intel_display.c 244 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  69. int, int, intel_clock_t *, intel_clock_t *);
  70. };
  71. /* FDI */
  72. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  73. int
  74. intel_pch_rawclk(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. WARN_ON(!HAS_PCH_SPLIT(dev));
  78. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  79. }
  80. static bool
  81. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static bool
  93. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94. int target, int refclk, intel_clock_t *match_clock,
  95. intel_clock_t *best_clock);
  96. static bool
  97. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static inline u32 /* units of 100MHz */
  101. intel_fdi_link_freq(struct drm_device *dev)
  102. {
  103. if (IS_GEN5(dev)) {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  106. } else
  107. return 27;
  108. }
  109. static const intel_limit_t intel_limits_i8xx_dvo = {
  110. .dot = { .min = 25000, .max = 350000 },
  111. .vco = { .min = 930000, .max = 1400000 },
  112. .n = { .min = 3, .max = 16 },
  113. .m = { .min = 96, .max = 140 },
  114. .m1 = { .min = 18, .max = 26 },
  115. .m2 = { .min = 6, .max = 16 },
  116. .p = { .min = 4, .max = 128 },
  117. .p1 = { .min = 2, .max = 33 },
  118. .p2 = { .dot_limit = 165000,
  119. .p2_slow = 4, .p2_fast = 2 },
  120. .find_pll = intel_find_best_PLL,
  121. };
  122. static const intel_limit_t intel_limits_i8xx_lvds = {
  123. .dot = { .min = 25000, .max = 350000 },
  124. .vco = { .min = 930000, .max = 1400000 },
  125. .n = { .min = 3, .max = 16 },
  126. .m = { .min = 96, .max = 140 },
  127. .m1 = { .min = 18, .max = 26 },
  128. .m2 = { .min = 6, .max = 16 },
  129. .p = { .min = 4, .max = 128 },
  130. .p1 = { .min = 1, .max = 6 },
  131. .p2 = { .dot_limit = 165000,
  132. .p2_slow = 14, .p2_fast = 7 },
  133. .find_pll = intel_find_best_PLL,
  134. };
  135. static const intel_limit_t intel_limits_i9xx_sdvo = {
  136. .dot = { .min = 20000, .max = 400000 },
  137. .vco = { .min = 1400000, .max = 2800000 },
  138. .n = { .min = 1, .max = 6 },
  139. .m = { .min = 70, .max = 120 },
  140. .m1 = { .min = 10, .max = 22 },
  141. .m2 = { .min = 5, .max = 9 },
  142. .p = { .min = 5, .max = 80 },
  143. .p1 = { .min = 1, .max = 8 },
  144. .p2 = { .dot_limit = 200000,
  145. .p2_slow = 10, .p2_fast = 5 },
  146. .find_pll = intel_find_best_PLL,
  147. };
  148. static const intel_limit_t intel_limits_i9xx_lvds = {
  149. .dot = { .min = 20000, .max = 400000 },
  150. .vco = { .min = 1400000, .max = 2800000 },
  151. .n = { .min = 1, .max = 6 },
  152. .m = { .min = 70, .max = 120 },
  153. .m1 = { .min = 10, .max = 22 },
  154. .m2 = { .min = 5, .max = 9 },
  155. .p = { .min = 7, .max = 98 },
  156. .p1 = { .min = 1, .max = 8 },
  157. .p2 = { .dot_limit = 112000,
  158. .p2_slow = 14, .p2_fast = 7 },
  159. .find_pll = intel_find_best_PLL,
  160. };
  161. static const intel_limit_t intel_limits_g4x_sdvo = {
  162. .dot = { .min = 25000, .max = 270000 },
  163. .vco = { .min = 1750000, .max = 3500000},
  164. .n = { .min = 1, .max = 4 },
  165. .m = { .min = 104, .max = 138 },
  166. .m1 = { .min = 17, .max = 23 },
  167. .m2 = { .min = 5, .max = 11 },
  168. .p = { .min = 10, .max = 30 },
  169. .p1 = { .min = 1, .max = 3},
  170. .p2 = { .dot_limit = 270000,
  171. .p2_slow = 10,
  172. .p2_fast = 10
  173. },
  174. .find_pll = intel_g4x_find_best_PLL,
  175. };
  176. static const intel_limit_t intel_limits_g4x_hdmi = {
  177. .dot = { .min = 22000, .max = 400000 },
  178. .vco = { .min = 1750000, .max = 3500000},
  179. .n = { .min = 1, .max = 4 },
  180. .m = { .min = 104, .max = 138 },
  181. .m1 = { .min = 16, .max = 23 },
  182. .m2 = { .min = 5, .max = 11 },
  183. .p = { .min = 5, .max = 80 },
  184. .p1 = { .min = 1, .max = 8},
  185. .p2 = { .dot_limit = 165000,
  186. .p2_slow = 10, .p2_fast = 5 },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  190. .dot = { .min = 20000, .max = 115000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 28, .max = 112 },
  197. .p1 = { .min = 2, .max = 8 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 14, .p2_fast = 14
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  204. .dot = { .min = 80000, .max = 224000 },
  205. .vco = { .min = 1750000, .max = 3500000 },
  206. .n = { .min = 1, .max = 3 },
  207. .m = { .min = 104, .max = 138 },
  208. .m1 = { .min = 17, .max = 23 },
  209. .m2 = { .min = 5, .max = 11 },
  210. .p = { .min = 14, .max = 42 },
  211. .p1 = { .min = 2, .max = 6 },
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 7, .p2_fast = 7
  214. },
  215. .find_pll = intel_g4x_find_best_PLL,
  216. };
  217. static const intel_limit_t intel_limits_g4x_display_port = {
  218. .dot = { .min = 161670, .max = 227000 },
  219. .vco = { .min = 1750000, .max = 3500000},
  220. .n = { .min = 1, .max = 2 },
  221. .m = { .min = 97, .max = 108 },
  222. .m1 = { .min = 0x10, .max = 0x12 },
  223. .m2 = { .min = 0x05, .max = 0x06 },
  224. .p = { .min = 10, .max = 20 },
  225. .p1 = { .min = 1, .max = 2},
  226. .p2 = { .dot_limit = 0,
  227. .p2_slow = 10, .p2_fast = 10 },
  228. .find_pll = intel_find_pll_g4x_dp,
  229. };
  230. static const intel_limit_t intel_limits_pineview_sdvo = {
  231. .dot = { .min = 20000, .max = 400000},
  232. .vco = { .min = 1700000, .max = 3500000 },
  233. /* Pineview's Ncounter is a ring counter */
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. /* Pineview only has one combined m divider, which we treat as m2. */
  237. .m1 = { .min = 0, .max = 0 },
  238. .m2 = { .min = 0, .max = 254 },
  239. .p = { .min = 5, .max = 80 },
  240. .p1 = { .min = 1, .max = 8 },
  241. .p2 = { .dot_limit = 200000,
  242. .p2_slow = 10, .p2_fast = 5 },
  243. .find_pll = intel_find_best_PLL,
  244. };
  245. static const intel_limit_t intel_limits_pineview_lvds = {
  246. .dot = { .min = 20000, .max = 400000 },
  247. .vco = { .min = 1700000, .max = 3500000 },
  248. .n = { .min = 3, .max = 6 },
  249. .m = { .min = 2, .max = 256 },
  250. .m1 = { .min = 0, .max = 0 },
  251. .m2 = { .min = 0, .max = 254 },
  252. .p = { .min = 7, .max = 112 },
  253. .p1 = { .min = 1, .max = 8 },
  254. .p2 = { .dot_limit = 112000,
  255. .p2_slow = 14, .p2_fast = 14 },
  256. .find_pll = intel_find_best_PLL,
  257. };
  258. /* Ironlake / Sandybridge
  259. *
  260. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  261. * the range value for them is (actual_value - 2).
  262. */
  263. static const intel_limit_t intel_limits_ironlake_dac = {
  264. .dot = { .min = 25000, .max = 350000 },
  265. .vco = { .min = 1760000, .max = 3510000 },
  266. .n = { .min = 1, .max = 5 },
  267. .m = { .min = 79, .max = 127 },
  268. .m1 = { .min = 12, .max = 22 },
  269. .m2 = { .min = 5, .max = 9 },
  270. .p = { .min = 5, .max = 80 },
  271. .p1 = { .min = 1, .max = 8 },
  272. .p2 = { .dot_limit = 225000,
  273. .p2_slow = 10, .p2_fast = 5 },
  274. .find_pll = intel_g4x_find_best_PLL,
  275. };
  276. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  277. .dot = { .min = 25000, .max = 350000 },
  278. .vco = { .min = 1760000, .max = 3510000 },
  279. .n = { .min = 1, .max = 3 },
  280. .m = { .min = 79, .max = 118 },
  281. .m1 = { .min = 12, .max = 22 },
  282. .m2 = { .min = 5, .max = 9 },
  283. .p = { .min = 28, .max = 112 },
  284. .p1 = { .min = 2, .max = 8 },
  285. .p2 = { .dot_limit = 225000,
  286. .p2_slow = 14, .p2_fast = 14 },
  287. .find_pll = intel_g4x_find_best_PLL,
  288. };
  289. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 3 },
  293. .m = { .min = 79, .max = 127 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 14, .max = 56 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 7, .p2_fast = 7 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. /* LVDS 100mhz refclk limits. */
  303. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  304. .dot = { .min = 25000, .max = 350000 },
  305. .vco = { .min = 1760000, .max = 3510000 },
  306. .n = { .min = 1, .max = 2 },
  307. .m = { .min = 79, .max = 126 },
  308. .m1 = { .min = 12, .max = 22 },
  309. .m2 = { .min = 5, .max = 9 },
  310. .p = { .min = 28, .max = 112 },
  311. .p1 = { .min = 2, .max = 8 },
  312. .p2 = { .dot_limit = 225000,
  313. .p2_slow = 14, .p2_fast = 14 },
  314. .find_pll = intel_g4x_find_best_PLL,
  315. };
  316. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  317. .dot = { .min = 25000, .max = 350000 },
  318. .vco = { .min = 1760000, .max = 3510000 },
  319. .n = { .min = 1, .max = 3 },
  320. .m = { .min = 79, .max = 126 },
  321. .m1 = { .min = 12, .max = 22 },
  322. .m2 = { .min = 5, .max = 9 },
  323. .p = { .min = 14, .max = 42 },
  324. .p1 = { .min = 2, .max = 6 },
  325. .p2 = { .dot_limit = 225000,
  326. .p2_slow = 7, .p2_fast = 7 },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_ironlake_display_port = {
  330. .dot = { .min = 25000, .max = 350000 },
  331. .vco = { .min = 1760000, .max = 3510000},
  332. .n = { .min = 1, .max = 2 },
  333. .m = { .min = 81, .max = 90 },
  334. .m1 = { .min = 12, .max = 22 },
  335. .m2 = { .min = 5, .max = 9 },
  336. .p = { .min = 10, .max = 20 },
  337. .p1 = { .min = 1, .max = 2},
  338. .p2 = { .dot_limit = 0,
  339. .p2_slow = 10, .p2_fast = 10 },
  340. .find_pll = intel_find_pll_ironlake_dp,
  341. };
  342. static const intel_limit_t intel_limits_vlv_dac = {
  343. .dot = { .min = 25000, .max = 270000 },
  344. .vco = { .min = 4000000, .max = 6000000 },
  345. .n = { .min = 1, .max = 7 },
  346. .m = { .min = 22, .max = 450 }, /* guess */
  347. .m1 = { .min = 2, .max = 3 },
  348. .m2 = { .min = 11, .max = 156 },
  349. .p = { .min = 10, .max = 30 },
  350. .p1 = { .min = 2, .max = 3 },
  351. .p2 = { .dot_limit = 270000,
  352. .p2_slow = 2, .p2_fast = 20 },
  353. .find_pll = intel_vlv_find_best_pll,
  354. };
  355. static const intel_limit_t intel_limits_vlv_hdmi = {
  356. .dot = { .min = 20000, .max = 165000 },
  357. .vco = { .min = 4000000, .max = 5994000},
  358. .n = { .min = 1, .max = 7 },
  359. .m = { .min = 60, .max = 300 }, /* guess */
  360. .m1 = { .min = 2, .max = 3 },
  361. .m2 = { .min = 11, .max = 156 },
  362. .p = { .min = 10, .max = 30 },
  363. .p1 = { .min = 2, .max = 3 },
  364. .p2 = { .dot_limit = 270000,
  365. .p2_slow = 2, .p2_fast = 20 },
  366. .find_pll = intel_vlv_find_best_pll,
  367. };
  368. static const intel_limit_t intel_limits_vlv_dp = {
  369. .dot = { .min = 25000, .max = 270000 },
  370. .vco = { .min = 4000000, .max = 6000000 },
  371. .n = { .min = 1, .max = 7 },
  372. .m = { .min = 22, .max = 450 },
  373. .m1 = { .min = 2, .max = 3 },
  374. .m2 = { .min = 11, .max = 156 },
  375. .p = { .min = 10, .max = 30 },
  376. .p1 = { .min = 2, .max = 3 },
  377. .p2 = { .dot_limit = 270000,
  378. .p2_slow = 2, .p2_fast = 20 },
  379. .find_pll = intel_vlv_find_best_pll,
  380. };
  381. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  382. {
  383. unsigned long flags;
  384. u32 val = 0;
  385. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  386. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  387. DRM_ERROR("DPIO idle wait timed out\n");
  388. goto out_unlock;
  389. }
  390. I915_WRITE(DPIO_REG, reg);
  391. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  392. DPIO_BYTE);
  393. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  394. DRM_ERROR("DPIO read wait timed out\n");
  395. goto out_unlock;
  396. }
  397. val = I915_READ(DPIO_DATA);
  398. out_unlock:
  399. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  400. return val;
  401. }
  402. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  403. u32 val)
  404. {
  405. unsigned long flags;
  406. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO idle wait timed out\n");
  409. goto out_unlock;
  410. }
  411. I915_WRITE(DPIO_DATA, val);
  412. I915_WRITE(DPIO_REG, reg);
  413. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  414. DPIO_BYTE);
  415. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  416. DRM_ERROR("DPIO write wait timed out\n");
  417. out_unlock:
  418. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  419. }
  420. static void vlv_init_dpio(struct drm_device *dev)
  421. {
  422. struct drm_i915_private *dev_priv = dev->dev_private;
  423. /* Reset the DPIO config */
  424. I915_WRITE(DPIO_CTL, 0);
  425. POSTING_READ(DPIO_CTL);
  426. I915_WRITE(DPIO_CTL, 1);
  427. POSTING_READ(DPIO_CTL);
  428. }
  429. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  430. int refclk)
  431. {
  432. struct drm_device *dev = crtc->dev;
  433. const intel_limit_t *limit;
  434. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  435. if (intel_is_dual_link_lvds(dev)) {
  436. /* LVDS dual channel */
  437. if (refclk == 100000)
  438. limit = &intel_limits_ironlake_dual_lvds_100m;
  439. else
  440. limit = &intel_limits_ironlake_dual_lvds;
  441. } else {
  442. if (refclk == 100000)
  443. limit = &intel_limits_ironlake_single_lvds_100m;
  444. else
  445. limit = &intel_limits_ironlake_single_lvds;
  446. }
  447. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  448. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  449. limit = &intel_limits_ironlake_display_port;
  450. else
  451. limit = &intel_limits_ironlake_dac;
  452. return limit;
  453. }
  454. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  455. {
  456. struct drm_device *dev = crtc->dev;
  457. const intel_limit_t *limit;
  458. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  459. if (intel_is_dual_link_lvds(dev))
  460. /* LVDS with dual channel */
  461. limit = &intel_limits_g4x_dual_channel_lvds;
  462. else
  463. /* LVDS with dual channel */
  464. limit = &intel_limits_g4x_single_channel_lvds;
  465. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  466. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  467. limit = &intel_limits_g4x_hdmi;
  468. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  469. limit = &intel_limits_g4x_sdvo;
  470. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  471. limit = &intel_limits_g4x_display_port;
  472. } else /* The option is for other outputs */
  473. limit = &intel_limits_i9xx_sdvo;
  474. return limit;
  475. }
  476. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  477. {
  478. struct drm_device *dev = crtc->dev;
  479. const intel_limit_t *limit;
  480. if (HAS_PCH_SPLIT(dev))
  481. limit = intel_ironlake_limit(crtc, refclk);
  482. else if (IS_G4X(dev)) {
  483. limit = intel_g4x_limit(crtc);
  484. } else if (IS_PINEVIEW(dev)) {
  485. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  486. limit = &intel_limits_pineview_lvds;
  487. else
  488. limit = &intel_limits_pineview_sdvo;
  489. } else if (IS_VALLEYVIEW(dev)) {
  490. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  491. limit = &intel_limits_vlv_dac;
  492. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  493. limit = &intel_limits_vlv_hdmi;
  494. else
  495. limit = &intel_limits_vlv_dp;
  496. } else if (!IS_GEN2(dev)) {
  497. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  498. limit = &intel_limits_i9xx_lvds;
  499. else
  500. limit = &intel_limits_i9xx_sdvo;
  501. } else {
  502. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  503. limit = &intel_limits_i8xx_lvds;
  504. else
  505. limit = &intel_limits_i8xx_dvo;
  506. }
  507. return limit;
  508. }
  509. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  510. static void pineview_clock(int refclk, intel_clock_t *clock)
  511. {
  512. clock->m = clock->m2 + 2;
  513. clock->p = clock->p1 * clock->p2;
  514. clock->vco = refclk * clock->m / clock->n;
  515. clock->dot = clock->vco / clock->p;
  516. }
  517. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  518. {
  519. if (IS_PINEVIEW(dev)) {
  520. pineview_clock(refclk, clock);
  521. return;
  522. }
  523. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  524. clock->p = clock->p1 * clock->p2;
  525. clock->vco = refclk * clock->m / (clock->n + 2);
  526. clock->dot = clock->vco / clock->p;
  527. }
  528. /**
  529. * Returns whether any output on the specified pipe is of the specified type
  530. */
  531. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  532. {
  533. struct drm_device *dev = crtc->dev;
  534. struct intel_encoder *encoder;
  535. for_each_encoder_on_crtc(dev, crtc, encoder)
  536. if (encoder->type == type)
  537. return true;
  538. return false;
  539. }
  540. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  541. /**
  542. * Returns whether the given set of divisors are valid for a given refclk with
  543. * the given connectors.
  544. */
  545. static bool intel_PLL_is_valid(struct drm_device *dev,
  546. const intel_limit_t *limit,
  547. const intel_clock_t *clock)
  548. {
  549. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  550. INTELPllInvalid("p1 out of range\n");
  551. if (clock->p < limit->p.min || limit->p.max < clock->p)
  552. INTELPllInvalid("p out of range\n");
  553. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  554. INTELPllInvalid("m2 out of range\n");
  555. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  556. INTELPllInvalid("m1 out of range\n");
  557. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  558. INTELPllInvalid("m1 <= m2\n");
  559. if (clock->m < limit->m.min || limit->m.max < clock->m)
  560. INTELPllInvalid("m out of range\n");
  561. if (clock->n < limit->n.min || limit->n.max < clock->n)
  562. INTELPllInvalid("n out of range\n");
  563. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  564. INTELPllInvalid("vco out of range\n");
  565. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  566. * connector, etc., rather than just a single range.
  567. */
  568. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  569. INTELPllInvalid("dot out of range\n");
  570. return true;
  571. }
  572. static bool
  573. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  574. int target, int refclk, intel_clock_t *match_clock,
  575. intel_clock_t *best_clock)
  576. {
  577. struct drm_device *dev = crtc->dev;
  578. intel_clock_t clock;
  579. int err = target;
  580. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  581. /*
  582. * For LVDS just rely on its current settings for dual-channel.
  583. * We haven't figured out how to reliably set up different
  584. * single/dual channel state, if we even can.
  585. */
  586. if (intel_is_dual_link_lvds(dev))
  587. clock.p2 = limit->p2.p2_fast;
  588. else
  589. clock.p2 = limit->p2.p2_slow;
  590. } else {
  591. if (target < limit->p2.dot_limit)
  592. clock.p2 = limit->p2.p2_slow;
  593. else
  594. clock.p2 = limit->p2.p2_fast;
  595. }
  596. memset(best_clock, 0, sizeof(*best_clock));
  597. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  598. clock.m1++) {
  599. for (clock.m2 = limit->m2.min;
  600. clock.m2 <= limit->m2.max; clock.m2++) {
  601. /* m1 is always 0 in Pineview */
  602. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  603. break;
  604. for (clock.n = limit->n.min;
  605. clock.n <= limit->n.max; clock.n++) {
  606. for (clock.p1 = limit->p1.min;
  607. clock.p1 <= limit->p1.max; clock.p1++) {
  608. int this_err;
  609. intel_clock(dev, refclk, &clock);
  610. if (!intel_PLL_is_valid(dev, limit,
  611. &clock))
  612. continue;
  613. if (match_clock &&
  614. clock.p != match_clock->p)
  615. continue;
  616. this_err = abs(clock.dot - target);
  617. if (this_err < err) {
  618. *best_clock = clock;
  619. err = this_err;
  620. }
  621. }
  622. }
  623. }
  624. }
  625. return (err != target);
  626. }
  627. static bool
  628. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  629. int target, int refclk, intel_clock_t *match_clock,
  630. intel_clock_t *best_clock)
  631. {
  632. struct drm_device *dev = crtc->dev;
  633. intel_clock_t clock;
  634. int max_n;
  635. bool found;
  636. /* approximately equals target * 0.00585 */
  637. int err_most = (target >> 8) + (target >> 9);
  638. found = false;
  639. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  640. int lvds_reg;
  641. if (HAS_PCH_SPLIT(dev))
  642. lvds_reg = PCH_LVDS;
  643. else
  644. lvds_reg = LVDS;
  645. if (intel_is_dual_link_lvds(dev))
  646. clock.p2 = limit->p2.p2_fast;
  647. else
  648. clock.p2 = limit->p2.p2_slow;
  649. } else {
  650. if (target < limit->p2.dot_limit)
  651. clock.p2 = limit->p2.p2_slow;
  652. else
  653. clock.p2 = limit->p2.p2_fast;
  654. }
  655. memset(best_clock, 0, sizeof(*best_clock));
  656. max_n = limit->n.max;
  657. /* based on hardware requirement, prefer smaller n to precision */
  658. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  659. /* based on hardware requirement, prefere larger m1,m2 */
  660. for (clock.m1 = limit->m1.max;
  661. clock.m1 >= limit->m1.min; clock.m1--) {
  662. for (clock.m2 = limit->m2.max;
  663. clock.m2 >= limit->m2.min; clock.m2--) {
  664. for (clock.p1 = limit->p1.max;
  665. clock.p1 >= limit->p1.min; clock.p1--) {
  666. int this_err;
  667. intel_clock(dev, refclk, &clock);
  668. if (!intel_PLL_is_valid(dev, limit,
  669. &clock))
  670. continue;
  671. if (match_clock &&
  672. clock.p != match_clock->p)
  673. continue;
  674. this_err = abs(clock.dot - target);
  675. if (this_err < err_most) {
  676. *best_clock = clock;
  677. err_most = this_err;
  678. max_n = clock.n;
  679. found = true;
  680. }
  681. }
  682. }
  683. }
  684. }
  685. return found;
  686. }
  687. static bool
  688. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  689. int target, int refclk, intel_clock_t *match_clock,
  690. intel_clock_t *best_clock)
  691. {
  692. struct drm_device *dev = crtc->dev;
  693. intel_clock_t clock;
  694. if (target < 200000) {
  695. clock.n = 1;
  696. clock.p1 = 2;
  697. clock.p2 = 10;
  698. clock.m1 = 12;
  699. clock.m2 = 9;
  700. } else {
  701. clock.n = 2;
  702. clock.p1 = 1;
  703. clock.p2 = 10;
  704. clock.m1 = 14;
  705. clock.m2 = 8;
  706. }
  707. intel_clock(dev, refclk, &clock);
  708. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  709. return true;
  710. }
  711. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  712. static bool
  713. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  714. int target, int refclk, intel_clock_t *match_clock,
  715. intel_clock_t *best_clock)
  716. {
  717. intel_clock_t clock;
  718. if (target < 200000) {
  719. clock.p1 = 2;
  720. clock.p2 = 10;
  721. clock.n = 2;
  722. clock.m1 = 23;
  723. clock.m2 = 8;
  724. } else {
  725. clock.p1 = 1;
  726. clock.p2 = 10;
  727. clock.n = 1;
  728. clock.m1 = 14;
  729. clock.m2 = 2;
  730. }
  731. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  732. clock.p = (clock.p1 * clock.p2);
  733. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  734. clock.vco = 0;
  735. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  736. return true;
  737. }
  738. static bool
  739. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  740. int target, int refclk, intel_clock_t *match_clock,
  741. intel_clock_t *best_clock)
  742. {
  743. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  744. u32 m, n, fastclk;
  745. u32 updrate, minupdate, fracbits, p;
  746. unsigned long bestppm, ppm, absppm;
  747. int dotclk, flag;
  748. flag = 0;
  749. dotclk = target * 1000;
  750. bestppm = 1000000;
  751. ppm = absppm = 0;
  752. fastclk = dotclk / (2*100);
  753. updrate = 0;
  754. minupdate = 19200;
  755. fracbits = 1;
  756. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  757. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  758. /* based on hardware requirement, prefer smaller n to precision */
  759. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  760. updrate = refclk / n;
  761. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  762. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  763. if (p2 > 10)
  764. p2 = p2 - 1;
  765. p = p1 * p2;
  766. /* based on hardware requirement, prefer bigger m1,m2 values */
  767. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  768. m2 = (((2*(fastclk * p * n / m1 )) +
  769. refclk) / (2*refclk));
  770. m = m1 * m2;
  771. vco = updrate * m;
  772. if (vco >= limit->vco.min && vco < limit->vco.max) {
  773. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  774. absppm = (ppm > 0) ? ppm : (-ppm);
  775. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  776. bestppm = 0;
  777. flag = 1;
  778. }
  779. if (absppm < bestppm - 10) {
  780. bestppm = absppm;
  781. flag = 1;
  782. }
  783. if (flag) {
  784. bestn = n;
  785. bestm1 = m1;
  786. bestm2 = m2;
  787. bestp1 = p1;
  788. bestp2 = p2;
  789. flag = 0;
  790. }
  791. }
  792. }
  793. }
  794. }
  795. }
  796. best_clock->n = bestn;
  797. best_clock->m1 = bestm1;
  798. best_clock->m2 = bestm2;
  799. best_clock->p1 = bestp1;
  800. best_clock->p2 = bestp2;
  801. return true;
  802. }
  803. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  804. enum pipe pipe)
  805. {
  806. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  807. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  808. return intel_crtc->cpu_transcoder;
  809. }
  810. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  811. {
  812. struct drm_i915_private *dev_priv = dev->dev_private;
  813. u32 frame, frame_reg = PIPEFRAME(pipe);
  814. frame = I915_READ(frame_reg);
  815. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  816. DRM_DEBUG_KMS("vblank wait timed out\n");
  817. }
  818. /**
  819. * intel_wait_for_vblank - wait for vblank on a given pipe
  820. * @dev: drm device
  821. * @pipe: pipe to wait for
  822. *
  823. * Wait for vblank to occur on a given pipe. Needed for various bits of
  824. * mode setting code.
  825. */
  826. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  827. {
  828. struct drm_i915_private *dev_priv = dev->dev_private;
  829. int pipestat_reg = PIPESTAT(pipe);
  830. if (INTEL_INFO(dev)->gen >= 5) {
  831. ironlake_wait_for_vblank(dev, pipe);
  832. return;
  833. }
  834. /* Clear existing vblank status. Note this will clear any other
  835. * sticky status fields as well.
  836. *
  837. * This races with i915_driver_irq_handler() with the result
  838. * that either function could miss a vblank event. Here it is not
  839. * fatal, as we will either wait upon the next vblank interrupt or
  840. * timeout. Generally speaking intel_wait_for_vblank() is only
  841. * called during modeset at which time the GPU should be idle and
  842. * should *not* be performing page flips and thus not waiting on
  843. * vblanks...
  844. * Currently, the result of us stealing a vblank from the irq
  845. * handler is that a single frame will be skipped during swapbuffers.
  846. */
  847. I915_WRITE(pipestat_reg,
  848. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  849. /* Wait for vblank interrupt bit to set */
  850. if (wait_for(I915_READ(pipestat_reg) &
  851. PIPE_VBLANK_INTERRUPT_STATUS,
  852. 50))
  853. DRM_DEBUG_KMS("vblank wait timed out\n");
  854. }
  855. /*
  856. * intel_wait_for_pipe_off - wait for pipe to turn off
  857. * @dev: drm device
  858. * @pipe: pipe to wait for
  859. *
  860. * After disabling a pipe, we can't wait for vblank in the usual way,
  861. * spinning on the vblank interrupt status bit, since we won't actually
  862. * see an interrupt when the pipe is disabled.
  863. *
  864. * On Gen4 and above:
  865. * wait for the pipe register state bit to turn off
  866. *
  867. * Otherwise:
  868. * wait for the display line value to settle (it usually
  869. * ends up stopping at the start of the next frame).
