addr.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. /*
  2. * Copyright (c) 2005 Voltaire Inc. All rights reserved.
  3. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
  4. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
  5. * Copyright (c) 2005 Intel Corporation. All rights reserved.
  6. *
  7. * This software is available to you under a choice of one of two
  8. * licenses. You may choose to be licensed under the terms of the GNU
  9. * General Public License (GPL) Version 2, available from the file
  10. * COPYING in the main directory of this source tree, or the
  11. * OpenIB.org BSD license below:
  12. *
  13. * Redistribution and use in source and binary forms, with or
  14. * without modification, are permitted provided that the following
  15. * conditions are met:
  16. *
  17. * - Redistributions of source code must retain the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer.
  20. *
  21. * - Redistributions in binary form must reproduce the above
  22. * copyright notice, this list of conditions and the following
  23. * disclaimer in the documentation and/or other materials
  24. * provided with the distribution.
  25. *
  26. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33. * SOFTWARE.
  34. */
  35. #include <linux/mutex.h>
  36. #include <linux/inetdevice.h>
  37. #include <linux/workqueue.h>
  38. #include <linux/if_arp.h>
  39. #include <net/arp.h>
  40. #include <net/neighbour.h>
  41. #include <net/route.h>
  42. #include <net/netevent.h>
  43. #include <net/addrconf.h>
  44. #include <net/ip6_route.h>
  45. #include <rdma/ib_addr.h>
  46. MODULE_AUTHOR("Sean Hefty");
  47. MODULE_DESCRIPTION("IB Address Translation");
  48. MODULE_LICENSE("Dual BSD/GPL");
  49. struct addr_req {
  50. struct list_head list;
  51. struct sockaddr_storage src_addr;
  52. struct sockaddr_storage dst_addr;
  53. struct rdma_dev_addr *addr;
  54. struct rdma_addr_client *client;
  55. void *context;
  56. void (*callback)(int status, struct sockaddr *src_addr,
  57. struct rdma_dev_addr *addr, void *context);
  58. unsigned long timeout;
  59. int status;
  60. };
  61. static void process_req(struct work_struct *work);
  62. static DEFINE_MUTEX(lock);
  63. static LIST_HEAD(req_list);
  64. static DECLARE_DELAYED_WORK(work, process_req);
  65. static struct workqueue_struct *addr_wq;
  66. void rdma_addr_register_client(struct rdma_addr_client *client)
  67. {
  68. atomic_set(&client->refcount, 1);
  69. init_completion(&client->comp);
  70. }
  71. EXPORT_SYMBOL(rdma_addr_register_client);
  72. static inline void put_client(struct rdma_addr_client *client)
  73. {
  74. if (atomic_dec_and_test(&client->refcount))
  75. complete(&client->comp);
  76. }
  77. void rdma_addr_unregister_client(struct rdma_addr_client *client)
  78. {
  79. put_client(client);
  80. wait_for_completion(&client->comp);
  81. }
  82. EXPORT_SYMBOL(rdma_addr_unregister_client);
  83. int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
  84. const unsigned char *dst_dev_addr)
  85. {
  86. switch (dev->type) {
  87. case ARPHRD_INFINIBAND:
  88. dev_addr->dev_type = RDMA_NODE_IB_CA;
  89. break;
  90. case ARPHRD_ETHER:
  91. dev_addr->dev_type = RDMA_NODE_RNIC;
  92. break;
  93. default:
  94. return -EADDRNOTAVAIL;
  95. }
  96. memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  97. memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
  98. if (dst_dev_addr)
