workload slice:%d", slice);
  1858. cfqd->workload_expires = jiffies + slice;
  1859. }
  1860. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1861. {
  1862. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1863. struct cfq_group *cfqg;
  1864. if (RB_EMPTY_ROOT(&st->rb))
  1865. return NULL;
  1866. cfqg = cfq_rb_first_group(st);
  1867. update_min_vdisktime(st);
  1868. return cfqg;
  1869. }
  1870. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1871. {
  1872. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1873. cfqd->serving_group = cfqg;
  1874. /* Restore the workload type data */
  1875. if (cfqg->saved_workload_slice) {
  1876. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1877. cfqd->serving_type = cfqg->saved_workload;
  1878. cfqd->serving_prio = cfqg->saved_serving_prio;
  1879. } else
  1880. cfqd->workload_expires = jiffies - 1;
  1881. choose_service_tree(cfqd, cfqg);
  1882. }
  1883. /*
  1884. * Select a queue for service. If we have a current active queue,
  1885. * check whether to continue servicing it, or retrieve and set a new one.
  1886. */
  1887. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1888. {
  1889. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1890. cfqq = cfqd->active_queue;
  1891. if (!cfqq)
  1892. goto new_queue;
  1893. if (!cfqd->rq_queued)
  1894. return NULL;
  1895. /*
  1896. * We were waiting for group to get backlogged. Expire the queue
  1897. */
  1898. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1899. goto expire;
  1900. /*
  1901. * The active queue has run out of time, expire it and select new.
  1902. */
  1903. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1904. /*
  1905. * If slice had not expired at the completion of last request
  1906. * we might not have turned on wait_busy flag. Don't expire
  1907. * the queue yet. Allow the group to get backlogged.
  1908. *
  1909. * The very fact that we have used the slice, that means we
  1910. * have been idling all along on this queue and it should be
  1911. * ok to wait for this request to complete.
  1912. */
  1913. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1914. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1915. cfqq = NULL;
  1916. goto keep_queue;
  1917. } else
  1918. goto check_group_idle;
  1919. }
  1920. /*
  1921. * The active queue has requests and isn't expired, allow it to
  1922. * dispatch.
  1923. */
  1924. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1925. goto keep_queue;
  1926. /*
  1927. * If another queue has a request waiting within our mean seek
  1928. * distance, let it run. The expire code will check for close
  1929. * cooperators and put the close queue at the front of the service
  1930. * tree. If possible, merge the expiring queue with the new cfqq.
  1931. */
  1932. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1933. if (new_cfqq) {
  1934. if (!cfqq->new_cfqq)
  1935. cfq_setup_merge(cfqq, new_cfqq);
  1936. goto expire;
  1937. }
  1938. /*
  1939. * No requests pending. If the active queue still has requests in
  1940. * flight or is idling for a new request, allow either of these
  1941. * conditions to happen (or time out) before selecting a new queue.
  1942. */
  1943. if (timer_pending(&cfqd->idle_slice_timer)) {
  1944. cfqq = NULL;
  1945. goto keep_queue;
  1946. }
  1947. /*
  1948. * This is a deep seek queue, but the device is much faster than
  1949. * the queue can deliver, don't idle
  1950. **/
  1951. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  1952. (cfq_cfqq_slice_new(cfqq) ||
  1953. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  1954. cfq_clear_cfqq_deep(cfqq);
  1955. cfq_clear_cfqq_idle_window(cfqq);
  1956. }
  1957. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1958. cfqq = NULL;
  1959. goto keep_queue;
  1960. }
  1961. /*
  1962. * If group idle is enabled and there are requests dispatched from
  1963. * this group, wait for requests to complete.
  1964. */
  1965. check_group_idle:
  1966. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  1967. && cfqq->cfqg->dispatched) {
  1968. cfqq = NULL;
  1969. goto keep_queue;
  1970. }
  1971. expire:
  1972. cfq_slice_expired(cfqd, 0);
  1973. new_queue:
  1974. /*
  1975. * Current queue expired. Check if we have to switch to a new
  1976. * service tree
  1977. */
  1978. if (!new_cfqq)
  1979. cfq_choose_cfqg(cfqd);
  1980. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1981. keep_queue:
  1982. return cfqq;
  1983. }
  1984. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1985. {
  1986. int dispatched = 0;
  1987. while (cfqq->next_rq) {
  1988. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1989. dispatched++;
  1990. }
  1991. BUG_ON(!list_empty(&cfqq->fifo));
  1992. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1993. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1994. return dispatched;
  1995. }
  1996. /*
  1997. * Drain our current requests. Used for barriers and when switching
  1998. * io schedulers on-the-fly.
  1999. */
  2000. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2001. {
  2002. struct cfq_queue *cfqq;
  2003. int dispatched = 0;
  2004. /* Expire the timeslice of the current active queue first */
  2005. cfq_slice_expired(cfqd, 0);
  2006. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2007. __cfq_set_active_queue(cfqd, cfqq);
  2008. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2009. }
  2010. BUG_ON(cfqd->busy_queues);
  2011. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2012. return dispatched;
  2013. }
  2014. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2015. struct cfq_queue *cfqq)
  2016. {
  2017. /* the queue hasn't finished any request, can't estimate */
  2018. if (cfq_cfqq_slice_new(cfqq))
  2019. return true;
  2020. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2021. cfqq->slice_end))
  2022. return true;
  2023. return false;
  2024. }
  2025. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2026. {
  2027. unsigned int max_dispatch;
  2028. /*
  2029. * Drain async requests before we start sync IO
  2030. */
  2031. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2032. return false;
  2033. /*
  2034. * If this is an async queue and we have sync IO in flight, let it wait
  2035. */
  2036. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2037. return false;
  2038. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2039. if (cfq_class_idle(cfqq))
  2040. max_dispatch = 1;
  2041. /*
  2042. * Does this cfqq already have too much IO in flight?
  2043. */
  2044. if (cfqq->dispatched >= max_dispatch) {
  2045. bool promote_sync = false;
  2046. /*
  2047. * idle queue must always only have a single IO in flight
  2048. */
  2049. if (cfq_class_idle(cfqq))
  2050. return false;
  2051. /*
  2052. * If there is only one sync queue, and its think time is
  2053. * small, we can ignore async queue here and give the sync
  2054. * queue no dispatch limit. The reason is a sync queue can
  2055. * preempt async queue, limiting the sync queue doesn't make
  2056. * sense. This is useful for aiostress test.
  2057. */
  2058. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1) {
  2059. struct cfq_io_context *cic = RQ_CIC(cfqq->next_rq);
  2060. if (sample_valid(cic->ttime_samples) &&
  2061. cic->ttime_mean < cfqd->cfq_slice_idle)
  2062. promote_sync = true;
  2063. }
  2064. /*
  2065. * We have other queues, don't allow more IO from this one
  2066. */
  2067. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2068. !promote_sync)
  2069. return false;
  2070. /*
  2071. * Sole queue user, no limit
  2072. */
  2073. if (cfqd->busy_queues == 1 || promote_sync)
  2074. max_dispatch = -1;
  2075. else
  2076. /*
  2077. * Normally we start throttling cfqq when cfq_quantum/2
  2078. * requests have been dispatched. But we can drive
  2079. * deeper queue depths at the beginning of slice
  2080. * subjected to upper limit of cfq_quantum.