  870. *
  871. */
  872. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  873. {
  874. struct drm_i915_private *dev_priv = dev->dev_private;
  875. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  876. pipe);
  877. if (INTEL_INFO(dev)->gen >= 4) {
  878. int reg = PIPECONF(cpu_transcoder);
  879. /* Wait for the Pipe State to go off */
  880. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  881. 100))
  882. WARN(1, "pipe_off wait timed out\n");
  883. } else {
  884. u32 last_line, line_mask;
  885. int reg = PIPEDSL(pipe);
  886. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  887. if (IS_GEN2(dev))
  888. line_mask = DSL_LINEMASK_GEN2;
  889. else
  890. line_mask = DSL_LINEMASK_GEN3;
  891. /* Wait for the display line to settle */
  892. do {
  893. last_line = I915_READ(reg) & line_mask;
  894. mdelay(5);
  895. } while (((I915_READ(reg) & line_mask) != last_line) &&
  896. time_after(timeout, jiffies));
  897. if (time_after(jiffies, timeout))
  898. WARN(1, "pipe_off wait timed out\n");
  899. }
  900. }
  901. static const char *state_string(bool enabled)
  902. {
  903. return enabled ? "on" : "off";
  904. }
  905. /* Only for pre-ILK configs */
  906. static void assert_pll(struct drm_i915_private *dev_priv,
  907. enum pipe pipe, bool state)
  908. {
  909. int reg;
  910. u32 val;
  911. bool cur_state;
  912. reg = DPLL(pipe);
  913. val = I915_READ(reg);
  914. cur_state = !!(val & DPLL_VCO_ENABLE);
  915. WARN(cur_state != state,
  916. "PLL state assertion failure (expected %s, current %s)\n",
  917. state_string(state), state_string(cur_state));
  918. }
  919. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  920. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  921. /* For ILK+ */
  922. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  923. struct intel_pch_pll *pll,
  924. struct intel_crtc *crtc,
  925. bool state)
  926. {
  927. u32 val;
  928. bool cur_state;
  929. if (HAS_PCH_LPT(dev_priv->dev)) {
  930. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  931. return;
  932. }
  933. if (WARN (!pll,
  934. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  935. return;
  936. val = I915_READ(pll->pll_reg);
  937. cur_state = !!(val & DPLL_VCO_ENABLE);
  938. WARN(cur_state != state,
  939. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  940. pll->pll_reg, state_string(state), state_string(cur_state), val);
  941. /* Make sure the selected PLL is correctly attached to the transcoder */
  942. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  943. u32 pch_dpll;
  944. pch_dpll = I915_READ(PCH_DPLL_SEL);
  945. cur_state = pll->pll_reg == _PCH_DPLL_B;
  946. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  947. "PLL[%d] not attached to this transcoder %d: %08x\n",
  948. cur_state, crtc->pipe, pch_dpll)) {
  949. cur_state = !!(val >> (4*crtc->pipe + 3));
  950. WARN(cur_state != state,
  951. "PLL[%d] not %s on this transcoder %d: %08x\n",
  952. pll->pll_reg == _PCH_DPLL_B,
  953. state_string(state),
  954. crtc->pipe,
  955. val);
  956. }
  957. }
  958. }
  959. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  960. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  961. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  962. enum pipe pipe, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  968. pipe);
  969. if (IS_HASWELL(dev_priv->dev)) {
  970. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  971. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  974. } else {
  975. reg = FDI_TX_CTL(pipe);
  976. val = I915_READ(reg);
  977. cur_state = !!(val & FDI_TX_ENABLE);
  978. }
  979. WARN(cur_state != state,
  980. "FDI TX state assertion failure (expected %s, current %s)\n",
  981. state_string(state), state_string(cur_state));
  982. }
  983. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  984. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  985. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  986. enum pipe pipe, bool state)
  987. {
  988. int reg;
  989. u32 val;
  990. bool cur_state;
  991. reg = FDI_RX_CTL(pipe);
  992. val = I915_READ(reg);
  993. cur_state = !!(val & FDI_RX_ENABLE);
  994. WARN(cur_state != state,
  995. "FDI RX state assertion failure (expected %s, current %s)\n",
  996. state_string(state), state_string(cur_state));
  997. }
  998. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  999. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1000. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1001. enum pipe pipe)
  1002. {
  1003. int reg;
  1004. u32 val;
  1005. /* ILK FDI PLL is always enabled */
  1006. if (dev_priv->info->gen == 5)
  1007. return;
  1008. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1009. if (IS_HASWELL(dev_priv->dev))
  1010. return;
  1011. reg = FDI_TX_CTL(pipe);
  1012. val = I915_READ(reg);
  1013. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1014. }
  1015. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1016. enum pipe pipe)
  1017. {
  1018. int reg;
  1019. u32 val;
  1020. reg = FDI_RX_CTL(pipe);
  1021. val = I915_READ(reg);
  1022. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1023. }
  1024. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1025. enum pipe pipe)
  1026. {
  1027. int pp_reg, lvds_reg;
  1028. u32 val;
  1029. enum pipe panel_pipe = PIPE_A;
  1030. bool locked = true;
  1031. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1032. pp_reg = PCH_PP_CONTROL;
  1033. lvds_reg = PCH_LVDS;
  1034. } else {
  1035. pp_reg = PP_CONTROL;
  1036. lvds_reg = LVDS;
  1037. }
  1038. val = I915_READ(pp_reg);
  1039. if (!(val & PANEL_POWER_ON) ||
  1040. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1041. locked = false;
  1042. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1043. panel_pipe = PIPE_B;
  1044. WARN(panel_pipe == pipe && locked,
  1045. "panel assertion failure, pipe %c regs locked\n",
  1046. pipe_name(pipe));
  1047. }
  1048. void assert_pipe(struct drm_i915_private *dev_priv,
  1049. enum pipe pipe, bool state)
  1050. {
  1051. int reg;
  1052. u32 val;
  1053. bool cur_state;
  1054. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1055. pipe);
  1056. /* if we need the pipe A quirk it must be always on */
  1057. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1058. state = true;
  1059. reg = PIPECONF(cpu_transcoder);
  1060. val = I915_READ(reg);
  1061. cur_state = !!(val & PIPECONF_ENABLE);
  1062. WARN(cur_state != state,
  1063. "pipe %c assertion failure (expected %s, current %s)\n",
  1064. pipe_name(pipe), state_string(state), state_string(cur_state));
  1065. }
  1066. static void assert_plane(struct drm_i915_private *dev_priv,
  1067. enum plane plane, bool state)
  1068. {
  1069. int reg;
  1070. u32 val;
  1071. bool cur_state;
  1072. reg = DSPCNTR(plane);
  1073. val = I915_READ(reg);
  1074. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1075. WARN(cur_state != state,
  1076. "plane %c assertion failure (expected %s, current %s)\n",
  1077. plane_name(plane), state_string(state), state_string(cur_state));
  1078. }
  1079. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1080. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1081. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1082. enum pipe pipe)
  1083. {
  1084. int reg, i;
  1085. u32 val;
  1086. int cur_pipe;
  1087. /* Planes are fixed to pipes on ILK+ */
  1088. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1089. reg = DSPCNTR(pipe);
  1090. val = I915_READ(reg);
  1091. WARN((val & DISPLAY_PLANE_ENABLE),
  1092. "plane %c assertion failure, should be disabled but not\n",
  1093. plane_name(pipe));
  1094. return;
  1095. }
  1096. /* Need to check both planes against the pipe */
  1097. for (i = 0; i < 2; i++) {
  1098. reg = DSPCNTR(i);
  1099. val = I915_READ(reg);
  1100. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1101. DISPPLANE_SEL_PIPE_SHIFT;
  1102. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1103. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1104. plane_name(i), pipe_name(pipe));
  1105. }
  1106. }
  1107. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1108. {
  1109. u32 val;
  1110. bool enabled;
  1111. if (HAS_PCH_LPT(dev_priv->dev)) {
  1112. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1113. return;
  1114. }
  1115. val = I915_READ(PCH_DREF_CONTROL);
  1116. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1117. DREF_SUPERSPREAD_SOURCE_MASK));
  1118. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1119. }
  1120. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1121. enum pipe pipe)
  1122. {
  1123. int reg;
  1124. u32 val;
  1125. bool enabled;
  1126. reg = TRANSCONF(pipe);
  1127. val = I915_READ(reg);
  1128. enabled = !!(val & TRANS_ENABLE);
  1129. WARN(enabled,
  1130. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1131. pipe_name(pipe));
  1132. }
  1133. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1134. enum pipe pipe, u32 port_sel, u32 val)
  1135. {
  1136. if ((val & DP_PORT_EN) == 0)
  1137. return false;
  1138. if (HAS_PCH_CPT(dev_priv->dev)) {
  1139. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1140. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1141. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1142. return false;
  1143. } else {
  1144. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, u32 val)
  1151. {
  1152. if ((val & PORT_ENABLE) == 0)
  1153. return false;
  1154. if (HAS_PCH_CPT(dev_priv->dev)) {
  1155. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1156. return false;
  1157. } else {
  1158. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1159. return false;
  1160. }
  1161. return true;
  1162. }
  1163. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1164. enum pipe pipe, u32 val)
  1165. {
  1166. if ((val & LVDS_PORT_EN) == 0)
  1167. return false;
  1168. if (HAS_PCH_CPT(dev_priv->dev)) {
  1169. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1170. return false;
  1171. } else {
  1172. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1173. return false;
  1174. }
  1175. return true;
  1176. }
  1177. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1178. enum pipe pipe, u32 val)
  1179. {
  1180. if ((val & ADPA_DAC_ENABLE) == 0)
  1181. return false;
  1182. if (HAS_PCH_CPT(dev_priv->dev)) {
  1183. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1184. return false;
  1185. } else {
  1186. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1187. return false;
  1188. }
  1189. return true;
  1190. }
  1191. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1192. enum pipe pipe, int reg, u32 port_sel)
  1193. {
  1194. u32 val = I915_READ(reg);
  1195. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1196. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1197. reg, pipe_name(pipe));
  1198. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1199. && (val & DP_PIPEB_SELECT),
  1200. "IBX PCH dp port still using transcoder B\n");
  1201. }
  1202. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1203. enum pipe pipe, int reg)
  1204. {
  1205. u32 val = I915_READ(reg);
  1206. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1207. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1208. reg, pipe_name(pipe));
  1209. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1210. && (val & SDVO_PIPE_B_SELECT),
  1211. "IBX PCH hdmi port still using transcoder B\n");
  1212. }
  1213. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1214. enum pipe pipe)
  1215. {
  1216. int reg;
  1217. u32 val;
  1218. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1219. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1220. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1221. reg = PCH_ADPA;
  1222. val = I915_READ(reg);
  1223. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1224. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1225. pipe_name(pipe));
  1226. reg = PCH_LVDS;
  1227. val = I915_READ(reg);
  1228. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1229. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1230. pipe_name(pipe));
  1231. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1232. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1233. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1234. }
  1235. /**
  1236. * intel_enable_pll - enable a PLL
  1237. * @dev_priv: i915 private structure
  1238. * @pipe: pipe PLL to enable
  1239. *
  1240. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1241. * make sure the PLL reg is writable first though, since the panel write
  1242. * protect mechanism may be enabled.
  1243. *
  1244. * Note! This is for pre-ILK only.
  1245. *
  1246. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1247. */
  1248. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1249. {
  1250. int reg;
  1251. u32 val;
  1252. /* No really, not for ILK+ */
  1253. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1254. /* PLL is protected by panel, make sure we can write it */
  1255. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1256. assert_panel_unlocked(dev_priv, pipe);
  1257. reg = DPLL(pipe);
  1258. val = I915_READ(reg);
  1259. val |= DPLL_VCO_ENABLE;
  1260. /* We do this three times for luck */
  1261. I915_WRITE(reg, val);
  1262. POSTING_READ(reg);
  1263. udelay(150); /* wait for warmup */
  1264. I915_WRITE(reg, val);
  1265. POSTING_READ(reg);
  1266. udelay(150); /* wait for warmup */
  1267. I915_WRITE(reg, val);
  1268. POSTING_READ(reg);
  1269. udelay(150); /* wait for warmup */
  1270. }
  1271. /**
  1272. * intel_disable_pll - disable a PLL
  1273. * @dev_priv: i915 private structure
  1274. * @pipe: pipe PLL to disable
  1275. *
  1276. * Disable the PLL for @pipe, making sure the pipe is off first.
  1277. *
  1278. * Note! This is for pre-ILK only.
  1279. */
  1280. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1281. {
  1282. int reg;
  1283. u32 val;
  1284. /* Don't disable pipe A or pipe A PLLs if needed */
  1285. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1286. return;
  1287. /* Make sure the pipe isn't still relying on us */
  1288. assert_pipe_disabled(dev_priv, pipe);
  1289. reg = DPLL(pipe);
  1290. val = I915_READ(reg);
  1291. val &= ~DPLL_VCO_ENABLE;
  1292. I915_WRITE(reg, val);
  1293. POSTING_READ(reg);
  1294. }
  1295. /* SBI access */
  1296. static void
  1297. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1298. {
  1299. unsigned long flags;
  1300. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1301. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1302. 100)) {
  1303. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1304. goto out_unlock;
  1305. }
  1306. I915_WRITE(SBI_ADDR,
  1307. (reg << 16));
  1308. I915_WRITE(SBI_DATA,
  1309. value);
  1310. I915_WRITE(SBI_CTL_STAT,
  1311. SBI_BUSY |
  1312. SBI_CTL_OP_CRWR);
  1313. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1314. 100)) {
  1315. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1316. goto out_unlock;
  1317. }
  1318. out_unlock:
  1319. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1320. }
  1321. static u32
  1322. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1323. {
  1324. unsigned long flags;
  1325. u32 value = 0;
  1326. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1327. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1328. 100)) {
  1329. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1330. goto out_unlock;
  1331. }
  1332. I915_WRITE(SBI_ADDR,
  1333. (reg << 16));
  1334. I915_WRITE(SBI_CTL_STAT,
  1335. SBI_BUSY |
  1336. SBI_CTL_OP_CRRD);
  1337. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1338. 100)) {
  1339. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1340. goto out_unlock;
  1341. }
  1342. value = I915_READ(SBI_DATA);
  1343. out_unlock:
  1344. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1345. return value;
  1346. }
  1347. /**
  1348. * ironlake_enable_pch_pll - enable PCH PLL
  1349. * @dev_priv: i915 private structure
  1350. * @pipe: pipe PLL to enable
  1351. *
  1352. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1353. * drives the transcoder clock.
  1354. */
  1355. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1356. {
  1357. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1358. struct intel_pch_pll *pll;
  1359. int reg;
  1360. u32 val;
  1361. /* PCH PLLs only available on ILK, SNB and IVB */
  1362. BUG_ON(dev_priv->info->gen < 5);
  1363. pll = intel_crtc->pch_pll;
  1364. if (pll == NULL)
  1365. return;
  1366. if (WARN_ON(pll->refcount == 0))
  1367. return;
  1368. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1369. pll->pll_reg, pll->active, pll->on,
  1370. intel_crtc->base.base.id);
  1371. /* PCH refclock must be enabled first */
  1372. assert_pch_refclk_enabled(dev_priv);
  1373. if (pll->active++ && pll->on) {
  1374. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1375. return;
  1376. }
  1377. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1378. reg = pll->pll_reg;
  1379. val = I915_READ(reg);
  1380. val |= DPLL_VCO_ENABLE;
  1381. I915_WRITE(reg, val);
  1382. POSTING_READ(reg);
  1383. udelay(200);
  1384. pll->on = true;
  1385. }
  1386. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1387. {
  1388. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1389. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1390. int reg;
  1391. u32 val;
  1392. /* PCH only available on ILK+ */
  1393. BUG_ON(dev_priv->info->gen < 5);
  1394. if (pll == NULL)
  1395. return;
  1396. if (WARN_ON(pll->refcount == 0))
  1397. return;
  1398. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1399. pll->pll_reg, pll->active, pll->on,
  1400. intel_crtc->base.base.id);
  1401. if (WARN_ON(pll->active == 0)) {
  1402. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1403. return;
  1404. }
  1405. if (--pll->active) {
  1406. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1407. return;
  1408. }
  1409. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1410. /* Make sure transcoder isn't still depending on us */
  1411. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1412. reg = pll->pll_reg;
  1413. val = I915_READ(reg);
  1414. val &= ~DPLL_VCO_ENABLE;
  1415. I915_WRITE(reg, val);
  1416. POSTING_READ(reg);
  1417. udelay(200);
  1418. pll->on = false;
  1419. }
  1420. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1421. enum pipe pipe)
  1422. {
  1423. struct drm_device *dev = dev_priv->dev;
  1424. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1425. uint32_t reg, val, pipeconf_val;
  1426. /* PCH only available on ILK+ */
  1427. BUG_ON(dev_priv->info->gen < 5);
  1428. /* Make sure PCH DPLL is enabled */
  1429. assert_pch_pll_enabled(dev_priv,
  1430. to_intel_crtc(crtc)->pch_pll,
  1431. to_intel_crtc(crtc));
  1432. /* FDI must be feeding us bits for PCH ports */
  1433. assert_fdi_tx_enabled(dev_priv, pipe);
  1434. assert_fdi_rx_enabled(dev_priv, pipe);
  1435. if (HAS_PCH_CPT(dev)) {
  1436. /* Workaround: Set the timing override bit before enabling the
  1437. * pch transcoder. */
  1438. reg = TRANS_CHICKEN2(pipe);
  1439. val = I915_READ(reg);
  1440. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1441. I915_WRITE(reg, val);
  1442. }
  1443. reg = TRANSCONF(pipe);
  1444. val = I915_READ(reg);
  1445. pipeconf_val = I915_READ(PIPECONF(pipe));
  1446. if (HAS_PCH_IBX(dev_priv->dev)) {
  1447. /*
  1448. * make the BPC in transcoder be consistent with
  1449. * that in pipeconf reg.
  1450. */
  1451. val &= ~PIPE_BPC_MASK;
  1452. val |= pipeconf_val & PIPE_BPC_MASK;
  1453. }
  1454. val &= ~TRANS_INTERLACE_MASK;
  1455. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1456. if (HAS_PCH_IBX(dev_priv->dev) &&
  1457. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1458. val |= TRANS_LEGACY_INTERLACED_ILK;
  1459. else
  1460. val |= TRANS_INTERLACED;
  1461. else
  1462. val |= TRANS_PROGRESSIVE;
  1463. I915_WRITE(reg, val | TRANS_ENABLE);
  1464. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1465. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1466. }
  1467. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1468. enum transcoder cpu_transcoder)
  1469. {
  1470. u32 val, pipeconf_val;
  1471. /* PCH only available on ILK+ */
  1472. BUG_ON(dev_priv->info->gen < 5);
  1473. /* FDI must be feeding us bits for PCH ports */
  1474. assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
  1475. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1476. /* Workaround: set timing override bit. */
  1477. val = I915_READ(_TRANSA_CHICKEN2);
  1478. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1479. I915_WRITE(_TRANSA_CHICKEN2, val);
  1480. val = TRANS_ENABLE;
  1481. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1482. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1483. PIPECONF_INTERLACED_ILK)
  1484. val |= TRANS_INTERLACED;
  1485. else
  1486. val |= TRANS_PROGRESSIVE;
  1487. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1488. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1489. DRM_ERROR("Failed to enable PCH transcoder\n");
  1490. }
  1491. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1492. enum pipe pipe)
  1493. {
  1494. struct drm_device *dev = dev_priv->dev;
  1495. uint32_t reg, val;
  1496. /* FDI relies on the transcoder */
  1497. assert_fdi_tx_disabled(dev_priv, pipe);
  1498. assert_fdi_rx_disabled(dev_priv, pipe);
  1499. /* Ports must be off as well */
  1500. assert_pch_ports_disabled(dev_priv, pipe);
  1501. reg = TRANSCONF(pipe);
  1502. val = I915_READ(reg);
  1503. val &= ~TRANS_ENABLE;
  1504. I915_WRITE(reg, val);
  1505. /* wait for PCH transcoder off, transcoder state */
  1506. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1507. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1508. if (!HAS_PCH_IBX(dev)) {
  1509. /* Workaround: Clear the timing override chicken bit again. */
  1510. reg = TRANS_CHICKEN2(pipe);
  1511. val = I915_READ(reg);
  1512. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1513. I915_WRITE(reg, val);
  1514. }
  1515. }
  1516. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1517. {
  1518. u32 val;
  1519. val = I915_READ(_TRANSACONF);
  1520. val &= ~TRANS_ENABLE;
  1521. I915_WRITE(_TRANSACONF, val);
  1522. /* wait for PCH transcoder off, transcoder state */
  1523. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1524. DRM_ERROR("Failed to disable PCH transcoder\n");
  1525. /* Workaround: clear timing override bit. */
  1526. val = I915_READ(_TRANSA_CHICKEN2);
  1527. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1528. I915_WRITE(_TRANSA_CHICKEN2, val);
  1529. }
  1530. /**
  1531. * intel_enable_pipe - enable a pipe, asserting requirements
  1532. * @dev_priv: i915 private structure
  1533. * @pipe: pipe to enable
  1534. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1535. *
  1536. * Enable @pipe, making sure that various hardware specific requirements
  1537. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1538. *
  1539. * @pipe should be %PIPE_A or %PIPE_B.
  1540. *
  1541. * Will wait until the pipe is actually running (i.e. first vblank) before
  1542. * returning.
  1543. */
  1544. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1545. bool pch_port)
  1546. {
  1547. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1548. pipe);
  1549. enum transcoder pch_transcoder;
  1550. int reg;
  1551. u32 val;
  1552. if (IS_HASWELL(dev_priv->dev))
  1553. pch_transcoder = TRANSCODER_A;
  1554. else
  1555. pch_transcoder = pipe;
  1556. /*
  1557. * A pipe without a PLL won't actually be able to drive bits from
  1558. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1559. * need the check.
  1560. */
  1561. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1562. assert_pll_enabled(dev_priv, pipe);
  1563. else {
  1564. if (pch_port) {
  1565. /* if driving the PCH, we need FDI enabled */
  1566. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1567. assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
  1568. }
  1569. /* FIXME: assert CPU port conditions for SNB+ */
  1570. }
  1571. reg = PIPECONF(cpu_transcoder);
  1572. val = I915_READ(reg);
  1573. if (val & PIPECONF_ENABLE)
  1574. return;
  1575. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1576. intel_wait_for_vblank(dev_priv->dev, pipe);
  1577. }
  1578. /**
  1579. * intel_disable_pipe - disable a pipe, asserting requirements
  1580. * @dev_priv: i915 private structure
  1581. * @pipe: pipe to disable
  1582. *
  1583. * Disable @pipe, making sure that various hardware specific requirements
  1584. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1585. *
  1586. * @pipe should be %PIPE_A or %PIPE_B.
  1587. *
  1588. * Will wait until the pipe has shut down before returning.
  1589. */
  1590. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1591. enum pipe pipe)
  1592. {
  1593. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1594. pipe);
  1595. int reg;
  1596. u32 val;
  1597. /*
  1598. * Make sure planes won't keep trying to pump pixels to us,
  1599. * or we might hang the display.
  1600. */
  1601. assert_planes_disabled(dev_priv, pipe);
  1602. /* Don't disable pipe A or pipe A PLLs if needed */
  1603. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1604. return;
  1605. reg = PIPECONF(cpu_transcoder);
  1606. val = I915_READ(reg);
  1607. if ((val & PIPECONF_ENABLE) == 0)
  1608. return;
  1609. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1610. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1611. }
  1612. /*
  1613. * Plane regs are double buffered, going from enabled->disabled needs a
  1614. * trigger in order to latch. The display address reg provides this.
  1615. */
  1616. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1617. enum plane plane)
  1618. {
  1619. if (dev_priv->info->gen >= 4)
  1620. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1621. else
  1622. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1623. }
  1624. /**
  1625. * intel_enable_plane - enable a display plane on a given pipe
  1626. * @dev_priv: i915 private structure
  1627. * @plane: plane to enable
  1628. * @pipe: pipe being fed
  1629. *
  1630. * Enable @plane on @pipe, making sure that @pipe is running first.
  1631. */
  1632. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1633. enum plane plane, enum pipe pipe)
  1634. {
  1635. int reg;
  1636. u32 val;
  1637. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1638. assert_pipe_enabled(dev_priv, pipe);
  1639. reg = DSPCNTR(plane);
  1640. val = I915_READ(reg);
  1641. if (val & DISPLAY_PLANE_ENABLE)
  1642. return;
  1643. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1644. intel_flush_display_plane(dev_priv, plane);
  1645. intel_wait_for_vblank(dev_priv->dev, pipe);
  1646. }
  1647. /**
  1648. * intel_disable_plane - disable a display plane
  1649. * @dev_priv: i915 private structure
  1650. * @plane: plane to disable
  1651. * @pipe: pipe consuming the data
  1652. *
  1653. * Disable @plane; should be an independent operation.
  1654. */
  1655. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1656. enum plane plane, enum pipe pipe)
  1657. {
  1658. int reg;
  1659. u32 val;
  1660. reg = DSPCNTR(plane);
  1661. val = I915_READ(reg);
  1662. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1663. return;
  1664. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1665. intel_flush_display_plane(dev_priv, plane);
  1666. intel_wait_for_vblank(dev_priv->dev, pipe);
  1667. }
  1668. int
  1669. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1670. struct drm_i915_gem_object *obj,
  1671. struct intel_ring_buffer *pipelined)
  1672. {
  1673. struct drm_i915_private *dev_priv = dev->dev_private;
  1674. u32 alignment;
  1675. int ret;
  1676. switch (obj->tiling_mode) {
  1677. case I915_TILING_NONE:
  1678. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1679. alignment = 128 * 1024;
  1680. else if (INTEL_INFO(dev)->gen >= 4)
  1681. alignment = 4 * 1024;
  1682. else
  1683. alignment = 64 * 1024;
  1684. break;
  1685. case I915_TILING_X:
  1686. /* pin() will align the object as required by fence */
  1687. alignment = 0;
  1688. break;
  1689. case I915_TILING_Y:
  1690. /* FIXME: Is this true? */
  1691. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1692. return -EINVAL;
  1693. default:
  1694. BUG();
  1695. }
  1696. dev_priv->mm.interruptible = false;
  1697. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1698. if (ret)
  1699. goto err_interruptible;
  1700. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1701. * fence, whereas 965+ only requires a fence if using
  1702. * framebuffer compression. For simplicity, we always install
  1703. * a fence as the cost is not that onerous.
  1704. */
  1705. ret = i915_gem_object_get_fence(obj);
  1706. if (ret)
  1707. goto err_unpin;
  1708. i915_gem_object_pin_fence(obj);
  1709. dev_priv->mm.interruptible = true;
  1710. return 0;
  1711. err_unpin:
  1712. i915_gem_object_unpin(obj);
  1713. err_interruptible:
  1714. dev_priv->mm.interruptible = true;
  1715. return ret;
  1716. }
  1717. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1718. {
  1719. i915_gem_object_unpin_fence(obj);
  1720. i915_gem_object_unpin(obj);
  1721. }
  1722. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1723. * is assumed to be a power-of-two. */
  1724. unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
  1725. unsigned int bpp,
  1726. unsigned int pitch)
  1727. {
  1728. int tile_rows, tiles;
  1729. tile_rows = *y / 8;
  1730. *y %= 8;
  1731. tiles = *x / (512/bpp);
  1732. *x %= 512/bpp;
  1733. return tile_rows * pitch * 8 + tiles * 4096;
  1734. }
  1735. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1736. int x, int y)
  1737. {
  1738. struct drm_device *dev = crtc->dev;
  1739. struct drm_i915_private *dev_priv = dev->dev_private;
  1740. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1741. struct intel_framebuffer *intel_fb;
  1742. struct drm_i915_gem_object *obj;
  1743. int plane = intel_crtc->plane;
  1744. unsigned long linear_offset;
  1745. u32 dspcntr;
  1746. u32 reg;
  1747. switch (plane) {
  1748. case 0:
  1749. case 1:
  1750. break;
  1751. default:
  1752. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1753. return -EINVAL;
  1754. }
  1755. intel_fb = to_intel_framebuffer(fb);
  1756. obj = intel_fb->obj;
  1757. reg = DSPCNTR(plane);
  1758. dspcntr = I915_READ(reg);
  1759. /* Mask out pixel format bits in case we change it */
  1760. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1761. switch (fb->pixel_format) {
  1762. case DRM_FORMAT_C8:
  1763. dspcntr |= DISPPLANE_8BPP;
  1764. break;
  1765. case DRM_FORMAT_XRGB1555:
  1766. case DRM_FORMAT_ARGB1555:
  1767. dspcntr |= DISPPLANE_BGRX555;
  1768. break;
  1769. case DRM_FORMAT_RGB565:
  1770. dspcntr |= DISPPLANE_BGRX565;
  1771. break;
  1772. case DRM_FORMAT_XRGB8888:
  1773. case DRM_FORMAT_ARGB8888:
  1774. dspcntr |= DISPPLANE_BGRX888;
  1775. break;
  1776. case DRM_FORMAT_XBGR8888:
  1777. case DRM_FORMAT_ABGR8888:
  1778. dspcntr |= DISPPLANE_RGBX888;
  1779. break;
  1780. case DRM_FORMAT_XRGB2101010:
  1781. case DRM_FORMAT_ARGB2101010:
  1782. dspcntr |= DISPPLANE_BGRX101010;
  1783. break;
  1784. case DRM_FORMAT_XBGR2101010:
  1785. case DRM_FORMAT_ABGR2101010:
  1786. dspcntr |= DISPPLANE_RGBX101010;
  1787. break;
  1788. default:
  1789. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1790. return -EINVAL;
  1791. }
  1792. if (INTEL_INFO(dev)->gen >= 4) {
  1793. if (obj->tiling_mode != I915_TILING_NONE)
  1794. dspcntr |= DISPPLANE_TILED;
  1795. else
  1796. dspcntr &= ~DISPPLANE_TILED;
  1797. }
  1798. I915_WRITE(reg, dspcntr);
  1799. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1800. if (INTEL_INFO(dev)->gen >= 4) {
  1801. intel_crtc->dspaddr_offset =
  1802. intel_gen4_compute_offset_xtiled(&x, &y,
  1803. fb->bits_per_pixel / 8,
  1804. fb->pitches[0]);
  1805. linear_offset -= intel_crtc->dspaddr_offset;
  1806. } else {
  1807. intel_crtc->dspaddr_offset = linear_offset;
  1808. }
  1809. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1810. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1811. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1812. if (INTEL_INFO(dev)->gen >= 4) {
  1813. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1814. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1815. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1816. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1817. } else
  1818. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1819. POSTING_READ(reg);
  1820. return 0;
  1821. }
  1822. static int ironlake_update_plane(struct drm_crtc *crtc,
  1823. struct drm_framebuffer *fb, int x, int y)
  1824. {
  1825. struct drm_device *dev = crtc->dev;
  1826. struct drm_i915_private *dev_priv = dev->dev_private;
  1827. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1828. struct intel_framebuffer *intel_fb;
  1829. struct drm_i915_gem_object *obj;
  1830. int plane = intel_crtc->plane;
  1831. unsigned long linear_offset;
  1832. u32 dspcntr;
  1833. u32 reg;
  1834. switch (plane) {
  1835. case 0:
  1836. case 1:
  1837. case 2:
  1838. break;
  1839. default:
  1840. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1841. return -EINVAL;
  1842. }
  1843. intel_fb = to_intel_framebuffer(fb);
  1844. obj = intel_fb->obj;
  1845. reg = DSPCNTR(plane);
  1846. dspcntr = I915_READ(reg);
  1847. /* Mask out pixel format bits in case we change it */
  1848. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1849. switch (fb->pixel_format) {
  1850. case DRM_FORMAT_C8:
  1851. dspcntr |= DISPPLANE_8BPP;
  1852. break;
  1853. case DRM_FORMAT_RGB565:
  1854. dspcntr |= DISPPLANE_BGRX565;
  1855. break;
  1856. case DRM_FORMAT_XRGB8888:
  1857. case DRM_FORMAT_ARGB8888:
  1858. dspcntr |= DISPPLANE_BGRX888;
  1859. break;
  1860. case DRM_FORMAT_XBGR8888:
  1861. case DRM_FORMAT_ABGR8888:
  1862. dspcntr |= DISPPLANE_RGBX888;
  1863. break;
  1864. case DRM_FORMAT_XRGB2101010:
  1865. case DRM_FORMAT_ARGB2101010:
  1866. dspcntr |= DISPPLANE_BGRX101010;
  1867. break;
  1868. case DRM_FORMAT_XBGR2101010:
  1869. case DRM_FORMAT_ABGR2101010:
  1870. dspcntr |= DISPPLANE_RGBX101010;
  1871. break;
  1872. default:
  1873. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1874. return -EINVAL;
  1875. }
  1876. if (obj->tiling_mode != I915_TILING_NONE)
  1877. dspcntr |= DISPPLANE_TILED;
  1878. else
  1879. dspcntr &= ~DISPPLANE_TILED;
  1880. /* must disable */
  1881. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1882. I915_WRITE(reg, dspcntr);
  1883. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1884. intel_crtc->dspaddr_offset =
  1885. intel_gen4_compute_offset_xtiled(&x, &y,
  1886. fb->bits_per_pixel / 8,
  1887. fb->pitches[0]);
  1888. linear_offset -= intel_crtc->dspaddr_offset;
  1889. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1890. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1891. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1892. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1893. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1894. if (IS_HASWELL(dev)) {
  1895. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1896. } else {
  1897. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1898. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1899. }
  1900. POSTING_READ(reg);
  1901. return 0;
  1902. }
  1903. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1904. static int
  1905. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1906. int x, int y, enum mode_set_atomic state)
  1907. {
  1908. struct drm_device *dev = crtc->dev;
  1909. struct drm_i915_private *dev_priv = dev->dev_private;
  1910. if (dev_priv->display.disable_fbc)
  1911. dev_priv->display.disable_fbc(dev);
  1912. intel_increase_pllclock(crtc);
  1913. return dev_priv->display.update_plane(crtc, fb, x, y);
  1914. }
  1915. static int
  1916. intel_finish_fb(struct drm_framebuffer *old_fb)
  1917. {
  1918. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1919. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1920. bool was_interruptible = dev_priv->mm.interruptible;
  1921. int ret;
  1922. wait_event(dev_priv->pending_flip_queue,
  1923. atomic_read(&dev_priv->mm.wedged) ||
  1924. atomic_read(&obj->pending_flip) == 0);
  1925. /* Big Hammer, we also need to ensure that any pending
  1926. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1927. * current scanout is retired before unpinning the old
  1928. * framebuffer.
  1929. *
  1930. * This should only fail upon a hung GPU, in which case we
  1931. * can safely continue.
