perf_event.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092
  1. #undef DEBUG
  2. /*
  3. * ARM performance counter support.
  4. *
  5. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  6. *
  7. * ARMv7 support: Jean Pihet <jpihet@mvista.com>
  8. * 2010 (c) MontaVista Software, LLC.
  9. *
  10. * This code is based on the sparc64 perf event code, which is in turn based
  11. * on the x86 code. Callchain code is based on the ARM OProfile backtrace
  12. * code.
  13. */
  14. #define pr_fmt(fmt) "hw perfevents: " fmt
  15. #include <linux/interrupt.h>
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/perf_event.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/cputype.h>
  23. #include <asm/irq.h>
  24. #include <asm/irq_regs.h>
  25. #include <asm/pmu.h>
  26. #include <asm/stacktrace.h>
  27. static struct platform_device *pmu_device;
  28. /*
  29. * Hardware lock to serialize accesses to PMU registers. Needed for the
  30. * read/modify/write sequences.
  31. */
  32. DEFINE_SPINLOCK(pmu_lock);
  33. /*
  34. * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
  35. * another platform that supports more, we need to increase this to be the
  36. * largest of all platforms.
  37. *
  38. * ARMv7 supports up to 32 events:
  39. * cycle counter CCNT + 31 events counters CNT0..30.
  40. * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
  41. */
  42. #define ARMPMU_MAX_HWEVENTS 33
  43. /* The events for a given CPU. */
  44. struct cpu_hw_events {
  45. /*
  46. * The events that are active on the CPU for the given index. Index 0
  47. * is reserved.
  48. */
  49. struct perf_event *events[ARMPMU_MAX_HWEVENTS];
  50. /*
  51. * A 1 bit for an index indicates that the counter is being used for
  52. * an event. A 0 means that the counter can be used.
  53. */
  54. unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  55. /*
  56. * A 1 bit for an index indicates that the counter is actively being
  57. * used.
  58. */
  59. unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
  60. };
  61. DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  62. struct arm_pmu {
  63. enum arm_perf_pmu_ids id;
  64. const char *name;
  65. irqreturn_t (*handle_irq)(int irq_num, void *dev);
  66. void (*enable)(struct hw_perf_event *evt, int idx);
  67. void (*disable)(struct hw_perf_event *evt, int idx);
  68. int (*get_event_idx)(struct cpu_hw_events *cpuc,
  69. struct hw_perf_event *hwc);
  70. u32 (*read_counter)(int idx);
  71. void (*write_counter)(int idx, u32 val);
  72. void (*start)(void);
  73. void (*stop)(void);
  74. const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
  75. [PERF_COUNT_HW_CACHE_OP_MAX]
  76. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  77. const unsigned (*event_map)[PERF_COUNT_HW_MAX];
  78. u32 raw_event_mask;
  79. int num_events;
  80. u64 max_period;
  81. };
  82. /* Set at runtime when we know what CPU type we are. */
  83. static const struct arm_pmu *armpmu;
  84. enum arm_perf_pmu_ids
  85. armpmu_get_pmu_id(void)
  86. {
  87. int id = -ENODEV;
  88. if (armpmu != NULL)
  89. id = armpmu->id;
  90. return id;
  91. }
  92. EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
  93. int
  94. armpmu_get_max_events(void)
  95. {
  96. int max_events = 0;
  97. if (armpmu != NULL)
  98. max_events = armpmu->num_events;
  99. return max_events;
  100. }
  101. EXPORT_SYMBOL_GPL(armpmu_get_max_events);
  102. int perf_num_counters(void)
  103. {
  104. return armpmu_get_max_events();
  105. }
  106. EXPORT_SYMBOL_GPL(perf_num_counters);
  107. #define HW_OP_UNSUPPORTED 0xFFFF
  108. #define C(_x) \
  109. PERF_COUNT_HW_CACHE_##_x
  110. #define CACHE_OP_UNSUPPORTED 0xFFFF
  111. static int
  112. armpmu_map_cache_event(u64 config)
  113. {
  114. unsigned int cache_type, cache_op, cache_result, ret;
  115. cache_type = (config >> 0) & 0xff;
  116. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  117. return -EINVAL;
  118. cache_op = (config >> 8) & 0xff;
  119. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  120. return -EINVAL;
  121. cache_result = (config >> 16) & 0xff;
  122. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  123. return -EINVAL;
  124. ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
  125. if (ret == CACHE_OP_UNSUPPORTED)
  126. return -ENOENT;
  127. return ret;
  128. }
  129. static int
  130. armpmu_map_event(u64 config)
  131. {
  132. int mapping = (*armpmu->event_map)[config];
  133. return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
  134. }
  135. static int
  136. armpmu_map_raw_event(u64 config)
  137. {
  138. return (int)(config & armpmu->raw_event_mask);
  139. }
  140. static int
  141. armpmu_event_set_period(struct perf_event *event,
  142. struct hw_perf_event *hwc,
  143. int idx)
  144. {
  145. s64 left = local64_read(&hwc->period_left);
  146. s64 period = hwc->sample_period;
  147. int ret = 0;
  148. if (unlikely(left <= -period)) {
  149. left = period;
  150. local64_set(&hwc->period_left, left);
  151. hwc->last_period = period;
  152. ret = 1;
  153. }
  154. if (unlikely(left <= 0)) {
  155. left += period;
  156. local64_set(&hwc->period_left, left);
  157. hwc->last_period = period;
  158. ret = 1;
  159. }
  160. if (left > (s64)armpmu->max_period)
  161. left = armpmu->max_period;
  162. local64_set(&hwc->prev_count, (u64)-left);
  163. armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
  164. perf_event_update_userpage(event);
  165. return ret;
  166. }
  167. static u64
  168. armpmu_event_update(struct perf_event *event,
  169. struct hw_perf_event *hwc,
  170. int idx)
  171. {
  172. int shift = 64 - 32;
  173. s64 prev_raw_count, new_raw_count;
  174. u64 delta;
  175. again:
  176. prev_raw_count = local64_read(&hwc->prev_count);
  177. new_raw_count = armpmu->read_counter(idx);
  178. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  179. new_raw_count) != prev_raw_count)
  180. goto again;
  181. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  182. delta >>= shift;
  183. local64_add(delta, &event->count);
  184. local64_sub(delta, &hwc->period_left);
  185. return new_raw_count;
  186. }
  187. static void
  188. armpmu_read(struct perf_event *event)
  189. {
  190. struct hw_perf_event *hwc = &event->hw;
  191. /* Don't read disabled counters! */
  192. if (hwc->idx < 0)
  193. return;
  194. armpmu_event_update(event, hwc, hwc->idx);
  195. }
  196. static void
  197. armpmu_stop(struct perf_event *event, int flags)
  198. {
  199. struct hw_perf_event *hwc = &event->hw;
  200. if (!armpmu)
  201. return;
  202. /*
  203. * ARM pmu always has to update the counter, so ignore
  204. * PERF_EF_UPDATE, see comments in armpmu_start().
  205. */
  206. if (!(hwc->state & PERF_HES_STOPPED)) {
  207. armpmu->disable(hwc, hwc->idx);
  208. barrier(); /* why? */
  209. armpmu_event_update(event, hwc, hwc->idx);
  210. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  211. }
  212. }
  213. static void
  214. armpmu_start(struct perf_event *event, int flags)
  215. {
  216. struct hw_perf_event *hwc = &event->hw;
  217. if (!armpmu)
  218. return;
  219. /*
  220. * ARM pmu always has to reprogram the period, so ignore
  221. * PERF_EF_RELOAD, see the comment below.
  222. */
  223. if (flags & PERF_EF_RELOAD)
  224. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  225. hwc->state = 0;
  226. /*
  227. * Set the period again. Some counters can't be stopped, so when we
  228. * were stopped we simply disabled the IRQ source and the counter
  229. * may have been left counting. If we don't do this step then we may
  230. * get an interrupt too soon or *way* too late if the overflow has
  231. * happened since disabling.
  232. */
  233. armpmu_event_set_period(event, hwc, hwc->idx);
  234. armpmu->enable(hwc, hwc->idx);
  235. }
  236. static void
  237. armpmu_del(struct perf_event *event, int flags)
  238. {
  239. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  240. struct hw_perf_event *hwc = &event->hw;
  241. int idx = hwc->idx;
  242. WARN_ON(idx < 0);
  243. clear_bit(idx, cpuc->active_mask);
  244. armpmu_stop(event, PERF_EF_UPDATE);
  245. cpuc->events[idx] = NULL;
  246. clear_bit(idx, cpuc->used_mask);
  247. perf_event_update_userpage(event);
  248. }
  249. static int
  250. armpmu_add(struct perf_event *event, int flags)
  251. {
  252. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  253. struct hw_perf_event *hwc = &event->hw;
  254. int idx;
  255. int err = 0;
  256. perf_pmu_disable(event->pmu);
  257. /* If we don't have a space for the counter then finish early. */
  258. idx = armpmu->get_event_idx(cpuc, hwc);
  259. if (idx < 0) {
  260. err = idx;
  261. goto out;
  262. }
  263. /*
  264. * If there is an event in the counter we are going to use then make
  265. * sure it is disabled.
  266. */
  267. event->hw.idx = idx;
  268. armpmu->disable(hwc, idx);
  269. cpuc->events[idx] = event;
  270. set_bit(idx, cpuc->active_mask);
  271. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  272. if (flags & PERF_EF_START)
  273. armpmu_start(event, PERF_EF_RELOAD);
  274. /* Propagate our changes to the userspace mapping. */
  275. perf_event_update_userpage(event);
  276. out:
  277. perf_pmu_enable(event->pmu);
  278. return err;
  279. }
  280. static struct pmu pmu;
  281. static int
  282. validate_event(struct cpu_hw_events *cpuc,
  283. struct perf_event *event)
  284. {
  285. struct hw_perf_event fake_event = event->hw;
  286. if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
  287. return 1;
  288. return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
  289. }
  290. static int
  291. validate_group(struct perf_event *event)
  292. {
  293. struct perf_event *sibling, *leader = event->group_leader;
  294. struct cpu_hw_events fake_pmu;
  295. memset(&fake_pmu, 0, sizeof(fake_pmu));
  296. if (!validate_event(&fake_pmu, leader))
  297. return -ENOSPC;
  298. list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
  299. if (!validate_event(&fake_pmu, sibling))
  300. return -ENOSPC;
  301. }
  302. if (!validate_event(&fake_pmu, event))
  303. return -ENOSPC;
  304. return 0;
  305. }
  306. static int
  307. armpmu_reserve_hardware(void)
  308. {
  309. int i, err = -ENODEV, irq;
  310. pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
  311. if (IS_ERR(pmu_device)) {
  312. pr_warning("unable to reserve pmu\n");
  313. return PTR_ERR(pmu_device);
  314. }
  315. init_pmu(ARM_PMU_DEVICE_CPU);
  316. if (pmu_device->num_resources < 1) {
  317. pr_err("no irqs for PMUs defined\n");
  318. return -ENODEV;
  319. }
  320. for (i = 0; i < pmu_device->num_resources; ++i) {
  321. irq = platform_get_irq(pmu_device, i);
  322. if (irq < 0)
  323. continue;
  324. err = request_irq(irq, armpmu->handle_irq,
  325. IRQF_DISABLED | IRQF_NOBALANCING,
  326. "armpmu", NULL);
  327. if (err) {
  328. pr_warning("unable to request IRQ%d for ARM perf "
  329. "counters\n", irq);
  330. break;
  331. }
  332. }
  333. if (err) {
  334. for (i = i - 1; i >= 0; --i) {
  335. irq = platform_get_irq(pmu_device, i);
  336. if (irq >= 0)
  337. free_irq(irq, NULL);
  338. }
  339. release_pmu(pmu_device);
  340. pmu_device = NULL;
  341. }
  342. return err;
  343. }
  344. static void
  345. armpmu_release_hardware(void)
  346. {
  347. int i, irq;
  348. for (i = pmu_device->num_resources - 1; i >= 0; --i) {
  349. irq = platform_get_irq(pmu_device, i);
  350. if (irq >= 0)
  351. free_irq(irq, NULL);
  352. }
  353. armpmu->stop();
  354. release_pmu(pmu_device);
  355. pmu_device = NULL;
  356. }
  357. static atomic_t active_events = ATOMIC_INIT(0);
  358. static DEFINE_MUTEX(pmu_reserve_mutex);
  359. static void
  360. hw_perf_event_destroy(struct perf_event *event)
  361. {
  362. if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
  363. armpmu_release_hardware();
  364. mutex_unlock(&pmu_reserve_mutex);
  365. }
  366. }
  367. static int
  368. __hw_perf_event_init(struct perf_event *event)
  369. {
  370. struct hw_perf_event *hwc = &event->hw;
  371. int mapping, err;
  372. /* Decode the generic type into an ARM event identifier. */
  373. if (PERF_TYPE_HARDWARE == event->attr.type) {
  374. mapping = armpmu_map_event(event->attr.config);
  375. } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
  376. mapping = armpmu_map_cache_event(event->attr.config);
  377. } else if (PERF_TYPE_RAW == event->attr.type) {
  378. mapping = armpmu_map_raw_event(event->attr.config);
  379. } else {
  380. pr_debug("event type %x not supported\n", event->attr.type);
  381. return -EOPNOTSUPP;
  382. }
  383. if (mapping < 0) {
  384. pr_debug("event %x:%llx not supported\n", event->attr.type,
  385. event->attr.config);
  386. return mapping;
  387. }
  388. /*
  389. * Check whether we need to exclude the counter from certain modes.
  390. * The ARM performance counters are on all of the time so if someone
  391. * has asked us for some excludes then we have to fail.