  2081. * */
  2082. max_dispatch = cfqd->cfq_quantum;
  2083. }
  2084. /*
  2085. * Async queues must wait a bit before being allowed dispatch.
  2086. * We also ramp up the dispatch depth gradually for async IO,
  2087. * based on the last sync IO we serviced
  2088. */
  2089. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2090. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2091. unsigned int depth;
  2092. depth = last_sync / cfqd->cfq_slice[1];
  2093. if (!depth && !cfqq->dispatched)
  2094. depth = 1;
  2095. if (depth < max_dispatch)
  2096. max_dispatch = depth;
  2097. }
  2098. /*
  2099. * If we're below the current max, allow a dispatch
  2100. */
  2101. return cfqq->dispatched < max_dispatch;
  2102. }
  2103. /*
  2104. * Dispatch a request from cfqq, moving them to the request queue
  2105. * dispatch list.
  2106. */
  2107. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2108. {
  2109. struct request *rq;
  2110. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2111. if (!cfq_may_dispatch(cfqd, cfqq))
  2112. return false;
  2113. /*
  2114. * follow expired path, else get first next available
  2115. */
  2116. rq = cfq_check_fifo(cfqq);
  2117. if (!rq)
  2118. rq = cfqq->next_rq;
  2119. /*
  2120. * insert request into driver dispatch list
  2121. */
  2122. cfq_dispatch_insert(cfqd->queue, rq);
  2123. if (!cfqd->active_cic) {
  2124. struct cfq_io_context *cic = RQ_CIC(rq);
  2125. atomic_long_inc(&cic->ioc->refcount);
  2126. cfqd->active_cic = cic;
  2127. }
  2128. return true;
  2129. }
  2130. /*
  2131. * Find the cfqq that we need to service and move a request from that to the
  2132. * dispatch list
  2133. */
  2134. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2135. {
  2136. struct cfq_data *cfqd = q->elevator->elevator_data;
  2137. struct cfq_queue *cfqq;
  2138. if (!cfqd->busy_queues)
  2139. return 0;
  2140. if (unlikely(force))
  2141. return cfq_forced_dispatch(cfqd);
  2142. cfqq = cfq_select_queue(cfqd);
  2143. if (!cfqq)
  2144. return 0;
  2145. /*
  2146. * Dispatch a request from this cfqq, if it is allowed
  2147. */
  2148. if (!cfq_dispatch_request(cfqd, cfqq))
  2149. return 0;
  2150. cfqq->slice_dispatch++;
  2151. cfq_clear_cfqq_must_dispatch(cfqq);
  2152. /*
  2153. * expire an async queue immediately if it has used up its slice. idle
  2154. * queue always expire after 1 dispatch round.
  2155. */
  2156. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2157. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2158. cfq_class_idle(cfqq))) {
  2159. cfqq->slice_end = jiffies + 1;
  2160. cfq_slice_expired(cfqd, 0);
  2161. }
  2162. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2163. return 1;
  2164. }
  2165. /*
  2166. * task holds one reference to the queue, dropped when task exits. each rq
  2167. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2168. *
  2169. * Each cfq queue took a reference on the parent group. Drop it now.
  2170. * queue lock must be held here.
  2171. */
  2172. static void cfq_put_queue(struct cfq_queue *cfqq)
  2173. {
  2174. struct cfq_data *cfqd = cfqq->cfqd;
  2175. struct cfq_group *cfqg;
  2176. BUG_ON(cfqq->ref <= 0);
  2177. cfqq->ref--;
  2178. if (cfqq->ref)
  2179. return;
  2180. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2181. BUG_ON(rb_first(&cfqq->sort_list));
  2182. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2183. cfqg = cfqq->cfqg;
  2184. if (unlikely(cfqd->active_queue == cfqq)) {
  2185. __cfq_slice_expired(cfqd, cfqq, 0);
  2186. cfq_schedule_dispatch(cfqd);
  2187. }
  2188. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2189. kmem_cache_free(cfq_pool, cfqq);
  2190. cfq_put_cfqg(cfqg);
  2191. }
  2192. /*
  2193. * Must always be called with the rcu_read_lock() held
  2194. */
  2195. static void
  2196. __call_for_each_cic(struct io_context *ioc,
  2197. void (*func)(struct io_context *, struct cfq_io_context *))
  2198. {
  2199. struct cfq_io_context *cic;
  2200. struct hlist_node *n;
  2201. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2202. func(ioc, cic);
  2203. }
  2204. /*
  2205. * Call func for each cic attached to this ioc.
  2206. */
  2207. static void
  2208. call_for_each_cic(struct io_context *ioc,
  2209. void (*func)(struct io_context *, struct cfq_io_context *))
  2210. {
  2211. rcu_read_lock();
  2212. __call_for_each_cic(ioc, func);
  2213. rcu_read_unlock();
  2214. }
  2215. static void cfq_cic_free_rcu(struct rcu_head *head)
  2216. {
  2217. struct cfq_io_context *cic;
  2218. cic = container_of(head, struct cfq_io_context, rcu_head);
  2219. kmem_cache_free(cfq_ioc_pool, cic);
  2220. elv_ioc_count_dec(cfq_ioc_count);
  2221. if (ioc_gone) {
  2222. /*
  2223. * CFQ scheduler is exiting, grab exit lock and check
  2224. * the pending io context count. If it hits zero,
  2225. * complete ioc_gone and set it back to NULL
  2226. */
  2227. spin_lock(&ioc_gone_lock);
  2228. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2229. complete(ioc_gone);
  2230. ioc_gone = NULL;
  2231. }
  2232. spin_unlock(&ioc_gone_lock);
  2233. }
  2234. }
  2235. static void cfq_cic_free(struct cfq_io_context *cic)
  2236. {
  2237. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2238. }
  2239. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2240. {
  2241. unsigned long flags;
  2242. unsigned long dead_key = (unsigned long) cic->key;
  2243. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2244. spin_lock_irqsave(&ioc->lock, flags);
  2245. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2246. hlist_del_rcu(&cic->cic_list);
  2247. spin_unlock_irqrestore(&ioc->lock, flags);
  2248. cfq_cic_free(cic);
  2249. }
  2250. /*
  2251. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2252. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2253. * and ->trim() which is called with the task lock held
  2254. */
  2255. static void cfq_free_io_context(struct io_context *ioc)
  2256. {
  2257. /*
  2258. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2259. * so no more cic's are allowed to be linked into this ioc. So it
  2260. * should be ok to iterate over the known list, we will see all cic's
  2261. * since no new ones are added.