  1932. */
  1933. dev_priv->mm.interruptible = false;
  1934. ret = i915_gem_object_finish_gpu(obj);
  1935. dev_priv->mm.interruptible = was_interruptible;
  1936. return ret;
  1937. }
  1938. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1939. {
  1940. struct drm_device *dev = crtc->dev;
  1941. struct drm_i915_master_private *master_priv;
  1942. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1943. if (!dev->primary->master)
  1944. return;
  1945. master_priv = dev->primary->master->driver_priv;
  1946. if (!master_priv->sarea_priv)
  1947. return;
  1948. switch (intel_crtc->pipe) {
  1949. case 0:
  1950. master_priv->sarea_priv->pipeA_x = x;
  1951. master_priv->sarea_priv->pipeA_y = y;
  1952. break;
  1953. case 1:
  1954. master_priv->sarea_priv->pipeB_x = x;
  1955. master_priv->sarea_priv->pipeB_y = y;
  1956. break;
  1957. default:
  1958. break;
  1959. }
  1960. }
  1961. static int
  1962. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1963. struct drm_framebuffer *fb)
  1964. {
  1965. struct drm_device *dev = crtc->dev;
  1966. struct drm_i915_private *dev_priv = dev->dev_private;
  1967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1968. struct drm_framebuffer *old_fb;
  1969. int ret;
  1970. /* no fb bound */
  1971. if (!fb) {
  1972. DRM_ERROR("No FB bound\n");
  1973. return 0;
  1974. }
  1975. if(intel_crtc->plane > dev_priv->num_pipe) {
  1976. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1977. intel_crtc->plane,
  1978. dev_priv->num_pipe);
  1979. return -EINVAL;
  1980. }
  1981. mutex_lock(&dev->struct_mutex);
  1982. ret = intel_pin_and_fence_fb_obj(dev,
  1983. to_intel_framebuffer(fb)->obj,
  1984. NULL);
  1985. if (ret != 0) {
  1986. mutex_unlock(&dev->struct_mutex);
  1987. DRM_ERROR("pin & fence failed\n");
  1988. return ret;
  1989. }
  1990. if (crtc->fb)
  1991. intel_finish_fb(crtc->fb);
  1992. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1993. if (ret) {
  1994. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1995. mutex_unlock(&dev->struct_mutex);
  1996. DRM_ERROR("failed to update base address\n");
  1997. return ret;
  1998. }
  1999. old_fb = crtc->fb;
  2000. crtc->fb = fb;
  2001. crtc->x = x;
  2002. crtc->y = y;
  2003. if (old_fb) {
  2004. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2005. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2006. }
  2007. intel_update_fbc(dev);
  2008. mutex_unlock(&dev->struct_mutex);
  2009. intel_crtc_update_sarea_pos(crtc, x, y);
  2010. return 0;
  2011. }
  2012. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2013. {
  2014. struct drm_device *dev = crtc->dev;
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. u32 dpa_ctl;
  2017. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2018. dpa_ctl = I915_READ(DP_A);
  2019. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2020. if (clock < 200000) {
  2021. u32 temp;
  2022. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2023. /* workaround for 160Mhz:
  2024. 1) program 0x4600c bits 15:0 = 0x8124
  2025. 2) program 0x46010 bit 0 = 1
  2026. 3) program 0x46034 bit 24 = 1
  2027. 4) program 0x64000 bit 14 = 1
  2028. */
  2029. temp = I915_READ(0x4600c);
  2030. temp &= 0xffff0000;
  2031. I915_WRITE(0x4600c, temp | 0x8124);
  2032. temp = I915_READ(0x46010);
  2033. I915_WRITE(0x46010, temp | 1);
  2034. temp = I915_READ(0x46034);
  2035. I915_WRITE(0x46034, temp | (1 << 24));
  2036. } else {
  2037. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2038. }
  2039. I915_WRITE(DP_A, dpa_ctl);
  2040. POSTING_READ(DP_A);
  2041. udelay(500);
  2042. }
  2043. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2044. {
  2045. struct drm_device *dev = crtc->dev;
  2046. struct drm_i915_private *dev_priv = dev->dev_private;
  2047. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2048. int pipe = intel_crtc->pipe;
  2049. u32 reg, temp;
  2050. /* enable normal train */
  2051. reg = FDI_TX_CTL(pipe);
  2052. temp = I915_READ(reg);
  2053. if (IS_IVYBRIDGE(dev)) {
  2054. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2055. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2056. } else {
  2057. temp &= ~FDI_LINK_TRAIN_NONE;
  2058. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2059. }
  2060. I915_WRITE(reg, temp);
  2061. reg = FDI_RX_CTL(pipe);
  2062. temp = I915_READ(reg);
  2063. if (HAS_PCH_CPT(dev)) {
  2064. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2065. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2066. } else {
  2067. temp &= ~FDI_LINK_TRAIN_NONE;
  2068. temp |= FDI_LINK_TRAIN_NONE;
  2069. }
  2070. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2071. /* wait one idle pattern time */
  2072. POSTING_READ(reg);
  2073. udelay(1000);
  2074. /* IVB wants error correction enabled */
  2075. if (IS_IVYBRIDGE(dev))
  2076. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2077. FDI_FE_ERRC_ENABLE);
  2078. }
  2079. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2080. {
  2081. struct drm_i915_private *dev_priv = dev->dev_private;
  2082. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2083. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2084. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2085. flags |= FDI_PHASE_SYNC_EN(pipe);
  2086. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2087. POSTING_READ(SOUTH_CHICKEN1);
  2088. }
  2089. static void ivb_modeset_global_resources(struct drm_device *dev)
  2090. {
  2091. struct drm_i915_private *dev_priv = dev->dev_private;
  2092. struct intel_crtc *pipe_B_crtc =
  2093. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2094. struct intel_crtc *pipe_C_crtc =
  2095. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2096. uint32_t temp;
  2097. /* When everything is off disable fdi C so that we could enable fdi B
  2098. * with all lanes. XXX: This misses the case where a pipe is not using
  2099. * any pch resources and so doesn't need any fdi lanes. */
  2100. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2101. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2102. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2103. temp = I915_READ(SOUTH_CHICKEN1);
  2104. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2105. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2106. I915_WRITE(SOUTH_CHICKEN1, temp);
  2107. }
  2108. }
  2109. /* The FDI link training functions for ILK/Ibexpeak. */
  2110. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2111. {
  2112. struct drm_device *dev = crtc->dev;
  2113. struct drm_i915_private *dev_priv = dev->dev_private;
  2114. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2115. int pipe = intel_crtc->pipe;
  2116. int plane = intel_crtc->plane;
  2117. u32 reg, temp, tries;
  2118. /* FDI needs bits from pipe & plane first */
  2119. assert_pipe_enabled(dev_priv, pipe);
  2120. assert_plane_enabled(dev_priv, plane);
  2121. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2122. for train result */
  2123. reg = FDI_RX_IMR(pipe);
  2124. temp = I915_READ(reg);
  2125. temp &= ~FDI_RX_SYMBOL_LOCK;
  2126. temp &= ~FDI_RX_BIT_LOCK;
  2127. I915_WRITE(reg, temp);
  2128. I915_READ(reg);
  2129. udelay(150);
  2130. /* enable CPU FDI TX and PCH FDI RX */
  2131. reg = FDI_TX_CTL(pipe);
  2132. temp = I915_READ(reg);
  2133. temp &= ~(7 << 19);
  2134. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2135. temp &= ~FDI_LINK_TRAIN_NONE;
  2136. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2137. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2138. reg = FDI_RX_CTL(pipe);
  2139. temp = I915_READ(reg);
  2140. temp &= ~FDI_LINK_TRAIN_NONE;
  2141. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2142. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2143. POSTING_READ(reg);
  2144. udelay(150);
  2145. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2146. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2147. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2148. FDI_RX_PHASE_SYNC_POINTER_EN);
  2149. reg = FDI_RX_IIR(pipe);
  2150. for (tries = 0; tries < 5; tries++) {
  2151. temp = I915_READ(reg);
  2152. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2153. if ((temp & FDI_RX_BIT_LOCK)) {
  2154. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2155. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2156. break;
  2157. }
  2158. }
  2159. if (tries == 5)
  2160. DRM_ERROR("FDI train 1 fail!\n");
  2161. /* Train 2 */
  2162. reg = FDI_TX_CTL(pipe);
  2163. temp = I915_READ(reg);
  2164. temp &= ~FDI_LINK_TRAIN_NONE;
  2165. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2166. I915_WRITE(reg, temp);
  2167. reg = FDI_RX_CTL(pipe);
  2168. temp = I915_READ(reg);
  2169. temp &= ~FDI_LINK_TRAIN_NONE;
  2170. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2171. I915_WRITE(reg, temp);
  2172. POSTING_READ(reg);
  2173. udelay(150);
  2174. reg = FDI_RX_IIR(pipe);
  2175. for (tries = 0; tries < 5; tries++) {
  2176. temp = I915_READ(reg);
  2177. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2178. if (temp & FDI_RX_SYMBOL_LOCK) {
  2179. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2180. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2181. break;
  2182. }
  2183. }
  2184. if (tries == 5)
  2185. DRM_ERROR("FDI train 2 fail!\n");
  2186. DRM_DEBUG_KMS("FDI train done\n");
  2187. }
  2188. static const int snb_b_fdi_train_param[] = {
  2189. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2190. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2191. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2192. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2193. };
  2194. /* The FDI link training functions for SNB/Cougarpoint. */
  2195. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2196. {
  2197. struct drm_device *dev = crtc->dev;
  2198. struct drm_i915_private *dev_priv = dev->dev_private;
  2199. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2200. int pipe = intel_crtc->pipe;
  2201. u32 reg, temp, i, retry;
  2202. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2203. for train result */
  2204. reg = FDI_RX_IMR(pipe);
  2205. temp = I915_READ(reg);
  2206. temp &= ~FDI_RX_SYMBOL_LOCK;
  2207. temp &= ~FDI_RX_BIT_LOCK;
  2208. I915_WRITE(reg, temp);
  2209. POSTING_READ(reg);
  2210. udelay(150);
  2211. /* enable CPU FDI TX and PCH FDI RX */
  2212. reg = FDI_TX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. temp &= ~(7 << 19);
  2215. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2218. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2219. /* SNB-B */
  2220. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2221. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2222. I915_WRITE(FDI_RX_MISC(pipe),
  2223. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2224. reg = FDI_RX_CTL(pipe);
  2225. temp = I915_READ(reg);
  2226. if (HAS_PCH_CPT(dev)) {
  2227. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2228. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2229. } else {
  2230. temp &= ~FDI_LINK_TRAIN_NONE;
  2231. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2232. }
  2233. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2234. POSTING_READ(reg);
  2235. udelay(150);
  2236. cpt_phase_pointer_enable(dev, pipe);
  2237. for (i = 0; i < 4; i++) {
  2238. reg = FDI_TX_CTL(pipe);
  2239. temp = I915_READ(reg);
  2240. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2241. temp |= snb_b_fdi_train_param[i];
  2242. I915_WRITE(reg, temp);
  2243. POSTING_READ(reg);
  2244. udelay(500);
  2245. for (retry = 0; retry < 5; retry++) {
  2246. reg = FDI_RX_IIR(pipe);
  2247. temp = I915_READ(reg);
  2248. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2249. if (temp & FDI_RX_BIT_LOCK) {
  2250. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2251. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2252. break;
  2253. }
  2254. udelay(50);
  2255. }
  2256. if (retry < 5)
  2257. break;
  2258. }
  2259. if (i == 4)
  2260. DRM_ERROR("FDI train 1 fail!\n");
  2261. /* Train 2 */
  2262. reg = FDI_TX_CTL(pipe);
  2263. temp = I915_READ(reg);
  2264. temp &= ~FDI_LINK_TRAIN_NONE;
  2265. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2266. if (IS_GEN6(dev)) {
  2267. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2268. /* SNB-B */
  2269. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2270. }
  2271. I915_WRITE(reg, temp);
  2272. reg = FDI_RX_CTL(pipe);
  2273. temp = I915_READ(reg);
  2274. if (HAS_PCH_CPT(dev)) {
  2275. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2276. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2277. } else {
  2278. temp &= ~FDI_LINK_TRAIN_NONE;
  2279. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2280. }
  2281. I915_WRITE(reg, temp);
  2282. POSTING_READ(reg);
  2283. udelay(150);
  2284. for (i = 0; i < 4; i++) {
  2285. reg = FDI_TX_CTL(pipe);
  2286. temp = I915_READ(reg);
  2287. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2288. temp |= snb_b_fdi_train_param[i];
  2289. I915_WRITE(reg, temp);
  2290. POSTING_READ(reg);
  2291. udelay(500);
  2292. for (retry = 0; retry < 5; retry++) {
  2293. reg = FDI_RX_IIR(pipe);
  2294. temp = I915_READ(reg);
  2295. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2296. if (temp & FDI_RX_SYMBOL_LOCK) {
  2297. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2298. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2299. break;
  2300. }
  2301. udelay(50);
  2302. }
  2303. if (retry < 5)
  2304. break;
  2305. }
  2306. if (i == 4)
  2307. DRM_ERROR("FDI train 2 fail!\n");
  2308. DRM_DEBUG_KMS("FDI train done.\n");
  2309. }
  2310. /* Manual link training for Ivy Bridge A0 parts */
  2311. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2312. {
  2313. struct drm_device *dev = crtc->dev;
  2314. struct drm_i915_private *dev_priv = dev->dev_private;
  2315. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2316. int pipe = intel_crtc->pipe;
  2317. u32 reg, temp, i;
  2318. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2319. for train result */
  2320. reg = FDI_RX_IMR(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~FDI_RX_SYMBOL_LOCK;
  2323. temp &= ~FDI_RX_BIT_LOCK;
  2324. I915_WRITE(reg, temp);
  2325. POSTING_READ(reg);
  2326. udelay(150);
  2327. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2328. I915_READ(FDI_RX_IIR(pipe)));
  2329. /* enable CPU FDI TX and PCH FDI RX */
  2330. reg = FDI_TX_CTL(pipe);
  2331. temp = I915_READ(reg);
  2332. temp &= ~(7 << 19);
  2333. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2334. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2335. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2336. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2337. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2338. temp |= FDI_COMPOSITE_SYNC;
  2339. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2340. I915_WRITE(FDI_RX_MISC(pipe),
  2341. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2342. reg = FDI_RX_CTL(pipe);
  2343. temp = I915_READ(reg);
  2344. temp &= ~FDI_LINK_TRAIN_AUTO;
  2345. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2346. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2347. temp |= FDI_COMPOSITE_SYNC;
  2348. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2349. POSTING_READ(reg);
  2350. udelay(150);
  2351. cpt_phase_pointer_enable(dev, pipe);
  2352. for (i = 0; i < 4; i++) {
  2353. reg = FDI_TX_CTL(pipe);
  2354. temp = I915_READ(reg);
  2355. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2356. temp |= snb_b_fdi_train_param[i];
  2357. I915_WRITE(reg, temp);
  2358. POSTING_READ(reg);
  2359. udelay(500);
  2360. reg = FDI_RX_IIR(pipe);
  2361. temp = I915_READ(reg);
  2362. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2363. if (temp & FDI_RX_BIT_LOCK ||
  2364. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2365. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2366. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2367. break;
  2368. }
  2369. }
  2370. if (i == 4)
  2371. DRM_ERROR("FDI train 1 fail!\n");
  2372. /* Train 2 */
  2373. reg = FDI_TX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2376. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2377. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2378. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2379. I915_WRITE(reg, temp);
  2380. reg = FDI_RX_CTL(pipe);
  2381. temp = I915_READ(reg);
  2382. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2383. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2384. I915_WRITE(reg, temp);
  2385. POSTING_READ(reg);
  2386. udelay(150);
  2387. for (i = 0; i < 4; i++) {
  2388. reg = FDI_TX_CTL(pipe);
  2389. temp = I915_READ(reg);
  2390. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2391. temp |= snb_b_fdi_train_param[i];
  2392. I915_WRITE(reg, temp);
  2393. POSTING_READ(reg);
  2394. udelay(500);
  2395. reg = FDI_RX_IIR(pipe);
  2396. temp = I915_READ(reg);
  2397. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2398. if (temp & FDI_RX_SYMBOL_LOCK) {
  2399. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2400. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2401. break;
  2402. }
  2403. }
  2404. if (i == 4)
  2405. DRM_ERROR("FDI train 2 fail!\n");
  2406. DRM_DEBUG_KMS("FDI train done.\n");
  2407. }
  2408. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2409. {
  2410. struct drm_device *dev = intel_crtc->base.dev;
  2411. struct drm_i915_private *dev_priv = dev->dev_private;
  2412. int pipe = intel_crtc->pipe;
  2413. u32 reg, temp;
  2414. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2415. reg = FDI_RX_CTL(pipe);
  2416. temp = I915_READ(reg);
  2417. temp &= ~((0x7 << 19) | (0x7 << 16));
  2418. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2419. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2420. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2421. POSTING_READ(reg);
  2422. udelay(200);
  2423. /* Switch from Rawclk to PCDclk */
  2424. temp = I915_READ(reg);
  2425. I915_WRITE(reg, temp | FDI_PCDCLK);
  2426. POSTING_READ(reg);
  2427. udelay(200);
  2428. /* On Haswell, the PLL configuration for ports and pipes is handled
  2429. * separately, as part of DDI setup */
  2430. if (!IS_HASWELL(dev)) {
  2431. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2432. reg = FDI_TX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2435. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2436. POSTING_READ(reg);
  2437. udelay(100);
  2438. }
  2439. }
  2440. }
  2441. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2442. {
  2443. struct drm_device *dev = intel_crtc->base.dev;
  2444. struct drm_i915_private *dev_priv = dev->dev_private;
  2445. int pipe = intel_crtc->pipe;
  2446. u32 reg, temp;
  2447. /* Switch from PCDclk to Rawclk */
  2448. reg = FDI_RX_CTL(pipe);
  2449. temp = I915_READ(reg);
  2450. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2451. /* Disable CPU FDI TX PLL */
  2452. reg = FDI_TX_CTL(pipe);
  2453. temp = I915_READ(reg);
  2454. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2455. POSTING_READ(reg);
  2456. udelay(100);
  2457. reg = FDI_RX_CTL(pipe);
  2458. temp = I915_READ(reg);
  2459. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2460. /* Wait for the clocks to turn off. */
  2461. POSTING_READ(reg);
  2462. udelay(100);
  2463. }
  2464. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2465. {
  2466. struct drm_i915_private *dev_priv = dev->dev_private;
  2467. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2468. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2469. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2470. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2471. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2472. POSTING_READ(SOUTH_CHICKEN1);
  2473. }
  2474. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2475. {
  2476. struct drm_device *dev = crtc->dev;
  2477. struct drm_i915_private *dev_priv = dev->dev_private;
  2478. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2479. int pipe = intel_crtc->pipe;
  2480. u32 reg, temp;
  2481. /* disable CPU FDI tx and PCH FDI rx */
  2482. reg = FDI_TX_CTL(pipe);
  2483. temp = I915_READ(reg);
  2484. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2485. POSTING_READ(reg);
  2486. reg = FDI_RX_CTL(pipe);
  2487. temp = I915_READ(reg);
  2488. temp &= ~(0x7 << 16);
  2489. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2490. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2491. POSTING_READ(reg);
  2492. udelay(100);
  2493. /* Ironlake workaround, disable clock pointer after downing FDI */
  2494. if (HAS_PCH_IBX(dev)) {
  2495. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2496. } else if (HAS_PCH_CPT(dev)) {
  2497. cpt_phase_pointer_disable(dev, pipe);
  2498. }
  2499. /* still set train pattern 1 */
  2500. reg = FDI_TX_CTL(pipe);
  2501. temp = I915_READ(reg);
  2502. temp &= ~FDI_LINK_TRAIN_NONE;
  2503. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2504. I915_WRITE(reg, temp);
  2505. reg = FDI_RX_CTL(pipe);
  2506. temp = I915_READ(reg);
  2507. if (HAS_PCH_CPT(dev)) {
  2508. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2509. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2510. } else {
  2511. temp &= ~FDI_LINK_TRAIN_NONE;
  2512. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2513. }
  2514. /* BPC in FDI rx is consistent with that in PIPECONF */
  2515. temp &= ~(0x07 << 16);
  2516. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2517. I915_WRITE(reg, temp);
  2518. POSTING_READ(reg);
  2519. udelay(100);
  2520. }
  2521. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2522. {
  2523. struct drm_device *dev = crtc->dev;
  2524. struct drm_i915_private *dev_priv = dev->dev_private;
  2525. unsigned long flags;
  2526. bool pending;
  2527. if (atomic_read(&dev_priv->mm.wedged))
  2528. return false;
  2529. spin_lock_irqsave(&dev->event_lock, flags);
  2530. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2531. spin_unlock_irqrestore(&dev->event_lock, flags);
  2532. return pending;
  2533. }
  2534. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2535. {
  2536. struct drm_device *dev = crtc->dev;
  2537. struct drm_i915_private *dev_priv = dev->dev_private;
  2538. if (crtc->fb == NULL)
  2539. return;
  2540. wait_event(dev_priv->pending_flip_queue,
  2541. !intel_crtc_has_pending_flip(crtc));
  2542. mutex_lock(&dev->struct_mutex);
  2543. intel_finish_fb(crtc->fb);
  2544. mutex_unlock(&dev->struct_mutex);
  2545. }
  2546. static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
  2547. {
  2548. struct drm_device *dev = crtc->dev;
  2549. struct intel_encoder *intel_encoder;
  2550. /*
  2551. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2552. * must be driven by its own crtc; no sharing is possible.
  2553. */
  2554. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2555. switch (intel_encoder->type) {
  2556. case INTEL_OUTPUT_EDP:
  2557. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2558. return false;
  2559. continue;
  2560. }
  2561. }
  2562. return true;
  2563. }
  2564. static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
  2565. {
  2566. return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
  2567. }
  2568. /* Program iCLKIP clock to the desired frequency */
  2569. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2570. {
  2571. struct drm_device *dev = crtc->dev;
  2572. struct drm_i915_private *dev_priv = dev->dev_private;
  2573. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2574. u32 temp;
  2575. /* It is necessary to ungate the pixclk gate prior to programming
  2576. * the divisors, and gate it back when it is done.
  2577. */
  2578. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2579. /* Disable SSCCTL */
  2580. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2581. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2582. SBI_SSCCTL_DISABLE);
  2583. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2584. if (crtc->mode.clock == 20000) {
  2585. auxdiv = 1;
  2586. divsel = 0x41;
  2587. phaseinc = 0x20;
  2588. } else {
  2589. /* The iCLK virtual clock root frequency is in MHz,
  2590. * but the crtc->mode.clock in in KHz. To get the divisors,
  2591. * it is necessary to divide one by another, so we
  2592. * convert the virtual clock precision to KHz here for higher
  2593. * precision.
  2594. */
  2595. u32 iclk_virtual_root_freq = 172800 * 1000;
  2596. u32 iclk_pi_range = 64;
  2597. u32 desired_divisor, msb_divisor_value, pi_value;
  2598. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2599. msb_divisor_value = desired_divisor / iclk_pi_range;
  2600. pi_value = desired_divisor % iclk_pi_range;
  2601. auxdiv = 0;
  2602. divsel = msb_divisor_value - 2;
  2603. phaseinc = pi_value;
  2604. }
  2605. /* This should not happen with any sane values */
  2606. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2607. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2608. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2609. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2610. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2611. crtc->mode.clock,
  2612. auxdiv,
  2613. divsel,
  2614. phasedir,
  2615. phaseinc);
  2616. /* Program SSCDIVINTPHASE6 */
  2617. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2618. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2619. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2620. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2621. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2622. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2623. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2624. intel_sbi_write(dev_priv,
  2625. SBI_SSCDIVINTPHASE6,
  2626. temp);
  2627. /* Program SSCAUXDIV */
  2628. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2629. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2630. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2631. intel_sbi_write(dev_priv,
  2632. SBI_SSCAUXDIV6,
  2633. temp);
  2634. /* Enable modulator and associated divider */
  2635. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2636. temp &= ~SBI_SSCCTL_DISABLE;
  2637. intel_sbi_write(dev_priv,
  2638. SBI_SSCCTL6,
  2639. temp);
  2640. /* Wait for initialization time */
  2641. udelay(24);
  2642. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2643. }
  2644. /*
  2645. * Enable PCH resources required for PCH ports:
  2646. * - PCH PLLs
  2647. * - FDI training & RX/TX
  2648. * - update transcoder timings
  2649. * - DP transcoding bits
  2650. * - transcoder
  2651. */
  2652. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2653. {
  2654. struct drm_device *dev = crtc->dev;
  2655. struct drm_i915_private *dev_priv = dev->dev_private;
  2656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2657. int pipe = intel_crtc->pipe;
  2658. u32 reg, temp;
  2659. assert_transcoder_disabled(dev_priv, pipe);
  2660. /* Write the TU size bits before fdi link training, so that error
  2661. * detection works. */
  2662. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2663. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2664. /* For PCH output, training FDI link */
  2665. dev_priv->display.fdi_link_train(crtc);
  2666. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2667. * transcoder, and we actually should do this to not upset any PCH
  2668. * transcoder that already use the clock when we share it.
  2669. *
  2670. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2671. * unconditionally resets the pll - we need that to have the right LVDS
  2672. * enable sequence. */
  2673. ironlake_enable_pch_pll(intel_crtc);
  2674. if (HAS_PCH_CPT(dev)) {
  2675. u32 sel;
  2676. temp = I915_READ(PCH_DPLL_SEL);
  2677. switch (pipe) {
  2678. default:
  2679. case 0:
  2680. temp |= TRANSA_DPLL_ENABLE;
  2681. sel = TRANSA_DPLLB_SEL;
  2682. break;
  2683. case 1:
  2684. temp |= TRANSB_DPLL_ENABLE;
  2685. sel = TRANSB_DPLLB_SEL;
  2686. break;
  2687. case 2:
  2688. temp |= TRANSC_DPLL_ENABLE;
  2689. sel = TRANSC_DPLLB_SEL;
  2690. break;
  2691. }
  2692. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2693. temp |= sel;
  2694. else
  2695. temp &= ~sel;
  2696. I915_WRITE(PCH_DPLL_SEL, temp);
  2697. }
  2698. /* set transcoder timing, panel must allow it */
  2699. assert_panel_unlocked(dev_priv, pipe);
  2700. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2701. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2702. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2703. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2704. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2705. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2706. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2707. intel_fdi_normal_train(crtc);
  2708. /* For PCH DP, enable TRANS_DP_CTL */
  2709. if (HAS_PCH_CPT(dev) &&
  2710. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2711. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2712. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2713. reg = TRANS_DP_CTL(pipe);
  2714. temp = I915_READ(reg);
  2715. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2716. TRANS_DP_SYNC_MASK |
  2717. TRANS_DP_BPC_MASK);
  2718. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2719. TRANS_DP_ENH_FRAMING);
  2720. temp |= bpc << 9; /* same format but at 11:9 */
  2721. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2722. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2723. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2724. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2725. switch (intel_trans_dp_port_sel(crtc)) {
  2726. case PCH_DP_B:
  2727. temp |= TRANS_DP_PORT_SEL_B;
  2728. break;
  2729. case PCH_DP_C:
  2730. temp |= TRANS_DP_PORT_SEL_C;
  2731. break;
  2732. case PCH_DP_D:
  2733. temp |= TRANS_DP_PORT_SEL_D;
  2734. break;
  2735. default:
  2736. BUG();
  2737. }
  2738. I915_WRITE(reg, temp);
  2739. }
  2740. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2741. }
  2742. static void lpt_pch_enable(struct drm_crtc *crtc)
  2743. {
  2744. struct drm_device *dev = crtc->dev;
  2745. struct drm_i915_private *dev_priv = dev->dev_private;
  2746. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2747. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  2748. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2749. lpt_program_iclkip(crtc);
  2750. /* Set transcoder timing. */
  2751. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2752. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2753. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2754. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2755. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2756. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2757. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2758. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2759. }
  2760. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2761. {
  2762. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2763. if (pll == NULL)
  2764. return;
  2765. if (pll->refcount == 0) {
  2766. WARN(1, "bad PCH PLL refcount\n");
  2767. return;
  2768. }
  2769. --pll->refcount;
  2770. intel_crtc->pch_pll = NULL;
  2771. }
  2772. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2773. {
  2774. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2775. struct intel_pch_pll *pll;
  2776. int i;
  2777. pll = intel_crtc->pch_pll;
  2778. if (pll) {
  2779. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2780. intel_crtc->base.base.id, pll->pll_reg);
  2781. goto prepare;
  2782. }
  2783. if (HAS_PCH_IBX(dev_priv->dev)) {
  2784. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2785. i = intel_crtc->pipe;
  2786. pll = &dev_priv->pch_plls[i];
  2787. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2788. intel_crtc->base.base.id, pll->pll_reg);
  2789. goto found;
  2790. }
  2791. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2792. pll = &dev_priv->pch_plls[i];
  2793. /* Only want to check enabled timings first */
  2794. if (pll->refcount == 0)
  2795. continue;
  2796. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2797. fp == I915_READ(pll->fp0_reg)) {
  2798. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2799. intel_crtc->base.base.id,
  2800. pll->pll_reg, pll->refcount, pll->active);
  2801. goto found;
  2802. }
  2803. }
  2804. /* Ok no matching timings, maybe there's a free one? */
  2805. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2806. pll = &dev_priv->pch_plls[i];
  2807. if (pll->refcount == 0) {
  2808. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2809. intel_crtc->base.base.id, pll->pll_reg);
  2810. goto found;
  2811. }
  2812. }
  2813. return NULL;
  2814. found:
  2815. intel_crtc->pch_pll = pll;
  2816. pll->refcount++;
  2817. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2818. prepare: /* separate function? */
  2819. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2820. /* Wait for the clocks to stabilize before rewriting the regs */
  2821. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2822. POSTING_READ(pll->pll_reg);
  2823. udelay(150);
  2824. I915_WRITE(pll->fp0_reg, fp);
  2825. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2826. pll->on = false;
  2827. return pll;
  2828. }
  2829. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2830. {
  2831. struct drm_i915_private *dev_priv = dev->dev_private;
  2832. int dslreg = PIPEDSL(pipe);
  2833. u32 temp;
  2834. temp = I915_READ(dslreg);
  2835. udelay(500);
  2836. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2837. if (wait_for(I915_READ(dslreg) != temp, 5))
  2838. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2839. }
  2840. }
  2841. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2842. {
  2843. struct drm_device *dev = crtc->dev;
  2844. struct drm_i915_private *dev_priv = dev->dev_private;
  2845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2846. struct intel_encoder *encoder;
  2847. int pipe = intel_crtc->pipe;
  2848. int plane = intel_crtc->plane;
  2849. u32 temp;
  2850. bool is_pch_port;
  2851. WARN_ON(!crtc->enabled);
  2852. if (intel_crtc->active)
  2853. return;
  2854. intel_crtc->active = true;
  2855. intel_update_watermarks(dev);
  2856. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2857. temp = I915_READ(PCH_LVDS);
  2858. if ((temp & LVDS_PORT_EN) == 0)
  2859. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2860. }
  2861. is_pch_port = ironlake_crtc_driving_pch(crtc);
  2862. if (is_pch_port) {
  2863. /* Note: FDI PLL enabling _must_ be done before we enable the
  2864. * cpu pipes, hence this is separate from all the other fdi/pch
  2865. * enabling. */
  2866. ironlake_fdi_pll_enable(intel_crtc);
  2867. } else {
  2868. assert_fdi_tx_disabled(dev_priv, pipe);
  2869. assert_fdi_rx_disabled(dev_priv, pipe);
  2870. }
  2871. for_each_encoder_on_crtc(dev, crtc, encoder)
  2872. if (encoder->pre_enable)
  2873. encoder->pre_enable(encoder);
  2874. /* Enable panel fitting for LVDS */
  2875. if (dev_priv->pch_pf_size &&
  2876. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2877. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2878. /* Force use of hard-coded filter coefficients
  2879. * as some pre-programmed values are broken,
  2880. * e.g. x201.
  2881. */
  2882. if (IS_IVYBRIDGE(dev))
  2883. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2884. PF_PIPE_SEL_IVB(pipe));
  2885. else
  2886. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2887. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2888. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2889. }
  2890. /*
  2891. * On ILK+ LUT must be loaded before the pipe is running but with
  2892. * clocks enabled
  2893. */
  2894. intel_crtc_load_lut(crtc);
  2895. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2896. intel_enable_plane(dev_priv, plane, pipe);
  2897. if (is_pch_port)
  2898. ironlake_pch_enable(crtc);
  2899. mutex_lock(&dev->struct_mutex);
  2900. intel_update_fbc(dev);
  2901. mutex_unlock(&dev->struct_mutex);
  2902. intel_crtc_update_cursor(crtc, true);
  2903. for_each_encoder_on_crtc(dev, crtc, encoder)
  2904. encoder->enable(encoder);
  2905. if (HAS_PCH_CPT(dev))
  2906. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2907. /*
  2908. * There seems to be a race in PCH platform hw (at least on some
  2909. * outputs) where an enabled pipe still completes any pageflip right
  2910. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2911. * as the first vblank happend, everything works as expected. Hence just
  2912. * wait for one vblank before returning to avoid strange things
  2913. * happening.
  2914. */
  2915. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2916. }
  2917. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2918. {
  2919. struct drm_device *dev = crtc->dev;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2922. struct intel_encoder *encoder;
  2923. int pipe = intel_crtc->pipe;
  2924. int plane = intel_crtc->plane;
  2925. bool is_pch_port;
  2926. WARN_ON(!crtc->enabled);
  2927. if (intel_crtc->active)
  2928. return;
  2929. intel_crtc->active = true;
  2930. intel_update_watermarks(dev);
  2931. is_pch_port = haswell_crtc_driving_pch(crtc);
  2932. if (is_pch_port)
  2933. dev_priv->display.fdi_link_train(crtc);
  2934. for_each_encoder_on_crtc(dev, crtc, encoder)
  2935. if (encoder->pre_enable)
  2936. encoder->pre_enable(encoder);
  2937. intel_ddi_enable_pipe_clock(intel_crtc);
  2938. /* Enable panel fitting for eDP */
  2939. if (dev_priv->pch_pf_size &&
  2940. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2941. /* Force use of hard-coded filter coefficients
  2942. * as some pre-programmed values are broken,
  2943. * e.g. x201.