  392. */
  393. if (event->attr.exclude_kernel || event->attr.exclude_user ||
  394. event->attr.exclude_hv || event->attr.exclude_idle) {
  395. pr_debug("ARM performance counters do not support "
  396. "mode exclusion\n");
  397. return -EPERM;
  398. }
  399. /*
  400. * We don't assign an index until we actually place the event onto
  401. * hardware. Use -1 to signify that we haven't decided where to put it
  402. * yet. For SMP systems, each core has it's own PMU so we can't do any
  403. * clever allocation or constraints checking at this point.
  404. */
  405. hwc->idx = -1;
  406. /*
  407. * Store the event encoding into the config_base field. config and
  408. * event_base are unused as the only 2 things we need to know are
  409. * the event mapping and the counter to use. The counter to use is
  410. * also the indx and the config_base is the event type.
  411. */
  412. hwc->config_base = (unsigned long)mapping;
  413. hwc->config = 0;
  414. hwc->event_base = 0;
  415. if (!hwc->sample_period) {
  416. hwc->sample_period = armpmu->max_period;
  417. hwc->last_period = hwc->sample_period;
  418. local64_set(&hwc->period_left, hwc->sample_period);
  419. }
  420. err = 0;
  421. if (event->group_leader != event) {
  422. err = validate_group(event);
  423. if (err)
  424. return -EINVAL;
  425. }
  426. return err;
  427. }
  428. static int armpmu_event_init(struct perf_event *event)
  429. {
  430. int err = 0;
  431. switch (event->attr.type) {
  432. case PERF_TYPE_RAW:
  433. case PERF_TYPE_HARDWARE:
  434. case PERF_TYPE_HW_CACHE:
  435. break;
  436. default:
  437. return -ENOENT;
  438. }
  439. if (!armpmu)
  440. return -ENODEV;
  441. event->destroy = hw_perf_event_destroy;
  442. if (!atomic_inc_not_zero(&active_events)) {
  443. if (atomic_read(&active_events) > armpmu->num_events) {
  444. atomic_dec(&active_events);
  445. return -ENOSPC;
  446. }
  447. mutex_lock(&pmu_reserve_mutex);
  448. if (atomic_read(&active_events) == 0) {
  449. err = armpmu_reserve_hardware();
  450. }
  451. if (!err)
  452. atomic_inc(&active_events);
  453. mutex_unlock(&pmu_reserve_mutex);
  454. }
  455. if (err)
  456. return err;
  457. err = __hw_perf_event_init(event);
  458. if (err)
  459. hw_perf_event_destroy(event);
  460. return err;
  461. }
  462. static void armpmu_enable(struct pmu *pmu)
  463. {
  464. /* Enable all of the perf events on hardware. */
  465. int idx;
  466. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  467. if (!armpmu)
  468. return;
  469. for (idx = 0; idx <= armpmu->num_events; ++idx) {
  470. struct perf_event *event = cpuc->events[idx];
  471. if (!event)
  472. continue;
  473. armpmu->enable(&event->hw, idx);
  474. }
  475. armpmu->start();
  476. }
  477. static void armpmu_disable(struct pmu *pmu)
  478. {
  479. if (armpmu)
  480. armpmu->stop();
  481. }
  482. static struct pmu pmu = {
  483. .pmu_enable = armpmu_enable,
  484. .pmu_disable = armpmu_disable,
  485. .event_init = armpmu_event_init,
  486. .add = armpmu_add,
  487. .del = armpmu_del,
  488. .start = armpmu_start,
  489. .stop = armpmu_stop,
  490. .read = armpmu_read,
  491. };
  492. /*
  493. * ARMv6 Performance counter handling code.
  494. *
  495. * ARMv6 has 2 configurable performance counters and a single cycle counter.
  496. * They all share a single reset bit but can be written to zero so we can use
  497. * that for a reset.
  498. *
  499. * The counters can't be individually enabled or disabled so when we remove
  500. * one event and replace it with another we could get spurious counts from the
  501. * wrong event. However, we can take advantage of the fact that the
  502. * performance counters can export events to the event bus, and the event bus
  503. * itself can be monitored. This requires that we *don't* export the events to
  504. * the event bus. The procedure for disabling a configurable counter is:
  505. * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
  506. * effectively stops the counter from counting.
  507. * - disable the counter's interrupt generation (each counter has it's
  508. * own interrupt enable bit).
  509. * Once stopped, the counter value can be written as 0 to reset.
  510. *
  511. * To enable a counter:
  512. * - enable the counter's interrupt generation.
  513. * - set the new event type.
  514. *
  515. * Note: the dedicated cycle counter only counts cycles and can't be
  516. * enabled/disabled independently of the others. When we want to disable the
  517. * cycle counter, we have to just disable the interrupt reporting and start
  518. * ignoring that counter. When re-enabling, we have to reset the value and
  519. * enable the interrupt.
  520. */
  521. enum armv6_perf_types {
  522. ARMV6_PERFCTR_ICACHE_MISS = 0x0,
  523. ARMV6_PERFCTR_IBUF_STALL = 0x1,
  524. ARMV6_PERFCTR_DDEP_STALL = 0x2,
  525. ARMV6_PERFCTR_ITLB_MISS = 0x3,
  526. ARMV6_PERFCTR_DTLB_MISS = 0x4,
  527. ARMV6_PERFCTR_BR_EXEC = 0x5,
  528. ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
  529. ARMV6_PERFCTR_INSTR_EXEC = 0x7,
  530. ARMV6_PERFCTR_DCACHE_HIT = 0x9,
  531. ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
  532. ARMV6_PERFCTR_DCACHE_MISS = 0xB,
  533. ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
  534. ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
  535. ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
  536. ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
  537. ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
  538. ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
  539. ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
  540. ARMV6_PERFCTR_NOP = 0x20,
  541. };
  542. enum armv6_counters {
  543. ARMV6_CYCLE_COUNTER = 1,
  544. ARMV6_COUNTER0,
  545. ARMV6_COUNTER1,
  546. };
  547. /*
  548. * The hardware events that we support. We do support cache operations but
  549. * we have harvard caches and no way to combine instruction and data
  550. * accesses/misses in hardware.
  551. */
  552. static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
  553. [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
  554. [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
  555. [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
  556. [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
  557. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
  558. [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
  559. [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
  560. };
  561. static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
  562. [PERF_COUNT_HW_CACHE_OP_MAX]
  563. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  564. [C(L1D)] = {
  565. /*
  566. * The performance counters don't differentiate between read
  567. * and write accesses/misses so this isn't strictly correct,
  568. * but it's the best we can do. Writes and reads get
  569. * combined.
  570. */
  571. [C(OP_READ)] = {
  572. [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
  573. [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
  574. },
  575. [C(OP_WRITE)] = {
  576. [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
  577. [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
  578. },
  579. [C(OP_PREFETCH)] = {
  580. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  581. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  582. },
  583. },
  584. [C(L1I)] = {
  585. [C(OP_READ)] = {
  586. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  587. [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
  588. },
  589. [C(OP_WRITE)] = {
  590. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  591. [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
  592. },
  593. [C(OP_PREFETCH)] = {
  594. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  595. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  596. },
  597. },
  598. [C(LL)] = {
  599. [C(OP_READ)] = {
  600. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  601. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  602. },
  603. [C(OP_WRITE)] = {
  604. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  605. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  606. },
  607. [C(OP_PREFETCH)] = {
  608. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  609. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  610. },
  611. },
  612. [C(DTLB)] = {
  613. /*
  614. * The ARM performance counters can count micro DTLB misses,
  615. * micro ITLB misses and main TLB misses. There isn't an event
  616. * for TLB misses, so use the micro misses here and if users
  617. * want the main TLB misses they can use a raw counter.
  618. */
  619. [C(OP_READ)] = {
  620. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  621. [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
  622. },
  623. [C(OP_WRITE)] = {
  624. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  625. [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
  626. },
  627. [C(OP_PREFETCH)] = {
  628. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  629. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  630. },
  631. },
  632. [C(ITLB)] = {
  633. [C(OP_READ)] = {
  634. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  635. [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
  636. },
  637. [C(OP_WRITE)] = {
  638. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  639. [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
  640. },
  641. [C(OP_PREFETCH)] = {
  642. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  643. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  644. },
  645. },
  646. [C(BPU)] = {
  647. [C(OP_READ)] = {
  648. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  649. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  650. },
  651. [C(OP_WRITE)] = {
  652. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  653. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  654. },
  655. [C(OP_PREFETCH)] = {
  656. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  657. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  658. },
  659. },
  660. };
  661. enum armv6mpcore_perf_types {
  662. ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
  663. ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
  664. ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
  665. ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
  666. ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
  667. ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
  668. ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
  669. ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
  670. ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
  671. ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
  672. ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
  673. ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
  674. ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
  675. ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
  676. ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
  677. ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
  678. ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
  679. ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
  680. ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
  681. ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
  682. };
  683. /*
  684. * The hardware events that we support. We do support cache operations but
  685. * we have harvard caches and no way to combine instruction and data
  686. * accesses/misses in hardware.
  687. */
  688. static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
  689. [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
  690. [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
  691. [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
  692. [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
  693. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
  694. [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
  695. [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
  696. };
  697. static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
  698. [PERF_COUNT_HW_CACHE_OP_MAX]
  699. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  700. [C(L1D)] = {
  701. [C(OP_READ)] = {
  702. [C(RESULT_ACCESS)] =
  703. ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
  704. [C(RESULT_MISS)] =
  705. ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
  706. },
  707. [C(OP_WRITE)] = {
  708. [C(RESULT_ACCESS)] =
  709. ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
  710. [C(RESULT_MISS)] =
  711. ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
  712. },
  713. [C(OP_PREFETCH)] = {
  714. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  715. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  716. },
  717. },
  718. [C(L1I)] = {
  719. [C(OP_READ)] = {
  720. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  721. [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
  722. },
  723. [C(OP_WRITE)] = {
  724. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  725. [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
  726. },
  727. [C(OP_PREFETCH)] = {
  728. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  729. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  730. },
  731. },
  732. [C(LL)] = {
  733. [C(OP_READ)] = {
  734. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  735. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  736. },
  737. [C(OP_WRITE)] = {
  738. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  739. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  740. },
  741. [C(OP_PREFETCH)] = {
  742. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  743. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  744. },
  745. },
  746. [C(DTLB)] = {
  747. /*
  748. * The ARM performance counters can count micro DTLB misses,
  749. * micro ITLB misses and main TLB misses. There isn't an event
  750. * for TLB misses, so use the micro misses here and if users
  751. * want the main TLB misses they can use a raw counter.
  752. */
  753. [C(OP_READ)] = {
  754. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  755. [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
  756. },
  757. [C(OP_WRITE)] = {
  758. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  759. [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
  760. },
  761. [C(OP_PREFETCH)] = {
  762. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  763. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  764. },
  765. },
  766. [C(ITLB)] = {
  767. [C(OP_READ)] = {
  768. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  769. [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
  770. },
  771. [C(OP_WRITE)] = {
  772. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  773. [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
  774. },
  775. [C(OP_PREFETCH)] = {
  776. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  777. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  778. },
  779. },
  780. [C(BPU)] = {
  781. [C(OP_READ)] = {
  782. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  783. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  784. },
  785. [C(OP_WRITE)] = {
  786. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  787. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  788. },
  789. [C(OP_PREFETCH)] = {
  790. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  791. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  792. },
  793. },
  794. };
  795. static inline unsigned long
  796. armv6_pmcr_read(void)
  797. {
  798. u32 val;
  799. asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
  800. return val;
  801. }
  802. static inline void
  803. armv6_pmcr_write(unsigned long val)
  804. {
  805. asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
  806. }
  807. #define ARMV6_PMCR_ENABLE (1 << 0)
  808. #define ARMV6_PMCR_CTR01_RESET (1 << 1)
  809. #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
  810. #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
  811. #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
  812. #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
  813. #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
  814. #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
  815. #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
  816. #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
  817. #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
  818. #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
  819. #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
  820. #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
  821. #define ARMV6_PMCR_OVERFLOWED_MASK \
  822. (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
  823. ARMV6_PMCR_CCOUNT_OVERFLOW)
  824. static inline int
  825. armv6_pmcr_has_overflowed(unsigned long pmcr)
  826. {
  827. return (pmcr & ARMV6_PMCR_OVERFLOWED_MASK);
  828. }
  829. static inline int
  830. armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
  831. enum armv6_counters counter)
  832. {
  833. int ret = 0;
  834. if (ARMV6_CYCLE_COUNTER == counter)
  835. ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
  836. else if (ARMV6_COUNTER0 == counter)
  837. ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
  838. else if (ARMV6_COUNTER1 == counter)
  839. ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
  840. else
  841. WARN_ONCE(1, "invalid counter number (%d)\n", counter);
  842. return ret;
  843. }
  844. static inline u32
  845. armv6pmu_read_counter(int counter)
  846. {
  847. unsigned long value = 0;
  848. if (ARMV6_CYCLE_COUNTER == counter)
  849. asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
  850. else if (ARMV6_COUNTER0 == counter)
  851. asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
  852. else if (ARMV6_COUNTER1 == counter)
  853. asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
  854. else
  855. WARN_ONCE(1, "invalid counter number (%d)\n", counter);
  856. return value;
  857. }
  858. static inline void
  859. armv6pmu_write_counter(int counter,
  860. u32 value)
  861. {
  862. if (ARMV6_CYCLE_COUNTER == counter)
  863. asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
  864. else if (ARMV6_COUNTER0 == counter)
  865. asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
  866. else if (ARMV6_COUNTER1 == counter)
  867. asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
  868. else
  869. WARN_ONCE(1, "invalid counter number (%d)\n", counter);
  870. }
  871. void
  872. armv6pmu_enable_event(struct hw_perf_event *hwc,
  873. int idx)
  874. {
  875. unsigned long val, mask, evt, flags;
  876. if (ARMV6_CYCLE_COUNTER == idx) {
  877. mask = 0;
  878. evt = ARMV6_PMCR_CCOUNT_IEN;
  879. } else if (ARMV6_COUNTER0 == idx) {
  880. mask = ARMV6_PMCR_EVT_COUNT0_MASK;
  881. evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
  882. ARMV6_PMCR_COUNT0_IEN;
  883. } else if (ARMV6_COUNTER1 == idx) {
  884. mask = ARMV6_PMCR_EVT_COUNT1_MASK;
  885. evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
  886. ARMV6_PMCR_COUNT1_IEN;
  887. } else {
  888. WARN_ONCE(1, "invalid counter number (%d)\n", idx);
  889. return;
  890. }
  891. /*
  892. * Mask out the current event and set the counter to count the event
  893. * that we're interested in.