  2262. */
  2263. __call_for_each_cic(ioc, cic_free_func);
  2264. }
  2265. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2266. {
  2267. struct cfq_queue *__cfqq, *next;
  2268. /*
  2269. * If this queue was scheduled to merge with another queue, be
  2270. * sure to drop the reference taken on that queue (and others in
  2271. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2272. */
  2273. __cfqq = cfqq->new_cfqq;
  2274. while (__cfqq) {
  2275. if (__cfqq == cfqq) {
  2276. WARN(1, "cfqq->new_cfqq loop detected\n");
  2277. break;
  2278. }
  2279. next = __cfqq->new_cfqq;
  2280. cfq_put_queue(__cfqq);
  2281. __cfqq = next;
  2282. }
  2283. }
  2284. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2285. {
  2286. if (unlikely(cfqq == cfqd->active_queue)) {
  2287. __cfq_slice_expired(cfqd, cfqq, 0);
  2288. cfq_schedule_dispatch(cfqd);
  2289. }
  2290. cfq_put_cooperator(cfqq);
  2291. cfq_put_queue(cfqq);
  2292. }
  2293. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2294. struct cfq_io_context *cic)
  2295. {
  2296. struct io_context *ioc = cic->ioc;
  2297. list_del_init(&cic->queue_list);
  2298. /*
  2299. * Make sure dead mark is seen for dead queues
  2300. */
  2301. smp_wmb();
  2302. cic->key = cfqd_dead_key(cfqd);
  2303. if (ioc->ioc_data == cic)
  2304. rcu_assign_pointer(ioc->ioc_data, NULL);
  2305. if (cic->cfqq[BLK_RW_ASYNC]) {
  2306. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2307. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2308. }
  2309. if (cic->cfqq[BLK_RW_SYNC]) {
  2310. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2311. cic->cfqq[BLK_RW_SYNC] = NULL;
  2312. }
  2313. }
  2314. static void cfq_exit_single_io_context(struct io_context *ioc,
  2315. struct cfq_io_context *cic)
  2316. {
  2317. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2318. if (cfqd) {
  2319. struct request_queue *q = cfqd->queue;
  2320. unsigned long flags;
  2321. spin_lock_irqsave(q->queue_lock, flags);
  2322. /*
  2323. * Ensure we get a fresh copy of the ->key to prevent
  2324. * race between exiting task and queue
  2325. */
  2326. smp_read_barrier_depends();
  2327. if (cic->key == cfqd)
  2328. __cfq_exit_single_io_context(cfqd, cic);
  2329. spin_unlock_irqrestore(q->queue_lock, flags);
  2330. }
  2331. }
  2332. /*
  2333. * The process that ioc belongs to has exited, we need to clean up
  2334. * and put the internal structures we have that belongs to that process.
  2335. */
  2336. static void cfq_exit_io_context(struct io_context *ioc)
  2337. {
  2338. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2339. }
  2340. static struct cfq_io_context *
  2341. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2342. {
  2343. struct cfq_io_context *cic;
  2344. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2345. cfqd->queue->node);
  2346. if (cic) {
  2347. cic->last_end_request = jiffies;
  2348. INIT_LIST_HEAD(&cic->queue_list);
  2349. INIT_HLIST_NODE(&cic->cic_list);
  2350. cic->dtor = cfq_free_io_context;
  2351. cic->exit = cfq_exit_io_context;
  2352. elv_ioc_count_inc(cfq_ioc_count);
  2353. }
  2354. return cic;
  2355. }
  2356. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2357. {
  2358. struct task_struct *tsk = current;
  2359. int ioprio_class;
  2360. if (!cfq_cfqq_prio_changed(cfqq))
  2361. return;
  2362. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2363. switch (ioprio_class) {
  2364. default:
  2365. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2366. case IOPRIO_CLASS_NONE:
  2367. /*
  2368. * no prio set, inherit CPU scheduling settings
  2369. */
  2370. cfqq->ioprio = task_nice_ioprio(tsk);
  2371. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2372. break;
  2373. case IOPRIO_CLASS_RT:
  2374. cfqq->ioprio = task_ioprio(ioc);
  2375. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2376. break;
  2377. case IOPRIO_CLASS_BE:
  2378. cfqq->ioprio = task_ioprio(ioc);
  2379. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2380. break;
  2381. case IOPRIO_CLASS_IDLE:
  2382. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2383. cfqq->ioprio = 7;
  2384. cfq_clear_cfqq_idle_window(cfqq);
  2385. break;
  2386. }
  2387. /*
  2388. * keep track of original prio settings in case we have to temporarily
  2389. * elevate the priority of this queue
  2390. */
  2391. cfqq->org_ioprio = cfqq->ioprio;
  2392. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2393. cfq_clear_cfqq_prio_changed(cfqq);
  2394. }
  2395. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2396. {
  2397. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2398. struct cfq_queue *cfqq;
  2399. unsigned long flags;
  2400. if (unlikely(!cfqd))
  2401. return;
  2402. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2403. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2404. if (cfqq) {
  2405. struct cfq_queue *new_cfqq;
  2406. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2407. GFP_ATOMIC);
  2408. if (new_cfqq) {
  2409. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2410. cfq_put_queue(cfqq);
  2411. }
  2412. }
  2413. cfqq = cic->cfqq[BLK_RW_SYNC];
  2414. if (cfqq)
  2415. cfq_mark_cfqq_prio_changed(cfqq);
  2416. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2417. }
  2418. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2419. {
  2420. call_for_each_cic(ioc, changed_ioprio);
  2421. ioc->ioprio_changed = 0;
  2422. }
  2423. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2424. pid_t pid, bool is_sync)
  2425. {
  2426. RB_CLEAR_NODE(&cfqq->rb_node);
  2427. RB_CLEAR_NODE(&cfqq->p_node);
  2428. INIT_LIST_HEAD(&cfqq->fifo);
  2429. cfqq->ref = 0;
  2430. cfqq->cfqd = cfqd;
  2431. cfq_mark_cfqq_prio_changed(cfqq);
  2432. if (is_sync) {
  2433. if (!cfq_class_idle(cfqq))
  2434. cfq_mark_cfqq_idle_window(cfqq);
  2435. cfq_mark_cfqq_sync(cfqq);
  2436. }
  2437. cfqq->pid = pid;
  2438. }
  2439. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2440. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2441. {
  2442. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2443. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2444. unsigned long flags;
  2445. struct request_queue *q;
  2446. if (unlikely(!cfqd))
  2447. return;
  2448. q = cfqd->queue;
  2449. spin_lock_irqsave(q->queue_lock, flags);
  2450. if (sync_cfqq) {
  2451. /*
  2452. * Drop reference to sync queue. A new sync queue will be
  2453. * assigned in new group upon arrival of a fresh request.
  2454. */
  2455. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2456. cic_set_cfqq(cic, NULL, 1);
  2457. cfq_put_queue(sync_cfqq);
  2458. }
  2459. spin_unlock_irqrestore(q->queue_lock, flags);
  2460. }
  2461. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2462. {
  2463. call_for_each_cic(ioc, changed_cgroup);
  2464. ioc->cgroup_changed = 0;
  2465. }
  2466. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2467. static struct cfq_queue *
  2468. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2469. struct io_context *ioc, gfp_t gfp_mask)
  2470. {
  2471. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2472. struct cfq_io_context *cic;
  2473. struct cfq_group *cfqg;
  2474. retry:
  2475. cfqg = cfq_get_cfqg(cfqd, 1);
  2476. cic = cfq_cic_lookup(cfqd, ioc);
  2477. /* cic always exists here */
  2478. cfqq = cic_to_cfqq(cic, is_sync);
  2479. /*
  2480. * Always try a new alloc if we fell back to the OOM cfqq
  2481. * originally, since it should just be a temporary situation.