  2944. */
  2945. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2946. PF_PIPE_SEL_IVB(pipe));
  2947. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2948. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2949. }
  2950. /*
  2951. * On ILK+ LUT must be loaded before the pipe is running but with
  2952. * clocks enabled
  2953. */
  2954. intel_crtc_load_lut(crtc);
  2955. intel_ddi_set_pipe_settings(crtc);
  2956. intel_ddi_enable_pipe_func(crtc);
  2957. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2958. intel_enable_plane(dev_priv, plane, pipe);
  2959. if (is_pch_port)
  2960. lpt_pch_enable(crtc);
  2961. mutex_lock(&dev->struct_mutex);
  2962. intel_update_fbc(dev);
  2963. mutex_unlock(&dev->struct_mutex);
  2964. intel_crtc_update_cursor(crtc, true);
  2965. for_each_encoder_on_crtc(dev, crtc, encoder)
  2966. encoder->enable(encoder);
  2967. /*
  2968. * There seems to be a race in PCH platform hw (at least on some
  2969. * outputs) where an enabled pipe still completes any pageflip right
  2970. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2971. * as the first vblank happend, everything works as expected. Hence just
  2972. * wait for one vblank before returning to avoid strange things
  2973. * happening.
  2974. */
  2975. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2976. }
  2977. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2978. {
  2979. struct drm_device *dev = crtc->dev;
  2980. struct drm_i915_private *dev_priv = dev->dev_private;
  2981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2982. struct intel_encoder *encoder;
  2983. int pipe = intel_crtc->pipe;
  2984. int plane = intel_crtc->plane;
  2985. u32 reg, temp;
  2986. if (!intel_crtc->active)
  2987. return;
  2988. for_each_encoder_on_crtc(dev, crtc, encoder)
  2989. encoder->disable(encoder);
  2990. intel_crtc_wait_for_pending_flips(crtc);
  2991. drm_vblank_off(dev, pipe);
  2992. intel_crtc_update_cursor(crtc, false);
  2993. intel_disable_plane(dev_priv, plane, pipe);
  2994. if (dev_priv->cfb_plane == plane)
  2995. intel_disable_fbc(dev);
  2996. intel_disable_pipe(dev_priv, pipe);
  2997. /* Disable PF */
  2998. I915_WRITE(PF_CTL(pipe), 0);
  2999. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3000. for_each_encoder_on_crtc(dev, crtc, encoder)
  3001. if (encoder->post_disable)
  3002. encoder->post_disable(encoder);
  3003. ironlake_fdi_disable(crtc);
  3004. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3005. if (HAS_PCH_CPT(dev)) {
  3006. /* disable TRANS_DP_CTL */
  3007. reg = TRANS_DP_CTL(pipe);
  3008. temp = I915_READ(reg);
  3009. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3010. temp |= TRANS_DP_PORT_SEL_NONE;
  3011. I915_WRITE(reg, temp);
  3012. /* disable DPLL_SEL */
  3013. temp = I915_READ(PCH_DPLL_SEL);
  3014. switch (pipe) {
  3015. case 0:
  3016. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3017. break;
  3018. case 1:
  3019. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3020. break;
  3021. case 2:
  3022. /* C shares PLL A or B */
  3023. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3024. break;
  3025. default:
  3026. BUG(); /* wtf */
  3027. }
  3028. I915_WRITE(PCH_DPLL_SEL, temp);
  3029. }
  3030. /* disable PCH DPLL */
  3031. intel_disable_pch_pll(intel_crtc);
  3032. ironlake_fdi_pll_disable(intel_crtc);
  3033. intel_crtc->active = false;
  3034. intel_update_watermarks(dev);
  3035. mutex_lock(&dev->struct_mutex);
  3036. intel_update_fbc(dev);
  3037. mutex_unlock(&dev->struct_mutex);
  3038. }
  3039. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3040. {
  3041. struct drm_device *dev = crtc->dev;
  3042. struct drm_i915_private *dev_priv = dev->dev_private;
  3043. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3044. struct intel_encoder *encoder;
  3045. int pipe = intel_crtc->pipe;
  3046. int plane = intel_crtc->plane;
  3047. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3048. bool is_pch_port;
  3049. if (!intel_crtc->active)
  3050. return;
  3051. is_pch_port = haswell_crtc_driving_pch(crtc);
  3052. for_each_encoder_on_crtc(dev, crtc, encoder)
  3053. encoder->disable(encoder);
  3054. intel_crtc_wait_for_pending_flips(crtc);
  3055. drm_vblank_off(dev, pipe);
  3056. intel_crtc_update_cursor(crtc, false);
  3057. intel_disable_plane(dev_priv, plane, pipe);
  3058. if (dev_priv->cfb_plane == plane)
  3059. intel_disable_fbc(dev);
  3060. intel_disable_pipe(dev_priv, pipe);
  3061. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3062. /* Disable PF */
  3063. I915_WRITE(PF_CTL(pipe), 0);
  3064. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3065. intel_ddi_disable_pipe_clock(intel_crtc);
  3066. for_each_encoder_on_crtc(dev, crtc, encoder)
  3067. if (encoder->post_disable)
  3068. encoder->post_disable(encoder);
  3069. if (is_pch_port) {
  3070. lpt_disable_pch_transcoder(dev_priv);
  3071. intel_ddi_fdi_disable(crtc);
  3072. }
  3073. intel_crtc->active = false;
  3074. intel_update_watermarks(dev);
  3075. mutex_lock(&dev->struct_mutex);
  3076. intel_update_fbc(dev);
  3077. mutex_unlock(&dev->struct_mutex);
  3078. }
  3079. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3080. {
  3081. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3082. intel_put_pch_pll(intel_crtc);
  3083. }
  3084. static void haswell_crtc_off(struct drm_crtc *crtc)
  3085. {
  3086. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3087. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3088. * start using it. */
  3089. intel_crtc->cpu_transcoder = intel_crtc->pipe;
  3090. intel_ddi_put_crtc_pll(crtc);
  3091. }
  3092. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3093. {
  3094. if (!enable && intel_crtc->overlay) {
  3095. struct drm_device *dev = intel_crtc->base.dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. mutex_lock(&dev->struct_mutex);
  3098. dev_priv->mm.interruptible = false;
  3099. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3100. dev_priv->mm.interruptible = true;
  3101. mutex_unlock(&dev->struct_mutex);
  3102. }
  3103. /* Let userspace switch the overlay on again. In most cases userspace
  3104. * has to recompute where to put it anyway.
  3105. */
  3106. }
  3107. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3108. {
  3109. struct drm_device *dev = crtc->dev;
  3110. struct drm_i915_private *dev_priv = dev->dev_private;
  3111. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3112. struct intel_encoder *encoder;
  3113. int pipe = intel_crtc->pipe;
  3114. int plane = intel_crtc->plane;
  3115. WARN_ON(!crtc->enabled);
  3116. if (intel_crtc->active)
  3117. return;
  3118. intel_crtc->active = true;
  3119. intel_update_watermarks(dev);
  3120. intel_enable_pll(dev_priv, pipe);
  3121. intel_enable_pipe(dev_priv, pipe, false);
  3122. intel_enable_plane(dev_priv, plane, pipe);
  3123. intel_crtc_load_lut(crtc);
  3124. intel_update_fbc(dev);
  3125. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3126. intel_crtc_dpms_overlay(intel_crtc, true);
  3127. intel_crtc_update_cursor(crtc, true);
  3128. for_each_encoder_on_crtc(dev, crtc, encoder)
  3129. encoder->enable(encoder);
  3130. }
  3131. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3132. {
  3133. struct drm_device *dev = crtc->dev;
  3134. struct drm_i915_private *dev_priv = dev->dev_private;
  3135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3136. struct intel_encoder *encoder;
  3137. int pipe = intel_crtc->pipe;
  3138. int plane = intel_crtc->plane;
  3139. if (!intel_crtc->active)
  3140. return;
  3141. for_each_encoder_on_crtc(dev, crtc, encoder)
  3142. encoder->disable(encoder);
  3143. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3144. intel_crtc_wait_for_pending_flips(crtc);
  3145. drm_vblank_off(dev, pipe);
  3146. intel_crtc_dpms_overlay(intel_crtc, false);
  3147. intel_crtc_update_cursor(crtc, false);
  3148. if (dev_priv->cfb_plane == plane)
  3149. intel_disable_fbc(dev);
  3150. intel_disable_plane(dev_priv, plane, pipe);
  3151. intel_disable_pipe(dev_priv, pipe);
  3152. intel_disable_pll(dev_priv, pipe);
  3153. intel_crtc->active = false;
  3154. intel_update_fbc(dev);
  3155. intel_update_watermarks(dev);
  3156. }
  3157. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3158. {
  3159. }
  3160. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3161. bool enabled)
  3162. {
  3163. struct drm_device *dev = crtc->dev;
  3164. struct drm_i915_master_private *master_priv;
  3165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3166. int pipe = intel_crtc->pipe;
  3167. if (!dev->primary->master)
  3168. return;
  3169. master_priv = dev->primary->master->driver_priv;
  3170. if (!master_priv->sarea_priv)
  3171. return;
  3172. switch (pipe) {
  3173. case 0:
  3174. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3175. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3176. break;
  3177. case 1:
  3178. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3179. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3180. break;
  3181. default:
  3182. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3183. break;
  3184. }
  3185. }
  3186. /**
  3187. * Sets the power management mode of the pipe and plane.
  3188. */
  3189. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3190. {
  3191. struct drm_device *dev = crtc->dev;
  3192. struct drm_i915_private *dev_priv = dev->dev_private;
  3193. struct intel_encoder *intel_encoder;
  3194. bool enable = false;
  3195. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3196. enable |= intel_encoder->connectors_active;
  3197. if (enable)
  3198. dev_priv->display.crtc_enable(crtc);
  3199. else
  3200. dev_priv->display.crtc_disable(crtc);
  3201. intel_crtc_update_sarea(crtc, enable);
  3202. }
  3203. static void intel_crtc_noop(struct drm_crtc *crtc)
  3204. {
  3205. }
  3206. static void intel_crtc_disable(struct drm_crtc *crtc)
  3207. {
  3208. struct drm_device *dev = crtc->dev;
  3209. struct drm_connector *connector;
  3210. struct drm_i915_private *dev_priv = dev->dev_private;
  3211. /* crtc should still be enabled when we disable it. */
  3212. WARN_ON(!crtc->enabled);
  3213. dev_priv->display.crtc_disable(crtc);
  3214. intel_crtc_update_sarea(crtc, false);
  3215. dev_priv->display.off(crtc);
  3216. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3217. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3218. if (crtc->fb) {
  3219. mutex_lock(&dev->struct_mutex);
  3220. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3221. mutex_unlock(&dev->struct_mutex);
  3222. crtc->fb = NULL;
  3223. }
  3224. /* Update computed state. */
  3225. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3226. if (!connector->encoder || !connector->encoder->crtc)
  3227. continue;
  3228. if (connector->encoder->crtc != crtc)
  3229. continue;
  3230. connector->dpms = DRM_MODE_DPMS_OFF;
  3231. to_intel_encoder(connector->encoder)->connectors_active = false;
  3232. }
  3233. }
  3234. void intel_modeset_disable(struct drm_device *dev)
  3235. {
  3236. struct drm_crtc *crtc;
  3237. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3238. if (crtc->enabled)
  3239. intel_crtc_disable(crtc);
  3240. }
  3241. }
  3242. void intel_encoder_noop(struct drm_encoder *encoder)
  3243. {
  3244. }
  3245. void intel_encoder_destroy(struct drm_encoder *encoder)
  3246. {
  3247. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3248. drm_encoder_cleanup(encoder);
  3249. kfree(intel_encoder);
  3250. }
  3251. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3252. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3253. * state of the entire output pipe. */
  3254. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3255. {
  3256. if (mode == DRM_MODE_DPMS_ON) {
  3257. encoder->connectors_active = true;
  3258. intel_crtc_update_dpms(encoder->base.crtc);
  3259. } else {
  3260. encoder->connectors_active = false;
  3261. intel_crtc_update_dpms(encoder->base.crtc);
  3262. }
  3263. }
  3264. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3265. * internal consistency). */
  3266. static void intel_connector_check_state(struct intel_connector *connector)
  3267. {
  3268. if (connector->get_hw_state(connector)) {
  3269. struct intel_encoder *encoder = connector->encoder;
  3270. struct drm_crtc *crtc;
  3271. bool encoder_enabled;
  3272. enum pipe pipe;
  3273. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3274. connector->base.base.id,
  3275. drm_get_connector_name(&connector->base));
  3276. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3277. "wrong connector dpms state\n");
  3278. WARN(connector->base.encoder != &encoder->base,
  3279. "active connector not linked to encoder\n");
  3280. WARN(!encoder->connectors_active,
  3281. "encoder->connectors_active not set\n");
  3282. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3283. WARN(!encoder_enabled, "encoder not enabled\n");
  3284. if (WARN_ON(!encoder->base.crtc))
  3285. return;
  3286. crtc = encoder->base.crtc;
  3287. WARN(!crtc->enabled, "crtc not enabled\n");
  3288. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3289. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3290. "encoder active on the wrong pipe\n");
  3291. }
  3292. }
  3293. /* Even simpler default implementation, if there's really no special case to
  3294. * consider. */
  3295. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3296. {
  3297. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3298. /* All the simple cases only support two dpms states. */
  3299. if (mode != DRM_MODE_DPMS_ON)
  3300. mode = DRM_MODE_DPMS_OFF;
  3301. if (mode == connector->dpms)
  3302. return;
  3303. connector->dpms = mode;
  3304. /* Only need to change hw state when actually enabled */
  3305. if (encoder->base.crtc)
  3306. intel_encoder_dpms(encoder, mode);
  3307. else
  3308. WARN_ON(encoder->connectors_active != false);
  3309. intel_modeset_check_state(connector->dev);
  3310. }
  3311. /* Simple connector->get_hw_state implementation for encoders that support only
  3312. * one connector and no cloning and hence the encoder state determines the state
  3313. * of the connector. */
  3314. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3315. {
  3316. enum pipe pipe = 0;
  3317. struct intel_encoder *encoder = connector->encoder;
  3318. return encoder->get_hw_state(encoder, &pipe);
  3319. }
  3320. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3321. const struct drm_display_mode *mode,
  3322. struct drm_display_mode *adjusted_mode)
  3323. {
  3324. struct drm_device *dev = crtc->dev;
  3325. if (HAS_PCH_SPLIT(dev)) {
  3326. /* FDI link clock is fixed at 2.7G */
  3327. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3328. return false;
  3329. }
  3330. /* All interlaced capable intel hw wants timings in frames. Note though
  3331. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3332. * timings, so we need to be careful not to clobber these.*/
  3333. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3334. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3335. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3336. * with a hsync front porch of 0.
  3337. */
  3338. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3339. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3340. return false;
  3341. return true;
  3342. }
  3343. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3344. {
  3345. return 400000; /* FIXME */
  3346. }
  3347. static int i945_get_display_clock_speed(struct drm_device *dev)
  3348. {
  3349. return 400000;
  3350. }
  3351. static int i915_get_display_clock_speed(struct drm_device *dev)
  3352. {
  3353. return 333000;
  3354. }
  3355. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3356. {
  3357. return 200000;
  3358. }
  3359. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3360. {
  3361. u16 gcfgc = 0;
  3362. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3363. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3364. return 133000;
  3365. else {
  3366. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3367. case GC_DISPLAY_CLOCK_333_MHZ:
  3368. return 333000;
  3369. default:
  3370. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3371. return 190000;
  3372. }
  3373. }
  3374. }
  3375. static int i865_get_display_clock_speed(struct drm_device *dev)
  3376. {
  3377. return 266000;
  3378. }
  3379. static int i855_get_display_clock_speed(struct drm_device *dev)
  3380. {
  3381. u16 hpllcc = 0;
  3382. /* Assume that the hardware is in the high speed state. This
  3383. * should be the default.
  3384. */
  3385. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3386. case GC_CLOCK_133_200:
  3387. case GC_CLOCK_100_200:
  3388. return 200000;
  3389. case GC_CLOCK_166_250:
  3390. return 250000;
  3391. case GC_CLOCK_100_133:
  3392. return 133000;
  3393. }
  3394. /* Shouldn't happen */
  3395. return 0;
  3396. }
  3397. static int i830_get_display_clock_speed(struct drm_device *dev)
  3398. {
  3399. return 133000;
  3400. }
  3401. struct fdi_m_n {
  3402. u32 tu;
  3403. u32 gmch_m;
  3404. u32 gmch_n;
  3405. u32 link_m;
  3406. u32 link_n;
  3407. };
  3408. static void
  3409. fdi_reduce_ratio(u32 *num, u32 *den)
  3410. {
  3411. while (*num > 0xffffff || *den > 0xffffff) {
  3412. *num >>= 1;
  3413. *den >>= 1;
  3414. }
  3415. }
  3416. static void
  3417. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3418. int link_clock, struct fdi_m_n *m_n)
  3419. {
  3420. m_n->tu = 64; /* default size */
  3421. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3422. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3423. m_n->gmch_n = link_clock * nlanes * 8;
  3424. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3425. m_n->link_m = pixel_clock;
  3426. m_n->link_n = link_clock;
  3427. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3428. }
  3429. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3430. {
  3431. if (i915_panel_use_ssc >= 0)
  3432. return i915_panel_use_ssc != 0;
  3433. return dev_priv->lvds_use_ssc
  3434. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3435. }
  3436. /**
  3437. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3438. * @crtc: CRTC structure
  3439. * @mode: requested mode
  3440. *
  3441. * A pipe may be connected to one or more outputs. Based on the depth of the
  3442. * attached framebuffer, choose a good color depth to use on the pipe.
  3443. *
  3444. * If possible, match the pipe depth to the fb depth. In some cases, this
  3445. * isn't ideal, because the connected output supports a lesser or restricted
  3446. * set of depths. Resolve that here:
  3447. * LVDS typically supports only 6bpc, so clamp down in that case
  3448. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3449. * Displays may support a restricted set as well, check EDID and clamp as
  3450. * appropriate.
  3451. * DP may want to dither down to 6bpc to fit larger modes
  3452. *
  3453. * RETURNS:
  3454. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3455. * true if they don't match).
  3456. */
  3457. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3458. struct drm_framebuffer *fb,
  3459. unsigned int *pipe_bpp,
  3460. struct drm_display_mode *mode)
  3461. {
  3462. struct drm_device *dev = crtc->dev;
  3463. struct drm_i915_private *dev_priv = dev->dev_private;
  3464. struct drm_connector *connector;
  3465. struct intel_encoder *intel_encoder;
  3466. unsigned int display_bpc = UINT_MAX, bpc;
  3467. /* Walk the encoders & connectors on this crtc, get min bpc */
  3468. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3469. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3470. unsigned int lvds_bpc;
  3471. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3472. LVDS_A3_POWER_UP)
  3473. lvds_bpc = 8;
  3474. else
  3475. lvds_bpc = 6;
  3476. if (lvds_bpc < display_bpc) {
  3477. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3478. display_bpc = lvds_bpc;
  3479. }
  3480. continue;
  3481. }
  3482. /* Not one of the known troublemakers, check the EDID */
  3483. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3484. head) {
  3485. if (connector->encoder != &intel_encoder->base)
  3486. continue;
  3487. /* Don't use an invalid EDID bpc value */
  3488. if (connector->display_info.bpc &&
  3489. connector->display_info.bpc < display_bpc) {
  3490. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3491. display_bpc = connector->display_info.bpc;
  3492. }
  3493. }
  3494. /*
  3495. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3496. * through, clamp it down. (Note: >12bpc will be caught below.)
  3497. */
  3498. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3499. if (display_bpc > 8 && display_bpc < 12) {
  3500. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3501. display_bpc = 12;
  3502. } else {
  3503. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3504. display_bpc = 8;
  3505. }
  3506. }
  3507. }
  3508. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3509. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3510. display_bpc = 6;
  3511. }
  3512. /*
  3513. * We could just drive the pipe at the highest bpc all the time and
  3514. * enable dithering as needed, but that costs bandwidth. So choose
  3515. * the minimum value that expresses the full color range of the fb but
  3516. * also stays within the max display bpc discovered above.
  3517. */
  3518. switch (fb->depth) {
  3519. case 8:
  3520. bpc = 8; /* since we go through a colormap */
  3521. break;
  3522. case 15:
  3523. case 16:
  3524. bpc = 6; /* min is 18bpp */
  3525. break;
  3526. case 24:
  3527. bpc = 8;
  3528. break;
  3529. case 30:
  3530. bpc = 10;
  3531. break;
  3532. case 48:
  3533. bpc = 12;
  3534. break;
  3535. default:
  3536. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3537. bpc = min((unsigned int)8, display_bpc);
  3538. break;
  3539. }
  3540. display_bpc = min(display_bpc, bpc);
  3541. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3542. bpc, display_bpc);
  3543. *pipe_bpp = display_bpc * 3;
  3544. return display_bpc != bpc;
  3545. }
  3546. static int vlv_get_refclk(struct drm_crtc *crtc)
  3547. {
  3548. struct drm_device *dev = crtc->dev;
  3549. struct drm_i915_private *dev_priv = dev->dev_private;
  3550. int refclk = 27000; /* for DP & HDMI */
  3551. return 100000; /* only one validated so far */
  3552. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3553. refclk = 96000;
  3554. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3555. if (intel_panel_use_ssc(dev_priv))
  3556. refclk = 100000;
  3557. else
  3558. refclk = 96000;
  3559. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3560. refclk = 100000;
  3561. }
  3562. return refclk;
  3563. }
  3564. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3565. {
  3566. struct drm_device *dev = crtc->dev;
  3567. struct drm_i915_private *dev_priv = dev->dev_private;
  3568. int refclk;
  3569. if (IS_VALLEYVIEW(dev)) {
  3570. refclk = vlv_get_refclk(crtc);
  3571. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3572. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3573. refclk = dev_priv->lvds_ssc_freq * 1000;
  3574. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3575. refclk / 1000);
  3576. } else if (!IS_GEN2(dev)) {
  3577. refclk = 96000;
  3578. } else {
  3579. refclk = 48000;
  3580. }
  3581. return refclk;
  3582. }
  3583. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3584. intel_clock_t *clock)
  3585. {
  3586. /* SDVO TV has fixed PLL values depend on its clock range,
  3587. this mirrors vbios setting. */
  3588. if (adjusted_mode->clock >= 100000
  3589. && adjusted_mode->clock < 140500) {
  3590. clock->p1 = 2;
  3591. clock->p2 = 10;
  3592. clock->n = 3;
  3593. clock->m1 = 16;
  3594. clock->m2 = 8;
  3595. } else if (adjusted_mode->clock >= 140500
  3596. && adjusted_mode->clock <= 200000) {
  3597. clock->p1 = 1;
  3598. clock->p2 = 10;
  3599. clock->n = 6;
  3600. clock->m1 = 12;
  3601. clock->m2 = 8;
  3602. }
  3603. }
  3604. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3605. intel_clock_t *clock,
  3606. intel_clock_t *reduced_clock)
  3607. {
  3608. struct drm_device *dev = crtc->dev;
  3609. struct drm_i915_private *dev_priv = dev->dev_private;
  3610. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3611. int pipe = intel_crtc->pipe;
  3612. u32 fp, fp2 = 0;
  3613. if (IS_PINEVIEW(dev)) {
  3614. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3615. if (reduced_clock)
  3616. fp2 = (1 << reduced_clock->n) << 16 |
  3617. reduced_clock->m1 << 8 | reduced_clock->m2;
  3618. } else {
  3619. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3620. if (reduced_clock)
  3621. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3622. reduced_clock->m2;
  3623. }
  3624. I915_WRITE(FP0(pipe), fp);
  3625. intel_crtc->lowfreq_avail = false;
  3626. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3627. reduced_clock && i915_powersave) {
  3628. I915_WRITE(FP1(pipe), fp2);
  3629. intel_crtc->lowfreq_avail = true;
  3630. } else {
  3631. I915_WRITE(FP1(pipe), fp);
  3632. }
  3633. }
  3634. static void vlv_update_pll(struct drm_crtc *crtc,
  3635. struct drm_display_mode *mode,
  3636. struct drm_display_mode *adjusted_mode,
  3637. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3638. int num_connectors)
  3639. {
  3640. struct drm_device *dev = crtc->dev;
  3641. struct drm_i915_private *dev_priv = dev->dev_private;
  3642. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3643. int pipe = intel_crtc->pipe;
  3644. u32 dpll, mdiv, pdiv;
  3645. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3646. bool is_sdvo;
  3647. u32 temp;
  3648. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3649. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3650. dpll = DPLL_VGA_MODE_DIS;
  3651. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3652. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3653. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3654. I915_WRITE(DPLL(pipe), dpll);
  3655. POSTING_READ(DPLL(pipe));
  3656. bestn = clock->n;
  3657. bestm1 = clock->m1;
  3658. bestm2 = clock->m2;
  3659. bestp1 = clock->p1;
  3660. bestp2 = clock->p2;
  3661. /*
  3662. * In Valleyview PLL and program lane counter registers are exposed
  3663. * through DPIO interface
  3664. */
  3665. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3666. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3667. mdiv |= ((bestn << DPIO_N_SHIFT));
  3668. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3669. mdiv |= (1 << DPIO_K_SHIFT);
  3670. mdiv |= DPIO_ENABLE_CALIBRATION;
  3671. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3672. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3673. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3674. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3675. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3676. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3677. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3678. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3679. dpll |= DPLL_VCO_ENABLE;
  3680. I915_WRITE(DPLL(pipe), dpll);
  3681. POSTING_READ(DPLL(pipe));
  3682. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3683. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3684. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3685. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3686. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3687. I915_WRITE(DPLL(pipe), dpll);
  3688. /* Wait for the clocks to stabilize. */
  3689. POSTING_READ(DPLL(pipe));
  3690. udelay(150);
  3691. temp = 0;
  3692. if (is_sdvo) {
  3693. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3694. if (temp > 1)
  3695. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3696. else
  3697. temp = 0;
  3698. }
  3699. I915_WRITE(DPLL_MD(pipe), temp);
  3700. POSTING_READ(DPLL_MD(pipe));
  3701. /* Now program lane control registers */
  3702. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3703. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3704. {
  3705. temp = 0x1000C4;
  3706. if(pipe == 1)
  3707. temp |= (1 << 21);
  3708. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3709. }
  3710. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3711. {
  3712. temp = 0x1000C4;
  3713. if(pipe == 1)
  3714. temp |= (1 << 21);
  3715. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3716. }
  3717. }
  3718. static void i9xx_update_pll(struct drm_crtc *crtc,
  3719. struct drm_display_mode *mode,
  3720. struct drm_display_mode *adjusted_mode,
  3721. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3722. int num_connectors)
  3723. {
  3724. struct drm_device *dev = crtc->dev;
  3725. struct drm_i915_private *dev_priv = dev->dev_private;
  3726. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3727. struct intel_encoder *encoder;
  3728. int pipe = intel_crtc->pipe;
  3729. u32 dpll;
  3730. bool is_sdvo;
  3731. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3732. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3733. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3734. dpll = DPLL_VGA_MODE_DIS;
  3735. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3736. dpll |= DPLLB_MODE_LVDS;
  3737. else
  3738. dpll |= DPLLB_MODE_DAC_SERIAL;
  3739. if (is_sdvo) {
  3740. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3741. if (pixel_multiplier > 1) {
  3742. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3743. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3744. }
  3745. dpll |= DPLL_DVO_HIGH_SPEED;
  3746. }
  3747. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3748. dpll |= DPLL_DVO_HIGH_SPEED;
  3749. /* compute bitmask from p1 value */
  3750. if (IS_PINEVIEW(dev))
  3751. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3752. else {
  3753. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3754. if (IS_G4X(dev) && reduced_clock)
  3755. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3756. }
  3757. switch (clock->p2) {
  3758. case 5:
  3759. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3760. break;
  3761. case 7:
  3762. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3763. break;
  3764. case 10:
  3765. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3766. break;
  3767. case 14:
  3768. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3769. break;
  3770. }
  3771. if (INTEL_INFO(dev)->gen >= 4)
  3772. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3773. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3774. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3775. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3776. /* XXX: just matching BIOS for now */
  3777. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3778. dpll |= 3;
  3779. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3780. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3781. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3782. else
  3783. dpll |= PLL_REF_INPUT_DREFCLK;
  3784. dpll |= DPLL_VCO_ENABLE;
  3785. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3786. POSTING_READ(DPLL(pipe));
  3787. udelay(150);
  3788. for_each_encoder_on_crtc(dev, crtc, encoder)
  3789. if (encoder->pre_pll_enable)
  3790. encoder->pre_pll_enable(encoder);
  3791. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3792. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3793. I915_WRITE(DPLL(pipe), dpll);
  3794. /* Wait for the clocks to stabilize. */
  3795. POSTING_READ(DPLL(pipe));
  3796. udelay(150);
  3797. if (INTEL_INFO(dev)->gen >= 4) {
  3798. u32 temp = 0;
  3799. if (is_sdvo) {
  3800. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3801. if (temp > 1)
  3802. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3803. else
  3804. temp = 0;
  3805. }
  3806. I915_WRITE(DPLL_MD(pipe), temp);
  3807. } else {
  3808. /* The pixel multiplier can only be updated once the
  3809. * DPLL is enabled and the clocks are stable.
  3810. *
  3811. * So write it again.
  3812. */
  3813. I915_WRITE(DPLL(pipe), dpll);
  3814. }
  3815. }
  3816. static void i8xx_update_pll(struct drm_crtc *crtc,
  3817. struct drm_display_mode *adjusted_mode,
  3818. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3819. int num_connectors)
  3820. {
  3821. struct drm_device *dev = crtc->dev;
  3822. struct drm_i915_private *dev_priv = dev->dev_private;
  3823. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3824. struct intel_encoder *encoder;
  3825. int pipe = intel_crtc->pipe;
  3826. u32 dpll;
  3827. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3828. dpll = DPLL_VGA_MODE_DIS;
  3829. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3830. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3831. } else {
  3832. if (clock->p1 == 2)
  3833. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3834. else
  3835. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3836. if (clock->p2 == 4)
  3837. dpll |= PLL_P2_DIVIDE_BY_4;
  3838. }
  3839. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3840. /* XXX: just matching BIOS for now */
  3841. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3842. dpll |= 3;
  3843. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3844. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3845. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3846. else
  3847. dpll |= PLL_REF_INPUT_DREFCLK;
  3848. dpll |= DPLL_VCO_ENABLE;
  3849. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3850. POSTING_READ(DPLL(pipe));
  3851. udelay(150);
  3852. for_each_encoder_on_crtc(dev, crtc, encoder)
  3853. if (encoder->pre_pll_enable)
  3854. encoder->pre_pll_enable(encoder);
  3855. I915_WRITE(DPLL(pipe), dpll);
  3856. /* Wait for the clocks to stabilize. */
  3857. POSTING_READ(DPLL(pipe));
  3858. udelay(150);
  3859. /* The pixel multiplier can only be updated once the
  3860. * DPLL is enabled and the clocks are stable.
  3861. *
  3862. * So write it again.
  3863. */
  3864. I915_WRITE(DPLL(pipe), dpll);
  3865. }
  3866. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3867. struct drm_display_mode *mode,
  3868. struct drm_display_mode *adjusted_mode)
  3869. {
  3870. struct drm_device *dev = intel_crtc->base.dev;
  3871. struct drm_i915_private *dev_priv = dev->dev_private;
  3872. enum pipe pipe = intel_crtc->pipe;
  3873. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3874. uint32_t vsyncshift;
  3875. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3876. /* the chip adds 2 halflines automatically */
  3877. adjusted_mode->crtc_vtotal -= 1;
  3878. adjusted_mode->crtc_vblank_end -= 1;
  3879. vsyncshift = adjusted_mode->crtc_hsync_start
  3880. - adjusted_mode->crtc_htotal / 2;
  3881. } else {
  3882. vsyncshift = 0;
  3883. }
  3884. if (INTEL_INFO(dev)->gen > 3)
  3885. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3886. I915_WRITE(HTOTAL(cpu_transcoder),
  3887. (adjusted_mode->crtc_hdisplay - 1) |
  3888. ((adjusted_mode->crtc_htotal - 1) << 16));
  3889. I915_WRITE(HBLANK(cpu_transcoder),
  3890. (adjusted_mode->crtc_hblank_start - 1) |
  3891. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3892. I915_WRITE(HSYNC(cpu_transcoder),
  3893. (adjusted_mode->crtc_hsync_start - 1) |
  3894. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3895. I915_WRITE(VTOTAL(cpu_transcoder),
  3896. (adjusted_mode->crtc_vdisplay - 1) |
  3897. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3898. I915_WRITE(VBLANK(cpu_transcoder),
  3899. (adjusted_mode->crtc_vblank_start - 1) |
  3900. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3901. I915_WRITE(VSYNC(cpu_transcoder),
  3902. (adjusted_mode->crtc_vsync_start - 1) |
  3903. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3904. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3905. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3906. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3907. * bits. */
  3908. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3909. (pipe == PIPE_B || pipe == PIPE_C))
  3910. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3911. /* pipesrc controls the size that is scaled from, which should
  3912. * always be the user's requested size.