  894. */
  895. spin_lock_irqsave(&pmu_lock, flags);
  896. val = armv6_pmcr_read();
  897. val &= ~mask;
  898. val |= evt;
  899. armv6_pmcr_write(val);
  900. spin_unlock_irqrestore(&pmu_lock, flags);
  901. }
  902. static irqreturn_t
  903. armv6pmu_handle_irq(int irq_num,
  904. void *dev)
  905. {
  906. unsigned long pmcr = armv6_pmcr_read();
  907. struct perf_sample_data data;
  908. struct cpu_hw_events *cpuc;
  909. struct pt_regs *regs;
  910. int idx;
  911. if (!armv6_pmcr_has_overflowed(pmcr))
  912. return IRQ_NONE;
  913. regs = get_irq_regs();
  914. /*
  915. * The interrupts are cleared by writing the overflow flags back to
  916. * the control register. All of the other bits don't have any effect
  917. * if they are rewritten, so write the whole value back.
  918. */
  919. armv6_pmcr_write(pmcr);
  920. perf_sample_data_init(&data, 0);
  921. cpuc = &__get_cpu_var(cpu_hw_events);
  922. for (idx = 0; idx <= armpmu->num_events; ++idx) {
  923. struct perf_event *event = cpuc->events[idx];
  924. struct hw_perf_event *hwc;
  925. if (!test_bit(idx, cpuc->active_mask))
  926. continue;
  927. /*
  928. * We have a single interrupt for all counters. Check that
  929. * each counter has overflowed before we process it.
  930. */
  931. if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
  932. continue;
  933. hwc = &event->hw;
  934. armpmu_event_update(event, hwc, idx);
  935. data.period = event->hw.last_period;
  936. if (!armpmu_event_set_period(event, hwc, idx))
  937. continue;
  938. if (perf_event_overflow(event, 0, &data, regs))
  939. armpmu->disable(hwc, idx);
  940. }
  941. /*
  942. * Handle the pending perf events.
  943. *
  944. * Note: this call *must* be run with interrupts disabled. For
  945. * platforms that can have the PMU interrupts raised as an NMI, this
  946. * will not work.
  947. */
  948. irq_work_run();
  949. return IRQ_HANDLED;
  950. }
  951. static void
  952. armv6pmu_start(void)
  953. {
  954. unsigned long flags, val;
  955. spin_lock_irqsave(&pmu_lock, flags);
  956. val = armv6_pmcr_read();
  957. val |= ARMV6_PMCR_ENABLE;
  958. armv6_pmcr_write(val);
  959. spin_unlock_irqrestore(&pmu_lock, flags);
  960. }
  961. static void
  962. armv6pmu_stop(void)
  963. {
  964. unsigned long flags, val;
  965. spin_lock_irqsave(&pmu_lock, flags);
  966. val = armv6_pmcr_read();
  967. val &= ~ARMV6_PMCR_ENABLE;
  968. armv6_pmcr_write(val);
  969. spin_unlock_irqrestore(&pmu_lock, flags);
  970. }
  971. static int
  972. armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
  973. struct hw_perf_event *event)
  974. {
  975. /* Always place a cycle counter into the cycle counter. */
  976. if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
  977. if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
  978. return -EAGAIN;
  979. return ARMV6_CYCLE_COUNTER;
  980. } else {
  981. /*
  982. * For anything other than a cycle counter, try and use
  983. * counter0 and counter1.
  984. */
  985. if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask)) {
  986. return ARMV6_COUNTER1;
  987. }
  988. if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask)) {
  989. return ARMV6_COUNTER0;
  990. }
  991. /* The counters are all in use. */
  992. return -EAGAIN;
  993. }
  994. }
  995. static void
  996. armv6pmu_disable_event(struct hw_perf_event *hwc,
  997. int idx)
  998. {
  999. unsigned long val, mask, evt, flags;
  1000. if (ARMV6_CYCLE_COUNTER == idx) {
  1001. mask = ARMV6_PMCR_CCOUNT_IEN;
  1002. evt = 0;
  1003. } else if (ARMV6_COUNTER0 == idx) {
  1004. mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
  1005. evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
  1006. } else if (ARMV6_COUNTER1 == idx) {
  1007. mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
  1008. evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
  1009. } else {
  1010. WARN_ONCE(1, "invalid counter number (%d)\n", idx);
  1011. return;
  1012. }
  1013. /*
  1014. * Mask out the current event and set the counter to count the number
  1015. * of ETM bus signal assertion cycles. The external reporting should
  1016. * be disabled and so this should never increment.
  1017. */
  1018. spin_lock_irqsave(&pmu_lock, flags);
  1019. val = armv6_pmcr_read();
  1020. val &= ~mask;
  1021. val |= evt;
  1022. armv6_pmcr_write(val);
  1023. spin_unlock_irqrestore(&pmu_lock, flags);
  1024. }
  1025. static void
  1026. armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
  1027. int idx)
  1028. {
  1029. unsigned long val, mask, flags, evt = 0;
  1030. if (ARMV6_CYCLE_COUNTER == idx) {
  1031. mask = ARMV6_PMCR_CCOUNT_IEN;
  1032. } else if (ARMV6_COUNTER0 == idx) {
  1033. mask = ARMV6_PMCR_COUNT0_IEN;
  1034. } else if (ARMV6_COUNTER1 == idx) {
  1035. mask = ARMV6_PMCR_COUNT1_IEN;
  1036. } else {
  1037. WARN_ONCE(1, "invalid counter number (%d)\n", idx);
  1038. return;
  1039. }
  1040. /*
  1041. * Unlike UP ARMv6, we don't have a way of stopping the counters. We
  1042. * simply disable the interrupt reporting.
  1043. */
  1044. spin_lock_irqsave(&pmu_lock, flags);
  1045. val = armv6_pmcr_read();
  1046. val &= ~mask;
  1047. val |= evt;
  1048. armv6_pmcr_write(val);
  1049. spin_unlock_irqrestore(&pmu_lock, flags);
  1050. }
  1051. static const struct arm_pmu armv6pmu = {
  1052. .id = ARM_PERF_PMU_ID_V6,
  1053. .name = "v6",
  1054. .handle_irq = armv6pmu_handle_irq,
  1055. .enable = armv6pmu_enable_event,
  1056. .disable = armv6pmu_disable_event,
  1057. .read_counter = armv6pmu_read_counter,
  1058. .write_counter = armv6pmu_write_counter,
  1059. .get_event_idx = armv6pmu_get_event_idx,
  1060. .start = armv6pmu_start,
  1061. .stop = armv6pmu_stop,
  1062. .cache_map = &armv6_perf_cache_map,
  1063. .event_map = &armv6_perf_map,
  1064. .raw_event_mask = 0xFF,
  1065. .num_events = 3,
  1066. .max_period = (1LLU << 32) - 1,
  1067. };
  1068. const struct arm_pmu *__init armv6pmu_init(void)
  1069. {
  1070. return &armv6pmu;
  1071. }
  1072. /*
  1073. * ARMv6mpcore is almost identical to single core ARMv6 with the exception
  1074. * that some of the events have different enumerations and that there is no
  1075. * *hack* to stop the programmable counters. To stop the counters we simply
  1076. * disable the interrupt reporting and update the event. When unthrottling we
  1077. * reset the period and enable the interrupt reporting.
  1078. */
  1079. static const struct arm_pmu armv6mpcore_pmu = {
  1080. .id = ARM_PERF_PMU_ID_V6MP,
  1081. .name = "v6mpcore",
  1082. .handle_irq = armv6pmu_handle_irq,
  1083. .enable = armv6pmu_enable_event,
  1084. .disable = armv6mpcore_pmu_disable_event,
  1085. .read_counter = armv6pmu_read_counter,
  1086. .write_counter = armv6pmu_write_counter,
  1087. .get_event_idx = armv6pmu_get_event_idx,
  1088. .start = armv6pmu_start,
  1089. .stop = armv6pmu_stop,
  1090. .cache_map = &armv6mpcore_perf_cache_map,
  1091. .event_map = &armv6mpcore_perf_map,
  1092. .raw_event_mask = 0xFF,
  1093. .num_events = 3,
  1094. .max_period = (1LLU << 32) - 1,
  1095. };
  1096. const struct arm_pmu *__init armv6mpcore_pmu_init(void)
  1097. {
  1098. return &armv6mpcore_pmu;
  1099. }
  1100. /*
  1101. * ARMv7 Cortex-A8 and Cortex-A9 Performance Events handling code.
  1102. *
  1103. * Copied from ARMv6 code, with the low level code inspired
  1104. * by the ARMv7 Oprofile code.
  1105. *
  1106. * Cortex-A8 has up to 4 configurable performance counters and
  1107. * a single cycle counter.
  1108. * Cortex-A9 has up to 31 configurable performance counters and
  1109. * a single cycle counter.
  1110. *
  1111. * All counters can be enabled/disabled and IRQ masked separately. The cycle
  1112. * counter and all 4 performance counters together can be reset separately.
  1113. */
  1114. /* Common ARMv7 event types */
  1115. enum armv7_perf_types {
  1116. ARMV7_PERFCTR_PMNC_SW_INCR = 0x00,
  1117. ARMV7_PERFCTR_IFETCH_MISS = 0x01,
  1118. ARMV7_PERFCTR_ITLB_MISS = 0x02,
  1119. ARMV7_PERFCTR_DCACHE_REFILL = 0x03,
  1120. ARMV7_PERFCTR_DCACHE_ACCESS = 0x04,
  1121. ARMV7_PERFCTR_DTLB_REFILL = 0x05,
  1122. ARMV7_PERFCTR_DREAD = 0x06,
  1123. ARMV7_PERFCTR_DWRITE = 0x07,
  1124. ARMV7_PERFCTR_EXC_TAKEN = 0x09,
  1125. ARMV7_PERFCTR_EXC_EXECUTED = 0x0A,
  1126. ARMV7_PERFCTR_CID_WRITE = 0x0B,
  1127. /* ARMV7_PERFCTR_PC_WRITE is equivalent to HW_BRANCH_INSTRUCTIONS.
  1128. * It counts:
  1129. * - all branch instructions,
  1130. * - instructions that explicitly write the PC,
  1131. * - exception generating instructions.