  2482. */
  2483. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2484. cfqq = NULL;
  2485. if (new_cfqq) {
  2486. cfqq = new_cfqq;
  2487. new_cfqq = NULL;
  2488. } else if (gfp_mask & __GFP_WAIT) {
  2489. spin_unlock_irq(cfqd->queue->queue_lock);
  2490. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2491. gfp_mask | __GFP_ZERO,
  2492. cfqd->queue->node);
  2493. spin_lock_irq(cfqd->queue->queue_lock);
  2494. if (new_cfqq)
  2495. goto retry;
  2496. } else {
  2497. cfqq = kmem_cache_alloc_node(cfq_pool,
  2498. gfp_mask | __GFP_ZERO,
  2499. cfqd->queue->node);
  2500. }
  2501. if (cfqq) {
  2502. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2503. cfq_init_prio_data(cfqq, ioc);
  2504. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2505. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2506. } else
  2507. cfqq = &cfqd->oom_cfqq;
  2508. }
  2509. if (new_cfqq)
  2510. kmem_cache_free(cfq_pool, new_cfqq);
  2511. return cfqq;
  2512. }
  2513. static struct cfq_queue **
  2514. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2515. {
  2516. switch (ioprio_class) {
  2517. case IOPRIO_CLASS_RT:
  2518. return &cfqd->async_cfqq[0][ioprio];
  2519. case IOPRIO_CLASS_BE:
  2520. return &cfqd->async_cfqq[1][ioprio];
  2521. case IOPRIO_CLASS_IDLE:
  2522. return &cfqd->async_idle_cfqq;
  2523. default:
  2524. BUG();
  2525. }
  2526. }
  2527. static struct cfq_queue *
  2528. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2529. gfp_t gfp_mask)
  2530. {
  2531. const int ioprio = task_ioprio(ioc);
  2532. const int ioprio_class = task_ioprio_class(ioc);
  2533. struct cfq_queue **async_cfqq = NULL;
  2534. struct cfq_queue *cfqq = NULL;
  2535. if (!is_sync) {
  2536. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2537. cfqq = *async_cfqq;
  2538. }
  2539. if (!cfqq)
  2540. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2541. /*
  2542. * pin the queue now that it's allocated, scheduler exit will prune it
  2543. */
  2544. if (!is_sync && !(*async_cfqq)) {
  2545. cfqq->ref++;
  2546. *async_cfqq = cfqq;
  2547. }
  2548. cfqq->ref++;
  2549. return cfqq;
  2550. }
  2551. /*
  2552. * We drop cfq io contexts lazily, so we may find a dead one.
  2553. */
  2554. static void
  2555. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2556. struct cfq_io_context *cic)
  2557. {
  2558. unsigned long flags;
  2559. WARN_ON(!list_empty(&cic->queue_list));
  2560. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2561. spin_lock_irqsave(&ioc->lock, flags);
  2562. BUG_ON(ioc->ioc_data == cic);
  2563. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2564. hlist_del_rcu(&cic->cic_list);
  2565. spin_unlock_irqrestore(&ioc->lock, flags);
  2566. cfq_cic_free(cic);
  2567. }
  2568. static struct cfq_io_context *
  2569. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2570. {
  2571. struct cfq_io_context *cic;
  2572. unsigned long flags;
  2573. if (unlikely(!ioc))
  2574. return NULL;
  2575. rcu_read_lock();
  2576. /*
  2577. * we maintain a last-hit cache, to avoid browsing over the tree
  2578. */
  2579. cic = rcu_dereference(ioc->ioc_data);
  2580. if (cic && cic->key == cfqd) {
  2581. rcu_read_unlock();
  2582. return cic;
  2583. }
  2584. do {
  2585. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2586. rcu_read_unlock();
  2587. if (!cic)
  2588. break;
  2589. if (unlikely(cic->key != cfqd)) {
  2590. cfq_drop_dead_cic(cfqd, ioc, cic);
  2591. rcu_read_lock();
  2592. continue;
  2593. }
  2594. spin_lock_irqsave(&ioc->lock, flags);
  2595. rcu_assign_pointer(ioc->ioc_data, cic);
  2596. spin_unlock_irqrestore(&ioc->lock, flags);
  2597. break;
  2598. } while (1);
  2599. return cic;
  2600. }
  2601. /*
  2602. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2603. * the process specific cfq io context when entered from the block layer.
  2604. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2605. */
  2606. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2607. struct cfq_io_context *cic, gfp_t gfp_mask)
  2608. {
  2609. unsigned long flags;
  2610. int ret;
  2611. ret = radix_tree_preload(gfp_mask);
  2612. if (!ret) {
  2613. cic->ioc = ioc;
  2614. cic->key = cfqd;
  2615. spin_lock_irqsave(&ioc->lock, flags);
  2616. ret = radix_tree_insert(&ioc->radix_root,
  2617. cfqd->cic_index, cic);
  2618. if (!ret)
  2619. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2620. spin_unlock_irqrestore(&ioc->lock, flags);
  2621. radix_tree_preload_end();
  2622. if (!ret) {
  2623. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2624. list_add(&cic->queue_list, &cfqd->cic_list);
  2625. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2626. }
  2627. }
  2628. if (ret)
  2629. printk(KERN_ERR "cfq: cic link failed!\n");
  2630. return ret;
  2631. }
  2632. /*
  2633. * Setup general io context and cfq io context. There can be several cfq
  2634. * io contexts per general io context, if this process is doing io to more
  2635. * than one device managed by cfq.
  2636. */
  2637. static struct cfq_io_context *
  2638. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2639. {
  2640. struct io_context *ioc = NULL;
  2641. struct cfq_io_context *cic;
  2642. might_sleep_if(gfp_mask & __GFP_WAIT);
  2643. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2644. if (!ioc)
  2645. return NULL;
  2646. cic = cfq_cic_lookup(cfqd, ioc);
  2647. if (cic)
  2648. goto out;
  2649. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2650. if (cic == NULL)
  2651. goto err;
  2652. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2653. goto err_free;
  2654. out:
  2655. smp_read_barrier_depends();
  2656. if (unlikely(ioc->ioprio_changed))
  2657. cfq_ioc_set_ioprio(ioc);
  2658. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2659. if (unlikely(ioc->cgroup_changed))
  2660. cfq_ioc_set_cgroup(ioc);
  2661. #endif
  2662. return cic;
  2663. err_free:
  2664. cfq_cic_free(cic);
  2665. err:
  2666. put_io_context(ioc);
  2667. return NULL;
  2668. }
  2669. static void
  2670. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2671. {
  2672. unsigned long elapsed = jiffies - cic->last_end_request;
  2673. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2674. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2675. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2676. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2677. }
  2678. static void
  2679. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2680. struct request *rq)
  2681. {
  2682. sector_t sdist = 0;
  2683. sector_t n_sec = blk_rq_sectors(rq);
  2684. if (cfqq->last_request_pos) {
  2685. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2686. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2687. else
  2688. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2689. }
  2690. cfqq->seek_history <<= 1;
  2691. if (blk_queue_nonrot(cfqd->queue))
  2692. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2693. else
  2694. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2695. }
  2696. /*
  2697. * Disable idle window if the process thinks too long or seeks so much that
  2698. * it doesn't matter
  2699. */
  2700. static void
  2701. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2702. struct cfq_io_context *cic)
  2703. {
  2704. int old_idle, enable_idle;
  2705. /*
  2706. * Don't idle for async or idle io prio class
  2707. */
  2708. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2709. return;
  2710. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2711. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2712. cfq_mark_cfqq_deep(cfqq);
  2713. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2714. enable_idle = 0;
  2715. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2716. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2717. enable_idle = 0;
  2718. else if (sample_valid(cic->ttime_samples)) {
  2719. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2720. enable_idle = 0;
  2721. else
  2722. enable_idle = 1;
  2723. }
  2724. if (old_idle != enable_idle) {
  2725. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2726. if (enable_idle)
  2727. cfq_mark_cfqq_idle_window(cfqq);
  2728. else
  2729. cfq_clear_cfqq_idle_window(cfqq);
  2730. }
  2731. }
  2732. /*
  2733. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2734. * no or if we aren't sure, a 1 will cause a preempt.