  3913. */
  3914. I915_WRITE(PIPESRC(pipe),
  3915. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3916. }
  3917. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3918. struct drm_display_mode *mode,
  3919. struct drm_display_mode *adjusted_mode,
  3920. int x, int y,
  3921. struct drm_framebuffer *fb)
  3922. {
  3923. struct drm_device *dev = crtc->dev;
  3924. struct drm_i915_private *dev_priv = dev->dev_private;
  3925. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3926. int pipe = intel_crtc->pipe;
  3927. int plane = intel_crtc->plane;
  3928. int refclk, num_connectors = 0;
  3929. intel_clock_t clock, reduced_clock;
  3930. u32 dspcntr, pipeconf;
  3931. bool ok, has_reduced_clock = false, is_sdvo = false;
  3932. bool is_lvds = false, is_tv = false, is_dp = false;
  3933. struct intel_encoder *encoder;
  3934. const intel_limit_t *limit;
  3935. int ret;
  3936. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3937. switch (encoder->type) {
  3938. case INTEL_OUTPUT_LVDS:
  3939. is_lvds = true;
  3940. break;
  3941. case INTEL_OUTPUT_SDVO:
  3942. case INTEL_OUTPUT_HDMI:
  3943. is_sdvo = true;
  3944. if (encoder->needs_tv_clock)
  3945. is_tv = true;
  3946. break;
  3947. case INTEL_OUTPUT_TVOUT:
  3948. is_tv = true;
  3949. break;
  3950. case INTEL_OUTPUT_DISPLAYPORT:
  3951. is_dp = true;
  3952. break;
  3953. }
  3954. num_connectors++;
  3955. }
  3956. refclk = i9xx_get_refclk(crtc, num_connectors);
  3957. /*
  3958. * Returns a set of divisors for the desired target clock with the given
  3959. * refclk, or FALSE. The returned values represent the clock equation:
  3960. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3961. */
  3962. limit = intel_limit(crtc, refclk);
  3963. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3964. &clock);
  3965. if (!ok) {
  3966. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3967. return -EINVAL;
  3968. }
  3969. /* Ensure that the cursor is valid for the new mode before changing... */
  3970. intel_crtc_update_cursor(crtc, true);
  3971. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3972. /*
  3973. * Ensure we match the reduced clock's P to the target clock.
  3974. * If the clocks don't match, we can't switch the display clock
  3975. * by using the FP0/FP1. In such case we will disable the LVDS
  3976. * downclock feature.
  3977. */
  3978. has_reduced_clock = limit->find_pll(limit, crtc,
  3979. dev_priv->lvds_downclock,
  3980. refclk,
  3981. &clock,
  3982. &reduced_clock);
  3983. }
  3984. if (is_sdvo && is_tv)
  3985. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3986. if (IS_GEN2(dev))
  3987. i8xx_update_pll(crtc, adjusted_mode, &clock,
  3988. has_reduced_clock ? &reduced_clock : NULL,
  3989. num_connectors);
  3990. else if (IS_VALLEYVIEW(dev))
  3991. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  3992. has_reduced_clock ? &reduced_clock : NULL,
  3993. num_connectors);
  3994. else
  3995. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3996. has_reduced_clock ? &reduced_clock : NULL,
  3997. num_connectors);
  3998. /* setup pipeconf */
  3999. pipeconf = I915_READ(PIPECONF(pipe));
  4000. /* Set up the display plane register */
  4001. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4002. if (pipe == 0)
  4003. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4004. else
  4005. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4006. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4007. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4008. * core speed.
  4009. *
  4010. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4011. * pipe == 0 check?
  4012. */
  4013. if (mode->clock >
  4014. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4015. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4016. else
  4017. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4018. }
  4019. /* default to 8bpc */
  4020. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4021. if (is_dp) {
  4022. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4023. pipeconf |= PIPECONF_BPP_6 |
  4024. PIPECONF_DITHER_EN |
  4025. PIPECONF_DITHER_TYPE_SP;
  4026. }
  4027. }
  4028. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  4029. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4030. pipeconf |= PIPECONF_BPP_6 |
  4031. PIPECONF_ENABLE |
  4032. I965_PIPECONF_ACTIVE;
  4033. }
  4034. }
  4035. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4036. drm_mode_debug_printmodeline(mode);
  4037. if (HAS_PIPE_CXSR(dev)) {
  4038. if (intel_crtc->lowfreq_avail) {
  4039. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4040. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4041. } else {
  4042. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4043. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4044. }
  4045. }
  4046. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4047. if (!IS_GEN2(dev) &&
  4048. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4049. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4050. else
  4051. pipeconf |= PIPECONF_PROGRESSIVE;
  4052. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4053. /* pipesrc and dspsize control the size that is scaled from,
  4054. * which should always be the user's requested size.
  4055. */
  4056. I915_WRITE(DSPSIZE(plane),
  4057. ((mode->vdisplay - 1) << 16) |
  4058. (mode->hdisplay - 1));
  4059. I915_WRITE(DSPPOS(plane), 0);
  4060. I915_WRITE(PIPECONF(pipe), pipeconf);
  4061. POSTING_READ(PIPECONF(pipe));
  4062. intel_enable_pipe(dev_priv, pipe, false);
  4063. intel_wait_for_vblank(dev, pipe);
  4064. I915_WRITE(DSPCNTR(plane), dspcntr);
  4065. POSTING_READ(DSPCNTR(plane));
  4066. ret = intel_pipe_set_base(crtc, x, y, fb);
  4067. intel_update_watermarks(dev);
  4068. return ret;
  4069. }
  4070. /*
  4071. * Initialize reference clocks when the driver loads
  4072. */
  4073. void ironlake_init_pch_refclk(struct drm_device *dev)
  4074. {
  4075. struct drm_i915_private *dev_priv = dev->dev_private;
  4076. struct drm_mode_config *mode_config = &dev->mode_config;
  4077. struct intel_encoder *encoder;
  4078. u32 temp;
  4079. bool has_lvds = false;
  4080. bool has_cpu_edp = false;
  4081. bool has_pch_edp = false;
  4082. bool has_panel = false;
  4083. bool has_ck505 = false;
  4084. bool can_ssc = false;
  4085. /* We need to take the global config into account */
  4086. list_for_each_entry(encoder, &mode_config->encoder_list,
  4087. base.head) {
  4088. switch (encoder->type) {
  4089. case INTEL_OUTPUT_LVDS:
  4090. has_panel = true;
  4091. has_lvds = true;
  4092. break;
  4093. case INTEL_OUTPUT_EDP:
  4094. has_panel = true;
  4095. if (intel_encoder_is_pch_edp(&encoder->base))
  4096. has_pch_edp = true;
  4097. else
  4098. has_cpu_edp = true;
  4099. break;
  4100. }
  4101. }
  4102. if (HAS_PCH_IBX(dev)) {
  4103. has_ck505 = dev_priv->display_clock_mode;
  4104. can_ssc = has_ck505;
  4105. } else {
  4106. has_ck505 = false;
  4107. can_ssc = true;
  4108. }
  4109. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4110. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4111. has_ck505);
  4112. /* Ironlake: try to setup display ref clock before DPLL
  4113. * enabling. This is only under driver's control after
  4114. * PCH B stepping, previous chipset stepping should be
  4115. * ignoring this setting.
  4116. */
  4117. temp = I915_READ(PCH_DREF_CONTROL);
  4118. /* Always enable nonspread source */
  4119. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4120. if (has_ck505)
  4121. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4122. else
  4123. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4124. if (has_panel) {
  4125. temp &= ~DREF_SSC_SOURCE_MASK;
  4126. temp |= DREF_SSC_SOURCE_ENABLE;
  4127. /* SSC must be turned on before enabling the CPU output */
  4128. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4129. DRM_DEBUG_KMS("Using SSC on panel\n");
  4130. temp |= DREF_SSC1_ENABLE;
  4131. } else
  4132. temp &= ~DREF_SSC1_ENABLE;
  4133. /* Get SSC going before enabling the outputs */
  4134. I915_WRITE(PCH_DREF_CONTROL, temp);
  4135. POSTING_READ(PCH_DREF_CONTROL);
  4136. udelay(200);
  4137. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4138. /* Enable CPU source on CPU attached eDP */
  4139. if (has_cpu_edp) {
  4140. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4141. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4142. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4143. }
  4144. else
  4145. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4146. } else
  4147. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4148. I915_WRITE(PCH_DREF_CONTROL, temp);
  4149. POSTING_READ(PCH_DREF_CONTROL);
  4150. udelay(200);
  4151. } else {
  4152. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4153. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4154. /* Turn off CPU output */
  4155. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4156. I915_WRITE(PCH_DREF_CONTROL, temp);
  4157. POSTING_READ(PCH_DREF_CONTROL);
  4158. udelay(200);
  4159. /* Turn off the SSC source */
  4160. temp &= ~DREF_SSC_SOURCE_MASK;
  4161. temp |= DREF_SSC_SOURCE_DISABLE;
  4162. /* Turn off SSC1 */
  4163. temp &= ~ DREF_SSC1_ENABLE;
  4164. I915_WRITE(PCH_DREF_CONTROL, temp);
  4165. POSTING_READ(PCH_DREF_CONTROL);
  4166. udelay(200);
  4167. }
  4168. }
  4169. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4170. {
  4171. struct drm_device *dev = crtc->dev;
  4172. struct drm_i915_private *dev_priv = dev->dev_private;
  4173. struct intel_encoder *encoder;
  4174. struct intel_encoder *edp_encoder = NULL;
  4175. int num_connectors = 0;
  4176. bool is_lvds = false;
  4177. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4178. switch (encoder->type) {
  4179. case INTEL_OUTPUT_LVDS:
  4180. is_lvds = true;
  4181. break;
  4182. case INTEL_OUTPUT_EDP:
  4183. edp_encoder = encoder;
  4184. break;
  4185. }
  4186. num_connectors++;
  4187. }
  4188. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4189. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4190. dev_priv->lvds_ssc_freq);
  4191. return dev_priv->lvds_ssc_freq * 1000;
  4192. }
  4193. return 120000;
  4194. }
  4195. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4196. struct drm_display_mode *adjusted_mode,
  4197. bool dither)
  4198. {
  4199. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4200. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4201. int pipe = intel_crtc->pipe;
  4202. uint32_t val;
  4203. val = I915_READ(PIPECONF(pipe));
  4204. val &= ~PIPE_BPC_MASK;
  4205. switch (intel_crtc->bpp) {
  4206. case 18:
  4207. val |= PIPE_6BPC;
  4208. break;
  4209. case 24:
  4210. val |= PIPE_8BPC;
  4211. break;
  4212. case 30:
  4213. val |= PIPE_10BPC;
  4214. break;
  4215. case 36:
  4216. val |= PIPE_12BPC;
  4217. break;
  4218. default:
  4219. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4220. BUG();
  4221. }
  4222. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4223. if (dither)
  4224. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4225. val &= ~PIPECONF_INTERLACE_MASK;
  4226. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4227. val |= PIPECONF_INTERLACED_ILK;
  4228. else
  4229. val |= PIPECONF_PROGRESSIVE;
  4230. I915_WRITE(PIPECONF(pipe), val);
  4231. POSTING_READ(PIPECONF(pipe));
  4232. }
  4233. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4234. struct drm_display_mode *adjusted_mode,
  4235. bool dither)
  4236. {
  4237. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4238. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4239. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4240. uint32_t val;
  4241. val = I915_READ(PIPECONF(cpu_transcoder));
  4242. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4243. if (dither)
  4244. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4245. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4246. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4247. val |= PIPECONF_INTERLACED_ILK;
  4248. else
  4249. val |= PIPECONF_PROGRESSIVE;
  4250. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4251. POSTING_READ(PIPECONF(cpu_transcoder));
  4252. }
  4253. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4254. struct drm_display_mode *adjusted_mode,
  4255. intel_clock_t *clock,
  4256. bool *has_reduced_clock,
  4257. intel_clock_t *reduced_clock)
  4258. {
  4259. struct drm_device *dev = crtc->dev;
  4260. struct drm_i915_private *dev_priv = dev->dev_private;
  4261. struct intel_encoder *intel_encoder;
  4262. int refclk;
  4263. const intel_limit_t *limit;
  4264. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4265. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4266. switch (intel_encoder->type) {
  4267. case INTEL_OUTPUT_LVDS:
  4268. is_lvds = true;
  4269. break;
  4270. case INTEL_OUTPUT_SDVO:
  4271. case INTEL_OUTPUT_HDMI:
  4272. is_sdvo = true;
  4273. if (intel_encoder->needs_tv_clock)
  4274. is_tv = true;
  4275. break;
  4276. case INTEL_OUTPUT_TVOUT:
  4277. is_tv = true;
  4278. break;
  4279. }
  4280. }
  4281. refclk = ironlake_get_refclk(crtc);
  4282. /*
  4283. * Returns a set of divisors for the desired target clock with the given
  4284. * refclk, or FALSE. The returned values represent the clock equation:
  4285. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4286. */
  4287. limit = intel_limit(crtc, refclk);
  4288. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4289. clock);
  4290. if (!ret)
  4291. return false;
  4292. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4293. /*
  4294. * Ensure we match the reduced clock's P to the target clock.
  4295. * If the clocks don't match, we can't switch the display clock
  4296. * by using the FP0/FP1. In such case we will disable the LVDS
  4297. * downclock feature.
  4298. */
  4299. *has_reduced_clock = limit->find_pll(limit, crtc,
  4300. dev_priv->lvds_downclock,
  4301. refclk,
  4302. clock,
  4303. reduced_clock);
  4304. }
  4305. if (is_sdvo && is_tv)
  4306. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4307. return true;
  4308. }
  4309. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4310. {
  4311. struct drm_i915_private *dev_priv = dev->dev_private;
  4312. uint32_t temp;
  4313. temp = I915_READ(SOUTH_CHICKEN1);
  4314. if (temp & FDI_BC_BIFURCATION_SELECT)
  4315. return;
  4316. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4317. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4318. temp |= FDI_BC_BIFURCATION_SELECT;
  4319. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4320. I915_WRITE(SOUTH_CHICKEN1, temp);
  4321. POSTING_READ(SOUTH_CHICKEN1);
  4322. }
  4323. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4324. {
  4325. struct drm_device *dev = intel_crtc->base.dev;
  4326. struct drm_i915_private *dev_priv = dev->dev_private;
  4327. struct intel_crtc *pipe_B_crtc =
  4328. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4329. DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
  4330. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4331. if (intel_crtc->fdi_lanes > 4) {
  4332. DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
  4333. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4334. /* Clamp lanes to avoid programming the hw with bogus values. */
  4335. intel_crtc->fdi_lanes = 4;
  4336. return false;
  4337. }
  4338. if (dev_priv->num_pipe == 2)
  4339. return true;
  4340. switch (intel_crtc->pipe) {
  4341. case PIPE_A:
  4342. return true;
  4343. case PIPE_B:
  4344. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4345. intel_crtc->fdi_lanes > 2) {
  4346. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4347. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4348. /* Clamp lanes to avoid programming the hw with bogus values. */
  4349. intel_crtc->fdi_lanes = 2;
  4350. return false;
  4351. }
  4352. if (intel_crtc->fdi_lanes > 2)
  4353. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4354. else
  4355. cpt_enable_fdi_bc_bifurcation(dev);
  4356. return true;
  4357. case PIPE_C:
  4358. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4359. if (intel_crtc->fdi_lanes > 2) {
  4360. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4361. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4362. /* Clamp lanes to avoid programming the hw with bogus values. */
  4363. intel_crtc->fdi_lanes = 2;
  4364. return false;
  4365. }
  4366. } else {
  4367. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4368. return false;
  4369. }
  4370. cpt_enable_fdi_bc_bifurcation(dev);
  4371. return true;
  4372. default:
  4373. BUG();
  4374. }
  4375. }
  4376. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4377. struct drm_display_mode *mode,
  4378. struct drm_display_mode *adjusted_mode)
  4379. {
  4380. struct drm_device *dev = crtc->dev;
  4381. struct drm_i915_private *dev_priv = dev->dev_private;
  4382. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4383. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4384. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4385. struct fdi_m_n m_n = {0};
  4386. int target_clock, pixel_multiplier, lane, link_bw;
  4387. bool is_dp = false, is_cpu_edp = false;
  4388. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4389. switch (intel_encoder->type) {
  4390. case INTEL_OUTPUT_DISPLAYPORT:
  4391. is_dp = true;
  4392. break;
  4393. case INTEL_OUTPUT_EDP:
  4394. is_dp = true;
  4395. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4396. is_cpu_edp = true;
  4397. edp_encoder = intel_encoder;
  4398. break;
  4399. }
  4400. }
  4401. /* FDI link */
  4402. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4403. lane = 0;
  4404. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4405. according to current link config */
  4406. if (is_cpu_edp) {
  4407. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4408. } else {
  4409. /* FDI is a binary signal running at ~2.7GHz, encoding
  4410. * each output octet as 10 bits. The actual frequency
  4411. * is stored as a divider into a 100MHz clock, and the
  4412. * mode pixel clock is stored in units of 1KHz.
  4413. * Hence the bw of each lane in terms of the mode signal
  4414. * is:
  4415. */
  4416. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4417. }
  4418. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4419. if (edp_encoder)
  4420. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4421. else if (is_dp)
  4422. target_clock = mode->clock;
  4423. else
  4424. target_clock = adjusted_mode->clock;
  4425. if (!lane) {
  4426. /*
  4427. * Account for spread spectrum to avoid
  4428. * oversubscribing the link. Max center spread
  4429. * is 2.5%; use 5% for safety's sake.
  4430. */
  4431. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4432. lane = bps / (link_bw * 8) + 1;
  4433. }
  4434. intel_crtc->fdi_lanes = lane;
  4435. if (pixel_multiplier > 1)
  4436. link_bw *= pixel_multiplier;
  4437. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4438. &m_n);
  4439. I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4440. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  4441. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  4442. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  4443. }
  4444. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4445. struct drm_display_mode *adjusted_mode,
  4446. intel_clock_t *clock, u32 fp)
  4447. {
  4448. struct drm_crtc *crtc = &intel_crtc->base;
  4449. struct drm_device *dev = crtc->dev;
  4450. struct drm_i915_private *dev_priv = dev->dev_private;
  4451. struct intel_encoder *intel_encoder;
  4452. uint32_t dpll;
  4453. int factor, pixel_multiplier, num_connectors = 0;
  4454. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4455. bool is_dp = false, is_cpu_edp = false;
  4456. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4457. switch (intel_encoder->type) {
  4458. case INTEL_OUTPUT_LVDS:
  4459. is_lvds = true;
  4460. break;
  4461. case INTEL_OUTPUT_SDVO:
  4462. case INTEL_OUTPUT_HDMI:
  4463. is_sdvo = true;
  4464. if (intel_encoder->needs_tv_clock)
  4465. is_tv = true;
  4466. break;
  4467. case INTEL_OUTPUT_TVOUT:
  4468. is_tv = true;
  4469. break;
  4470. case INTEL_OUTPUT_DISPLAYPORT:
  4471. is_dp = true;
  4472. break;
  4473. case INTEL_OUTPUT_EDP:
  4474. is_dp = true;
  4475. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4476. is_cpu_edp = true;
  4477. break;
  4478. }
  4479. num_connectors++;
  4480. }
  4481. /* Enable autotuning of the PLL clock (if permissible) */
  4482. factor = 21;
  4483. if (is_lvds) {
  4484. if ((intel_panel_use_ssc(dev_priv) &&
  4485. dev_priv->lvds_ssc_freq == 100) ||
  4486. intel_is_dual_link_lvds(dev))
  4487. factor = 25;
  4488. } else if (is_sdvo && is_tv)
  4489. factor = 20;
  4490. if (clock->m < factor * clock->n)
  4491. fp |= FP_CB_TUNE;
  4492. dpll = 0;
  4493. if (is_lvds)
  4494. dpll |= DPLLB_MODE_LVDS;
  4495. else
  4496. dpll |= DPLLB_MODE_DAC_SERIAL;
  4497. if (is_sdvo) {
  4498. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4499. if (pixel_multiplier > 1) {
  4500. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4501. }
  4502. dpll |= DPLL_DVO_HIGH_SPEED;
  4503. }
  4504. if (is_dp && !is_cpu_edp)
  4505. dpll |= DPLL_DVO_HIGH_SPEED;
  4506. /* compute bitmask from p1 value */
  4507. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4508. /* also FPA1 */
  4509. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4510. switch (clock->p2) {
  4511. case 5:
  4512. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4513. break;
  4514. case 7:
  4515. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4516. break;
  4517. case 10:
  4518. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4519. break;
  4520. case 14:
  4521. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4522. break;
  4523. }
  4524. if (is_sdvo && is_tv)
  4525. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4526. else if (is_tv)
  4527. /* XXX: just matching BIOS for now */
  4528. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4529. dpll |= 3;
  4530. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4531. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4532. else
  4533. dpll |= PLL_REF_INPUT_DREFCLK;
  4534. return dpll;
  4535. }
  4536. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4537. struct drm_display_mode *mode,
  4538. struct drm_display_mode *adjusted_mode,
  4539. int x, int y,
  4540. struct drm_framebuffer *fb)
  4541. {
  4542. struct drm_device *dev = crtc->dev;
  4543. struct drm_i915_private *dev_priv = dev->dev_private;
  4544. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4545. int pipe = intel_crtc->pipe;
  4546. int plane = intel_crtc->plane;
  4547. int num_connectors = 0;
  4548. intel_clock_t clock, reduced_clock;
  4549. u32 dpll, fp = 0, fp2 = 0;
  4550. bool ok, has_reduced_clock = false;
  4551. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4552. struct intel_encoder *encoder;
  4553. int ret;
  4554. bool dither, fdi_config_ok;
  4555. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4556. switch (encoder->type) {
  4557. case INTEL_OUTPUT_LVDS:
  4558. is_lvds = true;
  4559. break;
  4560. case INTEL_OUTPUT_DISPLAYPORT:
  4561. is_dp = true;
  4562. break;
  4563. case INTEL_OUTPUT_EDP:
  4564. is_dp = true;
  4565. if (!intel_encoder_is_pch_edp(&encoder->base))
  4566. is_cpu_edp = true;
  4567. break;
  4568. }
  4569. num_connectors++;
  4570. }
  4571. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4572. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4573. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4574. &has_reduced_clock, &reduced_clock);
  4575. if (!ok) {
  4576. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4577. return -EINVAL;
  4578. }
  4579. /* Ensure that the cursor is valid for the new mode before changing... */
  4580. intel_crtc_update_cursor(crtc, true);
  4581. /* determine panel color depth */
  4582. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4583. adjusted_mode);
  4584. if (is_lvds && dev_priv->lvds_dither)
  4585. dither = true;
  4586. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4587. if (has_reduced_clock)
  4588. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4589. reduced_clock.m2;
  4590. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4591. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4592. drm_mode_debug_printmodeline(mode);
  4593. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4594. if (!is_cpu_edp) {
  4595. struct intel_pch_pll *pll;
  4596. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4597. if (pll == NULL) {
  4598. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4599. pipe);
  4600. return -EINVAL;
  4601. }
  4602. } else
  4603. intel_put_pch_pll(intel_crtc);
  4604. if (is_dp && !is_cpu_edp) {
  4605. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4606. } else {
  4607. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4608. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4609. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4610. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4611. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4612. }
  4613. for_each_encoder_on_crtc(dev, crtc, encoder)
  4614. if (encoder->pre_pll_enable)
  4615. encoder->pre_pll_enable(encoder);
  4616. if (intel_crtc->pch_pll) {
  4617. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4618. /* Wait for the clocks to stabilize. */
  4619. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4620. udelay(150);
  4621. /* The pixel multiplier can only be updated once the
  4622. * DPLL is enabled and the clocks are stable.
  4623. *
  4624. * So write it again.
  4625. */
  4626. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4627. }
  4628. intel_crtc->lowfreq_avail = false;
  4629. if (intel_crtc->pch_pll) {
  4630. if (is_lvds && has_reduced_clock && i915_powersave) {
  4631. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4632. intel_crtc->lowfreq_avail = true;
  4633. } else {
  4634. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4635. }
  4636. }
  4637. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4638. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4639. * ironlake_check_fdi_lanes. */
  4640. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4641. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4642. if (is_cpu_edp)
  4643. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4644. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4645. intel_wait_for_vblank(dev, pipe);
  4646. /* Set up the display plane register */
  4647. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4648. POSTING_READ(DSPCNTR(plane));
  4649. ret = intel_pipe_set_base(crtc, x, y, fb);
  4650. intel_update_watermarks(dev);
  4651. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4652. return fdi_config_ok ? ret : -EINVAL;
  4653. }
  4654. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4655. struct drm_display_mode *mode,
  4656. struct drm_display_mode *adjusted_mode,
  4657. int x, int y,
  4658. struct drm_framebuffer *fb)
  4659. {
  4660. struct drm_device *dev = crtc->dev;
  4661. struct drm_i915_private *dev_priv = dev->dev_private;
  4662. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4663. int pipe = intel_crtc->pipe;
  4664. int plane = intel_crtc->plane;
  4665. int num_connectors = 0;
  4666. intel_clock_t clock, reduced_clock;
  4667. u32 dpll = 0, fp = 0, fp2 = 0;
  4668. bool ok, has_reduced_clock = false;
  4669. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4670. struct intel_encoder *encoder;
  4671. u32 temp;
  4672. int ret;
  4673. bool dither;
  4674. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4675. switch (encoder->type) {
  4676. case INTEL_OUTPUT_LVDS:
  4677. is_lvds = true;
  4678. break;
  4679. case INTEL_OUTPUT_DISPLAYPORT:
  4680. is_dp = true;
  4681. break;
  4682. case INTEL_OUTPUT_EDP:
  4683. is_dp = true;
  4684. if (!intel_encoder_is_pch_edp(&encoder->base))
  4685. is_cpu_edp = true;
  4686. break;
  4687. }
  4688. num_connectors++;
  4689. }
  4690. if (is_cpu_edp)
  4691. intel_crtc->cpu_transcoder = TRANSCODER_EDP;
  4692. else
  4693. intel_crtc->cpu_transcoder = pipe;
  4694. /* We are not sure yet this won't happen. */
  4695. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4696. INTEL_PCH_TYPE(dev));
  4697. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4698. num_connectors, pipe_name(pipe));
  4699. WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
  4700. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4701. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4702. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4703. return -EINVAL;
  4704. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4705. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4706. &has_reduced_clock,
  4707. &reduced_clock);
  4708. if (!ok) {
  4709. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4710. return -EINVAL;
  4711. }
  4712. }
  4713. /* Ensure that the cursor is valid for the new mode before changing... */
  4714. intel_crtc_update_cursor(crtc, true);
  4715. /* determine panel color depth */
  4716. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4717. adjusted_mode);
  4718. if (is_lvds && dev_priv->lvds_dither)
  4719. dither = true;
  4720. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4721. drm_mode_debug_printmodeline(mode);
  4722. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4723. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4724. if (has_reduced_clock)
  4725. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4726. reduced_clock.m2;
  4727. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4728. fp);
  4729. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4730. * own on pre-Haswell/LPT generation */
  4731. if (!is_cpu_edp) {
  4732. struct intel_pch_pll *pll;
  4733. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4734. if (pll == NULL) {
  4735. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4736. pipe);
  4737. return -EINVAL;
  4738. }
  4739. } else
  4740. intel_put_pch_pll(intel_crtc);
  4741. /* The LVDS pin pair needs to be on before the DPLLs are
  4742. * enabled. This is an exception to the general rule that
  4743. * mode_set doesn't turn things on.
  4744. */
  4745. if (is_lvds) {
  4746. temp = I915_READ(PCH_LVDS);
  4747. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4748. if (HAS_PCH_CPT(dev)) {
  4749. temp &= ~PORT_TRANS_SEL_MASK;
  4750. temp |= PORT_TRANS_SEL_CPT(pipe);
  4751. } else {
  4752. if (pipe == 1)
  4753. temp |= LVDS_PIPEB_SELECT;
  4754. else
  4755. temp &= ~LVDS_PIPEB_SELECT;
  4756. }
  4757. /* set the corresponsding LVDS_BORDER bit */
  4758. temp |= dev_priv->lvds_border_bits;
  4759. /* Set the B0-B3 data pairs corresponding to whether
  4760. * we're going to set the DPLLs for dual-channel mode or
  4761. * not.
  4762. */
  4763. if (clock.p2 == 7)
  4764. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4765. else
  4766. temp &= ~(LVDS_B0B3_POWER_UP |
  4767. LVDS_CLKB_POWER_UP);
  4768. /* It would be nice to set 24 vs 18-bit mode
  4769. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4770. * look more thoroughly into how panels behave in the
  4771. * two modes.
  4772. */
  4773. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4774. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4775. temp |= LVDS_HSYNC_POLARITY;
  4776. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4777. temp |= LVDS_VSYNC_POLARITY;
  4778. I915_WRITE(PCH_LVDS, temp);
  4779. }
  4780. }
  4781. if (is_dp && !is_cpu_edp) {
  4782. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4783. } else {
  4784. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4785. /* For non-DP output, clear any trans DP clock recovery
  4786. * setting.*/
  4787. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4788. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4789. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4790. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4791. }
  4792. }
  4793. intel_crtc->lowfreq_avail = false;
  4794. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4795. if (intel_crtc->pch_pll) {
  4796. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4797. /* Wait for the clocks to stabilize. */
  4798. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4799. udelay(150);
  4800. /* The pixel multiplier can only be updated once the
  4801. * DPLL is enabled and the clocks are stable.
  4802. *
  4803. * So write it again.