  99. memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
  100. dev_addr->bound_dev_if = dev->ifindex;
  101. return 0;
  102. }
  103. EXPORT_SYMBOL(rdma_copy_addr);
  104. int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
  105. {
  106. struct net_device *dev;
  107. int ret = -EADDRNOTAVAIL;
  108. if (dev_addr->bound_dev_if) {
  109. dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
  110. if (!dev)
  111. return -ENODEV;
  112. ret = rdma_copy_addr(dev_addr, dev, NULL);
  113. dev_put(dev);
  114. return ret;
  115. }
  116. switch (addr->sa_family) {
  117. case AF_INET:
  118. dev = ip_dev_find(&init_net,
  119. ((struct sockaddr_in *) addr)->sin_addr.s_addr);
  120. if (!dev)
  121. return ret;
  122. ret = rdma_copy_addr(dev_addr, dev, NULL);
  123. dev_put(dev);
  124. break;
  125. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  126. case AF_INET6:
  127. read_lock(&dev_base_lock);
  128. for_each_netdev(&init_net, dev) {
  129. if (ipv6_chk_addr(&init_net,
  130. &((struct sockaddr_in6 *) addr)->sin6_addr,
  131. dev, 1)) {
  132. ret = rdma_copy_addr(dev_addr, dev, NULL);
  133. break;
  134. }
  135. }
  136. read_unlock(&dev_base_lock);
  137. break;
  138. #endif
  139. }
  140. return ret;
  141. }
  142. EXPORT_SYMBOL(rdma_translate_ip);
  143. static void set_timeout(unsigned long time)
  144. {
  145. unsigned long delay;
  146. cancel_delayed_work(&work);
  147. delay = time - jiffies;
  148. if ((long)delay <= 0)
  149. delay = 1;
  150. queue_delayed_work(addr_wq, &work, delay);
  151. }
  152. static void queue_req(struct addr_req *req)
  153. {
  154. struct addr_req *temp_req;
  155. mutex_lock(&lock);
  156. list_for_each_entry_reverse(temp_req, &req_list, list) {
  157. if (time_after_eq(req->timeout, temp_req->timeout))
  158. break;
  159. }
  160. list_add(&req->list, &temp_req->list);
  161. if (req_list.next == &req->list)
  162. set_timeout(req->timeout);
  163. mutex_unlock(&lock);
  164. }
  165. static void addr_send_arp(struct sockaddr *dst_in)
  166. {
  167. struct rtable *rt;
  168. struct flowi fl;
  169. memset(&fl, 0, sizeof fl);
  170. switch (dst_in->sa_family) {
  171. case AF_INET:
  172. fl.nl_u.ip4_u.daddr =
  173. ((struct sockaddr_in *) dst_in)->sin_addr.s_addr;
  174. if (ip_route_output_key(&init_net, &rt, &fl))
  175. return;
  176. neigh_event_send(rt->u.dst.neighbour, NULL);
  177. ip_rt_put(rt);
  178. break;
  179. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  180. case AF_INET6:
  181. {
  182. struct dst_entry *dst;
  183. fl.nl_u.ip6_u.daddr =
  184. ((struct sockaddr_in6 *) dst_in)->sin6_addr;
  185. dst = ip6_route_output(&init_net, NULL, &fl);
  186. if (!dst)
  187. return;
  188. neigh_event_send(dst->neighbour, NULL);
  189. dst_release(dst);
  190. break;
  191. }
  192. #endif
  193. }
  194. }
  195. static int addr4_resolve_remote(struct sockaddr_in *src_in,
  196. struct sockaddr_in *dst_in,
  197. struct rdma_dev_addr *addr)
  198. {
  199. __be32 src_ip = src_in->sin_addr.s_addr;
  200. __be32 dst_ip = dst_in->sin_addr.s_addr;
  201. struct flowi fl;
  202. struct rtable *rt;
  203. struct neighbour *neigh;
  204. int ret;
  205. memset(&fl, 0, sizeof fl);
  206. fl.nl_u.ip4_u.daddr = dst_ip;
  207. fl.nl_u.ip4_u.saddr = src_ip;
  208. fl.oif = addr->bound_dev_if;
  209. ret = ip_route_output_key(&init_net, &rt, &fl);
  210. if (ret)
  211. goto out;
  212. /* If the device does ARP internally, return 'done' */