  1132. */
  1133. ARMV7_PERFCTR_PC_WRITE = 0x0C,
  1134. ARMV7_PERFCTR_PC_IMM_BRANCH = 0x0D,
  1135. ARMV7_PERFCTR_UNALIGNED_ACCESS = 0x0F,
  1136. ARMV7_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
  1137. ARMV7_PERFCTR_CLOCK_CYCLES = 0x11,
  1138. ARMV7_PERFCTR_PC_BRANCH_MIS_USED = 0x12,
  1139. ARMV7_PERFCTR_CPU_CYCLES = 0xFF
  1140. };
  1141. /* ARMv7 Cortex-A8 specific event types */
  1142. enum armv7_a8_perf_types {
  1143. ARMV7_PERFCTR_INSTR_EXECUTED = 0x08,
  1144. ARMV7_PERFCTR_PC_PROC_RETURN = 0x0E,
  1145. ARMV7_PERFCTR_WRITE_BUFFER_FULL = 0x40,
  1146. ARMV7_PERFCTR_L2_STORE_MERGED = 0x41,
  1147. ARMV7_PERFCTR_L2_STORE_BUFF = 0x42,
  1148. ARMV7_PERFCTR_L2_ACCESS = 0x43,
  1149. ARMV7_PERFCTR_L2_CACH_MISS = 0x44,
  1150. ARMV7_PERFCTR_AXI_READ_CYCLES = 0x45,
  1151. ARMV7_PERFCTR_AXI_WRITE_CYCLES = 0x46,
  1152. ARMV7_PERFCTR_MEMORY_REPLAY = 0x47,
  1153. ARMV7_PERFCTR_UNALIGNED_ACCESS_REPLAY = 0x48,
  1154. ARMV7_PERFCTR_L1_DATA_MISS = 0x49,
  1155. ARMV7_PERFCTR_L1_INST_MISS = 0x4A,
  1156. ARMV7_PERFCTR_L1_DATA_COLORING = 0x4B,
  1157. ARMV7_PERFCTR_L1_NEON_DATA = 0x4C,
  1158. ARMV7_PERFCTR_L1_NEON_CACH_DATA = 0x4D,
  1159. ARMV7_PERFCTR_L2_NEON = 0x4E,
  1160. ARMV7_PERFCTR_L2_NEON_HIT = 0x4F,
  1161. ARMV7_PERFCTR_L1_INST = 0x50,
  1162. ARMV7_PERFCTR_PC_RETURN_MIS_PRED = 0x51,
  1163. ARMV7_PERFCTR_PC_BRANCH_FAILED = 0x52,
  1164. ARMV7_PERFCTR_PC_BRANCH_TAKEN = 0x53,
  1165. ARMV7_PERFCTR_PC_BRANCH_EXECUTED = 0x54,
  1166. ARMV7_PERFCTR_OP_EXECUTED = 0x55,
  1167. ARMV7_PERFCTR_CYCLES_INST_STALL = 0x56,
  1168. ARMV7_PERFCTR_CYCLES_INST = 0x57,
  1169. ARMV7_PERFCTR_CYCLES_NEON_DATA_STALL = 0x58,
  1170. ARMV7_PERFCTR_CYCLES_NEON_INST_STALL = 0x59,
  1171. ARMV7_PERFCTR_NEON_CYCLES = 0x5A,
  1172. ARMV7_PERFCTR_PMU0_EVENTS = 0x70,
  1173. ARMV7_PERFCTR_PMU1_EVENTS = 0x71,
  1174. ARMV7_PERFCTR_PMU_EVENTS = 0x72,
  1175. };
  1176. /* ARMv7 Cortex-A9 specific event types */
  1177. enum armv7_a9_perf_types {
  1178. ARMV7_PERFCTR_JAVA_HW_BYTECODE_EXEC = 0x40,
  1179. ARMV7_PERFCTR_JAVA_SW_BYTECODE_EXEC = 0x41,
  1180. ARMV7_PERFCTR_JAZELLE_BRANCH_EXEC = 0x42,
  1181. ARMV7_PERFCTR_COHERENT_LINE_MISS = 0x50,
  1182. ARMV7_PERFCTR_COHERENT_LINE_HIT = 0x51,
  1183. ARMV7_PERFCTR_ICACHE_DEP_STALL_CYCLES = 0x60,
  1184. ARMV7_PERFCTR_DCACHE_DEP_STALL_CYCLES = 0x61,
  1185. ARMV7_PERFCTR_TLB_MISS_DEP_STALL_CYCLES = 0x62,
  1186. ARMV7_PERFCTR_STREX_EXECUTED_PASSED = 0x63,
  1187. ARMV7_PERFCTR_STREX_EXECUTED_FAILED = 0x64,
  1188. ARMV7_PERFCTR_DATA_EVICTION = 0x65,
  1189. ARMV7_PERFCTR_ISSUE_STAGE_NO_INST = 0x66,
  1190. ARMV7_PERFCTR_ISSUE_STAGE_EMPTY = 0x67,
  1191. ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE = 0x68,
  1192. ARMV7_PERFCTR_PREDICTABLE_FUNCT_RETURNS = 0x6E,
  1193. ARMV7_PERFCTR_MAIN_UNIT_EXECUTED_INST = 0x70,
  1194. ARMV7_PERFCTR_SECOND_UNIT_EXECUTED_INST = 0x71,
  1195. ARMV7_PERFCTR_LD_ST_UNIT_EXECUTED_INST = 0x72,
  1196. ARMV7_PERFCTR_FP_EXECUTED_INST = 0x73,
  1197. ARMV7_PERFCTR_NEON_EXECUTED_INST = 0x74,
  1198. ARMV7_PERFCTR_PLD_FULL_DEP_STALL_CYCLES = 0x80,
  1199. ARMV7_PERFCTR_DATA_WR_DEP_STALL_CYCLES = 0x81,
  1200. ARMV7_PERFCTR_ITLB_MISS_DEP_STALL_CYCLES = 0x82,
  1201. ARMV7_PERFCTR_DTLB_MISS_DEP_STALL_CYCLES = 0x83,
  1202. ARMV7_PERFCTR_MICRO_ITLB_MISS_DEP_STALL_CYCLES = 0x84,
  1203. ARMV7_PERFCTR_MICRO_DTLB_MISS_DEP_STALL_CYCLES = 0x85,
  1204. ARMV7_PERFCTR_DMB_DEP_STALL_CYCLES = 0x86,
  1205. ARMV7_PERFCTR_INTGR_CLK_ENABLED_CYCLES = 0x8A,
  1206. ARMV7_PERFCTR_DATA_ENGINE_CLK_EN_CYCLES = 0x8B,
  1207. ARMV7_PERFCTR_ISB_INST = 0x90,
  1208. ARMV7_PERFCTR_DSB_INST = 0x91,
  1209. ARMV7_PERFCTR_DMB_INST = 0x92,
  1210. ARMV7_PERFCTR_EXT_INTERRUPTS = 0x93,
  1211. ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_COMPLETED = 0xA0,
  1212. ARMV7_PERFCTR_PLE_CACHE_LINE_RQST_SKIPPED = 0xA1,
  1213. ARMV7_PERFCTR_PLE_FIFO_FLUSH = 0xA2,
  1214. ARMV7_PERFCTR_PLE_RQST_COMPLETED = 0xA3,
  1215. ARMV7_PERFCTR_PLE_FIFO_OVERFLOW = 0xA4,
  1216. ARMV7_PERFCTR_PLE_RQST_PROG = 0xA5
  1217. };
  1218. /*
  1219. * Cortex-A8 HW events mapping
  1220. *
  1221. * The hardware events that we support. We do support cache operations but
  1222. * we have harvard caches and no way to combine instruction and data
  1223. * accesses/misses in hardware.
  1224. */
  1225. static const unsigned armv7_a8_perf_map[PERF_COUNT_HW_MAX] = {
  1226. [PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
  1227. [PERF_COUNT_HW_INSTRUCTIONS] = ARMV7_PERFCTR_INSTR_EXECUTED,
  1228. [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
  1229. [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
  1230. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
  1231. [PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
  1232. [PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
  1233. };
  1234. static const unsigned armv7_a8_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
  1235. [PERF_COUNT_HW_CACHE_OP_MAX]
  1236. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1237. [C(L1D)] = {
  1238. /*
  1239. * The performance counters don't differentiate between read
  1240. * and write accesses/misses so this isn't strictly correct,
  1241. * but it's the best we can do. Writes and reads get
  1242. * combined.
  1243. */
  1244. [C(OP_READ)] = {
  1245. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
  1246. [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
  1247. },
  1248. [C(OP_WRITE)] = {
  1249. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
  1250. [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
  1251. },
  1252. [C(OP_PREFETCH)] = {
  1253. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1254. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1255. },
  1256. },
  1257. [C(L1I)] = {
  1258. [C(OP_READ)] = {
  1259. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
  1260. [C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
  1261. },
  1262. [C(OP_WRITE)] = {
  1263. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L1_INST,
  1264. [C(RESULT_MISS)] = ARMV7_PERFCTR_L1_INST_MISS,
  1265. },
  1266. [C(OP_PREFETCH)] = {
  1267. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1268. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1269. },
  1270. },
  1271. [C(LL)] = {
  1272. [C(OP_READ)] = {
  1273. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
  1274. [C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
  1275. },
  1276. [C(OP_WRITE)] = {
  1277. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_L2_ACCESS,
  1278. [C(RESULT_MISS)] = ARMV7_PERFCTR_L2_CACH_MISS,
  1279. },
  1280. [C(OP_PREFETCH)] = {
  1281. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1282. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1283. },
  1284. },
  1285. [C(DTLB)] = {
  1286. /*
  1287. * Only ITLB misses and DTLB refills are supported.
  1288. * If users want the DTLB refills misses a raw counter
  1289. * must be used.
  1290. */
  1291. [C(OP_READ)] = {
  1292. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1293. [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
  1294. },
  1295. [C(OP_WRITE)] = {
  1296. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1297. [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
  1298. },
  1299. [C(OP_PREFETCH)] = {
  1300. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1301. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1302. },
  1303. },
  1304. [C(ITLB)] = {
  1305. [C(OP_READ)] = {
  1306. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1307. [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
  1308. },
  1309. [C(OP_WRITE)] = {
  1310. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1311. [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
  1312. },
  1313. [C(OP_PREFETCH)] = {
  1314. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1315. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1316. },
  1317. },
  1318. [C(BPU)] = {
  1319. [C(OP_READ)] = {
  1320. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
  1321. [C(RESULT_MISS)]
  1322. = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
  1323. },
  1324. [C(OP_WRITE)] = {
  1325. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
  1326. [C(RESULT_MISS)]
  1327. = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
  1328. },
  1329. [C(OP_PREFETCH)] = {
  1330. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1331. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1332. },
  1333. },
  1334. };
  1335. /*
  1336. * Cortex-A9 HW events mapping
  1337. */
  1338. static const unsigned armv7_a9_perf_map[PERF_COUNT_HW_MAX] = {
  1339. [PERF_COUNT_HW_CPU_CYCLES] = ARMV7_PERFCTR_CPU_CYCLES,
  1340. [PERF_COUNT_HW_INSTRUCTIONS] =
  1341. ARMV7_PERFCTR_INST_OUT_OF_RENAME_STAGE,
  1342. [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV7_PERFCTR_COHERENT_LINE_HIT,
  1343. [PERF_COUNT_HW_CACHE_MISSES] = ARMV7_PERFCTR_COHERENT_LINE_MISS,
  1344. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV7_PERFCTR_PC_WRITE,
  1345. [PERF_COUNT_HW_BRANCH_MISSES] = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
  1346. [PERF_COUNT_HW_BUS_CYCLES] = ARMV7_PERFCTR_CLOCK_CYCLES,
  1347. };
  1348. static const unsigned armv7_a9_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
  1349. [PERF_COUNT_HW_CACHE_OP_MAX]
  1350. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1351. [C(L1D)] = {
  1352. /*
  1353. * The performance counters don't differentiate between read
  1354. * and write accesses/misses so this isn't strictly correct,
  1355. * but it's the best we can do. Writes and reads get
  1356. * combined.
  1357. */
  1358. [C(OP_READ)] = {
  1359. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
  1360. [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
  1361. },
  1362. [C(OP_WRITE)] = {
  1363. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_DCACHE_ACCESS,
  1364. [C(RESULT_MISS)] = ARMV7_PERFCTR_DCACHE_REFILL,
  1365. },
  1366. [C(OP_PREFETCH)] = {
  1367. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1368. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1369. },
  1370. },
  1371. [C(L1I)] = {
  1372. [C(OP_READ)] = {
  1373. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1374. [C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
  1375. },
  1376. [C(OP_WRITE)] = {
  1377. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1378. [C(RESULT_MISS)] = ARMV7_PERFCTR_IFETCH_MISS,
  1379. },
  1380. [C(OP_PREFETCH)] = {
  1381. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1382. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1383. },
  1384. },
  1385. [C(LL)] = {
  1386. [C(OP_READ)] = {
  1387. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1388. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1389. },
  1390. [C(OP_WRITE)] = {
  1391. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1392. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1393. },
  1394. [C(OP_PREFETCH)] = {
  1395. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1396. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1397. },
  1398. },
  1399. [C(DTLB)] = {
  1400. /*
  1401. * Only ITLB misses and DTLB refills are supported.
  1402. * If users want the DTLB refills misses a raw counter
  1403. * must be used.
  1404. */
  1405. [C(OP_READ)] = {
  1406. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1407. [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
  1408. },
  1409. [C(OP_WRITE)] = {
  1410. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1411. [C(RESULT_MISS)] = ARMV7_PERFCTR_DTLB_REFILL,
  1412. },
  1413. [C(OP_PREFETCH)] = {
  1414. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1415. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1416. },
  1417. },
  1418. [C(ITLB)] = {
  1419. [C(OP_READ)] = {
  1420. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1421. [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
  1422. },
  1423. [C(OP_WRITE)] = {
  1424. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1425. [C(RESULT_MISS)] = ARMV7_PERFCTR_ITLB_MISS,
  1426. },
  1427. [C(OP_PREFETCH)] = {
  1428. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1429. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1430. },
  1431. },
  1432. [C(BPU)] = {
  1433. [C(OP_READ)] = {
  1434. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
  1435. [C(RESULT_MISS)]
  1436. = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
  1437. },
  1438. [C(OP_WRITE)] = {
  1439. [C(RESULT_ACCESS)] = ARMV7_PERFCTR_PC_WRITE,
  1440. [C(RESULT_MISS)]
  1441. = ARMV7_PERFCTR_PC_BRANCH_MIS_PRED,
  1442. },
  1443. [C(OP_PREFETCH)] = {
  1444. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1445. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1446. },
  1447. },
  1448. };
  1449. /*
  1450. * Perf Events counters
  1451. */
  1452. enum armv7_counters {
  1453. ARMV7_CYCLE_COUNTER = 1, /* Cycle counter */
  1454. ARMV7_COUNTER0 = 2, /* First event counter */
  1455. };
  1456. /*
  1457. * The cycle counter is ARMV7_CYCLE_COUNTER.
  1458. * The first event counter is ARMV7_COUNTER0.
  1459. * The last event counter is (ARMV7_COUNTER0 + armpmu->num_events - 1).