  4804. */
  4805. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4806. }
  4807. if (intel_crtc->pch_pll) {
  4808. if (is_lvds && has_reduced_clock && i915_powersave) {
  4809. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4810. intel_crtc->lowfreq_avail = true;
  4811. } else {
  4812. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4813. }
  4814. }
  4815. }
  4816. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4817. if (!is_dp || is_cpu_edp)
  4818. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4819. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4820. if (is_cpu_edp)
  4821. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4822. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4823. /* Set up the display plane register */
  4824. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4825. POSTING_READ(DSPCNTR(plane));
  4826. ret = intel_pipe_set_base(crtc, x, y, fb);
  4827. intel_update_watermarks(dev);
  4828. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4829. return ret;
  4830. }
  4831. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4832. struct drm_display_mode *mode,
  4833. struct drm_display_mode *adjusted_mode,
  4834. int x, int y,
  4835. struct drm_framebuffer *fb)
  4836. {
  4837. struct drm_device *dev = crtc->dev;
  4838. struct drm_i915_private *dev_priv = dev->dev_private;
  4839. struct drm_encoder_helper_funcs *encoder_funcs;
  4840. struct intel_encoder *encoder;
  4841. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4842. int pipe = intel_crtc->pipe;
  4843. int ret;
  4844. drm_vblank_pre_modeset(dev, pipe);
  4845. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4846. x, y, fb);
  4847. drm_vblank_post_modeset(dev, pipe);
  4848. if (ret != 0)
  4849. return ret;
  4850. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4851. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4852. encoder->base.base.id,
  4853. drm_get_encoder_name(&encoder->base),
  4854. mode->base.id, mode->name);
  4855. encoder_funcs = encoder->base.helper_private;
  4856. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  4857. }
  4858. return 0;
  4859. }
  4860. static bool intel_eld_uptodate(struct drm_connector *connector,
  4861. int reg_eldv, uint32_t bits_eldv,
  4862. int reg_elda, uint32_t bits_elda,
  4863. int reg_edid)
  4864. {
  4865. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4866. uint8_t *eld = connector->eld;
  4867. uint32_t i;
  4868. i = I915_READ(reg_eldv);
  4869. i &= bits_eldv;
  4870. if (!eld[0])
  4871. return !i;
  4872. if (!i)
  4873. return false;
  4874. i = I915_READ(reg_elda);
  4875. i &= ~bits_elda;
  4876. I915_WRITE(reg_elda, i);
  4877. for (i = 0; i < eld[2]; i++)
  4878. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4879. return false;
  4880. return true;
  4881. }
  4882. static void g4x_write_eld(struct drm_connector *connector,
  4883. struct drm_crtc *crtc)
  4884. {
  4885. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4886. uint8_t *eld = connector->eld;
  4887. uint32_t eldv;
  4888. uint32_t len;
  4889. uint32_t i;
  4890. i = I915_READ(G4X_AUD_VID_DID);
  4891. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4892. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4893. else
  4894. eldv = G4X_ELDV_DEVCTG;
  4895. if (intel_eld_uptodate(connector,
  4896. G4X_AUD_CNTL_ST, eldv,
  4897. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4898. G4X_HDMIW_HDMIEDID))
  4899. return;
  4900. i = I915_READ(G4X_AUD_CNTL_ST);
  4901. i &= ~(eldv | G4X_ELD_ADDR);
  4902. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4903. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4904. if (!eld[0])
  4905. return;
  4906. len = min_t(uint8_t, eld[2], len);
  4907. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4908. for (i = 0; i < len; i++)
  4909. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4910. i = I915_READ(G4X_AUD_CNTL_ST);
  4911. i |= eldv;
  4912. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4913. }
  4914. static void haswell_write_eld(struct drm_connector *connector,
  4915. struct drm_crtc *crtc)
  4916. {
  4917. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4918. uint8_t *eld = connector->eld;
  4919. struct drm_device *dev = crtc->dev;
  4920. uint32_t eldv;
  4921. uint32_t i;
  4922. int len;
  4923. int pipe = to_intel_crtc(crtc)->pipe;
  4924. int tmp;
  4925. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4926. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4927. int aud_config = HSW_AUD_CFG(pipe);
  4928. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4929. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4930. /* Audio output enable */
  4931. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4932. tmp = I915_READ(aud_cntrl_st2);
  4933. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4934. I915_WRITE(aud_cntrl_st2, tmp);
  4935. /* Wait for 1 vertical blank */
  4936. intel_wait_for_vblank(dev, pipe);
  4937. /* Set ELD valid state */
  4938. tmp = I915_READ(aud_cntrl_st2);
  4939. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4940. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4941. I915_WRITE(aud_cntrl_st2, tmp);
  4942. tmp = I915_READ(aud_cntrl_st2);
  4943. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4944. /* Enable HDMI mode */
  4945. tmp = I915_READ(aud_config);
  4946. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4947. /* clear N_programing_enable and N_value_index */
  4948. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4949. I915_WRITE(aud_config, tmp);
  4950. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4951. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4952. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4953. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4954. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4955. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4956. } else
  4957. I915_WRITE(aud_config, 0);
  4958. if (intel_eld_uptodate(connector,
  4959. aud_cntrl_st2, eldv,
  4960. aud_cntl_st, IBX_ELD_ADDRESS,
  4961. hdmiw_hdmiedid))
  4962. return;
  4963. i = I915_READ(aud_cntrl_st2);
  4964. i &= ~eldv;
  4965. I915_WRITE(aud_cntrl_st2, i);
  4966. if (!eld[0])
  4967. return;
  4968. i = I915_READ(aud_cntl_st);
  4969. i &= ~IBX_ELD_ADDRESS;
  4970. I915_WRITE(aud_cntl_st, i);
  4971. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4972. DRM_DEBUG_DRIVER("port num:%d\n", i);
  4973. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4974. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4975. for (i = 0; i < len; i++)
  4976. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4977. i = I915_READ(aud_cntrl_st2);
  4978. i |= eldv;
  4979. I915_WRITE(aud_cntrl_st2, i);
  4980. }
  4981. static void ironlake_write_eld(struct drm_connector *connector,
  4982. struct drm_crtc *crtc)
  4983. {
  4984. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4985. uint8_t *eld = connector->eld;
  4986. uint32_t eldv;
  4987. uint32_t i;
  4988. int len;
  4989. int hdmiw_hdmiedid;
  4990. int aud_config;
  4991. int aud_cntl_st;
  4992. int aud_cntrl_st2;
  4993. int pipe = to_intel_crtc(crtc)->pipe;
  4994. if (HAS_PCH_IBX(connector->dev)) {
  4995. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  4996. aud_config = IBX_AUD_CFG(pipe);
  4997. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  4998. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  4999. } else {
  5000. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5001. aud_config = CPT_AUD_CFG(pipe);
  5002. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5003. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5004. }
  5005. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5006. i = I915_READ(aud_cntl_st);
  5007. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5008. if (!i) {
  5009. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5010. /* operate blindly on all ports */
  5011. eldv = IBX_ELD_VALIDB;
  5012. eldv |= IBX_ELD_VALIDB << 4;
  5013. eldv |= IBX_ELD_VALIDB << 8;
  5014. } else {
  5015. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5016. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5017. }
  5018. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5019. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5020. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5021. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5022. } else
  5023. I915_WRITE(aud_config, 0);
  5024. if (intel_eld_uptodate(connector,
  5025. aud_cntrl_st2, eldv,
  5026. aud_cntl_st, IBX_ELD_ADDRESS,
  5027. hdmiw_hdmiedid))
  5028. return;
  5029. i = I915_READ(aud_cntrl_st2);
  5030. i &= ~eldv;
  5031. I915_WRITE(aud_cntrl_st2, i);
  5032. if (!eld[0])
  5033. return;
  5034. i = I915_READ(aud_cntl_st);
  5035. i &= ~IBX_ELD_ADDRESS;
  5036. I915_WRITE(aud_cntl_st, i);
  5037. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5038. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5039. for (i = 0; i < len; i++)
  5040. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5041. i = I915_READ(aud_cntrl_st2);
  5042. i |= eldv;
  5043. I915_WRITE(aud_cntrl_st2, i);
  5044. }
  5045. void intel_write_eld(struct drm_encoder *encoder,
  5046. struct drm_display_mode *mode)
  5047. {
  5048. struct drm_crtc *crtc = encoder->crtc;
  5049. struct drm_connector *connector;
  5050. struct drm_device *dev = encoder->dev;
  5051. struct drm_i915_private *dev_priv = dev->dev_private;
  5052. connector = drm_select_eld(encoder, mode);
  5053. if (!connector)
  5054. return;
  5055. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5056. connector->base.id,
  5057. drm_get_connector_name(connector),
  5058. connector->encoder->base.id,
  5059. drm_get_encoder_name(connector->encoder));
  5060. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5061. if (dev_priv->display.write_eld)
  5062. dev_priv->display.write_eld(connector, crtc);
  5063. }
  5064. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5065. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5066. {
  5067. struct drm_device *dev = crtc->dev;
  5068. struct drm_i915_private *dev_priv = dev->dev_private;
  5069. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5070. int palreg = PALETTE(intel_crtc->pipe);
  5071. int i;
  5072. /* The clocks have to be on to load the palette. */
  5073. if (!crtc->enabled || !intel_crtc->active)
  5074. return;
  5075. /* use legacy palette for Ironlake */
  5076. if (HAS_PCH_SPLIT(dev))
  5077. palreg = LGC_PALETTE(intel_crtc->pipe);
  5078. for (i = 0; i < 256; i++) {
  5079. I915_WRITE(palreg + 4 * i,
  5080. (intel_crtc->lut_r[i] << 16) |
  5081. (intel_crtc->lut_g[i] << 8) |
  5082. intel_crtc->lut_b[i]);
  5083. }
  5084. }
  5085. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5086. {
  5087. struct drm_device *dev = crtc->dev;
  5088. struct drm_i915_private *dev_priv = dev->dev_private;
  5089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5090. bool visible = base != 0;
  5091. u32 cntl;
  5092. if (intel_crtc->cursor_visible == visible)
  5093. return;
  5094. cntl = I915_READ(_CURACNTR);
  5095. if (visible) {
  5096. /* On these chipsets we can only modify the base whilst
  5097. * the cursor is disabled.
  5098. */
  5099. I915_WRITE(_CURABASE, base);
  5100. cntl &= ~(CURSOR_FORMAT_MASK);
  5101. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5102. cntl |= CURSOR_ENABLE |
  5103. CURSOR_GAMMA_ENABLE |
  5104. CURSOR_FORMAT_ARGB;
  5105. } else
  5106. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5107. I915_WRITE(_CURACNTR, cntl);
  5108. intel_crtc->cursor_visible = visible;
  5109. }
  5110. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5111. {
  5112. struct drm_device *dev = crtc->dev;
  5113. struct drm_i915_private *dev_priv = dev->dev_private;
  5114. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5115. int pipe = intel_crtc->pipe;
  5116. bool visible = base != 0;
  5117. if (intel_crtc->cursor_visible != visible) {
  5118. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5119. if (base) {
  5120. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5121. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5122. cntl |= pipe << 28; /* Connect to correct pipe */
  5123. } else {
  5124. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5125. cntl |= CURSOR_MODE_DISABLE;
  5126. }
  5127. I915_WRITE(CURCNTR(pipe), cntl);
  5128. intel_crtc->cursor_visible = visible;
  5129. }
  5130. /* and commit changes on next vblank */
  5131. I915_WRITE(CURBASE(pipe), base);
  5132. }
  5133. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5134. {
  5135. struct drm_device *dev = crtc->dev;
  5136. struct drm_i915_private *dev_priv = dev->dev_private;
  5137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5138. int pipe = intel_crtc->pipe;
  5139. bool visible = base != 0;
  5140. if (intel_crtc->cursor_visible != visible) {
  5141. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5142. if (base) {
  5143. cntl &= ~CURSOR_MODE;
  5144. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5145. } else {
  5146. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5147. cntl |= CURSOR_MODE_DISABLE;
  5148. }
  5149. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5150. intel_crtc->cursor_visible = visible;
  5151. }
  5152. /* and commit changes on next vblank */
  5153. I915_WRITE(CURBASE_IVB(pipe), base);
  5154. }
  5155. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5156. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5157. bool on)
  5158. {
  5159. struct drm_device *dev = crtc->dev;
  5160. struct drm_i915_private *dev_priv = dev->dev_private;
  5161. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5162. int pipe = intel_crtc->pipe;
  5163. int x = intel_crtc->cursor_x;
  5164. int y = intel_crtc->cursor_y;
  5165. u32 base, pos;
  5166. bool visible;
  5167. pos = 0;
  5168. if (on && crtc->enabled && crtc->fb) {
  5169. base = intel_crtc->cursor_addr;
  5170. if (x > (int) crtc->fb->width)
  5171. base = 0;
  5172. if (y > (int) crtc->fb->height)
  5173. base = 0;
  5174. } else
  5175. base = 0;
  5176. if (x < 0) {
  5177. if (x + intel_crtc->cursor_width < 0)
  5178. base = 0;
  5179. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5180. x = -x;
  5181. }
  5182. pos |= x << CURSOR_X_SHIFT;
  5183. if (y < 0) {
  5184. if (y + intel_crtc->cursor_height < 0)
  5185. base = 0;
  5186. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5187. y = -y;
  5188. }
  5189. pos |= y << CURSOR_Y_SHIFT;
  5190. visible = base != 0;
  5191. if (!visible && !intel_crtc->cursor_visible)
  5192. return;
  5193. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5194. I915_WRITE(CURPOS_IVB(pipe), pos);
  5195. ivb_update_cursor(crtc, base);
  5196. } else {
  5197. I915_WRITE(CURPOS(pipe), pos);
  5198. if (IS_845G(dev) || IS_I865G(dev))
  5199. i845_update_cursor(crtc, base);
  5200. else
  5201. i9xx_update_cursor(crtc, base);
  5202. }
  5203. }
  5204. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5205. struct drm_file *file,
  5206. uint32_t handle,
  5207. uint32_t width, uint32_t height)
  5208. {
  5209. struct drm_device *dev = crtc->dev;
  5210. struct drm_i915_private *dev_priv = dev->dev_private;
  5211. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5212. struct drm_i915_gem_object *obj;
  5213. uint32_t addr;
  5214. int ret;
  5215. /* if we want to turn off the cursor ignore width and height */
  5216. if (!handle) {
  5217. DRM_DEBUG_KMS("cursor off\n");
  5218. addr = 0;
  5219. obj = NULL;
  5220. mutex_lock(&dev->struct_mutex);
  5221. goto finish;
  5222. }
  5223. /* Currently we only support 64x64 cursors */
  5224. if (width != 64 || height != 64) {
  5225. DRM_ERROR("we currently only support 64x64 cursors\n");
  5226. return -EINVAL;
  5227. }
  5228. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5229. if (&obj->base == NULL)
  5230. return -ENOENT;
  5231. if (obj->base.size < width * height * 4) {
  5232. DRM_ERROR("buffer is to small\n");
  5233. ret = -ENOMEM;
  5234. goto fail;
  5235. }
  5236. /* we only need to pin inside GTT if cursor is non-phy */
  5237. mutex_lock(&dev->struct_mutex);
  5238. if (!dev_priv->info->cursor_needs_physical) {
  5239. if (obj->tiling_mode) {
  5240. DRM_ERROR("cursor cannot be tiled\n");
  5241. ret = -EINVAL;
  5242. goto fail_locked;
  5243. }
  5244. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5245. if (ret) {
  5246. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5247. goto fail_locked;
  5248. }
  5249. ret = i915_gem_object_put_fence(obj);
  5250. if (ret) {
  5251. DRM_ERROR("failed to release fence for cursor");
  5252. goto fail_unpin;
  5253. }
  5254. addr = obj->gtt_offset;
  5255. } else {
  5256. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5257. ret = i915_gem_attach_phys_object(dev, obj,
  5258. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5259. align);
  5260. if (ret) {
  5261. DRM_ERROR("failed to attach phys object\n");
  5262. goto fail_locked;
  5263. }
  5264. addr = obj->phys_obj->handle->busaddr;
  5265. }
  5266. if (IS_GEN2(dev))
  5267. I915_WRITE(CURSIZE, (height << 12) | width);
  5268. finish:
  5269. if (intel_crtc->cursor_bo) {
  5270. if (dev_priv->info->cursor_needs_physical) {
  5271. if (intel_crtc->cursor_bo != obj)
  5272. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5273. } else
  5274. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5275. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5276. }
  5277. mutex_unlock(&dev->struct_mutex);
  5278. intel_crtc->cursor_addr = addr;
  5279. intel_crtc->cursor_bo = obj;
  5280. intel_crtc->cursor_width = width;
  5281. intel_crtc->cursor_height = height;
  5282. intel_crtc_update_cursor(crtc, true);
  5283. return 0;
  5284. fail_unpin:
  5285. i915_gem_object_unpin(obj);
  5286. fail_locked:
  5287. mutex_unlock(&dev->struct_mutex);
  5288. fail:
  5289. drm_gem_object_unreference_unlocked(&obj->base);
  5290. return ret;
  5291. }
  5292. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5293. {
  5294. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5295. intel_crtc->cursor_x = x;
  5296. intel_crtc->cursor_y = y;
  5297. intel_crtc_update_cursor(crtc, true);
  5298. return 0;
  5299. }
  5300. /** Sets the color ramps on behalf of RandR */
  5301. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5302. u16 blue, int regno)
  5303. {
  5304. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5305. intel_crtc->lut_r[regno] = red >> 8;
  5306. intel_crtc->lut_g[regno] = green >> 8;
  5307. intel_crtc->lut_b[regno] = blue >> 8;
  5308. }
  5309. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5310. u16 *blue, int regno)
  5311. {
  5312. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5313. *red = intel_crtc->lut_r[regno] << 8;
  5314. *green = intel_crtc->lut_g[regno] << 8;
  5315. *blue = intel_crtc->lut_b[regno] << 8;
  5316. }
  5317. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5318. u16 *blue, uint32_t start, uint32_t size)
  5319. {
  5320. int end = (start + size > 256) ? 256 : start + size, i;
  5321. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5322. for (i = start; i < end; i++) {
  5323. intel_crtc->lut_r[i] = red[i] >> 8;
  5324. intel_crtc->lut_g[i] = green[i] >> 8;
  5325. intel_crtc->lut_b[i] = blue[i] >> 8;
  5326. }
  5327. intel_crtc_load_lut(crtc);
  5328. }
  5329. /**
  5330. * Get a pipe with a simple mode set on it for doing load-based monitor
  5331. * detection.
  5332. *
  5333. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5334. * its requirements. The pipe will be connected to no other encoders.
  5335. *
  5336. * Currently this code will only succeed if there is a pipe with no encoders
  5337. * configured for it. In the future, it could choose to temporarily disable
  5338. * some outputs to free up a pipe for its use.
  5339. *
  5340. * \return crtc, or NULL if no pipes are available.
  5341. */
  5342. /* VESA 640x480x72Hz mode to set on the pipe */
  5343. static struct drm_display_mode load_detect_mode = {
  5344. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5345. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5346. };
  5347. static struct drm_framebuffer *
  5348. intel_framebuffer_create(struct drm_device *dev,
  5349. struct drm_mode_fb_cmd2 *mode_cmd,
  5350. struct drm_i915_gem_object *obj)
  5351. {
  5352. struct intel_framebuffer *intel_fb;
  5353. int ret;
  5354. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5355. if (!intel_fb) {
  5356. drm_gem_object_unreference_unlocked(&obj->base);
  5357. return ERR_PTR(-ENOMEM);
  5358. }
  5359. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5360. if (ret) {
  5361. drm_gem_object_unreference_unlocked(&obj->base);
  5362. kfree(intel_fb);
  5363. return ERR_PTR(ret);
  5364. }
  5365. return &intel_fb->base;
  5366. }
  5367. static u32
  5368. intel_framebuffer_pitch_for_width(int width, int bpp)
  5369. {
  5370. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5371. return ALIGN(pitch, 64);
  5372. }
  5373. static u32
  5374. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5375. {
  5376. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5377. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5378. }
  5379. static struct drm_framebuffer *
  5380. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5381. struct drm_display_mode *mode,
  5382. int depth, int bpp)
  5383. {
  5384. struct drm_i915_gem_object *obj;
  5385. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5386. obj = i915_gem_alloc_object(dev,
  5387. intel_framebuffer_size_for_mode(mode, bpp));
  5388. if (obj == NULL)
  5389. return ERR_PTR(-ENOMEM);
  5390. mode_cmd.width = mode->hdisplay;
  5391. mode_cmd.height = mode->vdisplay;
  5392. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5393. bpp);
  5394. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5395. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5396. }
  5397. static struct drm_framebuffer *
  5398. mode_fits_in_fbdev(struct drm_device *dev,
  5399. struct drm_display_mode *mode)
  5400. {
  5401. struct drm_i915_private *dev_priv = dev->dev_private;
  5402. struct drm_i915_gem_object *obj;
  5403. struct drm_framebuffer *fb;
  5404. if (dev_priv->fbdev == NULL)
  5405. return NULL;
  5406. obj = dev_priv->fbdev->ifb.obj;
  5407. if (obj == NULL)
  5408. return NULL;
  5409. fb = &dev_priv->fbdev->ifb.base;
  5410. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5411. fb->bits_per_pixel))
  5412. return NULL;
  5413. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5414. return NULL;
  5415. return fb;
  5416. }
  5417. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5418. struct drm_display_mode *mode,
  5419. struct intel_load_detect_pipe *old)
  5420. {
  5421. struct intel_crtc *intel_crtc;
  5422. struct intel_encoder *intel_encoder =
  5423. intel_attached_encoder(connector);
  5424. struct drm_crtc *possible_crtc;
  5425. struct drm_encoder *encoder = &intel_encoder->base;
  5426. struct drm_crtc *crtc = NULL;
  5427. struct drm_device *dev = encoder->dev;
  5428. struct drm_framebuffer *fb;
  5429. int i = -1;
  5430. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5431. connector->base.id, drm_get_connector_name(connector),
  5432. encoder->base.id, drm_get_encoder_name(encoder));
  5433. /*
  5434. * Algorithm gets a little messy:
  5435. *
  5436. * - if the connector already has an assigned crtc, use it (but make
  5437. * sure it's on first)
  5438. *
  5439. * - try to find the first unused crtc that can drive this connector,
  5440. * and use that if we find one
  5441. */
  5442. /* See if we already have a CRTC for this connector */
  5443. if (encoder->crtc) {
  5444. crtc = encoder->crtc;
  5445. old->dpms_mode = connector->dpms;
  5446. old->load_detect_temp = false;
  5447. /* Make sure the crtc and connector are running */
  5448. if (connector->dpms != DRM_MODE_DPMS_ON)
  5449. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5450. return true;
  5451. }
  5452. /* Find an unused one (if possible) */
  5453. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5454. i++;
  5455. if (!(encoder->possible_crtcs & (1 << i)))
  5456. continue;
  5457. if (!possible_crtc->enabled) {
  5458. crtc = possible_crtc;
  5459. break;
  5460. }
  5461. }
  5462. /*
  5463. * If we didn't find an unused CRTC, don't use any.
  5464. */
  5465. if (!crtc) {
  5466. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5467. return false;
  5468. }
  5469. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5470. to_intel_connector(connector)->new_encoder = intel_encoder;
  5471. intel_crtc = to_intel_crtc(crtc);
  5472. old->dpms_mode = connector->dpms;
  5473. old->load_detect_temp = true;
  5474. old->release_fb = NULL;
  5475. if (!mode)
  5476. mode = &load_detect_mode;
  5477. /* We need a framebuffer large enough to accommodate all accesses
  5478. * that the plane may generate whilst we perform load detection.
  5479. * We can not rely on the fbcon either being present (we get called
  5480. * during its initialisation to detect all boot displays, or it may
  5481. * not even exist) or that it is large enough to satisfy the
  5482. * requested mode.
  5483. */
  5484. fb = mode_fits_in_fbdev(dev, mode);
  5485. if (fb == NULL) {
  5486. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5487. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5488. old->release_fb = fb;
  5489. } else
  5490. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5491. if (IS_ERR(fb)) {
  5492. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5493. return false;
  5494. }
  5495. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5496. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5497. if (old->release_fb)
  5498. old->release_fb->funcs->destroy(old->release_fb);
  5499. return false;
  5500. }
  5501. /* let the connector get through one full cycle before testing */
  5502. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5503. return true;
  5504. }
  5505. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5506. struct intel_load_detect_pipe *old)
  5507. {
  5508. struct intel_encoder *intel_encoder =
  5509. intel_attached_encoder(connector);
  5510. struct drm_encoder *encoder = &intel_encoder->base;
  5511. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5512. connector->base.id, drm_get_connector_name(connector),
  5513. encoder->base.id, drm_get_encoder_name(encoder));
  5514. if (old->load_detect_temp) {
  5515. struct drm_crtc *crtc = encoder->crtc;
  5516. to_intel_connector(connector)->new_encoder = NULL;
  5517. intel_encoder->new_crtc = NULL;
  5518. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5519. if (old->release_fb)
  5520. old->release_fb->funcs->destroy(old->release_fb);
  5521. return;
  5522. }
  5523. /* Switch crtc and encoder back off if necessary */
  5524. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5525. connector->funcs->dpms(connector, old->dpms_mode);
  5526. }
  5527. /* Returns the clock of the currently programmed mode of the given pipe. */
  5528. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5529. {
  5530. struct drm_i915_private *dev_priv = dev->dev_private;
  5531. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5532. int pipe = intel_crtc->pipe;
  5533. u32 dpll = I915_READ(DPLL(pipe));
  5534. u32 fp;
  5535. intel_clock_t clock;
  5536. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5537. fp = I915_READ(FP0(pipe));
  5538. else
  5539. fp = I915_READ(FP1(pipe));
  5540. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5541. if (IS_PINEVIEW(dev)) {
  5542. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5543. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5544. } else {
  5545. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5546. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5547. }
  5548. if (!IS_GEN2(dev)) {
  5549. if (IS_PINEVIEW(dev))
  5550. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5551. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5552. else
  5553. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5554. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5555. switch (dpll & DPLL_MODE_MASK) {
  5556. case DPLLB_MODE_DAC_SERIAL:
  5557. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5558. 5 : 10;
  5559. break;
  5560. case DPLLB_MODE_LVDS:
  5561. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5562. 7 : 14;
  5563. break;
  5564. default:
  5565. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5566. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5567. return 0;
  5568. }
  5569. /* XXX: Handle the 100Mhz refclk */
  5570. intel_clock(dev, 96000, &clock);
  5571. } else {
  5572. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5573. if (is_lvds) {
  5574. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5575. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5576. clock.p2 = 14;
  5577. if ((dpll & PLL_REF_INPUT_MASK) ==
  5578. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5579. /* XXX: might not be 66MHz */
  5580. intel_clock(dev, 66000, &clock);
  5581. } else
  5582. intel_clock(dev, 48000, &clock);
  5583. } else {
  5584. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5585. clock.p1 = 2;
  5586. else {
  5587. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5588. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5589. }
  5590. if (dpll & PLL_P2_DIVIDE_BY_4)
  5591. clock.p2 = 4;
  5592. else
  5593. clock.p2 = 2;
  5594. intel_clock(dev, 48000, &clock);
  5595. }
  5596. }
  5597. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5598. * i830PllIsValid() because it relies on the xf86_config connector
  5599. * configuration being accurate, which it isn't necessarily.
  5600. */
  5601. return clock.dot;
  5602. }
  5603. /** Returns the currently programmed mode of the given pipe. */
  5604. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5605. struct drm_crtc *crtc)
  5606. {
  5607. struct drm_i915_private *dev_priv = dev->dev_private;
  5608. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5609. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  5610. struct drm_display_mode *mode;
  5611. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5612. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5613. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5614. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5615. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5616. if (!mode)
  5617. return NULL;
  5618. mode->clock = intel_crtc_clock_get(dev, crtc);
  5619. mode->hdisplay = (htot & 0xffff) + 1;
  5620. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5621. mode->hsync_start = (hsync & 0xffff) + 1;
  5622. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5623. mode->vdisplay = (vtot & 0xffff) + 1;
  5624. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5625. mode->vsync_start = (vsync & 0xffff) + 1;
  5626. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5627. drm_mode_set_name(mode);
  5628. return mode;
  5629. }
  5630. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5631. {
  5632. struct drm_device *dev = crtc->dev;
  5633. drm_i915_private_t *dev_priv = dev->dev_private;
  5634. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5635. int pipe = intel_crtc->pipe;
  5636. int dpll_reg = DPLL(pipe);
  5637. int dpll;
  5638. if (HAS_PCH_SPLIT(dev))
  5639. return;
  5640. if (!dev_priv->lvds_downclock_avail)
  5641. return;
  5642. dpll = I915_READ(dpll_reg);
  5643. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5644. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5645. assert_panel_unlocked(dev_priv, pipe);
  5646. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5647. I915_WRITE(dpll_reg, dpll);
  5648. intel_wait_for_vblank(dev, pipe);
  5649. dpll = I915_READ(dpll_reg);
  5650. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5651. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5652. }
  5653. }
  5654. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5655. {
  5656. struct drm_device *dev = crtc->dev;
  5657. drm_i915_private_t *dev_priv = dev->dev_private;
  5658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5659. if (HAS_PCH_SPLIT(dev))
  5660. return;
  5661. if (!dev_priv->lvds_downclock_avail)
  5662. return;
  5663. /*
  5664. * Since this is called by a timer, we should never get here in
  5665. * the manual case.
  5666. */
  5667. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5668. int pipe = intel_crtc->pipe;
  5669. int dpll_reg = DPLL(pipe);
  5670. int dpll;
  5671. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5672. assert_panel_unlocked(dev_priv, pipe);
  5673. dpll = I915_READ(dpll_reg);
  5674. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5675. I915_WRITE(dpll_reg, dpll);
  5676. intel_wait_for_vblank(dev, pipe);
  5677. dpll = I915_READ(dpll_reg);
  5678. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5679. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5680. }
  5681. }
  5682. void intel_mark_busy(struct drm_device *dev)
  5683. {
  5684. i915_update_gfx_val(dev->dev_private);
  5685. }
  5686. void intel_mark_idle(struct drm_device *dev)
  5687. {
  5688. }
  5689. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5690. {
  5691. struct drm_device *dev = obj->base.dev;
  5692. struct drm_crtc *crtc;
  5693. if (!i915_powersave)
  5694. return;
  5695. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5696. if (!crtc->fb)
  5697. continue;
  5698. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5699. intel_increase_pllclock(crtc);
  5700. }
  5701. }
  5702. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5703. {
  5704. struct drm_device *dev = obj->base.dev;
  5705. struct drm_crtc *crtc;
  5706. if (!i915_powersave)
  5707. return;
  5708. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5709. if (!crtc->fb)
  5710. continue;
  5711. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5712. intel_decrease_pllclock(crtc);
  5713. }
  5714. }
  5715. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5716. {
  5717. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5718. struct drm_device *dev = crtc->dev;
  5719. struct intel_unpin_work *work;
  5720. unsigned long flags;
  5721. spin_lock_irqsave(&dev->event_lock, flags);
  5722. work = intel_crtc->unpin_work;
  5723. intel_crtc->unpin_work = NULL;
  5724. spin_unlock_irqrestore(&dev->event_lock, flags);
  5725. if (work) {
  5726. cancel_work_sync(&work->work);
  5727. kfree(work);
  5728. }
  5729. drm_crtc_cleanup(crtc);
  5730. kfree(intel_crtc);
  5731. }
  5732. static void intel_unpin_work_fn(struct work_struct *__work)
  5733. {
  5734. struct intel_unpin_work *work =
  5735. container_of(__work, struct intel_unpin_work, work);
  5736. struct drm_device *dev = work->crtc->dev;
  5737. mutex_lock(&dev->struct_mutex);
  5738. intel_unpin_fb_obj(work->old_fb_obj);
  5739. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5740. drm_gem_object_unreference(&work->old_fb_obj->base);
  5741. intel_update_fbc(dev);
  5742. mutex_unlock(&dev->struct_mutex);
  5743. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5744. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5745. kfree(work);
  5746. }
  5747. static void do_intel_finish_page_flip(struct drm_device *dev,
  5748. struct drm_crtc *crtc)
  5749. {
  5750. drm_i915_private_t *dev_priv = dev->dev_private;
  5751. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5752. struct intel_unpin_work *work;
  5753. struct drm_i915_gem_object *obj;
  5754. unsigned long flags;
  5755. /* Ignore early vblank irqs */
  5756. if (intel_crtc == NULL)
  5757. return;
  5758. spin_lock_irqsave(&dev->event_lock, flags);
  5759. work = intel_crtc->unpin_work;
  5760. if (work == NULL || !work->pending) {
  5761. spin_unlock_irqrestore(&dev->event_lock, flags);
  5762. return;
  5763. }
  5764. intel_crtc->unpin_work = NULL;
  5765. if (work->event)
  5766. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5767. drm_vblank_put(dev, intel_crtc->pipe);
  5768. spin_unlock_irqrestore(&dev->event_lock, flags);
  5769. obj = work->old_fb_obj;
  5770. wake_up(&dev_priv->pending_flip_queue);
  5771. queue_work(dev_priv->wq, &work->work);
  5772. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5773. }
  5774. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5775. {
  5776. drm_i915_private_t *dev_priv = dev->dev_private;
  5777. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5778. do_intel_finish_page_flip(dev, crtc);
  5779. }
  5780. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5781. {
  5782. drm_i915_private_t *dev_priv = dev->dev_private;
  5783. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5784. do_intel_finish_page_flip(dev, crtc);
  5785. }
  5786. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5787. {
  5788. drm_i915_private_t *dev_priv = dev->dev_private;
  5789. struct intel_crtc *intel_crtc =
  5790. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5791. unsigned long flags;
  5792. spin_lock_irqsave(&dev->event_lock, flags);
  5793. if (intel_crtc->unpin_work) {
  5794. if ((++intel_crtc->unpin_work->pending) > 1)
  5795. DRM_ERROR("Prepared flip multiple times\n");
  5796. } else {
  5797. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5798. }
  5799. spin_unlock_irqrestore(&dev->event_lock, flags);
  5800. }
  5801. static int intel_gen2_queue_flip(struct drm_device *dev,
  5802. struct drm_crtc *crtc,
  5803. struct drm_framebuffer *fb,
  5804. struct drm_i915_gem_object *obj)
  5805. {
  5806. struct drm_i915_private *dev_priv = dev->dev_private;
  5807. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5808. u32 flip_mask;
  5809. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5810. int ret;
  5811. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5812. if (ret)
  5813. goto err;
  5814. ret = intel_ring_begin(ring, 6);
  5815. if (ret)
  5816. goto err_unpin;
  5817. /* Can't queue multiple flips, so wait for the previous
  5818. * one to finish before executing the next.
  5819. */
  5820. if (intel_crtc->plane)
  5821. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5822. else
  5823. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5824. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5825. intel_ring_emit(ring, MI_NOOP);
  5826. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5827. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5828. intel_ring_emit(ring, fb->pitches[0]);
  5829. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5830. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5831. intel_ring_advance(ring);
  5832. return 0;
  5833. err_unpin:
  5834. intel_unpin_fb_obj(obj);
  5835. err:
  5836. return ret;
  5837. }
  5838. static int intel_gen3_queue_flip(struct drm_device *dev,
  5839. struct drm_crtc *crtc,
  5840. struct drm_framebuffer *fb,
  5841. struct drm_i915_gem_object *obj)
  5842. {
  5843. struct drm_i915_private *dev_priv = dev->dev_private;
  5844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5845. u32 flip_mask;
  5846. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5847. int ret;
  5848. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5849. if (ret)
  5850. goto err;
  5851. ret = intel_ring_begin(ring, 6);
  5852. if (ret)
  5853. goto err_unpin;
  5854. if (intel_crtc->plane)
  5855. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5856. else
  5857. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5858. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5859. intel_ring_emit(ring, MI_NOOP);
  5860. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5861. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5862. intel_ring_emit(ring, fb->pitches[0]);
  5863. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5864. intel_ring_emit(ring, MI_NOOP);
  5865. intel_ring_advance(ring);
  5866. return 0;
  5867. err_unpin:
  5868. intel_unpin_fb_obj(obj);
  5869. err:
  5870. return ret;
  5871. }
  5872. static int intel_gen4_queue_flip(struct drm_device *dev,
  5873. struct drm_crtc *crtc,
  5874. struct drm_framebuffer *fb,
  5875. struct drm_i915_gem_object *obj)
  5876. {
  5877. struct drm_i915_private *dev_priv = dev->dev_private;
  5878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5879. uint32_t pf, pipesrc;
  5880. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5881. int ret;
  5882. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5883. if (ret)
  5884. goto err;
  5885. ret = intel_ring_begin(ring, 4);
  5886. if (ret)
  5887. goto err_unpin;
  5888. /* i965+ uses the linear or tiled offsets from the
  5889. * Display Registers (which do not change across a page-flip)
  5890. * so we need only reprogram the base address.