  2735. */
  2736. static bool
  2737. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2738. struct request *rq)
  2739. {
  2740. struct cfq_queue *cfqq;
  2741. cfqq = cfqd->active_queue;
  2742. if (!cfqq)
  2743. return false;
  2744. if (cfq_class_idle(new_cfqq))
  2745. return false;
  2746. if (cfq_class_idle(cfqq))
  2747. return true;
  2748. /*
  2749. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2750. */
  2751. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2752. return false;
  2753. /*
  2754. * if the new request is sync, but the currently running queue is
  2755. * not, let the sync request have priority.
  2756. */
  2757. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2758. return true;
  2759. if (new_cfqq->cfqg != cfqq->cfqg)
  2760. return false;
  2761. if (cfq_slice_used(cfqq))
  2762. return true;
  2763. /* Allow preemption only if we are idling on sync-noidle tree */
  2764. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2765. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2766. new_cfqq->service_tree->count == 2 &&
  2767. RB_EMPTY_ROOT(&cfqq->sort_list))
  2768. return true;
  2769. /*
  2770. * So both queues are sync. Let the new request get disk time if
  2771. * it's a metadata request and the current queue is doing regular IO.
  2772. */
  2773. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2774. return true;
  2775. /*
  2776. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2777. */
  2778. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2779. return true;
  2780. /* An idle queue should not be idle now for some reason */
  2781. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2782. return true;
  2783. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2784. return false;
  2785. /*
  2786. * if this request is as-good as one we would expect from the
  2787. * current cfqq, let it preempt
  2788. */
  2789. if (cfq_rq_close(cfqd, cfqq, rq))
  2790. return true;
  2791. return false;
  2792. }
  2793. /*
  2794. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2795. * let it have half of its nominal slice.
  2796. */
  2797. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2798. {
  2799. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2800. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2801. cfq_slice_expired(cfqd, 1);
  2802. /*
  2803. * workload type is changed, don't save slice, otherwise preempt
  2804. * doesn't happen
  2805. */
  2806. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2807. cfqq->cfqg->saved_workload_slice = 0;
  2808. /*
  2809. * Put the new queue at the front of the of the current list,
  2810. * so we know that it will be selected next.
  2811. */
  2812. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2813. cfq_service_tree_add(cfqd, cfqq, 1);
  2814. cfqq->slice_end = 0;
  2815. cfq_mark_cfqq_slice_new(cfqq);
  2816. }
  2817. /*
  2818. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2819. * something we should do about it
  2820. */
  2821. static void
  2822. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2823. struct request *rq)
  2824. {
  2825. struct cfq_io_context *cic = RQ_CIC(rq);
  2826. cfqd->rq_queued++;
  2827. if (rq->cmd_flags & REQ_META)
  2828. cfqq->meta_pending++;
  2829. cfq_update_io_thinktime(cfqd, cic);
  2830. cfq_update_io_seektime(cfqd, cfqq, rq);
  2831. cfq_update_idle_window(cfqd, cfqq, cic);
  2832. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2833. if (cfqq == cfqd->active_queue) {
  2834. /*
  2835. * Remember that we saw a request from this process, but
  2836. * don't start queuing just yet. Otherwise we risk seeing lots
  2837. * of tiny requests, because we disrupt the normal plugging
  2838. * and merging. If the request is already larger than a single
  2839. * page, let it rip immediately. For that case we assume that
  2840. * merging is already done. Ditto for a busy system that
  2841. * has other work pending, don't risk delaying until the
  2842. * idle timer unplug to continue working.
  2843. */
  2844. if (cfq_cfqq_wait_request(cfqq)) {
  2845. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2846. cfqd->busy_queues > 1) {
  2847. cfq_del_timer(cfqd, cfqq);
  2848. cfq_clear_cfqq_wait_request(cfqq);
  2849. __blk_run_queue(cfqd->queue, false);
  2850. } else {
  2851. cfq_blkiocg_update_idle_time_stats(
  2852. &cfqq->cfqg->blkg);
  2853. cfq_mark_cfqq_must_dispatch(cfqq);
  2854. }
  2855. }
  2856. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2857. /*
  2858. * not the active queue - expire current slice if it is
  2859. * idle and has expired it's mean thinktime or this new queue
  2860. * has some old slice time left and is of higher priority or
  2861. * this new queue is RT and the current one is BE
  2862. */
  2863. cfq_preempt_queue(cfqd, cfqq);
  2864. __blk_run_queue(cfqd->queue, false);
  2865. }
  2866. }
  2867. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2868. {
  2869. struct cfq_data *cfqd = q->elevator->elevator_data;
  2870. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2871. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2872. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2873. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2874. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2875. cfq_add_rq_rb(rq);
  2876. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2877. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2878. rq_is_sync(rq));
  2879. cfq_rq_enqueued(cfqd, cfqq, rq);
  2880. }
  2881. /*
  2882. * Update hw_tag based on peak queue depth over 50 samples under
  2883. * sufficient load.
  2884. */
  2885. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2886. {
  2887. struct cfq_queue *cfqq = cfqd->active_queue;
  2888. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2889. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2890. if (cfqd->hw_tag == 1)
  2891. return;
  2892. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2893. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2894. return;
  2895. /*
  2896. * If active queue hasn't enough requests and can idle, cfq might not
  2897. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2898. * case
  2899. */
  2900. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2901. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2902. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2903. return;
  2904. if (cfqd->hw_tag_samples++ < 50)
  2905. return;
  2906. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2907. cfqd->hw_tag = 1;
  2908. else
  2909. cfqd->hw_tag = 0;
  2910. }
  2911. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2912. {
  2913. struct cfq_io_context *cic = cfqd->active_cic;
  2914. /* If the queue already has requests, don't wait */
  2915. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2916. return false;
  2917. /* If there are other queues in the group, don't wait */
  2918. if (cfqq->cfqg->nr_cfqq > 1)
  2919. return false;
  2920. if (cfq_slice_used(cfqq))
  2921. return true;
  2922. /* if slice left is less than think time, wait busy */
  2923. if (cic && sample_valid(cic->ttime_samples)
  2924. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2925. return true;
  2926. /*
  2927. * If think times is less than a jiffy than ttime_mean=0 and above
  2928. * will not be true. It might happen that slice has not expired yet
  2929. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2930. * case where think time is less than a jiffy, mark the queue wait
  2931. * busy if only 1 jiffy is left in the slice.