  1460. */
  1461. #define ARMV7_COUNTER_LAST (ARMV7_COUNTER0 + armpmu->num_events - 1)
  1462. /*
  1463. * ARMv7 low level PMNC access
  1464. */
  1465. /*
  1466. * Per-CPU PMNC: config reg
  1467. */
  1468. #define ARMV7_PMNC_E (1 << 0) /* Enable all counters */
  1469. #define ARMV7_PMNC_P (1 << 1) /* Reset all counters */
  1470. #define ARMV7_PMNC_C (1 << 2) /* Cycle counter reset */
  1471. #define ARMV7_PMNC_D (1 << 3) /* CCNT counts every 64th cpu cycle */
  1472. #define ARMV7_PMNC_X (1 << 4) /* Export to ETM */
  1473. #define ARMV7_PMNC_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
  1474. #define ARMV7_PMNC_N_SHIFT 11 /* Number of counters supported */
  1475. #define ARMV7_PMNC_N_MASK 0x1f
  1476. #define ARMV7_PMNC_MASK 0x3f /* Mask for writable bits */
  1477. /*
  1478. * Available counters
  1479. */
  1480. #define ARMV7_CNT0 0 /* First event counter */
  1481. #define ARMV7_CCNT 31 /* Cycle counter */
  1482. /* Perf Event to low level counters mapping */
  1483. #define ARMV7_EVENT_CNT_TO_CNTx (ARMV7_COUNTER0 - ARMV7_CNT0)
  1484. /*
  1485. * CNTENS: counters enable reg
  1486. */
  1487. #define ARMV7_CNTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
  1488. #define ARMV7_CNTENS_C (1 << ARMV7_CCNT)
  1489. /*
  1490. * CNTENC: counters disable reg
  1491. */
  1492. #define ARMV7_CNTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
  1493. #define ARMV7_CNTENC_C (1 << ARMV7_CCNT)
  1494. /*
  1495. * INTENS: counters overflow interrupt enable reg
  1496. */
  1497. #define ARMV7_INTENS_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
  1498. #define ARMV7_INTENS_C (1 << ARMV7_CCNT)
  1499. /*
  1500. * INTENC: counters overflow interrupt disable reg
  1501. */
  1502. #define ARMV7_INTENC_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
  1503. #define ARMV7_INTENC_C (1 << ARMV7_CCNT)
  1504. /*
  1505. * EVTSEL: Event selection reg
  1506. */
  1507. #define ARMV7_EVTSEL_MASK 0xff /* Mask for writable bits */
  1508. /*
  1509. * SELECT: Counter selection reg
  1510. */
  1511. #define ARMV7_SELECT_MASK 0x1f /* Mask for writable bits */
  1512. /*
  1513. * FLAG: counters overflow flag status reg
  1514. */
  1515. #define ARMV7_FLAG_P(idx) (1 << (idx - ARMV7_EVENT_CNT_TO_CNTx))
  1516. #define ARMV7_FLAG_C (1 << ARMV7_CCNT)
  1517. #define ARMV7_FLAG_MASK 0xffffffff /* Mask for writable bits */
  1518. #define ARMV7_OVERFLOWED_MASK ARMV7_FLAG_MASK
  1519. static inline unsigned long armv7_pmnc_read(void)
  1520. {
  1521. u32 val;
  1522. asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r"(val));
  1523. return val;
  1524. }
  1525. static inline void armv7_pmnc_write(unsigned long val)
  1526. {
  1527. val &= ARMV7_PMNC_MASK;
  1528. asm volatile("mcr p15, 0, %0, c9, c12, 0" : : "r"(val));
  1529. }
  1530. static inline int armv7_pmnc_has_overflowed(unsigned long pmnc)
  1531. {
  1532. return pmnc & ARMV7_OVERFLOWED_MASK;
  1533. }
  1534. static inline int armv7_pmnc_counter_has_overflowed(unsigned long pmnc,
  1535. enum armv7_counters counter)
  1536. {
  1537. int ret = 0;
  1538. if (counter == ARMV7_CYCLE_COUNTER)
  1539. ret = pmnc & ARMV7_FLAG_C;
  1540. else if ((counter >= ARMV7_COUNTER0) && (counter <= ARMV7_COUNTER_LAST))
  1541. ret = pmnc & ARMV7_FLAG_P(counter);
  1542. else
  1543. pr_err("CPU%u checking wrong counter %d overflow status\n",
  1544. smp_processor_id(), counter);
  1545. return ret;
  1546. }
  1547. static inline int armv7_pmnc_select_counter(unsigned int idx)
  1548. {
  1549. u32 val;
  1550. if ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST)) {
  1551. pr_err("CPU%u selecting wrong PMNC counter"
  1552. " %d\n", smp_processor_id(), idx);
  1553. return -1;
  1554. }
  1555. val = (idx - ARMV7_EVENT_CNT_TO_CNTx) & ARMV7_SELECT_MASK;
  1556. asm volatile("mcr p15, 0, %0, c9, c12, 5" : : "r" (val));
  1557. return idx;
  1558. }
  1559. static inline u32 armv7pmu_read_counter(int idx)
  1560. {
  1561. unsigned long value = 0;
  1562. if (idx == ARMV7_CYCLE_COUNTER)
  1563. asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (value));
  1564. else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
  1565. if (armv7_pmnc_select_counter(idx) == idx)
  1566. asm volatile("mrc p15, 0, %0, c9, c13, 2"
  1567. : "=r" (value));
  1568. } else
  1569. pr_err("CPU%u reading wrong counter %d\n",
  1570. smp_processor_id(), idx);
  1571. return value;
  1572. }
  1573. static inline void armv7pmu_write_counter(int idx, u32 value)
  1574. {
  1575. if (idx == ARMV7_CYCLE_COUNTER)
  1576. asm volatile("mcr p15, 0, %0, c9, c13, 0" : : "r" (value));
  1577. else if ((idx >= ARMV7_COUNTER0) && (idx <= ARMV7_COUNTER_LAST)) {
  1578. if (armv7_pmnc_select_counter(idx) == idx)
  1579. asm volatile("mcr p15, 0, %0, c9, c13, 2"
  1580. : : "r" (value));
  1581. } else
  1582. pr_err("CPU%u writing wrong counter %d\n",
  1583. smp_processor_id(), idx);
  1584. }
  1585. static inline void armv7_pmnc_write_evtsel(unsigned int idx, u32 val)
  1586. {
  1587. if (armv7_pmnc_select_counter(idx) == idx) {
  1588. val &= ARMV7_EVTSEL_MASK;
  1589. asm volatile("mcr p15, 0, %0, c9, c13, 1" : : "r" (val));
  1590. }
  1591. }
  1592. static inline u32 armv7_pmnc_enable_counter(unsigned int idx)
  1593. {
  1594. u32 val;
  1595. if ((idx != ARMV7_CYCLE_COUNTER) &&
  1596. ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
  1597. pr_err("CPU%u enabling wrong PMNC counter"
  1598. " %d\n", smp_processor_id(), idx);
  1599. return -1;
  1600. }
  1601. if (idx == ARMV7_CYCLE_COUNTER)
  1602. val = ARMV7_CNTENS_C;
  1603. else
  1604. val = ARMV7_CNTENS_P(idx);
  1605. asm volatile("mcr p15, 0, %0, c9, c12, 1" : : "r" (val));
  1606. return idx;
  1607. }
  1608. static inline u32 armv7_pmnc_disable_counter(unsigned int idx)
  1609. {
  1610. u32 val;
  1611. if ((idx != ARMV7_CYCLE_COUNTER) &&
  1612. ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
  1613. pr_err("CPU%u disabling wrong PMNC counter"
  1614. " %d\n", smp_processor_id(), idx);
  1615. return -1;
  1616. }
  1617. if (idx == ARMV7_CYCLE_COUNTER)
  1618. val = ARMV7_CNTENC_C;
  1619. else
  1620. val = ARMV7_CNTENC_P(idx);
  1621. asm volatile("mcr p15, 0, %0, c9, c12, 2" : : "r" (val));
  1622. return idx;
  1623. }
  1624. static inline u32 armv7_pmnc_enable_intens(unsigned int idx)
  1625. {
  1626. u32 val;
  1627. if ((idx != ARMV7_CYCLE_COUNTER) &&
  1628. ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
  1629. pr_err("CPU%u enabling wrong PMNC counter"
  1630. " interrupt enable %d\n", smp_processor_id(), idx);
  1631. return -1;
  1632. }
  1633. if (idx == ARMV7_CYCLE_COUNTER)
  1634. val = ARMV7_INTENS_C;
  1635. else
  1636. val = ARMV7_INTENS_P(idx);
  1637. asm volatile("mcr p15, 0, %0, c9, c14, 1" : : "r" (val));
  1638. return idx;
  1639. }
  1640. static inline u32 armv7_pmnc_disable_intens(unsigned int idx)
  1641. {
  1642. u32 val;
  1643. if ((idx != ARMV7_CYCLE_COUNTER) &&
  1644. ((idx < ARMV7_COUNTER0) || (idx > ARMV7_COUNTER_LAST))) {
  1645. pr_err("CPU%u disabling wrong PMNC counter"
  1646. " interrupt enable %d\n", smp_processor_id(), idx);
  1647. return -1;
  1648. }
  1649. if (idx == ARMV7_CYCLE_COUNTER)
  1650. val = ARMV7_INTENC_C;
  1651. else
  1652. val = ARMV7_INTENC_P(idx);
  1653. asm volatile("mcr p15, 0, %0, c9, c14, 2" : : "r" (val));
  1654. return idx;
  1655. }
  1656. static inline u32 armv7_pmnc_getreset_flags(void)
  1657. {
  1658. u32 val;
  1659. /* Read */
  1660. asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
  1661. /* Write to clear flags */
  1662. val &= ARMV7_FLAG_MASK;
  1663. asm volatile("mcr p15, 0, %0, c9, c12, 3" : : "r" (val));
  1664. return val;
  1665. }
  1666. #ifdef DEBUG
  1667. static void armv7_pmnc_dump_regs(void)
  1668. {
  1669. u32 val;
  1670. unsigned int cnt;
  1671. printk(KERN_INFO "PMNC registers dump:\n");
  1672. asm volatile("mrc p15, 0, %0, c9, c12, 0" : "=r" (val));
  1673. printk(KERN_INFO "PMNC =0x%08x\n", val);
  1674. asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r" (val));
  1675. printk(KERN_INFO "CNTENS=0x%08x\n", val);
  1676. asm volatile("mrc p15, 0, %0, c9, c14, 1" : "=r" (val));
  1677. printk(KERN_INFO "INTENS=0x%08x\n", val);
  1678. asm volatile("mrc p15, 0, %0, c9, c12, 3" : "=r" (val));
  1679. printk(KERN_INFO "FLAGS =0x%08x\n", val);
  1680. asm volatile("mrc p15, 0, %0, c9, c12, 5" : "=r" (val));
  1681. printk(KERN_INFO "SELECT=0x%08x\n", val);
  1682. asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r" (val));
  1683. printk(KERN_INFO "CCNT =0x%08x\n", val);
  1684. for (cnt = ARMV7_COUNTER0; cnt < ARMV7_COUNTER_LAST; cnt++) {
  1685. armv7_pmnc_select_counter(cnt);
  1686. asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r" (val));
  1687. printk(KERN_INFO "CNT[%d] count =0x%08x\n",
  1688. cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
  1689. asm volatile("mrc p15, 0, %0, c9, c13, 1" : "=r" (val));
  1690. printk(KERN_INFO "CNT[%d] evtsel=0x%08x\n",
  1691. cnt-ARMV7_EVENT_CNT_TO_CNTx, val);
  1692. }
  1693. }
  1694. #endif
  1695. void armv7pmu_enable_event(struct hw_perf_event *hwc, int idx)
  1696. {
  1697. unsigned long flags;
  1698. /*
  1699. * Enable counter and interrupt, and set the counter to count
  1700. * the event that we're interested in.
  1701. */
  1702. spin_lock_irqsave(&pmu_lock, flags);
  1703. /*
  1704. * Disable counter
  1705. */
  1706. armv7_pmnc_disable_counter(idx);
  1707. /*
  1708. * Set event (if destined for PMNx counters)
  1709. * We don't need to set the event if it's a cycle count
  1710. */
  1711. if (idx != ARMV7_CYCLE_COUNTER)
  1712. armv7_pmnc_write_evtsel(idx, hwc->config_base);
  1713. /*
  1714. * Enable interrupt for this counter
  1715. */
  1716. armv7_pmnc_enable_intens(idx);
  1717. /*
  1718. * Enable counter
  1719. */
  1720. armv7_pmnc_enable_counter(idx);
  1721. spin_unlock_irqrestore(&pmu_lock, flags);
  1722. }
  1723. static void armv7pmu_disable_event(struct hw_perf_event *hwc, int idx)
  1724. {
  1725. unsigned long flags;
  1726. /*
  1727. * Disable counter and interrupt
  1728. */
  1729. spin_lock_irqsave(&pmu_lock, flags);
  1730. /*
  1731. * Disable counter
  1732. */
  1733. armv7_pmnc_disable_counter(idx);
  1734. /*
  1735. * Disable interrupt for this counter
  1736. */
  1737. armv7_pmnc_disable_intens(idx);
  1738. spin_unlock_irqrestore(&pmu_lock, flags);
  1739. }
  1740. static irqreturn_t armv7pmu_handle_irq(int irq_num, void *dev)
  1741. {
  1742. unsigned long pmnc;
  1743. struct perf_sample_data data;
  1744. struct cpu_hw_events *cpuc;
  1745. struct pt_regs *regs;
  1746. int idx;
  1747. /*
  1748. * Get and reset the IRQ flags
  1749. */
  1750. pmnc = armv7_pmnc_getreset_flags();
  1751. /*
  1752. * Did an overflow occur?
  1753. */
  1754. if (!armv7_pmnc_has_overflowed(pmnc))
  1755. return IRQ_NONE;
  1756. /*
  1757. * Handle the counter(s) overflow(s)
  1758. */
  1759. regs = get_irq_regs();
  1760. perf_sample_data_init(&data, 0);
  1761. cpuc = &__get_cpu_var(cpu_hw_events);
  1762. for (idx = 0; idx <= armpmu->num_events; ++idx) {
  1763. struct perf_event *event = cpuc->events[idx];
  1764. struct hw_perf_event *hwc;
  1765. if (!test_bit(idx, cpuc->active_mask))
  1766. continue;
  1767. /*
  1768. * We have a single interrupt for all counters. Check that
  1769. * each counter has overflowed before we process it.
  1770. */
  1771. if (!armv7_pmnc_counter_has_overflowed(pmnc, idx))
  1772. continue;
  1773. hwc = &event->hw;
  1774. armpmu_event_update(event, hwc, idx);
  1775. data.period = event->hw.last_period;
  1776. if (!armpmu_event_set_period(event, hwc, idx))
  1777. continue;
  1778. if (perf_event_overflow(event, 0, &data, regs))
  1779. armpmu->disable(hwc, idx);
  1780. }
  1781. /*
  1782. * Handle the pending perf events.
  1783. *
  1784. * Note: this call *must* be run with interrupts disabled. For
  1785. * platforms that can have the PMU interrupts raised as an NMI, this
  1786. * will not work.