  5891. */
  5892. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5893. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5894. intel_ring_emit(ring, fb->pitches[0]);
  5895. intel_ring_emit(ring,
  5896. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5897. obj->tiling_mode);
  5898. /* XXX Enabling the panel-fitter across page-flip is so far
  5899. * untested on non-native modes, so ignore it for now.
  5900. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5901. */
  5902. pf = 0;
  5903. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5904. intel_ring_emit(ring, pf | pipesrc);
  5905. intel_ring_advance(ring);
  5906. return 0;
  5907. err_unpin:
  5908. intel_unpin_fb_obj(obj);
  5909. err:
  5910. return ret;
  5911. }
  5912. static int intel_gen6_queue_flip(struct drm_device *dev,
  5913. struct drm_crtc *crtc,
  5914. struct drm_framebuffer *fb,
  5915. struct drm_i915_gem_object *obj)
  5916. {
  5917. struct drm_i915_private *dev_priv = dev->dev_private;
  5918. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5919. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5920. uint32_t pf, pipesrc;
  5921. int ret;
  5922. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5923. if (ret)
  5924. goto err;
  5925. ret = intel_ring_begin(ring, 4);
  5926. if (ret)
  5927. goto err_unpin;
  5928. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5929. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5930. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5931. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5932. /* Contrary to the suggestions in the documentation,
  5933. * "Enable Panel Fitter" does not seem to be required when page
  5934. * flipping with a non-native mode, and worse causes a normal
  5935. * modeset to fail.
  5936. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5937. */
  5938. pf = 0;
  5939. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5940. intel_ring_emit(ring, pf | pipesrc);
  5941. intel_ring_advance(ring);
  5942. return 0;
  5943. err_unpin:
  5944. intel_unpin_fb_obj(obj);
  5945. err:
  5946. return ret;
  5947. }
  5948. /*
  5949. * On gen7 we currently use the blit ring because (in early silicon at least)
  5950. * the render ring doesn't give us interrpts for page flip completion, which
  5951. * means clients will hang after the first flip is queued. Fortunately the
  5952. * blit ring generates interrupts properly, so use it instead.
  5953. */
  5954. static int intel_gen7_queue_flip(struct drm_device *dev,
  5955. struct drm_crtc *crtc,
  5956. struct drm_framebuffer *fb,
  5957. struct drm_i915_gem_object *obj)
  5958. {
  5959. struct drm_i915_private *dev_priv = dev->dev_private;
  5960. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5961. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5962. uint32_t plane_bit = 0;
  5963. int ret;
  5964. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5965. if (ret)
  5966. goto err;
  5967. switch(intel_crtc->plane) {
  5968. case PLANE_A:
  5969. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  5970. break;
  5971. case PLANE_B:
  5972. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  5973. break;
  5974. case PLANE_C:
  5975. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  5976. break;
  5977. default:
  5978. WARN_ONCE(1, "unknown plane in flip command\n");
  5979. ret = -ENODEV;
  5980. goto err_unpin;
  5981. }
  5982. ret = intel_ring_begin(ring, 4);
  5983. if (ret)
  5984. goto err_unpin;
  5985. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  5986. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5987. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5988. intel_ring_emit(ring, (MI_NOOP));
  5989. intel_ring_advance(ring);
  5990. return 0;
  5991. err_unpin:
  5992. intel_unpin_fb_obj(obj);
  5993. err:
  5994. return ret;
  5995. }
  5996. static int intel_default_queue_flip(struct drm_device *dev,
  5997. struct drm_crtc *crtc,
  5998. struct drm_framebuffer *fb,
  5999. struct drm_i915_gem_object *obj)
  6000. {
  6001. return -ENODEV;
  6002. }
  6003. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6004. struct drm_framebuffer *fb,
  6005. struct drm_pending_vblank_event *event)
  6006. {
  6007. struct drm_device *dev = crtc->dev;
  6008. struct drm_i915_private *dev_priv = dev->dev_private;
  6009. struct intel_framebuffer *intel_fb;
  6010. struct drm_i915_gem_object *obj;
  6011. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6012. struct intel_unpin_work *work;
  6013. unsigned long flags;
  6014. int ret;
  6015. /* Can't change pixel format via MI display flips. */
  6016. if (fb->pixel_format != crtc->fb->pixel_format)
  6017. return -EINVAL;
  6018. /*
  6019. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6020. * Note that pitch changes could also affect these register.
  6021. */
  6022. if (INTEL_INFO(dev)->gen > 3 &&
  6023. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6024. fb->pitches[0] != crtc->fb->pitches[0]))
  6025. return -EINVAL;
  6026. work = kzalloc(sizeof *work, GFP_KERNEL);
  6027. if (work == NULL)
  6028. return -ENOMEM;
  6029. work->event = event;
  6030. work->crtc = crtc;
  6031. intel_fb = to_intel_framebuffer(crtc->fb);
  6032. work->old_fb_obj = intel_fb->obj;
  6033. INIT_WORK(&work->work, intel_unpin_work_fn);
  6034. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6035. if (ret)
  6036. goto free_work;
  6037. /* We borrow the event spin lock for protecting unpin_work */
  6038. spin_lock_irqsave(&dev->event_lock, flags);
  6039. if (intel_crtc->unpin_work) {
  6040. spin_unlock_irqrestore(&dev->event_lock, flags);
  6041. kfree(work);
  6042. drm_vblank_put(dev, intel_crtc->pipe);
  6043. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6044. return -EBUSY;
  6045. }
  6046. intel_crtc->unpin_work = work;
  6047. spin_unlock_irqrestore(&dev->event_lock, flags);
  6048. intel_fb = to_intel_framebuffer(fb);
  6049. obj = intel_fb->obj;
  6050. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6051. flush_workqueue(dev_priv->wq);
  6052. ret = i915_mutex_lock_interruptible(dev);
  6053. if (ret)
  6054. goto cleanup;
  6055. /* Reference the objects for the scheduled work. */
  6056. drm_gem_object_reference(&work->old_fb_obj->base);
  6057. drm_gem_object_reference(&obj->base);
  6058. crtc->fb = fb;
  6059. work->pending_flip_obj = obj;
  6060. work->enable_stall_check = true;
  6061. atomic_inc(&intel_crtc->unpin_work_count);
  6062. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6063. if (ret)
  6064. goto cleanup_pending;
  6065. intel_disable_fbc(dev);
  6066. intel_mark_fb_busy(obj);
  6067. mutex_unlock(&dev->struct_mutex);
  6068. trace_i915_flip_request(intel_crtc->plane, obj);
  6069. return 0;
  6070. cleanup_pending:
  6071. atomic_dec(&intel_crtc->unpin_work_count);
  6072. drm_gem_object_unreference(&work->old_fb_obj->base);
  6073. drm_gem_object_unreference(&obj->base);
  6074. mutex_unlock(&dev->struct_mutex);
  6075. cleanup:
  6076. spin_lock_irqsave(&dev->event_lock, flags);
  6077. intel_crtc->unpin_work = NULL;
  6078. spin_unlock_irqrestore(&dev->event_lock, flags);
  6079. drm_vblank_put(dev, intel_crtc->pipe);
  6080. free_work:
  6081. kfree(work);
  6082. return ret;
  6083. }
  6084. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6085. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6086. .load_lut = intel_crtc_load_lut,
  6087. .disable = intel_crtc_noop,
  6088. };
  6089. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6090. {
  6091. struct intel_encoder *other_encoder;
  6092. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6093. if (WARN_ON(!crtc))
  6094. return false;
  6095. list_for_each_entry(other_encoder,
  6096. &crtc->dev->mode_config.encoder_list,
  6097. base.head) {
  6098. if (&other_encoder->new_crtc->base != crtc ||
  6099. encoder == other_encoder)
  6100. continue;
  6101. else
  6102. return true;
  6103. }
  6104. return false;
  6105. }
  6106. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6107. struct drm_crtc *crtc)
  6108. {
  6109. struct drm_device *dev;
  6110. struct drm_crtc *tmp;
  6111. int crtc_mask = 1;
  6112. WARN(!crtc, "checking null crtc?\n");
  6113. dev = crtc->dev;
  6114. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6115. if (tmp == crtc)
  6116. break;
  6117. crtc_mask <<= 1;
  6118. }
  6119. if (encoder->possible_crtcs & crtc_mask)
  6120. return true;
  6121. return false;
  6122. }
  6123. /**
  6124. * intel_modeset_update_staged_output_state
  6125. *
  6126. * Updates the staged output configuration state, e.g. after we've read out the
  6127. * current hw state.
  6128. */
  6129. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6130. {
  6131. struct intel_encoder *encoder;
  6132. struct intel_connector *connector;
  6133. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6134. base.head) {
  6135. connector->new_encoder =
  6136. to_intel_encoder(connector->base.encoder);
  6137. }
  6138. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6139. base.head) {
  6140. encoder->new_crtc =
  6141. to_intel_crtc(encoder->base.crtc);
  6142. }
  6143. }
  6144. /**
  6145. * intel_modeset_commit_output_state
  6146. *
  6147. * This function copies the stage display pipe configuration to the real one.
  6148. */
  6149. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6150. {
  6151. struct intel_encoder *encoder;
  6152. struct intel_connector *connector;
  6153. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6154. base.head) {
  6155. connector->base.encoder = &connector->new_encoder->base;
  6156. }
  6157. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6158. base.head) {
  6159. encoder->base.crtc = &encoder->new_crtc->base;
  6160. }
  6161. }
  6162. static struct drm_display_mode *
  6163. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6164. struct drm_display_mode *mode)
  6165. {
  6166. struct drm_device *dev = crtc->dev;
  6167. struct drm_display_mode *adjusted_mode;
  6168. struct drm_encoder_helper_funcs *encoder_funcs;
  6169. struct intel_encoder *encoder;
  6170. adjusted_mode = drm_mode_duplicate(dev, mode);
  6171. if (!adjusted_mode)
  6172. return ERR_PTR(-ENOMEM);
  6173. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6174. * adjust it according to limitations or connector properties, and also
  6175. * a chance to reject the mode entirely.
  6176. */
  6177. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6178. base.head) {
  6179. if (&encoder->new_crtc->base != crtc)
  6180. continue;
  6181. encoder_funcs = encoder->base.helper_private;
  6182. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6183. adjusted_mode))) {
  6184. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6185. goto fail;
  6186. }
  6187. }
  6188. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6189. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6190. goto fail;
  6191. }
  6192. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6193. return adjusted_mode;
  6194. fail:
  6195. drm_mode_destroy(dev, adjusted_mode);
  6196. return ERR_PTR(-EINVAL);
  6197. }
  6198. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6199. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6200. static void
  6201. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6202. unsigned *prepare_pipes, unsigned *disable_pipes)
  6203. {
  6204. struct intel_crtc *intel_crtc;
  6205. struct drm_device *dev = crtc->dev;
  6206. struct intel_encoder *encoder;
  6207. struct intel_connector *connector;
  6208. struct drm_crtc *tmp_crtc;
  6209. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6210. /* Check which crtcs have changed outputs connected to them, these need
  6211. * to be part of the prepare_pipes mask. We don't (yet) support global
  6212. * modeset across multiple crtcs, so modeset_pipes will only have one
  6213. * bit set at most. */
  6214. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6215. base.head) {
  6216. if (connector->base.encoder == &connector->new_encoder->base)
  6217. continue;
  6218. if (connector->base.encoder) {
  6219. tmp_crtc = connector->base.encoder->crtc;
  6220. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6221. }
  6222. if (connector->new_encoder)
  6223. *prepare_pipes |=
  6224. 1 << connector->new_encoder->new_crtc->pipe;
  6225. }
  6226. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6227. base.head) {
  6228. if (encoder->base.crtc == &encoder->new_crtc->base)
  6229. continue;
  6230. if (encoder->base.crtc) {
  6231. tmp_crtc = encoder->base.crtc;
  6232. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6233. }
  6234. if (encoder->new_crtc)
  6235. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6236. }
  6237. /* Check for any pipes that will be fully disabled ... */
  6238. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6239. base.head) {
  6240. bool used = false;
  6241. /* Don't try to disable disabled crtcs. */
  6242. if (!intel_crtc->base.enabled)
  6243. continue;
  6244. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6245. base.head) {
  6246. if (encoder->new_crtc == intel_crtc)
  6247. used = true;
  6248. }
  6249. if (!used)
  6250. *disable_pipes |= 1 << intel_crtc->pipe;
  6251. }
  6252. /* set_mode is also used to update properties on life display pipes. */
  6253. intel_crtc = to_intel_crtc(crtc);
  6254. if (crtc->enabled)
  6255. *prepare_pipes |= 1 << intel_crtc->pipe;
  6256. /* We only support modeset on one single crtc, hence we need to do that
  6257. * only for the passed in crtc iff we change anything else than just
  6258. * disable crtcs.
  6259. *
  6260. * This is actually not true, to be fully compatible with the old crtc
  6261. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6262. * connected to the crtc we're modesetting on) if it's disconnected.
  6263. * Which is a rather nutty api (since changed the output configuration
  6264. * without userspace's explicit request can lead to confusion), but
  6265. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6266. if (*prepare_pipes)
  6267. *modeset_pipes = *prepare_pipes;
  6268. /* ... and mask these out. */
  6269. *modeset_pipes &= ~(*disable_pipes);
  6270. *prepare_pipes &= ~(*disable_pipes);
  6271. }
  6272. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6273. {
  6274. struct drm_encoder *encoder;
  6275. struct drm_device *dev = crtc->dev;
  6276. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6277. if (encoder->crtc == crtc)
  6278. return true;
  6279. return false;
  6280. }
  6281. static void
  6282. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6283. {
  6284. struct intel_encoder *intel_encoder;
  6285. struct intel_crtc *intel_crtc;
  6286. struct drm_connector *connector;
  6287. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6288. base.head) {
  6289. if (!intel_encoder->base.crtc)
  6290. continue;
  6291. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6292. if (prepare_pipes & (1 << intel_crtc->pipe))
  6293. intel_encoder->connectors_active = false;
  6294. }
  6295. intel_modeset_commit_output_state(dev);
  6296. /* Update computed state. */
  6297. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6298. base.head) {
  6299. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6300. }
  6301. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6302. if (!connector->encoder || !connector->encoder->crtc)
  6303. continue;
  6304. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6305. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6306. struct drm_property *dpms_property =
  6307. dev->mode_config.dpms_property;
  6308. connector->dpms = DRM_MODE_DPMS_ON;
  6309. drm_object_property_set_value(&connector->base,
  6310. dpms_property,
  6311. DRM_MODE_DPMS_ON);
  6312. intel_encoder = to_intel_encoder(connector->encoder);
  6313. intel_encoder->connectors_active = true;
  6314. }
  6315. }
  6316. }
  6317. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6318. list_for_each_entry((intel_crtc), \
  6319. &(dev)->mode_config.crtc_list, \
  6320. base.head) \
  6321. if (mask & (1 <<(intel_crtc)->pipe)) \
  6322. void
  6323. intel_modeset_check_state(struct drm_device *dev)
  6324. {
  6325. struct intel_crtc *crtc;
  6326. struct intel_encoder *encoder;
  6327. struct intel_connector *connector;
  6328. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6329. base.head) {
  6330. /* This also checks the encoder/connector hw state with the
  6331. * ->get_hw_state callbacks. */
  6332. intel_connector_check_state(connector);
  6333. WARN(&connector->new_encoder->base != connector->base.encoder,
  6334. "connector's staged encoder doesn't match current encoder\n");
  6335. }
  6336. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6337. base.head) {
  6338. bool enabled = false;
  6339. bool active = false;
  6340. enum pipe pipe, tracked_pipe;
  6341. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6342. encoder->base.base.id,
  6343. drm_get_encoder_name(&encoder->base));
  6344. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6345. "encoder's stage crtc doesn't match current crtc\n");
  6346. WARN(encoder->connectors_active && !encoder->base.crtc,
  6347. "encoder's active_connectors set, but no crtc\n");
  6348. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6349. base.head) {
  6350. if (connector->base.encoder != &encoder->base)
  6351. continue;
  6352. enabled = true;
  6353. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6354. active = true;
  6355. }
  6356. WARN(!!encoder->base.crtc != enabled,
  6357. "encoder's enabled state mismatch "
  6358. "(expected %i, found %i)\n",
  6359. !!encoder->base.crtc, enabled);
  6360. WARN(active && !encoder->base.crtc,
  6361. "active encoder with no crtc\n");
  6362. WARN(encoder->connectors_active != active,
  6363. "encoder's computed active state doesn't match tracked active state "
  6364. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6365. active = encoder->get_hw_state(encoder, &pipe);
  6366. WARN(active != encoder->connectors_active,
  6367. "encoder's hw state doesn't match sw tracking "
  6368. "(expected %i, found %i)\n",
  6369. encoder->connectors_active, active);
  6370. if (!encoder->base.crtc)
  6371. continue;
  6372. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6373. WARN(active && pipe != tracked_pipe,
  6374. "active encoder's pipe doesn't match"
  6375. "(expected %i, found %i)\n",
  6376. tracked_pipe, pipe);
  6377. }
  6378. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6379. base.head) {
  6380. bool enabled = false;
  6381. bool active = false;
  6382. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6383. crtc->base.base.id);
  6384. WARN(crtc->active && !crtc->base.enabled,
  6385. "active crtc, but not enabled in sw tracking\n");
  6386. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6387. base.head) {
  6388. if (encoder->base.crtc != &crtc->base)
  6389. continue;
  6390. enabled = true;
  6391. if (encoder->connectors_active)
  6392. active = true;
  6393. }
  6394. WARN(active != crtc->active,
  6395. "crtc's computed active state doesn't match tracked active state "
  6396. "(expected %i, found %i)\n", active, crtc->active);
  6397. WARN(enabled != crtc->base.enabled,
  6398. "crtc's computed enabled state doesn't match tracked enabled state "
  6399. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6400. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6401. }
  6402. }
  6403. bool intel_set_mode(struct drm_crtc *crtc,
  6404. struct drm_display_mode *mode,
  6405. int x, int y, struct drm_framebuffer *fb)
  6406. {
  6407. struct drm_device *dev = crtc->dev;
  6408. drm_i915_private_t *dev_priv = dev->dev_private;
  6409. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6410. struct intel_crtc *intel_crtc;
  6411. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6412. bool ret = true;
  6413. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6414. &prepare_pipes, &disable_pipes);
  6415. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6416. modeset_pipes, prepare_pipes, disable_pipes);
  6417. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6418. intel_crtc_disable(&intel_crtc->base);
  6419. saved_hwmode = crtc->hwmode;
  6420. saved_mode = crtc->mode;
  6421. /* Hack: Because we don't (yet) support global modeset on multiple
  6422. * crtcs, we don't keep track of the new mode for more than one crtc.
  6423. * Hence simply check whether any bit is set in modeset_pipes in all the
  6424. * pieces of code that are not yet converted to deal with mutliple crtcs
  6425. * changing their mode at the same time. */
  6426. adjusted_mode = NULL;
  6427. if (modeset_pipes) {
  6428. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6429. if (IS_ERR(adjusted_mode)) {
  6430. return false;
  6431. }
  6432. }
  6433. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6434. if (intel_crtc->base.enabled)
  6435. dev_priv->display.crtc_disable(&intel_crtc->base);
  6436. }
  6437. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6438. * to set it here already despite that we pass it down the callchain.
  6439. */
  6440. if (modeset_pipes)
  6441. crtc->mode = *mode;
  6442. /* Only after disabling all output pipelines that will be changed can we
  6443. * update the the output configuration. */
  6444. intel_modeset_update_state(dev, prepare_pipes);
  6445. if (dev_priv->display.modeset_global_resources)
  6446. dev_priv->display.modeset_global_resources(dev);
  6447. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6448. * on the DPLL.
  6449. */
  6450. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6451. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6452. mode, adjusted_mode,
  6453. x, y, fb);
  6454. if (!ret)
  6455. goto done;
  6456. }
  6457. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6458. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6459. dev_priv->display.crtc_enable(&intel_crtc->base);
  6460. if (modeset_pipes) {
  6461. /* Store real post-adjustment hardware mode. */
  6462. crtc->hwmode = *adjusted_mode;
  6463. /* Calculate and store various constants which
  6464. * are later needed by vblank and swap-completion
  6465. * timestamping. They are derived from true hwmode.
  6466. */
  6467. drm_calc_timestamping_constants(crtc);
  6468. }
  6469. /* FIXME: add subpixel order */
  6470. done:
  6471. drm_mode_destroy(dev, adjusted_mode);
  6472. if (!ret && crtc->enabled) {
  6473. crtc->hwmode = saved_hwmode;
  6474. crtc->mode = saved_mode;
  6475. } else {
  6476. intel_modeset_check_state(dev);
  6477. }
  6478. return ret;
  6479. }
  6480. #undef for_each_intel_crtc_masked
  6481. static void intel_set_config_free(struct intel_set_config *config)
  6482. {
  6483. if (!config)
  6484. return;
  6485. kfree(config->save_connector_encoders);
  6486. kfree(config->save_encoder_crtcs);
  6487. kfree(config);
  6488. }
  6489. static int intel_set_config_save_state(struct drm_device *dev,
  6490. struct intel_set_config *config)
  6491. {
  6492. struct drm_encoder *encoder;
  6493. struct drm_connector *connector;
  6494. int count;
  6495. config->save_encoder_crtcs =
  6496. kcalloc(dev->mode_config.num_encoder,
  6497. sizeof(struct drm_crtc *), GFP_KERNEL);
  6498. if (!config->save_encoder_crtcs)
  6499. return -ENOMEM;
  6500. config->save_connector_encoders =
  6501. kcalloc(dev->mode_config.num_connector,
  6502. sizeof(struct drm_encoder *), GFP_KERNEL);
  6503. if (!config->save_connector_encoders)
  6504. return -ENOMEM;
  6505. /* Copy data. Note that driver private data is not affected.
  6506. * Should anything bad happen only the expected state is
  6507. * restored, not the drivers personal bookkeeping.
  6508. */
  6509. count = 0;
  6510. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6511. config->save_encoder_crtcs[count++] = encoder->crtc;
  6512. }
  6513. count = 0;
  6514. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6515. config->save_connector_encoders[count++] = connector->encoder;
  6516. }
  6517. return 0;
  6518. }
  6519. static void intel_set_config_restore_state(struct drm_device *dev,
  6520. struct intel_set_config *config)
  6521. {
  6522. struct intel_encoder *encoder;
  6523. struct intel_connector *connector;
  6524. int count;
  6525. count = 0;
  6526. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6527. encoder->new_crtc =
  6528. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6529. }
  6530. count = 0;
  6531. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6532. connector->new_encoder =
  6533. to_intel_encoder(config->save_connector_encoders[count++]);
  6534. }
  6535. }
  6536. static void
  6537. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6538. struct intel_set_config *config)
  6539. {
  6540. /* We should be able to check here if the fb has the same properties
  6541. * and then just flip_or_move it */
  6542. if (set->crtc->fb != set->fb) {
  6543. /* If we have no fb then treat it as a full mode set */
  6544. if (set->crtc->fb == NULL) {
  6545. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6546. config->mode_changed = true;
  6547. } else if (set->fb == NULL) {
  6548. config->mode_changed = true;
  6549. } else if (set->fb->depth != set->crtc->fb->depth) {
  6550. config->mode_changed = true;
  6551. } else if (set->fb->bits_per_pixel !=
  6552. set->crtc->fb->bits_per_pixel) {
  6553. config->mode_changed = true;
  6554. } else
  6555. config->fb_changed = true;
  6556. }
  6557. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6558. config->fb_changed = true;
  6559. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6560. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6561. drm_mode_debug_printmodeline(&set->crtc->mode);
  6562. drm_mode_debug_printmodeline(set->mode);
  6563. config->mode_changed = true;
  6564. }
  6565. }
  6566. static int
  6567. intel_modeset_stage_output_state(struct drm_device *dev,
  6568. struct drm_mode_set *set,
  6569. struct intel_set_config *config)
  6570. {
  6571. struct drm_crtc *new_crtc;
  6572. struct intel_connector *connector;
  6573. struct intel_encoder *encoder;
  6574. int count, ro;
  6575. /* The upper layers ensure that we either disabl a crtc or have a list
  6576. * of connectors. For paranoia, double-check this. */
  6577. WARN_ON(!set->fb && (set->num_connectors != 0));
  6578. WARN_ON(set->fb && (set->num_connectors == 0));
  6579. count = 0;
  6580. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6581. base.head) {
  6582. /* Otherwise traverse passed in connector list and get encoders
  6583. * for them. */
  6584. for (ro = 0; ro < set->num_connectors; ro++) {
  6585. if (set->connectors[ro] == &connector->base) {
  6586. connector->new_encoder = connector->encoder;
  6587. break;
  6588. }
  6589. }
  6590. /* If we disable the crtc, disable all its connectors. Also, if
  6591. * the connector is on the changing crtc but not on the new
  6592. * connector list, disable it. */
  6593. if ((!set->fb || ro == set->num_connectors) &&
  6594. connector->base.encoder &&
  6595. connector->base.encoder->crtc == set->crtc) {
  6596. connector->new_encoder = NULL;
  6597. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6598. connector->base.base.id,
  6599. drm_get_connector_name(&connector->base));
  6600. }
  6601. if (&connector->new_encoder->base != connector->base.encoder) {
  6602. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6603. config->mode_changed = true;
  6604. }
  6605. /* Disable all disconnected encoders. */
  6606. if (connector->base.status == connector_status_disconnected)
  6607. connector->new_encoder = NULL;
  6608. }
  6609. /* connector->new_encoder is now updated for all connectors. */
  6610. /* Update crtc of enabled connectors. */
  6611. count = 0;
  6612. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6613. base.head) {
  6614. if (!connector->new_encoder)
  6615. continue;
  6616. new_crtc = connector->new_encoder->base.crtc;
  6617. for (ro = 0; ro < set->num_connectors; ro++) {
  6618. if (set->connectors[ro] == &connector->base)
  6619. new_crtc = set->crtc;
  6620. }
  6621. /* Make sure the new CRTC will work with the encoder */
  6622. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6623. new_crtc)) {
  6624. return -EINVAL;
  6625. }
  6626. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6627. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6628. connector->base.base.id,
  6629. drm_get_connector_name(&connector->base),
  6630. new_crtc->base.id);
  6631. }
  6632. /* Check for any encoders that needs to be disabled. */
  6633. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6634. base.head) {
  6635. list_for_each_entry(connector,
  6636. &dev->mode_config.connector_list,
  6637. base.head) {
  6638. if (connector->new_encoder == encoder) {
  6639. WARN_ON(!connector->new_encoder->new_crtc);
  6640. goto next_encoder;
  6641. }
  6642. }
  6643. encoder->new_crtc = NULL;
  6644. next_encoder:
  6645. /* Only now check for crtc changes so we don't miss encoders
  6646. * that will be disabled. */
  6647. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6648. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6649. config->mode_changed = true;
  6650. }
  6651. }
  6652. /* Now we've also updated encoder->new_crtc for all encoders. */
  6653. return 0;
  6654. }
  6655. static int intel_crtc_set_config(struct drm_mode_set *set)
  6656. {
  6657. struct drm_device *dev;
  6658. struct drm_mode_set save_set;
  6659. struct intel_set_config *config;
  6660. int ret;
  6661. BUG_ON(!set);
  6662. BUG_ON(!set->crtc);
  6663. BUG_ON(!set->crtc->helper_private);
  6664. if (!set->mode)
  6665. set->fb = NULL;
  6666. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6667. * Unfortunately the crtc helper doesn't do much at all for this case,
  6668. * so we have to cope with this madness until the fb helper is fixed up. */
  6669. if (set->fb && set->num_connectors == 0)
  6670. return 0;
  6671. if (set->fb) {
  6672. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6673. set->crtc->base.id, set->fb->base.id,
  6674. (int)set->num_connectors, set->x, set->y);
  6675. } else {
  6676. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6677. }
  6678. dev = set->crtc->dev;
  6679. ret = -ENOMEM;
  6680. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6681. if (!config)
  6682. goto out_config;
  6683. ret = intel_set_config_save_state(dev, config);
  6684. if (ret)
  6685. goto out_config;
  6686. save_set.crtc = set->crtc;
  6687. save_set.mode = &set->crtc->mode;
  6688. save_set.x = set->crtc->x;
  6689. save_set.y = set->crtc->y;
  6690. save_set.fb = set->crtc->fb;
  6691. /* Compute whether we need a full modeset, only an fb base update or no
  6692. * change at all. In the future we might also check whether only the
  6693. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6694. * such cases. */
  6695. intel_set_config_compute_mode_changes(set, config);
  6696. ret = intel_modeset_stage_output_state(dev, set, config);
  6697. if (ret)
  6698. goto fail;
  6699. if (config->mode_changed) {
  6700. if (set->mode) {
  6701. DRM_DEBUG_KMS("attempting to set mode from"
  6702. " userspace\n");
  6703. drm_mode_debug_printmodeline(set->mode);
  6704. }
  6705. if (!intel_set_mode(set->crtc, set->mode,
  6706. set->x, set->y, set->fb)) {
  6707. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6708. set->crtc->base.id);
  6709. ret = -EINVAL;
  6710. goto fail;
  6711. }
  6712. } else if (config->fb_changed) {
  6713. ret = intel_pipe_set_base(set->crtc,
  6714. set->x, set->y, set->fb);
  6715. }
  6716. intel_set_config_free(config);
  6717. return 0;
  6718. fail:
  6719. intel_set_config_restore_state(dev, config);
  6720. /* Try to restore the config */
  6721. if (config->mode_changed &&
  6722. !intel_set_mode(save_set.crtc, save_set.mode,
  6723. save_set.x, save_set.y, save_set.fb))
  6724. DRM_ERROR("failed to restore config after modeset failure\n");
  6725. out_config:
  6726. intel_set_config_free(config);
  6727. return ret;
  6728. }
  6729. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6730. .cursor_set = intel_crtc_cursor_set,
  6731. .cursor_move = intel_crtc_cursor_move,
  6732. .gamma_set = intel_crtc_gamma_set,
  6733. .set_config = intel_crtc_set_config,
  6734. .destroy = intel_crtc_destroy,
  6735. .page_flip = intel_crtc_page_flip,
  6736. };
  6737. static void intel_cpu_pll_init(struct drm_device *dev)
  6738. {
  6739. if (IS_HASWELL(dev))
  6740. intel_ddi_pll_init(dev);
  6741. }
  6742. static void intel_pch_pll_init(struct drm_device *dev)
  6743. {
  6744. drm_i915_private_t *dev_priv = dev->dev_private;
  6745. int i;
  6746. if (dev_priv->num_pch_pll == 0) {
  6747. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6748. return;
  6749. }
  6750. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6751. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6752. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6753. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6754. }
  6755. }
  6756. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6757. {
  6758. drm_i915_private_t *dev_priv = dev->dev_private;
  6759. struct intel_crtc *intel_crtc;
  6760. int i;
  6761. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6762. if (intel_crtc == NULL)
  6763. return;
  6764. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6765. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6766. for (i = 0; i < 256; i++) {
  6767. intel_crtc->lut_r[i] = i;
  6768. intel_crtc->lut_g[i] = i;
  6769. intel_crtc->lut_b[i] = i;
  6770. }
  6771. /* Swap pipes & planes for FBC on pre-965 */
  6772. intel_crtc->pipe = pipe;
  6773. intel_crtc->plane = pipe;
  6774. intel_crtc->cpu_transcoder = pipe;
  6775. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6776. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6777. intel_crtc->plane = !pipe;
  6778. }
  6779. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6780. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6781. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6782. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6783. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6784. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6785. }
  6786. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6787. struct drm_file *file)
  6788. {
  6789. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6790. struct drm_mode_object *drmmode_obj;
  6791. struct intel_crtc *crtc;
  6792. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6793. return -ENODEV;
  6794. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6795. DRM_MODE_OBJECT_CRTC);
  6796. if (!drmmode_obj) {
  6797. DRM_ERROR("no such CRTC id\n");
  6798. return -EINVAL;
  6799. }
  6800. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6801. pipe_from_crtc_id->pipe = crtc->pipe;
  6802. return 0;
  6803. }
  6804. static int intel_encoder_clones(struct intel_encoder *encoder)