  2932. */
  2933. if (cfqq->slice_end - jiffies == 1)
  2934. return true;
  2935. return false;
  2936. }
  2937. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2938. {
  2939. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2940. struct cfq_data *cfqd = cfqq->cfqd;
  2941. const int sync = rq_is_sync(rq);
  2942. unsigned long now;
  2943. now = jiffies;
  2944. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2945. !!(rq->cmd_flags & REQ_NOIDLE));
  2946. cfq_update_hw_tag(cfqd);
  2947. WARN_ON(!cfqd->rq_in_driver);
  2948. WARN_ON(!cfqq->dispatched);
  2949. cfqd->rq_in_driver--;
  2950. cfqq->dispatched--;
  2951. (RQ_CFQG(rq))->dispatched--;
  2952. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2953. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2954. rq_data_dir(rq), rq_is_sync(rq));
  2955. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2956. if (sync) {
  2957. RQ_CIC(rq)->last_end_request = now;
  2958. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2959. cfqd->last_delayed_sync = now;
  2960. }
  2961. /*
  2962. * If this is the active queue, check if it needs to be expired,
  2963. * or if we want to idle in case it has no pending requests.
  2964. */
  2965. if (cfqd->active_queue == cfqq) {
  2966. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2967. if (cfq_cfqq_slice_new(cfqq)) {
  2968. cfq_set_prio_slice(cfqd, cfqq);
  2969. cfq_clear_cfqq_slice_new(cfqq);
  2970. }
  2971. /*
  2972. * Should we wait for next request to come in before we expire
  2973. * the queue.
  2974. */
  2975. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2976. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2977. if (!cfqd->cfq_slice_idle)
  2978. extend_sl = cfqd->cfq_group_idle;
  2979. cfqq->slice_end = jiffies + extend_sl;
  2980. cfq_mark_cfqq_wait_busy(cfqq);
  2981. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2982. }
  2983. /*
  2984. * Idling is not enabled on:
  2985. * - expired queues
  2986. * - idle-priority queues
  2987. * - async queues
  2988. * - queues with still some requests queued
  2989. * - when there is a close cooperator
  2990. */
  2991. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2992. cfq_slice_expired(cfqd, 1);
  2993. else if (sync && cfqq_empty &&
  2994. !cfq_close_cooperator(cfqd, cfqq)) {
  2995. cfq_arm_slice_timer(cfqd);
  2996. }
  2997. }
  2998. if (!cfqd->rq_in_driver)
  2999. cfq_schedule_dispatch(cfqd);
  3000. }
  3001. /*
  3002. * we temporarily boost lower priority queues if they are holding fs exclusive
  3003. * resources. they are boosted to normal prio (CLASS_BE/4)
  3004. */
  3005. static void cfq_prio_boost(struct cfq_queue *cfqq)
  3006. {
  3007. if (has_fs_excl()) {
  3008. /*
  3009. * boost idle prio on transactions that would lock out other
  3010. * users of the filesystem
  3011. */
  3012. if (cfq_class_idle(cfqq))
  3013. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  3014. if (cfqq->ioprio > IOPRIO_NORM)
  3015. cfqq->ioprio = IOPRIO_NORM;
  3016. } else {
  3017. /*
  3018. * unboost the queue (if needed)
  3019. */
  3020. cfqq->ioprio_class = cfqq->org_ioprio_class;
  3021. cfqq->ioprio = cfqq->org_ioprio;
  3022. }
  3023. }
  3024. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3025. {
  3026. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3027. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3028. return ELV_MQUEUE_MUST;
  3029. }
  3030. return ELV_MQUEUE_MAY;
  3031. }
  3032. static int cfq_may_queue(struct request_queue *q, int rw)
  3033. {
  3034. struct cfq_data *cfqd = q->elevator->elevator_data;
  3035. struct task_struct *tsk = current;
  3036. struct cfq_io_context *cic;
  3037. struct cfq_queue *cfqq;
  3038. /*
  3039. * don't force setup of a queue from here, as a call to may_queue
  3040. * does not necessarily imply that a request actually will be queued.
  3041. * so just lookup a possibly existing queue, or return 'may queue'
  3042. * if that fails
  3043. */
  3044. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3045. if (!cic)
  3046. return ELV_MQUEUE_MAY;
  3047. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3048. if (cfqq) {
  3049. cfq_init_prio_data(cfqq, cic->ioc);
  3050. cfq_prio_boost(cfqq);
  3051. return __cfq_may_queue(cfqq);
  3052. }
  3053. return ELV_MQUEUE_MAY;
  3054. }
  3055. /*
  3056. * queue lock held here
  3057. */
  3058. static void cfq_put_request(struct request *rq)
  3059. {
  3060. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3061. if (cfqq) {
  3062. const int rw = rq_data_dir(rq);
  3063. BUG_ON(!cfqq->allocated[rw]);
  3064. cfqq->allocated[rw]--;
  3065. put_io_context(RQ_CIC(rq)->ioc);
  3066. rq->elevator_private[0] = NULL;
  3067. rq->elevator_private[1] = NULL;
  3068. /* Put down rq reference on cfqg */
  3069. cfq_put_cfqg(RQ_CFQG(rq));
  3070. rq->elevator_private[2] = NULL;
  3071. cfq_put_queue(cfqq);
  3072. }
  3073. }
  3074. static struct cfq_queue *
  3075. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3076. struct cfq_queue *cfqq)
  3077. {
  3078. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3079. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3080. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3081. cfq_put_queue(cfqq);
  3082. return cic_to_cfqq(cic, 1);
  3083. }
  3084. /*
  3085. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3086. * was the last process referring to said cfqq.
  3087. */
  3088. static struct cfq_queue *
  3089. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3090. {
  3091. if (cfqq_process_refs(cfqq) == 1) {
  3092. cfqq->pid = current->pid;
  3093. cfq_clear_cfqq_coop(cfqq);
  3094. cfq_clear_cfqq_split_coop(cfqq);
  3095. return cfqq;
  3096. }
  3097. cic_set_cfqq(cic, NULL, 1);
  3098. cfq_put_cooperator(cfqq);
  3099. cfq_put_queue(cfqq);
  3100. return NULL;
  3101. }
  3102. /*
  3103. * Allocate cfq data structures associated with this request.
  3104. */
  3105. static int
  3106. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3107. {
  3108. struct cfq_data *cfqd = q->elevator->elevator_data;
  3109. struct cfq_io_context *cic;
  3110. const int rw = rq_data_dir(rq);
  3111. const bool is_sync = rq_is_sync(rq);
  3112. struct cfq_queue *cfqq;
  3113. unsigned long flags;
  3114. might_sleep_if(gfp_mask & __GFP_WAIT);
  3115. cic = cfq_get_io_context(cfqd, gfp_mask);
  3116. spin_lock_irqsave(q->queue_lock, flags);
  3117. if (!cic)
  3118. goto queue_fail;
  3119. new_queue:
  3120. cfqq = cic_to_cfqq(cic, is_sync);
  3121. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3122. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3123. cic_set_cfqq(cic, cfqq, is_sync);
  3124. } else {
  3125. /*
  3126. * If the queue was seeky for too long, break it apart.
  3127. */
  3128. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3129. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3130. cfqq = split_cfqq(cic, cfqq);
  3131. if (!cfqq)
  3132. goto new_queue;
  3133. }
  3134. /*
  3135. * Check to see if this queue is scheduled to merge with
  3136. * another, closely cooperating queue. The merging of
  3137. * queues happens here as it must be done in process context.