  1787. */
  1788. irq_work_run();
  1789. return IRQ_HANDLED;
  1790. }
  1791. static void armv7pmu_start(void)
  1792. {
  1793. unsigned long flags;
  1794. spin_lock_irqsave(&pmu_lock, flags);
  1795. /* Enable all counters */
  1796. armv7_pmnc_write(armv7_pmnc_read() | ARMV7_PMNC_E);
  1797. spin_unlock_irqrestore(&pmu_lock, flags);
  1798. }
  1799. static void armv7pmu_stop(void)
  1800. {
  1801. unsigned long flags;
  1802. spin_lock_irqsave(&pmu_lock, flags);
  1803. /* Disable all counters */
  1804. armv7_pmnc_write(armv7_pmnc_read() & ~ARMV7_PMNC_E);
  1805. spin_unlock_irqrestore(&pmu_lock, flags);
  1806. }
  1807. static int armv7pmu_get_event_idx(struct cpu_hw_events *cpuc,
  1808. struct hw_perf_event *event)
  1809. {
  1810. int idx;
  1811. /* Always place a cycle counter into the cycle counter. */
  1812. if (event->config_base == ARMV7_PERFCTR_CPU_CYCLES) {
  1813. if (test_and_set_bit(ARMV7_CYCLE_COUNTER, cpuc->used_mask))
  1814. return -EAGAIN;
  1815. return ARMV7_CYCLE_COUNTER;
  1816. } else {
  1817. /*
  1818. * For anything other than a cycle counter, try and use
  1819. * the events counters
  1820. */
  1821. for (idx = ARMV7_COUNTER0; idx <= armpmu->num_events; ++idx) {
  1822. if (!test_and_set_bit(idx, cpuc->used_mask))
  1823. return idx;
  1824. }
  1825. /* The counters are all in use. */
  1826. return -EAGAIN;
  1827. }
  1828. }
  1829. static struct arm_pmu armv7pmu = {
  1830. .handle_irq = armv7pmu_handle_irq,
  1831. .enable = armv7pmu_enable_event,
  1832. .disable = armv7pmu_disable_event,
  1833. .read_counter = armv7pmu_read_counter,
  1834. .write_counter = armv7pmu_write_counter,
  1835. .get_event_idx = armv7pmu_get_event_idx,
  1836. .start = armv7pmu_start,
  1837. .stop = armv7pmu_stop,
  1838. .raw_event_mask = 0xFF,
  1839. .max_period = (1LLU << 32) - 1,
  1840. };
  1841. static u32 __init armv7_reset_read_pmnc(void)
  1842. {
  1843. u32 nb_cnt;
  1844. /* Initialize & Reset PMNC: C and P bits */
  1845. armv7_pmnc_write(ARMV7_PMNC_P | ARMV7_PMNC_C);
  1846. /* Read the nb of CNTx counters supported from PMNC */
  1847. nb_cnt = (armv7_pmnc_read() >> ARMV7_PMNC_N_SHIFT) & ARMV7_PMNC_N_MASK;
  1848. /* Add the CPU cycles counter and return */
  1849. return nb_cnt + 1;
  1850. }
  1851. const struct arm_pmu *__init armv7_a8_pmu_init(void)
  1852. {
  1853. armv7pmu.id = ARM_PERF_PMU_ID_CA8;
  1854. armv7pmu.name = "ARMv7 Cortex-A8";
  1855. armv7pmu.cache_map = &armv7_a8_perf_cache_map;
  1856. armv7pmu.event_map = &armv7_a8_perf_map;
  1857. armv7pmu.num_events = armv7_reset_read_pmnc();
  1858. return &armv7pmu;
  1859. }
  1860. const struct arm_pmu *__init armv7_a9_pmu_init(void)
  1861. {
  1862. armv7pmu.id = ARM_PERF_PMU_ID_CA9;
  1863. armv7pmu.name = "ARMv7 Cortex-A9";
  1864. armv7pmu.cache_map = &armv7_a9_perf_cache_map;
  1865. armv7pmu.event_map = &armv7_a9_perf_map;
  1866. armv7pmu.num_events = armv7_reset_read_pmnc();
  1867. return &armv7pmu;
  1868. }
  1869. /*
  1870. * ARMv5 [xscale] Performance counter handling code.
  1871. *
  1872. * Based on xscale OProfile code.
  1873. *
  1874. * There are two variants of the xscale PMU that we support:
  1875. * - xscale1pmu: 2 event counters and a cycle counter
  1876. * - xscale2pmu: 4 event counters and a cycle counter
  1877. * The two variants share event definitions, but have different
  1878. * PMU structures.
  1879. */
  1880. enum xscale_perf_types {
  1881. XSCALE_PERFCTR_ICACHE_MISS = 0x00,
  1882. XSCALE_PERFCTR_ICACHE_NO_DELIVER = 0x01,
  1883. XSCALE_PERFCTR_DATA_STALL = 0x02,
  1884. XSCALE_PERFCTR_ITLB_MISS = 0x03,
  1885. XSCALE_PERFCTR_DTLB_MISS = 0x04,
  1886. XSCALE_PERFCTR_BRANCH = 0x05,
  1887. XSCALE_PERFCTR_BRANCH_MISS = 0x06,
  1888. XSCALE_PERFCTR_INSTRUCTION = 0x07,
  1889. XSCALE_PERFCTR_DCACHE_FULL_STALL = 0x08,
  1890. XSCALE_PERFCTR_DCACHE_FULL_STALL_CONTIG = 0x09,
  1891. XSCALE_PERFCTR_DCACHE_ACCESS = 0x0A,
  1892. XSCALE_PERFCTR_DCACHE_MISS = 0x0B,
  1893. XSCALE_PERFCTR_DCACHE_WRITE_BACK = 0x0C,
  1894. XSCALE_PERFCTR_PC_CHANGED = 0x0D,
  1895. XSCALE_PERFCTR_BCU_REQUEST = 0x10,
  1896. XSCALE_PERFCTR_BCU_FULL = 0x11,
  1897. XSCALE_PERFCTR_BCU_DRAIN = 0x12,
  1898. XSCALE_PERFCTR_BCU_ECC_NO_ELOG = 0x14,
  1899. XSCALE_PERFCTR_BCU_1_BIT_ERR = 0x15,
  1900. XSCALE_PERFCTR_RMW = 0x16,
  1901. /* XSCALE_PERFCTR_CCNT is not hardware defined */
  1902. XSCALE_PERFCTR_CCNT = 0xFE,
  1903. XSCALE_PERFCTR_UNUSED = 0xFF,
  1904. };
  1905. enum xscale_counters {
  1906. XSCALE_CYCLE_COUNTER = 1,
  1907. XSCALE_COUNTER0,
  1908. XSCALE_COUNTER1,
  1909. XSCALE_COUNTER2,
  1910. XSCALE_COUNTER3,
  1911. };
  1912. static const unsigned xscale_perf_map[PERF_COUNT_HW_MAX] = {
  1913. [PERF_COUNT_HW_CPU_CYCLES] = XSCALE_PERFCTR_CCNT,
  1914. [PERF_COUNT_HW_INSTRUCTIONS] = XSCALE_PERFCTR_INSTRUCTION,
  1915. [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
  1916. [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
  1917. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = XSCALE_PERFCTR_BRANCH,
  1918. [PERF_COUNT_HW_BRANCH_MISSES] = XSCALE_PERFCTR_BRANCH_MISS,
  1919. [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
  1920. };
  1921. static const unsigned xscale_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
  1922. [PERF_COUNT_HW_CACHE_OP_MAX]
  1923. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1924. [C(L1D)] = {
  1925. [C(OP_READ)] = {
  1926. [C(RESULT_ACCESS)] = XSCALE_PERFCTR_DCACHE_ACCESS,
  1927. [C(RESULT_MISS)] = XSCALE_PERFCTR_DCACHE_MISS,
  1928. },
  1929. [C(OP_WRITE)] = {
  1930. [C(RESULT_ACCESS)] = XSCALE_PERFCTR_DCACHE_ACCESS,
  1931. [C(RESULT_MISS)] = XSCALE_PERFCTR_DCACHE_MISS,
  1932. },
  1933. [C(OP_PREFETCH)] = {
  1934. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1935. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1936. },
  1937. },
  1938. [C(L1I)] = {
  1939. [C(OP_READ)] = {
  1940. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1941. [C(RESULT_MISS)] = XSCALE_PERFCTR_ICACHE_MISS,
  1942. },
  1943. [C(OP_WRITE)] = {
  1944. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1945. [C(RESULT_MISS)] = XSCALE_PERFCTR_ICACHE_MISS,
  1946. },
  1947. [C(OP_PREFETCH)] = {
  1948. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1949. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1950. },
  1951. },
  1952. [C(LL)] = {
  1953. [C(OP_READ)] = {
  1954. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1955. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1956. },
  1957. [C(OP_WRITE)] = {
  1958. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1959. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1960. },
  1961. [C(OP_PREFETCH)] = {
  1962. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1963. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1964. },
  1965. },
  1966. [C(DTLB)] = {
  1967. [C(OP_READ)] = {
  1968. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1969. [C(RESULT_MISS)] = XSCALE_PERFCTR_DTLB_MISS,
  1970. },
  1971. [C(OP_WRITE)] = {
  1972. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1973. [C(RESULT_MISS)] = XSCALE_PERFCTR_DTLB_MISS,
  1974. },
  1975. [C(OP_PREFETCH)] = {
  1976. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1977. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1978. },
  1979. },
  1980. [C(ITLB)] = {
  1981. [C(OP_READ)] = {
  1982. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1983. [C(RESULT_MISS)] = XSCALE_PERFCTR_ITLB_MISS,
  1984. },
  1985. [C(OP_WRITE)] = {
  1986. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1987. [C(RESULT_MISS)] = XSCALE_PERFCTR_ITLB_MISS,
  1988. },
  1989. [C(OP_PREFETCH)] = {
  1990. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1991. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1992. },
  1993. },
  1994. [C(BPU)] = {
  1995. [C(OP_READ)] = {
  1996. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  1997. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  1998. },
  1999. [C(OP_WRITE)] = {
  2000. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  2001. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  2002. },
  2003. [C(OP_PREFETCH)] = {
  2004. [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
  2005. [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
  2006. },
  2007. },
  2008. };
  2009. #define XSCALE_PMU_ENABLE 0x001
  2010. #define XSCALE_PMN_RESET 0x002
  2011. #define XSCALE_CCNT_RESET 0x004
  2012. #define XSCALE_PMU_RESET (CCNT_RESET | PMN_RESET)
  2013. #define XSCALE_PMU_CNT64 0x008
  2014. #define XSCALE1_OVERFLOWED_MASK 0x700
  2015. #define XSCALE1_CCOUNT_OVERFLOW 0x400
  2016. #define XSCALE1_COUNT0_OVERFLOW 0x100
  2017. #define XSCALE1_COUNT1_OVERFLOW 0x200
  2018. #define XSCALE1_CCOUNT_INT_EN 0x040
  2019. #define XSCALE1_COUNT0_INT_EN 0x010
  2020. #define XSCALE1_COUNT1_INT_EN 0x020
  2021. #define XSCALE1_COUNT0_EVT_SHFT 12
  2022. #define XSCALE1_COUNT0_EVT_MASK (0xff << XSCALE1_COUNT0_EVT_SHFT)
  2023. #define XSCALE1_COUNT1_EVT_SHFT 20
  2024. #define XSCALE1_COUNT1_EVT_MASK (0xff << XSCALE1_COUNT1_EVT_SHFT)
  2025. static inline u32
  2026. xscale1pmu_read_pmnc(void)
  2027. {
  2028. u32 val;
  2029. asm volatile("mrc p14, 0, %0, c0, c0, 0" : "=r" (val));
  2030. return val;
  2031. }
  2032. static inline void
  2033. xscale1pmu_write_pmnc(u32 val)
  2034. {
  2035. /* upper 4bits and 7, 11 are write-as-0 */
  2036. val &= 0xffff77f;
  2037. asm volatile("mcr p14, 0, %0, c0, c0, 0" : : "r" (val));
  2038. }
  2039. static inline int
  2040. xscale1_pmnc_counter_has_overflowed(unsigned long pmnc,
  2041. enum xscale_counters counter)
  2042. {
  2043. int ret = 0;
  2044. switch (counter) {
  2045. case XSCALE_CYCLE_COUNTER:
  2046. ret = pmnc & XSCALE1_CCOUNT_OVERFLOW;
  2047. break;
  2048. case XSCALE_COUNTER0:
  2049. ret = pmnc & XSCALE1_COUNT0_OVERFLOW;
  2050. break;
  2051. case XSCALE_COUNTER1:
  2052. ret = pmnc & XSCALE1_COUNT1_OVERFLOW;
  2053. break;
  2054. default:
  2055. WARN_ONCE(1, "invalid counter number (%d)\n", counter);
  2056. }
  2057. return ret;
  2058. }
  2059. static irqreturn_t
  2060. xscale1pmu_handle_irq(int irq_num, void *dev)
  2061. {
  2062. unsigned long pmnc;
  2063. struct perf_sample_data data;
  2064. struct cpu_hw_events *cpuc;
  2065. struct pt_regs *regs;
  2066. int idx;
  2067. /*
  2068. * NOTE: there's an A stepping erratum that states if an overflow
  2069. * bit already exists and another occurs, the previous
  2070. * Overflow bit gets cleared. There's no workaround.
  2071. * Fixed in B stepping or later.
  2072. */
  2073. pmnc = xscale1pmu_read_pmnc();
  2074. /*
  2075. * Write the value back to clear the overflow flags. Overflow
  2076. * flags remain in pmnc for use below. We also disable the PMU
  2077. * while we process the interrupt.