  6805. {
  6806. struct drm_device *dev = encoder->base.dev;
  6807. struct intel_encoder *source_encoder;
  6808. int index_mask = 0;
  6809. int entry = 0;
  6810. list_for_each_entry(source_encoder,
  6811. &dev->mode_config.encoder_list, base.head) {
  6812. if (encoder == source_encoder)
  6813. index_mask |= (1 << entry);
  6814. /* Intel hw has only one MUX where enocoders could be cloned. */
  6815. if (encoder->cloneable && source_encoder->cloneable)
  6816. index_mask |= (1 << entry);
  6817. entry++;
  6818. }
  6819. return index_mask;
  6820. }
  6821. static bool has_edp_a(struct drm_device *dev)
  6822. {
  6823. struct drm_i915_private *dev_priv = dev->dev_private;
  6824. if (!IS_MOBILE(dev))
  6825. return false;
  6826. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6827. return false;
  6828. if (IS_GEN5(dev) &&
  6829. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6830. return false;
  6831. return true;
  6832. }
  6833. static void intel_setup_outputs(struct drm_device *dev)
  6834. {
  6835. struct drm_i915_private *dev_priv = dev->dev_private;
  6836. struct intel_encoder *encoder;
  6837. bool dpd_is_edp = false;
  6838. bool has_lvds;
  6839. has_lvds = intel_lvds_init(dev);
  6840. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6841. /* disable the panel fitter on everything but LVDS */
  6842. I915_WRITE(PFIT_CONTROL, 0);
  6843. }
  6844. if (!(IS_HASWELL(dev) &&
  6845. (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
  6846. intel_crt_init(dev);
  6847. if (IS_HASWELL(dev)) {
  6848. int found;
  6849. /* Haswell uses DDI functions to detect digital outputs */
  6850. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6851. /* DDI A only supports eDP */
  6852. if (found)
  6853. intel_ddi_init(dev, PORT_A);
  6854. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6855. * register */
  6856. found = I915_READ(SFUSE_STRAP);
  6857. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6858. intel_ddi_init(dev, PORT_B);
  6859. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6860. intel_ddi_init(dev, PORT_C);
  6861. if (found & SFUSE_STRAP_DDID_DETECTED)
  6862. intel_ddi_init(dev, PORT_D);
  6863. } else if (HAS_PCH_SPLIT(dev)) {
  6864. int found;
  6865. dpd_is_edp = intel_dpd_is_edp(dev);
  6866. if (has_edp_a(dev))
  6867. intel_dp_init(dev, DP_A, PORT_A);
  6868. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6869. /* PCH SDVOB multiplex with HDMIB */
  6870. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6871. if (!found)
  6872. intel_hdmi_init(dev, HDMIB, PORT_B);
  6873. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6874. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6875. }
  6876. if (I915_READ(HDMIC) & PORT_DETECTED)
  6877. intel_hdmi_init(dev, HDMIC, PORT_C);
  6878. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6879. intel_hdmi_init(dev, HDMID, PORT_D);
  6880. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6881. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6882. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  6883. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6884. } else if (IS_VALLEYVIEW(dev)) {
  6885. int found;
  6886. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  6887. if (I915_READ(DP_C) & DP_DETECTED)
  6888. intel_dp_init(dev, DP_C, PORT_C);
  6889. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6890. /* SDVOB multiplex with HDMIB */
  6891. found = intel_sdvo_init(dev, SDVOB, true);
  6892. if (!found)
  6893. intel_hdmi_init(dev, SDVOB, PORT_B);
  6894. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6895. intel_dp_init(dev, DP_B, PORT_B);
  6896. }
  6897. if (I915_READ(SDVOC) & PORT_DETECTED)
  6898. intel_hdmi_init(dev, SDVOC, PORT_C);
  6899. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6900. bool found = false;
  6901. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6902. DRM_DEBUG_KMS("probing SDVOB\n");
  6903. found = intel_sdvo_init(dev, SDVOB, true);
  6904. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6905. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6906. intel_hdmi_init(dev, SDVOB, PORT_B);
  6907. }
  6908. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6909. DRM_DEBUG_KMS("probing DP_B\n");
  6910. intel_dp_init(dev, DP_B, PORT_B);
  6911. }
  6912. }
  6913. /* Before G4X SDVOC doesn't have its own detect register */
  6914. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6915. DRM_DEBUG_KMS("probing SDVOC\n");
  6916. found = intel_sdvo_init(dev, SDVOC, false);
  6917. }
  6918. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6919. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6920. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6921. intel_hdmi_init(dev, SDVOC, PORT_C);
  6922. }
  6923. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6924. DRM_DEBUG_KMS("probing DP_C\n");
  6925. intel_dp_init(dev, DP_C, PORT_C);
  6926. }
  6927. }
  6928. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6929. (I915_READ(DP_D) & DP_DETECTED)) {
  6930. DRM_DEBUG_KMS("probing DP_D\n");
  6931. intel_dp_init(dev, DP_D, PORT_D);
  6932. }
  6933. } else if (IS_GEN2(dev))
  6934. intel_dvo_init(dev);
  6935. if (SUPPORTS_TV(dev))
  6936. intel_tv_init(dev);
  6937. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6938. encoder->base.possible_crtcs = encoder->crtc_mask;
  6939. encoder->base.possible_clones =
  6940. intel_encoder_clones(encoder);
  6941. }
  6942. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6943. ironlake_init_pch_refclk(dev);
  6944. drm_helper_move_panel_connectors_to_head(dev);
  6945. }
  6946. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6947. {
  6948. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6949. drm_framebuffer_cleanup(fb);
  6950. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6951. kfree(intel_fb);
  6952. }
  6953. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6954. struct drm_file *file,
  6955. unsigned int *handle)
  6956. {
  6957. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6958. struct drm_i915_gem_object *obj = intel_fb->obj;
  6959. return drm_gem_handle_create(file, &obj->base, handle);
  6960. }
  6961. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6962. .destroy = intel_user_framebuffer_destroy,
  6963. .create_handle = intel_user_framebuffer_create_handle,
  6964. };
  6965. int intel_framebuffer_init(struct drm_device *dev,
  6966. struct intel_framebuffer *intel_fb,
  6967. struct drm_mode_fb_cmd2 *mode_cmd,
  6968. struct drm_i915_gem_object *obj)
  6969. {
  6970. int ret;
  6971. if (obj->tiling_mode == I915_TILING_Y)
  6972. return -EINVAL;
  6973. if (mode_cmd->pitches[0] & 63)
  6974. return -EINVAL;
  6975. /* FIXME <= Gen4 stride limits are bit unclear */
  6976. if (mode_cmd->pitches[0] > 32768)
  6977. return -EINVAL;
  6978. if (obj->tiling_mode != I915_TILING_NONE &&
  6979. mode_cmd->pitches[0] != obj->stride)
  6980. return -EINVAL;
  6981. /* Reject formats not supported by any plane early. */
  6982. switch (mode_cmd->pixel_format) {
  6983. case DRM_FORMAT_C8:
  6984. case DRM_FORMAT_RGB565:
  6985. case DRM_FORMAT_XRGB8888:
  6986. case DRM_FORMAT_ARGB8888:
  6987. break;
  6988. case DRM_FORMAT_XRGB1555:
  6989. case DRM_FORMAT_ARGB1555:
  6990. if (INTEL_INFO(dev)->gen > 3)
  6991. return -EINVAL;
  6992. break;
  6993. case DRM_FORMAT_XBGR8888:
  6994. case DRM_FORMAT_ABGR8888:
  6995. case DRM_FORMAT_XRGB2101010:
  6996. case DRM_FORMAT_ARGB2101010:
  6997. case DRM_FORMAT_XBGR2101010:
  6998. case DRM_FORMAT_ABGR2101010:
  6999. if (INTEL_INFO(dev)->gen < 4)
  7000. return -EINVAL;
  7001. break;
  7002. case DRM_FORMAT_YUYV:
  7003. case DRM_FORMAT_UYVY:
  7004. case DRM_FORMAT_YVYU:
  7005. case DRM_FORMAT_VYUY:
  7006. if (INTEL_INFO(dev)->gen < 6)
  7007. return -EINVAL;
  7008. break;
  7009. default:
  7010. DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7011. return -EINVAL;
  7012. }
  7013. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7014. if (mode_cmd->offsets[0] != 0)
  7015. return -EINVAL;
  7016. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7017. if (ret) {
  7018. DRM_ERROR("framebuffer init failed %d\n", ret);
  7019. return ret;
  7020. }
  7021. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7022. intel_fb->obj = obj;
  7023. return 0;
  7024. }
  7025. static struct drm_framebuffer *
  7026. intel_user_framebuffer_create(struct drm_device *dev,
  7027. struct drm_file *filp,
  7028. struct drm_mode_fb_cmd2 *mode_cmd)
  7029. {
  7030. struct drm_i915_gem_object *obj;
  7031. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7032. mode_cmd->handles[0]));
  7033. if (&obj->base == NULL)
  7034. return ERR_PTR(-ENOENT);
  7035. return intel_framebuffer_create(dev, mode_cmd, obj);
  7036. }
  7037. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7038. .fb_create = intel_user_framebuffer_create,
  7039. .output_poll_changed = intel_fb_output_poll_changed,
  7040. };
  7041. /* Set up chip specific display functions */
  7042. static void intel_init_display(struct drm_device *dev)
  7043. {
  7044. struct drm_i915_private *dev_priv = dev->dev_private;
  7045. /* We always want a DPMS function */
  7046. if (IS_HASWELL(dev)) {
  7047. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7048. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7049. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7050. dev_priv->display.off = haswell_crtc_off;
  7051. dev_priv->display.update_plane = ironlake_update_plane;
  7052. } else if (HAS_PCH_SPLIT(dev)) {
  7053. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7054. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7055. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7056. dev_priv->display.off = ironlake_crtc_off;
  7057. dev_priv->display.update_plane = ironlake_update_plane;
  7058. } else {
  7059. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7060. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7061. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7062. dev_priv->display.off = i9xx_crtc_off;
  7063. dev_priv->display.update_plane = i9xx_update_plane;
  7064. }
  7065. /* Returns the core display clock speed */
  7066. if (IS_VALLEYVIEW(dev))
  7067. dev_priv->display.get_display_clock_speed =
  7068. valleyview_get_display_clock_speed;
  7069. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7070. dev_priv->display.get_display_clock_speed =
  7071. i945_get_display_clock_speed;
  7072. else if (IS_I915G(dev))
  7073. dev_priv->display.get_display_clock_speed =
  7074. i915_get_display_clock_speed;
  7075. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7076. dev_priv->display.get_display_clock_speed =
  7077. i9xx_misc_get_display_clock_speed;
  7078. else if (IS_I915GM(dev))
  7079. dev_priv->display.get_display_clock_speed =
  7080. i915gm_get_display_clock_speed;
  7081. else if (IS_I865G(dev))
  7082. dev_priv->display.get_display_clock_speed =
  7083. i865_get_display_clock_speed;
  7084. else if (IS_I85X(dev))
  7085. dev_priv->display.get_display_clock_speed =
  7086. i855_get_display_clock_speed;
  7087. else /* 852, 830 */
  7088. dev_priv->display.get_display_clock_speed =
  7089. i830_get_display_clock_speed;
  7090. if (HAS_PCH_SPLIT(dev)) {
  7091. if (IS_GEN5(dev)) {
  7092. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7093. dev_priv->display.write_eld = ironlake_write_eld;
  7094. } else if (IS_GEN6(dev)) {
  7095. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7096. dev_priv->display.write_eld = ironlake_write_eld;
  7097. } else if (IS_IVYBRIDGE(dev)) {
  7098. /* FIXME: detect B0+ stepping and use auto training */
  7099. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7100. dev_priv->display.write_eld = ironlake_write_eld;
  7101. dev_priv->display.modeset_global_resources =
  7102. ivb_modeset_global_resources;
  7103. } else if (IS_HASWELL(dev)) {
  7104. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7105. dev_priv->display.write_eld = haswell_write_eld;
  7106. } else
  7107. dev_priv->display.update_wm = NULL;
  7108. } else if (IS_G4X(dev)) {
  7109. dev_priv->display.write_eld = g4x_write_eld;
  7110. }
  7111. /* Default just returns -ENODEV to indicate unsupported */
  7112. dev_priv->display.queue_flip = intel_default_queue_flip;
  7113. switch (INTEL_INFO(dev)->gen) {
  7114. case 2:
  7115. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7116. break;
  7117. case 3:
  7118. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7119. break;
  7120. case 4:
  7121. case 5:
  7122. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7123. break;
  7124. case 6:
  7125. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7126. break;
  7127. case 7:
  7128. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7129. break;
  7130. }
  7131. }
  7132. /*
  7133. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7134. * resume, or other times. This quirk makes sure that's the case for
  7135. * affected systems.
  7136. */
  7137. static void quirk_pipea_force(struct drm_device *dev)
  7138. {
  7139. struct drm_i915_private *dev_priv = dev->dev_private;
  7140. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7141. DRM_INFO("applying pipe a force quirk\n");
  7142. }
  7143. /*
  7144. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7145. */
  7146. static void quirk_ssc_force_disable(struct drm_device *dev)
  7147. {
  7148. struct drm_i915_private *dev_priv = dev->dev_private;
  7149. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7150. DRM_INFO("applying lvds SSC disable quirk\n");
  7151. }
  7152. /*
  7153. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7154. * brightness value
  7155. */
  7156. static void quirk_invert_brightness(struct drm_device *dev)
  7157. {
  7158. struct drm_i915_private *dev_priv = dev->dev_private;
  7159. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7160. DRM_INFO("applying inverted panel brightness quirk\n");
  7161. }
  7162. struct intel_quirk {
  7163. int device;
  7164. int subsystem_vendor;
  7165. int subsystem_device;
  7166. void (*hook)(struct drm_device *dev);
  7167. };
  7168. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7169. struct intel_dmi_quirk {
  7170. void (*hook)(struct drm_device *dev);
  7171. const struct dmi_system_id (*dmi_id_list)[];
  7172. };
  7173. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7174. {
  7175. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7176. return 1;
  7177. }
  7178. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7179. {
  7180. .dmi_id_list = &(const struct dmi_system_id[]) {
  7181. {
  7182. .callback = intel_dmi_reverse_brightness,
  7183. .ident = "NCR Corporation",
  7184. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7185. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7186. },
  7187. },
  7188. { } /* terminating entry */
  7189. },
  7190. .hook = quirk_invert_brightness,
  7191. },
  7192. };
  7193. static struct intel_quirk intel_quirks[] = {
  7194. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7195. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7196. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7197. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7198. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7199. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7200. /* 830/845 need to leave pipe A & dpll A up */
  7201. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7202. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7203. /* Lenovo U160 cannot use SSC on LVDS */
  7204. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7205. /* Sony Vaio Y cannot use SSC on LVDS */
  7206. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7207. /* Acer Aspire 5734Z must invert backlight brightness */
  7208. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7209. };
  7210. static void intel_init_quirks(struct drm_device *dev)
  7211. {
  7212. struct pci_dev *d = dev->pdev;
  7213. int i;
  7214. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7215. struct intel_quirk *q = &intel_quirks[i];
  7216. if (d->device == q->device &&
  7217. (d->subsystem_vendor == q->subsystem_vendor ||
  7218. q->subsystem_vendor == PCI_ANY_ID) &&
  7219. (d->subsystem_device == q->subsystem_device ||
  7220. q->subsystem_device == PCI_ANY_ID))
  7221. q->hook(dev);
  7222. }
  7223. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7224. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7225. intel_dmi_quirks[i].hook(dev);
  7226. }
  7227. }
  7228. /* Disable the VGA plane that we never use */
  7229. static void i915_disable_vga(struct drm_device *dev)
  7230. {
  7231. struct drm_i915_private *dev_priv = dev->dev_private;
  7232. u8 sr1;
  7233. u32 vga_reg;
  7234. if (HAS_PCH_SPLIT(dev))
  7235. vga_reg = CPU_VGACNTRL;
  7236. else
  7237. vga_reg = VGACNTRL;
  7238. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7239. outb(SR01, VGA_SR_INDEX);
  7240. sr1 = inb(VGA_SR_DATA);
  7241. outb(sr1 | 1<<5, VGA_SR_DATA);
  7242. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7243. udelay(300);
  7244. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7245. POSTING_READ(vga_reg);
  7246. }
  7247. void intel_modeset_init_hw(struct drm_device *dev)
  7248. {
  7249. /* We attempt to init the necessary power wells early in the initialization
  7250. * time, so the subsystems that expect power to be enabled can work.
  7251. */
  7252. intel_init_power_wells(dev);
  7253. intel_prepare_ddi(dev);
  7254. intel_init_clock_gating(dev);
  7255. mutex_lock(&dev->struct_mutex);
  7256. intel_enable_gt_powersave(dev);
  7257. mutex_unlock(&dev->struct_mutex);
  7258. }
  7259. void intel_modeset_init(struct drm_device *dev)
  7260. {
  7261. struct drm_i915_private *dev_priv = dev->dev_private;
  7262. int i, ret;
  7263. drm_mode_config_init(dev);
  7264. dev->mode_config.min_width = 0;
  7265. dev->mode_config.min_height = 0;
  7266. dev->mode_config.preferred_depth = 24;
  7267. dev->mode_config.prefer_shadow = 1;
  7268. dev->mode_config.funcs = &intel_mode_funcs;
  7269. intel_init_quirks(dev);
  7270. intel_init_pm(dev);
  7271. intel_init_display(dev);
  7272. if (IS_GEN2(dev)) {
  7273. dev->mode_config.max_width = 2048;
  7274. dev->mode_config.max_height = 2048;
  7275. } else if (IS_GEN3(dev)) {
  7276. dev->mode_config.max_width = 4096;
  7277. dev->mode_config.max_height = 4096;
  7278. } else {
  7279. dev->mode_config.max_width = 8192;
  7280. dev->mode_config.max_height = 8192;
  7281. }
  7282. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7283. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7284. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7285. for (i = 0; i < dev_priv->num_pipe; i++) {
  7286. intel_crtc_init(dev, i);
  7287. ret = intel_plane_init(dev, i);
  7288. if (ret)
  7289. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7290. }
  7291. intel_cpu_pll_init(dev);
  7292. intel_pch_pll_init(dev);
  7293. /* Just disable it once at startup */
  7294. i915_disable_vga(dev);
  7295. intel_setup_outputs(dev);
  7296. }
  7297. static void
  7298. intel_connector_break_all_links(struct intel_connector *connector)
  7299. {
  7300. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7301. connector->base.encoder = NULL;
  7302. connector->encoder->connectors_active = false;
  7303. connector->encoder->base.crtc = NULL;
  7304. }
  7305. static void intel_enable_pipe_a(struct drm_device *dev)
  7306. {
  7307. struct intel_connector *connector;
  7308. struct drm_connector *crt = NULL;
  7309. struct intel_load_detect_pipe load_detect_temp;
  7310. /* We can't just switch on the pipe A, we need to set things up with a
  7311. * proper mode and output configuration. As a gross hack, enable pipe A
  7312. * by enabling the load detect pipe once. */
  7313. list_for_each_entry(connector,
  7314. &dev->mode_config.connector_list,
  7315. base.head) {
  7316. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7317. crt = &connector->base;
  7318. break;
  7319. }
  7320. }
  7321. if (!crt)
  7322. return;
  7323. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7324. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7325. }
  7326. static bool
  7327. intel_check_plane_mapping(struct intel_crtc *crtc)
  7328. {
  7329. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7330. u32 reg, val;
  7331. if (dev_priv->num_pipe == 1)
  7332. return true;
  7333. reg = DSPCNTR(!crtc->plane);
  7334. val = I915_READ(reg);
  7335. if ((val & DISPLAY_PLANE_ENABLE) &&
  7336. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7337. return false;
  7338. return true;
  7339. }
  7340. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7341. {
  7342. struct drm_device *dev = crtc->base.dev;
  7343. struct drm_i915_private *dev_priv = dev->dev_private;
  7344. u32 reg;
  7345. /* Clear any frame start delays used for debugging left by the BIOS */
  7346. reg = PIPECONF(crtc->cpu_transcoder);
  7347. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7348. /* We need to sanitize the plane -> pipe mapping first because this will
  7349. * disable the crtc (and hence change the state) if it is wrong. Note
  7350. * that gen4+ has a fixed plane -> pipe mapping. */
  7351. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7352. struct intel_connector *connector;
  7353. bool plane;
  7354. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7355. crtc->base.base.id);
  7356. /* Pipe has the wrong plane attached and the plane is active.
  7357. * Temporarily change the plane mapping and disable everything
  7358. * ... */
  7359. plane = crtc->plane;
  7360. crtc->plane = !plane;
  7361. dev_priv->display.crtc_disable(&crtc->base);
  7362. crtc->plane = plane;
  7363. /* ... and break all links. */
  7364. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7365. base.head) {
  7366. if (connector->encoder->base.crtc != &crtc->base)
  7367. continue;
  7368. intel_connector_break_all_links(connector);
  7369. }
  7370. WARN_ON(crtc->active);
  7371. crtc->base.enabled = false;
  7372. }
  7373. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7374. crtc->pipe == PIPE_A && !crtc->active) {
  7375. /* BIOS forgot to enable pipe A, this mostly happens after
  7376. * resume. Force-enable the pipe to fix this, the update_dpms
  7377. * call below we restore the pipe to the right state, but leave
  7378. * the required bits on. */
  7379. intel_enable_pipe_a(dev);
  7380. }
  7381. /* Adjust the state of the output pipe according to whether we
  7382. * have active connectors/encoders. */
  7383. intel_crtc_update_dpms(&crtc->base);
  7384. if (crtc->active != crtc->base.enabled) {
  7385. struct intel_encoder *encoder;
  7386. /* This can happen either due to bugs in the get_hw_state
  7387. * functions or because the pipe is force-enabled due to the
  7388. * pipe A quirk. */
  7389. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7390. crtc->base.base.id,
  7391. crtc->base.enabled ? "enabled" : "disabled",
  7392. crtc->active ? "enabled" : "disabled");
  7393. crtc->base.enabled = crtc->active;
  7394. /* Because we only establish the connector -> encoder ->
  7395. * crtc links if something is active, this means the
  7396. * crtc is now deactivated. Break the links. connector
  7397. * -> encoder links are only establish when things are
  7398. * actually up, hence no need to break them. */
  7399. WARN_ON(crtc->active);
  7400. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7401. WARN_ON(encoder->connectors_active);
  7402. encoder->base.crtc = NULL;
  7403. }
  7404. }
  7405. }
  7406. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7407. {
  7408. struct intel_connector *connector;
  7409. struct drm_device *dev = encoder->base.dev;
  7410. /* We need to check both for a crtc link (meaning that the
  7411. * encoder is active and trying to read from a pipe) and the
  7412. * pipe itself being active. */
  7413. bool has_active_crtc = encoder->base.crtc &&
  7414. to_intel_crtc(encoder->base.crtc)->active;
  7415. if (encoder->connectors_active && !has_active_crtc) {
  7416. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7417. encoder->base.base.id,
  7418. drm_get_encoder_name(&encoder->base));
  7419. /* Connector is active, but has no active pipe. This is
  7420. * fallout from our resume register restoring. Disable
  7421. * the encoder manually again. */
  7422. if (encoder->base.crtc) {
  7423. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7424. encoder->base.base.id,
  7425. drm_get_encoder_name(&encoder->base));
  7426. encoder->disable(encoder);
  7427. }
  7428. /* Inconsistent output/port/pipe state happens presumably due to
  7429. * a bug in one of the get_hw_state functions. Or someplace else
  7430. * in our code, like the register restore mess on resume. Clamp
  7431. * things to off as a safer default. */
  7432. list_for_each_entry(connector,
  7433. &dev->mode_config.connector_list,
  7434. base.head) {
  7435. if (connector->encoder != encoder)
  7436. continue;
  7437. intel_connector_break_all_links(connector);
  7438. }
  7439. }
  7440. /* Enabled encoders without active connectors will be fixed in
  7441. * the crtc fixup. */
  7442. }
  7443. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7444. * and i915 state tracking structures. */
  7445. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7446. bool force_restore)
  7447. {
  7448. struct drm_i915_private *dev_priv = dev->dev_private;
  7449. enum pipe pipe;
  7450. u32 tmp;
  7451. struct intel_crtc *crtc;
  7452. struct intel_encoder *encoder;
  7453. struct intel_connector *connector;
  7454. if (IS_HASWELL(dev)) {
  7455. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7456. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7457. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7458. case TRANS_DDI_EDP_INPUT_A_ON:
  7459. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7460. pipe = PIPE_A;
  7461. break;
  7462. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7463. pipe = PIPE_B;
  7464. break;
  7465. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7466. pipe = PIPE_C;
  7467. break;
  7468. }
  7469. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7470. crtc->cpu_transcoder = TRANSCODER_EDP;
  7471. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7472. pipe_name(pipe));
  7473. }
  7474. }
  7475. for_each_pipe(pipe) {
  7476. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7477. tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
  7478. if (tmp & PIPECONF_ENABLE)
  7479. crtc->active = true;
  7480. else
  7481. crtc->active = false;
  7482. crtc->base.enabled = crtc->active;
  7483. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7484. crtc->base.base.id,
  7485. crtc->active ? "enabled" : "disabled");
  7486. }
  7487. if (IS_HASWELL(dev))
  7488. intel_ddi_setup_hw_pll_state(dev);
  7489. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7490. base.head) {
  7491. pipe = 0;
  7492. if (encoder->get_hw_state(encoder, &pipe)) {
  7493. encoder->base.crtc =
  7494. dev_priv->pipe_to_crtc_mapping[pipe];
  7495. } else {
  7496. encoder->base.crtc = NULL;
  7497. }
  7498. encoder->connectors_active = false;
  7499. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7500. encoder->base.base.id,
  7501. drm_get_encoder_name(&encoder->base),
  7502. encoder->base.crtc ? "enabled" : "disabled",
  7503. pipe);
  7504. }
  7505. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7506. base.head) {
  7507. if (connector->get_hw_state(connector)) {
  7508. connector->base.dpms = DRM_MODE_DPMS_ON;
  7509. connector->encoder->connectors_active = true;
  7510. connector->base.encoder = &connector->encoder->base;
  7511. } else {
  7512. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7513. connector->base.encoder = NULL;
  7514. }
  7515. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7516. connector->base.base.id,
  7517. drm_get_connector_name(&connector->base),
  7518. connector->base.encoder ? "enabled" : "disabled");
  7519. }
  7520. /* HW state is read out, now we need to sanitize this mess. */
  7521. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7522. base.head) {
  7523. intel_sanitize_encoder(encoder);
  7524. }
  7525. for_each_pipe(pipe) {
  7526. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7527. intel_sanitize_crtc(crtc);
  7528. }
  7529. if (force_restore) {
  7530. for_each_pipe(pipe) {
  7531. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7532. intel_set_mode(&crtc->base, &crtc->base.mode,
  7533. crtc->base.x, crtc->base.y, crtc->base.fb);
  7534. }
  7535. } else {
  7536. intel_modeset_update_staged_output_state(dev);
  7537. }
  7538. intel_modeset_check_state(dev);
  7539. drm_mode_config_reset(dev);
  7540. }
  7541. void intel_modeset_gem_init(struct drm_device *dev)
  7542. {
  7543. intel_modeset_init_hw(dev);
  7544. intel_setup_overlay(dev);
  7545. intel_modeset_setup_hw_state(dev, false);
  7546. }
  7547. void intel_modeset_cleanup(struct drm_device *dev)
  7548. {
  7549. struct drm_i915_private *dev_priv = dev->dev_private;
  7550. struct drm_crtc *crtc;
  7551. struct intel_crtc *intel_crtc;
  7552. drm_kms_helper_poll_fini(dev);
  7553. mutex_lock(&dev->struct_mutex);
  7554. intel_unregister_dsm_handler();
  7555. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7556. /* Skip inactive CRTCs */
  7557. if (!crtc->fb)
  7558. continue;
  7559. intel_crtc = to_intel_crtc(crtc);
  7560. intel_increase_pllclock(crtc);
  7561. }
  7562. intel_disable_fbc(dev);
  7563. intel_disable_gt_powersave(dev);
  7564. ironlake_teardown_rc6(dev);
  7565. if (IS_VALLEYVIEW(dev))
  7566. vlv_init_dpio(dev);
  7567. mutex_unlock(&dev->struct_mutex);
  7568. /* Disable the irq before mode object teardown, for the irq might
  7569. * enqueue unpin/hotplug work. */
  7570. drm_irq_uninstall(dev);
  7571. cancel_work_sync(&dev_priv->hotplug_work);
  7572. cancel_work_sync(&dev_priv->rps.work);
  7573. /* flush any delayed tasks or pending work */
  7574. flush_scheduled_work();
  7575. drm_mode_config_cleanup(dev);
  7576. }
  7577. /*
  7578. * Return which encoder is currently attached for connector.
  7579. */
  7580. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7581. {
  7582. return &intel_attached_encoder(connector)->base;
  7583. }
  7584. void intel_connector_attach_encoder(struct intel_connector *connector,
  7585. struct intel_encoder *encoder)
  7586. {
  7587. connector->encoder = encoder;
  7588. drm_mode_connector_attach_encoder(&connector->base,
  7589. &encoder->base);
  7590. }
  7591. /*
  7592. * set vga decode state - true == enable VGA decode
  7593. */
  7594. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7595. {
  7596. struct drm_i915_private *dev_priv = dev->dev_private;
  7597. u16 gmch_ctrl;
  7598. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7599. if (state)
  7600. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7601. else
  7602. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7603. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7604. return 0;
  7605. }
  7606. #ifdef CONFIG_DEBUG_FS
  7607. #include <linux/seq_file.h>
  7608. struct intel_display_error_state {
  7609. struct intel_cursor_error_state {
  7610. u32 control;
  7611. u32 position;
  7612. u32 base;
  7613. u32 size;
  7614. } cursor[I915_MAX_PIPES];
  7615. struct intel_pipe_error_state {
  7616. u32 conf;
  7617. u32 source;
  7618. u32 htotal;
  7619. u32 hblank;
  7620. u32 hsync;
  7621. u32 vtotal;
  7622. u32 vblank;
  7623. u32 vsync;
  7624. } pipe[I915_MAX_PIPES];
  7625. struct intel_plane_error_state {
  7626. u32 control;
  7627. u32 stride;
  7628. u32 size;
  7629. u32 pos;
  7630. u32 addr;
  7631. u32 surface;
  7632. u32 tile_offset;
  7633. } plane[I915_MAX_PIPES];
  7634. };
  7635. struct intel_display_error_state *
  7636. intel_display_capture_error_state(struct drm_device *dev)
  7637. {
  7638. drm_i915_private_t *dev_priv = dev->dev_private;
  7639. struct intel_display_error_state *error;
  7640. enum transcoder cpu_transcoder;
  7641. int i;
  7642. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7643. if (error == NULL)
  7644. return NULL;
  7645. for_each_pipe(i) {
  7646. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7647. error->cursor[i].control = I915_READ(CURCNTR(i));
  7648. error->cursor[i].position = I915_READ(CURPOS(i));
  7649. error->cursor[i].base = I915_READ(CURBASE(i));
  7650. error->plane[i].control = I915_READ(DSPCNTR(i));
  7651. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7652. error->plane[i].size = I915_READ(DSPSIZE(i));
  7653. error->plane[i].pos = I915_READ(DSPPOS(i));
  7654. error->plane[i].addr = I915_READ(DSPADDR(i));
  7655. if (INTEL_INFO(dev)->gen >= 4) {
  7656. error->plane[i].surface = I915_READ(DSPSURF(i));
  7657. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7658. }
  7659. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  7660. error->pipe[i].source = I915_READ(PIPESRC(i));
  7661. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  7662. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  7663. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  7664. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  7665. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  7666. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  7667. }
  7668. return error;
  7669. }
  7670. void
  7671. intel_display_print_error_state(struct seq_file *m,
  7672. struct drm_device *dev,
  7673. struct intel_display_error_state *error)
  7674. {
  7675. drm_i915_private_t *dev_priv = dev->dev_private;
  7676. int i;
  7677. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7678. for_each_pipe(i) {
  7679. seq_printf(m, "Pipe [%d]:\n", i);
  7680. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7681. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7682. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7683. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7684. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7685. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7686. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7687. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7688. seq_printf(m, "Plane [%d]:\n", i);
  7689. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7690. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7691. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7692. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7693. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7694. if (INTEL_INFO(dev)->gen >= 4) {
  7695. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7696. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7697. }
  7698. seq_printf(m, "Cursor [%d]:\n", i);
  7699. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7700. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7701. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7702. }
  7703. }
  7704. #endif