  3138. * The reference on new_cfqq was taken in merge_cfqqs.
  3139. */
  3140. if (cfqq->new_cfqq)
  3141. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3142. }
  3143. cfqq->allocated[rw]++;
  3144. cfqq->ref++;
  3145. rq->elevator_private[0] = cic;
  3146. rq->elevator_private[1] = cfqq;
  3147. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3148. spin_unlock_irqrestore(q->queue_lock, flags);
  3149. return 0;
  3150. queue_fail:
  3151. if (cic)
  3152. put_io_context(cic->ioc);
  3153. cfq_schedule_dispatch(cfqd);
  3154. spin_unlock_irqrestore(q->queue_lock, flags);
  3155. cfq_log(cfqd, "set_request fail");
  3156. return 1;
  3157. }
  3158. static void cfq_kick_queue(struct work_struct *work)
  3159. {
  3160. struct cfq_data *cfqd =
  3161. container_of(work, struct cfq_data, unplug_work);
  3162. struct request_queue *q = cfqd->queue;
  3163. spin_lock_irq(q->queue_lock);
  3164. __blk_run_queue(cfqd->queue, false);
  3165. spin_unlock_irq(q->queue_lock);
  3166. }
  3167. /*
  3168. * Timer running if the active_queue is currently idling inside its time slice
  3169. */
  3170. static void cfq_idle_slice_timer(unsigned long data)
  3171. {
  3172. struct cfq_data *cfqd = (struct cfq_data *) data;
  3173. struct cfq_queue *cfqq;
  3174. unsigned long flags;
  3175. int timed_out = 1;
  3176. cfq_log(cfqd, "idle timer fired");
  3177. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3178. cfqq = cfqd->active_queue;
  3179. if (cfqq) {
  3180. timed_out = 0;
  3181. /*
  3182. * We saw a request before the queue expired, let it through
  3183. */
  3184. if (cfq_cfqq_must_dispatch(cfqq))
  3185. goto out_kick;
  3186. /*
  3187. * expired
  3188. */
  3189. if (cfq_slice_used(cfqq))
  3190. goto expire;
  3191. /*
  3192. * only expire and reinvoke request handler, if there are
  3193. * other queues with pending requests
  3194. */
  3195. if (!cfqd->busy_queues)
  3196. goto out_cont;
  3197. /*
  3198. * not expired and it has a request pending, let it dispatch
  3199. */
  3200. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3201. goto out_kick;
  3202. /*
  3203. * Queue depth flag is reset only when the idle didn't succeed
  3204. */
  3205. cfq_clear_cfqq_deep(cfqq);
  3206. }
  3207. expire:
  3208. cfq_slice_expired(cfqd, timed_out);
  3209. out_kick:
  3210. cfq_schedule_dispatch(cfqd);
  3211. out_cont:
  3212. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3213. }
  3214. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3215. {
  3216. del_timer_sync(&cfqd->idle_slice_timer);
  3217. cancel_work_sync(&cfqd->unplug_work);
  3218. }
  3219. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3220. {
  3221. int i;
  3222. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3223. if (cfqd->async_cfqq[0][i])
  3224. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3225. if (cfqd->async_cfqq[1][i])
  3226. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3227. }
  3228. if (cfqd->async_idle_cfqq)
  3229. cfq_put_queue(cfqd->async_idle_cfqq);
  3230. }
  3231. static void cfq_cfqd_free(struct rcu_head *head)
  3232. {
  3233. kfree(container_of(head, struct cfq_data, rcu));
  3234. }
  3235. static void cfq_exit_queue(struct elevator_queue *e)
  3236. {
  3237. struct cfq_data *cfqd = e->elevator_data;
  3238. struct request_queue *q = cfqd->queue;
  3239. cfq_shutdown_timer_wq(cfqd);
  3240. spin_lock_irq(q->queue_lock);
  3241. if (cfqd->active_queue)
  3242. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3243. while (!list_empty(&cfqd->cic_list)) {
  3244. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3245. struct cfq_io_context,
  3246. queue_list);
  3247. __cfq_exit_single_io_context(cfqd, cic);
  3248. }
  3249. cfq_put_async_queues(cfqd);
  3250. cfq_release_cfq_groups(cfqd);
  3251. cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3252. spin_unlock_irq(q->queue_lock);
  3253. cfq_shutdown_timer_wq(cfqd);
  3254. spin_lock(&cic_index_lock);
  3255. ida_remove(&cic_index_ida, cfqd->cic_index);
  3256. spin_unlock(&cic_index_lock);
  3257. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3258. call_rcu(&cfqd->rcu, cfq_cfqd_free);
  3259. }
  3260. static int cfq_alloc_cic_index(void)
  3261. {
  3262. int index, error;
  3263. do {
  3264. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3265. return -ENOMEM;
  3266. spin_lock(&cic_index_lock);
  3267. error = ida_get_new(&cic_index_ida, &index);
  3268. spin_unlock(&cic_index_lock);
  3269. if (error && error != -EAGAIN)
  3270. return error;
  3271. } while (error);
  3272. return index;
  3273. }
  3274. static void *cfq_init_queue(struct request_queue *q)
  3275. {
  3276. struct cfq_data *cfqd;
  3277. int i, j;
  3278. struct cfq_group *cfqg;
  3279. struct cfq_rb_root *st;
  3280. i = cfq_alloc_cic_index();
  3281. if (i < 0)
  3282. return NULL;
  3283. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3284. if (!cfqd)
  3285. return NULL;
  3286. /*
  3287. * Don't need take queue_lock in the routine, since we are
  3288. * initializing the ioscheduler, and nobody is using cfqd
  3289. */
  3290. cfqd->cic_index = i;
  3291. /* Init root service tree */
  3292. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3293. /* Init root group */
  3294. cfqg = &cfqd->root_group;
  3295. for_each_cfqg_st(cfqg, i, j, st)
  3296. *st = CFQ_RB_ROOT;
  3297. RB_CLEAR_NODE(&cfqg->rb_node);
  3298. /* Give preference to root group over other groups */
  3299. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3300. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3301. /*
  3302. * Take a reference to root group which we never drop. This is just
  3303. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3304. */
  3305. cfqg->ref = 1;
  3306. rcu_read_lock();
  3307. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3308. (void *)cfqd, 0);
  3309. rcu_read_unlock();
  3310. #endif
  3311. /*
  3312. * Not strictly needed (since RB_ROOT just clears the node and we
  3313. * zeroed cfqd on alloc), but better be safe in case someone decides
  3314. * to add magic to the rb code
  3315. */
  3316. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3317. cfqd->prio_trees[i] = RB_ROOT;
  3318. /*
  3319. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3320. * Grab a permanent reference to it, so that the normal code flow
  3321. * will not attempt to free it.
  3322. */
  3323. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3324. cfqd->oom_cfqq.ref++;
  3325. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3326. INIT_LIST_HEAD(&cfqd->cic_list);
  3327. cfqd->queue = q;
  3328. init_timer(&cfqd->idle_slice_timer);
  3329. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3330. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3331. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3332. cfqd->cfq_quantum = cfq_quantum;
  3333. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3334. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3335. cfqd->cfq_back_max = cfq_back_max;
  3336. cfqd->cfq_back_penalty = cfq_back_penalty;
  3337. cfqd->cfq_slice[0] = cfq_slice_async;
  3338. cfqd->cfq_slice[1] = cfq_slice_sync;
  3339. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3340. cfqd->cfq_slice_idle = cfq_slice_idle;
  3341. cfqd->cfq_group_idle = cfq_group_idle;
  3342. cfqd->cfq_latency = 1;
  3343. cfqd->hw_tag = -1;
  3344. /*
  3345. * we optimistically start assuming sync ops weren't delayed in last
  3346. * second, in order to have larger depth for async operations.