  2078. */
  2079. xscale1pmu_write_pmnc(pmnc & ~XSCALE_PMU_ENABLE);
  2080. if (!(pmnc & XSCALE1_OVERFLOWED_MASK))
  2081. return IRQ_NONE;
  2082. regs = get_irq_regs();
  2083. perf_sample_data_init(&data, 0);
  2084. cpuc = &__get_cpu_var(cpu_hw_events);
  2085. for (idx = 0; idx <= armpmu->num_events; ++idx) {
  2086. struct perf_event *event = cpuc->events[idx];
  2087. struct hw_perf_event *hwc;
  2088. if (!test_bit(idx, cpuc->active_mask))
  2089. continue;
  2090. if (!xscale1_pmnc_counter_has_overflowed(pmnc, idx))
  2091. continue;
  2092. hwc = &event->hw;
  2093. armpmu_event_update(event, hwc, idx);
  2094. data.period = event->hw.last_period;
  2095. if (!armpmu_event_set_period(event, hwc, idx))
  2096. continue;
  2097. if (perf_event_overflow(event, 0, &data, regs))
  2098. armpmu->disable(hwc, idx);
  2099. }
  2100. irq_work_run();
  2101. /*
  2102. * Re-enable the PMU.
  2103. */
  2104. pmnc = xscale1pmu_read_pmnc() | XSCALE_PMU_ENABLE;
  2105. xscale1pmu_write_pmnc(pmnc);
  2106. return IRQ_HANDLED;
  2107. }
  2108. static void
  2109. xscale1pmu_enable_event(struct hw_perf_event *hwc, int idx)
  2110. {
  2111. unsigned long val, mask, evt, flags;
  2112. switch (idx) {
  2113. case XSCALE_CYCLE_COUNTER:
  2114. mask = 0;
  2115. evt = XSCALE1_CCOUNT_INT_EN;
  2116. break;
  2117. case XSCALE_COUNTER0:
  2118. mask = XSCALE1_COUNT0_EVT_MASK;
  2119. evt = (hwc->config_base << XSCALE1_COUNT0_EVT_SHFT) |
  2120. XSCALE1_COUNT0_INT_EN;
  2121. break;
  2122. case XSCALE_COUNTER1:
  2123. mask = XSCALE1_COUNT1_EVT_MASK;
  2124. evt = (hwc->config_base << XSCALE1_COUNT1_EVT_SHFT) |
  2125. XSCALE1_COUNT1_INT_EN;
  2126. break;
  2127. default:
  2128. WARN_ONCE(1, "invalid counter number (%d)\n", idx);
  2129. return;
  2130. }
  2131. spin_lock_irqsave(&pmu_lock, flags);
  2132. val = xscale1pmu_read_pmnc();
  2133. val &= ~mask;
  2134. val |= evt;
  2135. xscale1pmu_write_pmnc(val);
  2136. spin_unlock_irqrestore(&pmu_lock, flags);
  2137. }
  2138. static void
  2139. xscale1pmu_disable_event(struct hw_perf_event *hwc, int idx)
  2140. {
  2141. unsigned long val, mask, evt, flags;
  2142. switch (idx) {
  2143. case XSCALE_CYCLE_COUNTER:
  2144. mask = XSCALE1_CCOUNT_INT_EN;
  2145. evt = 0;
  2146. break;
  2147. case XSCALE_COUNTER0:
  2148. mask = XSCALE1_COUNT0_INT_EN | XSCALE1_COUNT0_EVT_MASK;
  2149. evt = XSCALE_PERFCTR_UNUSED << XSCALE1_COUNT0_EVT_SHFT;
  2150. break;
  2151. case XSCALE_COUNTER1:
  2152. mask = XSCALE1_COUNT1_INT_EN | XSCALE1_COUNT1_EVT_MASK;
  2153. evt = XSCALE_PERFCTR_UNUSED << XSCALE1_COUNT1_EVT_SHFT;
  2154. break;
  2155. default:
  2156. WARN_ONCE(1, "invalid counter number (%d)\n", idx);
  2157. return;
  2158. }
  2159. spin_lock_irqsave(&pmu_lock, flags);
  2160. val = xscale1pmu_read_pmnc();
  2161. val &= ~mask;
  2162. val |= evt;
  2163. xscale1pmu_write_pmnc(val);
  2164. spin_unlock_irqrestore(&pmu_lock, flags);
  2165. }
  2166. static int
  2167. xscale1pmu_get_event_idx(struct cpu_hw_events *cpuc,
  2168. struct hw_perf_event *event)
  2169. {
  2170. if (XSCALE_PERFCTR_CCNT == event->config_base) {
  2171. if (test_and_set_bit(XSCALE_CYCLE_COUNTER, cpuc->used_mask))
  2172. return -EAGAIN;
  2173. return XSCALE_CYCLE_COUNTER;
  2174. } else {
  2175. if (!test_and_set_bit(XSCALE_COUNTER1, cpuc->used_mask)) {
  2176. return XSCALE_COUNTER1;
  2177. }
  2178. if (!test_and_set_bit(XSCALE_COUNTER0, cpuc->used_mask)) {
  2179. return XSCALE_COUNTER0;
  2180. }
  2181. return -EAGAIN;
  2182. }
  2183. }
  2184. static void
  2185. xscale1pmu_start(void)
  2186. {
  2187. unsigned long flags, val;
  2188. spin_lock_irqsave(&pmu_lock, flags);
  2189. val = xscale1pmu_read_pmnc();
  2190. val |= XSCALE_PMU_ENABLE;
  2191. xscale1pmu_write_pmnc(val);
  2192. spin_unlock_irqrestore(&pmu_lock, flags);
  2193. }
  2194. static void
  2195. xscale1pmu_stop(void)
  2196. {
  2197. unsigned long flags, val;
  2198. spin_lock_irqsave(&pmu_lock, flags);
  2199. val = xscale1pmu_read_pmnc();
  2200. val &= ~XSCALE_PMU_ENABLE;
  2201. xscale1pmu_write_pmnc(val);
  2202. spin_unlock_irqrestore(&pmu_lock, flags);
  2203. }
  2204. static inline u32
  2205. xscale1pmu_read_counter(int counter)
  2206. {
  2207. u32 val = 0;
  2208. switch (counter) {
  2209. case XSCALE_CYCLE_COUNTER:
  2210. asm volatile("mrc p14, 0, %0, c1, c0, 0" : "=r" (val));
  2211. break;
  2212. case XSCALE_COUNTER0:
  2213. asm volatile("mrc p14, 0, %0, c2, c0, 0" : "=r" (val));
  2214. break;
  2215. case XSCALE_COUNTER1:
  2216. asm volatile("mrc p14, 0, %0, c3, c0, 0" : "=r" (val));
  2217. break;
  2218. }
  2219. return val;
  2220. }
  2221. static inline void
  2222. xscale1pmu_write_counter(int counter, u32 val)
  2223. {
  2224. switch (counter) {
  2225. case XSCALE_CYCLE_COUNTER:
  2226. asm volatile("mcr p14, 0, %0, c1, c0, 0" : : "r" (val));
  2227. break;
  2228. case XSCALE_COUNTER0:
  2229. asm volatile("mcr p14, 0, %0, c2, c0, 0" : : "r" (val));
  2230. break;
  2231. case XSCALE_COUNTER1:
  2232. asm volatile("mcr p14, 0, %0, c3, c0, 0" : : "r" (val));
  2233. break;
  2234. }
  2235. }
  2236. static const struct arm_pmu xscale1pmu = {
  2237. .id = ARM_PERF_PMU_ID_XSCALE1,
  2238. .name = "xscale1",
  2239. .handle_irq = xscale1pmu_handle_irq,
  2240. .enable = xscale1pmu_enable_event,
  2241. .disable = xscale1pmu_disable_event,
  2242. .read_counter = xscale1pmu_read_counter,
  2243. .write_counter = xscale1pmu_write_counter,
  2244. .get_event_idx = xscale1pmu_get_event_idx,
  2245. .start = xscale1pmu_start,
  2246. .stop = xscale1pmu_stop,
  2247. .cache_map = &xscale_perf_cache_map,
  2248. .event_map = &xscale_perf_map,
  2249. .raw_event_mask = 0xFF,
  2250. .num_events = 3,
  2251. .max_period = (1LLU << 32) - 1,
  2252. };
  2253. const struct arm_pmu *__init xscale1pmu_init(void)
  2254. {
  2255. return &xscale1pmu;
  2256. }
  2257. #define XSCALE2_OVERFLOWED_MASK 0x01f
  2258. #define XSCALE2_CCOUNT_OVERFLOW 0x001
  2259. #define XSCALE2_COUNT0_OVERFLOW 0x002
  2260. #define XSCALE2_COUNT1_OVERFLOW 0x004
  2261. #define XSCALE2_COUNT2_OVERFLOW 0x008
  2262. #define XSCALE2_COUNT3_OVERFLOW 0x010
  2263. #define XSCALE2_CCOUNT_INT_EN 0x001
  2264. #define XSCALE2_COUNT0_INT_EN 0x002
  2265. #define XSCALE2_COUNT1_INT_EN 0x004
  2266. #define XSCALE2_COUNT2_INT_EN 0x008
  2267. #define XSCALE2_COUNT3_INT_EN 0x010
  2268. #define XSCALE2_COUNT0_EVT_SHFT 0
  2269. #define XSCALE2_COUNT0_EVT_MASK (0xff << XSCALE2_COUNT0_EVT_SHFT)
  2270. #define XSCALE2_COUNT1_EVT_SHFT 8
  2271. #define XSCALE2_COUNT1_EVT_MASK (0xff << XSCALE2_COUNT1_EVT_SHFT)
  2272. #define XSCALE2_COUNT2_EVT_SHFT 16
  2273. #define XSCALE2_COUNT2_EVT_MASK (0xff << XSCALE2_COUNT2_EVT_SHFT)
  2274. #define XSCALE2_COUNT3_EVT_SHFT 24
  2275. #define XSCALE2_COUNT3_EVT_MASK (0xff << XSCALE2_COUNT3_EVT_SHFT)
  2276. static inline u32
  2277. xscale2pmu_read_pmnc(void)
  2278. {
  2279. u32 val;
  2280. asm volatile("mrc p14, 0, %0, c0, c1, 0" : "=r" (val));
  2281. /* bits 1-2 and 4-23 are read-unpredictable */
  2282. return val & 0xff000009;
  2283. }
  2284. static inline void
  2285. xscale2pmu_write_pmnc(u32 val)
  2286. {
  2287. /* bits 4-23 are write-as-0, 24-31 are write ignored */
  2288. val &= 0xf;
  2289. asm volatile("mcr p14, 0, %0, c0, c1, 0" : : "r" (val));
  2290. }
  2291. static inline u32
  2292. xscale2pmu_read_overflow_flags(void)
  2293. {
  2294. u32 val;
  2295. asm volatile("mrc p14, 0, %0, c5, c1, 0" : "=r" (val));
  2296. return val;
  2297. }
  2298. static inline void
  2299. xscale2pmu_write_overflow_flags(u32 val)
  2300. {
  2301. asm volatile("mcr p14, 0, %0, c5, c1, 0" : : "r" (val));
  2302. }
  2303. static inline u32
  2304. xscale2pmu_read_event_select(void)
  2305. {
  2306. u32 val;
  2307. asm volatile("mrc p14, 0, %0, c8, c1, 0" : "=r" (val));
  2308. return val;
  2309. }
  2310. static inline void
  2311. xscale2pmu_write_event_select(u32 val)
  2312. {
  2313. asm volatile("mcr p14, 0, %0, c8, c1, 0" : : "r"(val));
  2314. }
  2315. static inline u32
  2316. xscale2pmu_read_int_enable(void)
  2317. {
  2318. u32 val;
  2319. asm volatile("mrc p14, 0, %0, c4, c1, 0" : "=r" (val));
  2320. return val;
  2321. }
  2322. static void
  2323. xscale2pmu_write_int_enable(u32 val)
  2324. {
  2325. asm volatile("mcr p14, 0, %0, c4, c1, 0" : : "r" (val));
  2326. }
  2327. static inline int
  2328. xscale2_pmnc_counter_has_overflowed(unsigned long of_flags,
  2329. enum xscale_counters counter)
  2330. {
  2331. int ret = 0;
  2332. switch (counter) {
  2333. case XSCALE_CYCLE_COUNTER:
  2334. ret = of_flags & XSCALE2_CCOUNT_OVERFLOW;
  2335. break;
  2336. case XSCALE_COUNTER0:
  2337. ret = of_flags & XSCALE2_COUNT0_OVERFLOW;
  2338. break;
  2339. case XSCALE_COUNTER1:
  2340. ret = of_flags & XSCALE2_COUNT1_OVERFLOW;
  2341. break;
  2342. case XSCALE_COUNTER2:
  2343. ret = of_flags & XSCALE2_COUNT2_OVERFLOW;
  2344. break;
  2345. case XSCALE_COUNTER3:
  2346. ret = of_flags & XSCALE2_COUNT3_OVERFLOW;
  2347. break;
  2348. default:
  2349. WARN_ONCE(1, "invalid counter number (%d)\n", counter);
  2350. }
  2351. return ret;
  2352. }
  2353. static irqreturn_t
  2354. xscale2pmu_handle_irq(int irq_num, void *dev)
  2355. {
  2356. unsigned long pmnc, of_flags;
  2357. struct perf_sample_data data;
  2358. struct cpu_hw_events *cpuc;
  2359. struct pt_regs *regs;
  2360. int idx;
  2361. /* Disable the PMU. */
  2362. pmnc = xscale2pmu_read_pmnc();
  2363. xscale2pmu_write_pmnc(pmnc & ~XSCALE_PMU_ENABLE);
  2364. /* Check the overflow flag register. */
  2365. of_flags = xscale2pmu_read_overflow_flags();
  2366. if (!(of_flags & XSCALE2_OVERFLOWED_MASK))
  2367. return IRQ_NONE;
  2368. /* Clear the overflow bits. */
  2369. xscale2pmu_write_overflow_flags(of_flags);
  2370. regs = get_irq_regs();
  2371. perf_sample_data_init(&data, 0);
  2372. cpuc = &__get_cpu_var(cpu_hw_events);
  2373. for (idx = 0; idx <= armpmu->num_events; ++idx) {
  2374. struct perf_event *event = cpuc->events[idx];
  2375. struct hw_perf_event *hwc;
  2376. if (!test_bit(idx, cpuc->active_mask))
  2377. continue;
  2378. if (!xscale2_pmnc_counter_has_overflowed(pmnc, idx))
  2379. continue;
  2380. hwc = &event->hw;
  2381. armpmu_event_update(event, hwc, idx);
  2382. data.period = event->hw.last_period;
  2383. if (!armpmu_event_set_period(event, hwc, idx))
  2384. continue;
  2385. if (perf_event_overflow(event, 0, &data, regs))
  2386. armpmu->disable(hwc, idx);
  2387. }
  2388. irq_work_run();
  2389. /*
  2390. * Re-enable the PMU.