  3347. */
  3348. cfqd->last_delayed_sync = jiffies - HZ;
  3349. return cfqd;
  3350. }
  3351. static void cfq_slab_kill(void)
  3352. {
  3353. /*
  3354. * Caller already ensured that pending RCU callbacks are completed,
  3355. * so we should have no busy allocations at this point.
  3356. */
  3357. if (cfq_pool)
  3358. kmem_cache_destroy(cfq_pool);
  3359. if (cfq_ioc_pool)
  3360. kmem_cache_destroy(cfq_ioc_pool);
  3361. }
  3362. static int __init cfq_slab_setup(void)
  3363. {
  3364. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3365. if (!cfq_pool)
  3366. goto fail;
  3367. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3368. if (!cfq_ioc_pool)
  3369. goto fail;
  3370. return 0;
  3371. fail:
  3372. cfq_slab_kill();
  3373. return -ENOMEM;
  3374. }
  3375. /*
  3376. * sysfs parts below -->
  3377. */
  3378. static ssize_t
  3379. cfq_var_show(unsigned int var, char *page)
  3380. {
  3381. return sprintf(page, "%d\n", var);
  3382. }
  3383. static ssize_t
  3384. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3385. {
  3386. char *p = (char *) page;
  3387. *var = simple_strtoul(p, &p, 10);
  3388. return count;
  3389. }
  3390. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3391. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3392. { \
  3393. struct cfq_data *cfqd = e->elevator_data; \
  3394. unsigned int __data = __VAR; \
  3395. if (__CONV) \
  3396. __data = jiffies_to_msecs(__data); \
  3397. return cfq_var_show(__data, (page)); \
  3398. }
  3399. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3400. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3401. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3402. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3403. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3404. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3405. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3406. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3407. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3408. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3409. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3410. #undef SHOW_FUNCTION
  3411. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3412. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3413. { \
  3414. struct cfq_data *cfqd = e->elevator_data; \
  3415. unsigned int __data; \
  3416. int ret = cfq_var_store(&__data, (page), count); \
  3417. if (__data < (MIN)) \
  3418. __data = (MIN); \
  3419. else if (__data > (MAX)) \
  3420. __data = (MAX); \
  3421. if (__CONV) \
  3422. *(__PTR) = msecs_to_jiffies(__data); \
  3423. else \
  3424. *(__PTR) = __data; \
  3425. return ret; \
  3426. }
  3427. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3428. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3429. UINT_MAX, 1);
  3430. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3431. UINT_MAX, 1);
  3432. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3433. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3434. UINT_MAX, 0);
  3435. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3436. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3437. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3438. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3439. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3440. UINT_MAX, 0);
  3441. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3442. #undef STORE_FUNCTION
  3443. #define CFQ_ATTR(name) \
  3444. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3445. static struct elv_fs_entry cfq_attrs[] = {
  3446. CFQ_ATTR(quantum),
  3447. CFQ_ATTR(fifo_expire_sync),
  3448. CFQ_ATTR(fifo_expire_async),
  3449. CFQ_ATTR(back_seek_max),
  3450. CFQ_ATTR(back_seek_penalty),
  3451. CFQ_ATTR(slice_sync),
  3452. CFQ_ATTR(slice_async),
  3453. CFQ_ATTR(slice_async_rq),
  3454. CFQ_ATTR(slice_idle),
  3455. CFQ_ATTR(group_idle),
  3456. CFQ_ATTR(low_latency),
  3457. __ATTR_NULL
  3458. };
  3459. static struct elevator_type iosched_cfq = {
  3460. .ops = {
  3461. .elevator_merge_fn = cfq_merge,
  3462. .elevator_merged_fn = cfq_merged_request,
  3463. .elevator_merge_req_fn = cfq_merged_requests,
  3464. .elevator_allow_merge_fn = cfq_allow_merge,
  3465. .elevator_bio_merged_fn = cfq_bio_merged,
  3466. .elevator_dispatch_fn = cfq_dispatch_requests,
  3467. .elevator_add_req_fn = cfq_insert_request,
  3468. .elevator_activate_req_fn = cfq_activate_request,
  3469. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3470. .elevator_completed_req_fn = cfq_completed_request,
  3471. .elevator_former_req_fn = elv_rb_former_request,
  3472. .elevator_latter_req_fn = elv_rb_latter_request,
  3473. .elevator_set_req_fn = cfq_set_request,
  3474. .elevator_put_req_fn = cfq_put_request,
  3475. .elevator_may_queue_fn = cfq_may_queue,
  3476. .elevator_init_fn = cfq_init_queue,
  3477. .elevator_exit_fn = cfq_exit_queue,
  3478. .trim = cfq_free_io_context,
  3479. },
  3480. .elevator_attrs = cfq_attrs,
  3481. .elevator_name = "cfq",
  3482. .elevator_owner = THIS_MODULE,
  3483. };
  3484. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3485. static struct blkio_policy_type blkio_policy_cfq = {
  3486. .ops = {
  3487. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3488. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3489. },
  3490. .plid = BLKIO_POLICY_PROP,
  3491. };
  3492. #else
  3493. static struct blkio_policy_type blkio_policy_cfq;
  3494. #endif
  3495. static int __init cfq_init(void)
  3496. {
  3497. /*
  3498. * could be 0 on HZ < 1000 setups
  3499. */
  3500. if (!cfq_slice_async)
  3501. cfq_slice_async = 1;
  3502. if (!cfq_slice_idle)
  3503. cfq_slice_idle = 1;
  3504. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3505. if (!cfq_group_idle)
  3506. cfq_group_idle = 1;
  3507. #else
  3508. cfq_group_idle = 0;
  3509. #endif
  3510. if (cfq_slab_setup())
  3511. return -ENOMEM;
  3512. elv_register(&iosched_cfq);
  3513. blkio_policy_register(&blkio_policy_cfq);
  3514. return 0;
  3515. }
  3516. static void __exit cfq_exit(void)
  3517. {
  3518. DECLARE_COMPLETION_ONSTACK(all_gone);
  3519. blkio_policy_unregister(&blkio_policy_cfq);
  3520. elv_unregister(&iosched_cfq);
  3521. ioc_gone = &all_gone;
  3522. /* ioc_gone's update must be visible before reading ioc_count */
  3523. smp_wmb();
  3524. /*
  3525. * this also protects us from entering cfq_slab_kill() with
  3526. * pending RCU callbacks
  3527. */
  3528. if (elv_ioc_count_read(cfq_ioc_count))
  3529. wait_for_completion(&all_gone);
  3530. ida_destroy(&cic_index_ida);
  3531. cfq_slab_kill();
  3532. }
  3533. module_init(cfq_init);
  3534. module_exit(cfq_exit);
  3535. MODULE_AUTHOR("Jens Axboe");
  3536. MODULE_LICENSE("GPL");
  3537. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");