  2391. */
  2392. pmnc = xscale2pmu_read_pmnc() | XSCALE_PMU_ENABLE;
  2393. xscale2pmu_write_pmnc(pmnc);
  2394. return IRQ_HANDLED;
  2395. }
  2396. static void
  2397. xscale2pmu_enable_event(struct hw_perf_event *hwc, int idx)
  2398. {
  2399. unsigned long flags, ien, evtsel;
  2400. ien = xscale2pmu_read_int_enable();
  2401. evtsel = xscale2pmu_read_event_select();
  2402. switch (idx) {
  2403. case XSCALE_CYCLE_COUNTER:
  2404. ien |= XSCALE2_CCOUNT_INT_EN;
  2405. break;
  2406. case XSCALE_COUNTER0:
  2407. ien |= XSCALE2_COUNT0_INT_EN;
  2408. evtsel &= ~XSCALE2_COUNT0_EVT_MASK;
  2409. evtsel |= hwc->config_base << XSCALE2_COUNT0_EVT_SHFT;
  2410. break;
  2411. case XSCALE_COUNTER1:
  2412. ien |= XSCALE2_COUNT1_INT_EN;
  2413. evtsel &= ~XSCALE2_COUNT1_EVT_MASK;
  2414. evtsel |= hwc->config_base << XSCALE2_COUNT1_EVT_SHFT;
  2415. break;
  2416. case XSCALE_COUNTER2:
  2417. ien |= XSCALE2_COUNT2_INT_EN;
  2418. evtsel &= ~XSCALE2_COUNT2_EVT_MASK;
  2419. evtsel |= hwc->config_base << XSCALE2_COUNT2_EVT_SHFT;
  2420. break;
  2421. case XSCALE_COUNTER3:
  2422. ien |= XSCALE2_COUNT3_INT_EN;
  2423. evtsel &= ~XSCALE2_COUNT3_EVT_MASK;
  2424. evtsel |= hwc->config_base << XSCALE2_COUNT3_EVT_SHFT;
  2425. break;
  2426. default:
  2427. WARN_ONCE(1, "invalid counter number (%d)\n", idx);
  2428. return;
  2429. }
  2430. spin_lock_irqsave(&pmu_lock, flags);
  2431. xscale2pmu_write_event_select(evtsel);
  2432. xscale2pmu_write_int_enable(ien);
  2433. spin_unlock_irqrestore(&pmu_lock, flags);
  2434. }
  2435. static void
  2436. xscale2pmu_disable_event(struct hw_perf_event *hwc, int idx)
  2437. {
  2438. unsigned long flags, ien, evtsel;
  2439. ien = xscale2pmu_read_int_enable();
  2440. evtsel = xscale2pmu_read_event_select();
  2441. switch (idx) {
  2442. case XSCALE_CYCLE_COUNTER:
  2443. ien &= ~XSCALE2_CCOUNT_INT_EN;
  2444. break;
  2445. case XSCALE_COUNTER0:
  2446. ien &= ~XSCALE2_COUNT0_INT_EN;
  2447. evtsel &= ~XSCALE2_COUNT0_EVT_MASK;
  2448. evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT0_EVT_SHFT;
  2449. break;
  2450. case XSCALE_COUNTER1:
  2451. ien &= ~XSCALE2_COUNT1_INT_EN;
  2452. evtsel &= ~XSCALE2_COUNT1_EVT_MASK;
  2453. evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT1_EVT_SHFT;
  2454. break;
  2455. case XSCALE_COUNTER2:
  2456. ien &= ~XSCALE2_COUNT2_INT_EN;
  2457. evtsel &= ~XSCALE2_COUNT2_EVT_MASK;
  2458. evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT2_EVT_SHFT;
  2459. break;
  2460. case XSCALE_COUNTER3:
  2461. ien &= ~XSCALE2_COUNT3_INT_EN;
  2462. evtsel &= ~XSCALE2_COUNT3_EVT_MASK;
  2463. evtsel |= XSCALE_PERFCTR_UNUSED << XSCALE2_COUNT3_EVT_SHFT;
  2464. break;
  2465. default:
  2466. WARN_ONCE(1, "invalid counter number (%d)\n", idx);
  2467. return;
  2468. }
  2469. spin_lock_irqsave(&pmu_lock, flags);
  2470. xscale2pmu_write_event_select(evtsel);
  2471. xscale2pmu_write_int_enable(ien);
  2472. spin_unlock_irqrestore(&pmu_lock, flags);
  2473. }
  2474. static int
  2475. xscale2pmu_get_event_idx(struct cpu_hw_events *cpuc,
  2476. struct hw_perf_event *event)
  2477. {
  2478. int idx = xscale1pmu_get_event_idx(cpuc, event);
  2479. if (idx >= 0)
  2480. goto out;
  2481. if (!test_and_set_bit(XSCALE_COUNTER3, cpuc->used_mask))
  2482. idx = XSCALE_COUNTER3;
  2483. else if (!test_and_set_bit(XSCALE_COUNTER2, cpuc->used_mask))
  2484. idx = XSCALE_COUNTER2;
  2485. out:
  2486. return idx;
  2487. }
  2488. static void
  2489. xscale2pmu_start(void)
  2490. {
  2491. unsigned long flags, val;
  2492. spin_lock_irqsave(&pmu_lock, flags);
  2493. val = xscale2pmu_read_pmnc() & ~XSCALE_PMU_CNT64;
  2494. val |= XSCALE_PMU_ENABLE;
  2495. xscale2pmu_write_pmnc(val);
  2496. spin_unlock_irqrestore(&pmu_lock, flags);
  2497. }
  2498. static void
  2499. xscale2pmu_stop(void)
  2500. {
  2501. unsigned long flags, val;
  2502. spin_lock_irqsave(&pmu_lock, flags);
  2503. val = xscale2pmu_read_pmnc();
  2504. val &= ~XSCALE_PMU_ENABLE;
  2505. xscale2pmu_write_pmnc(val);
  2506. spin_unlock_irqrestore(&pmu_lock, flags);
  2507. }
  2508. static inline u32
  2509. xscale2pmu_read_counter(int counter)
  2510. {
  2511. u32 val = 0;
  2512. switch (counter) {
  2513. case XSCALE_CYCLE_COUNTER:
  2514. asm volatile("mrc p14, 0, %0, c1, c1, 0" : "=r" (val));
  2515. break;
  2516. case XSCALE_COUNTER0:
  2517. asm volatile("mrc p14, 0, %0, c0, c2, 0" : "=r" (val));
  2518. break;
  2519. case XSCALE_COUNTER1:
  2520. asm volatile("mrc p14, 0, %0, c1, c2, 0" : "=r" (val));
  2521. break;
  2522. case XSCALE_COUNTER2:
  2523. asm volatile("mrc p14, 0, %0, c2, c2, 0" : "=r" (val));
  2524. break;
  2525. case XSCALE_COUNTER3:
  2526. asm volatile("mrc p14, 0, %0, c3, c2, 0" : "=r" (val));
  2527. break;
  2528. }
  2529. return val;
  2530. }
  2531. static inline void
  2532. xscale2pmu_write_counter(int counter, u32 val)
  2533. {
  2534. switch (counter) {
  2535. case XSCALE_CYCLE_COUNTER:
  2536. asm volatile("mcr p14, 0, %0, c1, c1, 0" : : "r" (val));
  2537. break;
  2538. case XSCALE_COUNTER0:
  2539. asm volatile("mcr p14, 0, %0, c0, c2, 0" : : "r" (val));
  2540. break;
  2541. case XSCALE_COUNTER1:
  2542. asm volatile("mcr p14, 0, %0, c1, c2, 0" : : "r" (val));
  2543. break;
  2544. case XSCALE_COUNTER2:
  2545. asm volatile("mcr p14, 0, %0, c2, c2, 0" : : "r" (val));
  2546. break;
  2547. case XSCALE_COUNTER3:
  2548. asm volatile("mcr p14, 0, %0, c3, c2, 0" : : "r" (val));
  2549. break;
  2550. }
  2551. }
  2552. static const struct arm_pmu xscale2pmu = {
  2553. .id = ARM_PERF_PMU_ID_XSCALE2,
  2554. .name = "xscale2",
  2555. .handle_irq = xscale2pmu_handle_irq,
  2556. .enable = xscale2pmu_enable_event,
  2557. .disable = xscale2pmu_disable_event,
  2558. .read_counter = xscale2pmu_read_counter,
  2559. .write_counter = xscale2pmu_write_counter,
  2560. .get_event_idx = xscale2pmu_get_event_idx,
  2561. .start = xscale2pmu_start,
  2562. .stop = xscale2pmu_stop,
  2563. .cache_map = &xscale_perf_cache_map,
  2564. .event_map = &xscale_perf_map,
  2565. .raw_event_mask = 0xFF,
  2566. .num_events = 5,
  2567. .max_period = (1LLU << 32) - 1,
  2568. };
  2569. const struct arm_pmu *__init xscale2pmu_init(void)
  2570. {
  2571. return &xscale2pmu;
  2572. }
  2573. static int __init
  2574. init_hw_perf_events(void)
  2575. {
  2576. unsigned long cpuid = read_cpuid_id();
  2577. unsigned long implementor = (cpuid & 0xFF000000) >> 24;
  2578. unsigned long part_number = (cpuid & 0xFFF0);
  2579. /* ARM Ltd CPUs. */
  2580. if (0x41 == implementor) {
  2581. switch (part_number) {
  2582. case 0xB360: /* ARM1136 */
  2583. case 0xB560: /* ARM1156 */
  2584. case 0xB760: /* ARM1176 */
  2585. armpmu = armv6pmu_init();
  2586. break;
  2587. case 0xB020: /* ARM11mpcore */
  2588. armpmu = armv6mpcore_pmu_init();
  2589. break;
  2590. case 0xC080: /* Cortex-A8 */
  2591. armpmu = armv7_a8_pmu_init();
  2592. break;
  2593. case 0xC090: /* Cortex-A9 */
  2594. armpmu = armv7_a9_pmu_init();
  2595. break;
  2596. }
  2597. /* Intel CPUs [xscale]. */
  2598. } else if (0x69 == implementor) {
  2599. part_number = (cpuid >> 13) & 0x7;
  2600. switch (part_number) {
  2601. case 1:
  2602. armpmu = xscale1pmu_init();
  2603. break;
  2604. case 2:
  2605. armpmu = xscale2pmu_init();
  2606. break;
  2607. }
  2608. }
  2609. if (armpmu) {
  2610. pr_info("enabled with %s PMU driver, %d counters available\n",
  2611. armpmu->name, armpmu->num_events);
  2612. } else {
  2613. pr_info("no hardware support available\n");
  2614. }
  2615. perf_pmu_register(&pmu);
  2616. return 0;
  2617. }
  2618. arch_initcall(init_hw_perf_events);
  2619. /*
  2620. * Callchain handling code.
  2621. */
  2622. /*
  2623. * The registers we're interested in are at the end of the variable
  2624. * length saved register structure. The fp points at the end of this
  2625. * structure so the address of this struct is:
  2626. * (struct frame_tail *)(xxx->fp)-1
  2627. *
  2628. * This code has been adapted from the ARM OProfile support.
  2629. */
  2630. struct frame_tail {
  2631. struct frame_tail *fp;
  2632. unsigned long sp;
  2633. unsigned long lr;
  2634. } __attribute__((packed));
  2635. /*
  2636. * Get the return address for a single stackframe and return a pointer to the
  2637. * next frame tail.
  2638. */
  2639. static struct frame_tail *
  2640. user_backtrace(struct frame_tail *tail,
  2641. struct perf_callchain_entry *entry)
  2642. {
  2643. struct frame_tail buftail;
  2644. /* Also check accessibility of one struct frame_tail beyond */
  2645. if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
  2646. return NULL;
  2647. if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
  2648. return NULL;
  2649. perf_callchain_store(entry, buftail.lr);
  2650. /*
  2651. * Frame pointers should strictly progress back up the stack
  2652. * (towards higher addresses).
  2653. */
  2654. if (tail >= buftail.fp)
  2655. return NULL;
  2656. return buftail.fp - 1;
  2657. }
  2658. void
  2659. perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
  2660. {
  2661. struct frame_tail *tail;
  2662. tail = (struct frame_tail *)regs->ARM_fp - 1;
  2663. while (tail && !((unsigned long)tail & 0x3))
  2664. tail = user_backtrace(tail, entry);
  2665. }
  2666. /*
  2667. * Gets called by walk_stackframe() for every stackframe. This will be called
  2668. * whist unwinding the stackframe and is like a subroutine return so we use
  2669. * the PC.
  2670. */
  2671. static int
  2672. callchain_trace(struct stackframe *fr,
  2673. void *data)
  2674. {
  2675. struct perf_callchain_entry *entry = data;
  2676. perf_callchain_store(entry, fr->pc);
  2677. return 0;
  2678. }
  2679. void
  2680. perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  2681. {
  2682. struct stackframe fr;
  2683. fr.fp = regs->ARM_fp;
  2684. fr.sp = regs->ARM_sp;
  2685. fr.lr = regs->ARM_lr;
  2686. fr.pc = regs->ARM_pc;
  2687. walk_stackframe(&fr, callchain_trace, entry);
  2688. }