  213. if (rt->idev->dev->flags & IFF_NOARP) {
  214. rdma_copy_addr(addr, rt->idev->dev, NULL);
  215. goto put;
  216. }
  217. neigh = neigh_lookup(&arp_tbl, &rt->rt_gateway, rt->idev->dev);
  218. if (!neigh) {
  219. ret = -ENODATA;
  220. goto put;
  221. }
  222. if (!(neigh->nud_state & NUD_VALID)) {
  223. ret = -ENODATA;
  224. goto release;
  225. }
  226. if (!src_ip) {
  227. src_in->sin_family = dst_in->sin_family;
  228. src_in->sin_addr.s_addr = rt->rt_src;
  229. }
  230. ret = rdma_copy_addr(addr, neigh->dev, neigh->ha);
  231. release:
  232. neigh_release(neigh);
  233. put:
  234. ip_rt_put(rt);
  235. out:
  236. return ret;
  237. }
  238. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  239. static int addr6_resolve_remote(struct sockaddr_in6 *src_in,
  240. struct sockaddr_in6 *dst_in,
  241. struct rdma_dev_addr *addr)
  242. {
  243. struct flowi fl;
  244. struct neighbour *neigh;
  245. struct dst_entry *dst;
  246. int ret = -ENODATA;
  247. memset(&fl, 0, sizeof fl);
  248. fl.nl_u.ip6_u.daddr = dst_in->sin6_addr;
  249. fl.nl_u.ip6_u.saddr = src_in->sin6_addr;
  250. fl.oif = addr->bound_dev_if;
  251. dst = ip6_route_output(&init_net, NULL, &fl);
  252. if (!dst)
  253. return ret;
  254. if (dst->dev->flags & IFF_NOARP) {
  255. ret = rdma_copy_addr(addr, dst->dev, NULL);
  256. } else {
  257. neigh = dst->neighbour;
  258. if (neigh && (neigh->nud_state & NUD_VALID))
  259. ret = rdma_copy_addr(addr, neigh->dev, neigh->ha);
  260. }
  261. dst_release(dst);
  262. return ret;
  263. }
  264. #else
  265. static int addr6_resolve_remote(struct sockaddr_in6 *src_in,
  266. struct sockaddr_in6 *dst_in,
  267. struct rdma_dev_addr *addr)
  268. {
  269. return -EADDRNOTAVAIL;
  270. }
  271. #endif
  272. static int addr_resolve_remote(struct sockaddr *src_in,
  273. struct sockaddr *dst_in,
  274. struct rdma_dev_addr *addr)
  275. {
  276. if (src_in->sa_family == AF_INET) {
  277. return addr4_resolve_remote((struct sockaddr_in *) src_in,
  278. (struct sockaddr_in *) dst_in, addr);
  279. } else
  280. return addr6_resolve_remote((struct sockaddr_in6 *) src_in,
  281. (struct sockaddr_in6 *) dst_in, addr);
  282. }
  283. static void process_req(struct work_struct *work)
  284. {
  285. struct addr_req *req, *temp_req;
  286. struct sockaddr *src_in, *dst_in;
  287. struct list_head done_list;
  288. INIT_LIST_HEAD(&done_list);
  289. mutex_lock(&lock);
  290. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  291. if (req->status == -ENODATA) {
  292. src_in = (struct sockaddr *) &req->src_addr;
  293. dst_in = (struct sockaddr *) &req->dst_addr;
  294. req->status = addr_resolve_remote(src_in, dst_in,
  295. req->addr);
  296. if (req->status && time_after_eq(jiffies, req->timeout))
  297. req->status = -ETIMEDOUT;
  298. else if (req->status == -ENODATA)
  299. continue;
  300. }
  301. list_move_tail(&req->list, &done_list);
  302. }
  303. if (!list_empty(&req_list)) {
  304. req = list_entry(req_list.next, struct addr_req, list);
  305. set_timeout(req->timeout);
  306. }
  307. mutex_unlock(&lock);
  308. list_for_each_entry_safe(req, temp_req, &done_list, list) {
  309. list_del(&req->list);
  310. req->callback(req->status, (struct sockaddr *) &req->src_addr,
  311. req->addr, req->context);
  312. put_client(req->client);
  313. kfree(req);
  314. }
  315. }
  316. static int addr_resolve_local(struct sockaddr *src_in,
  317. struct sockaddr *dst_in,
  318. struct rdma_dev_addr *addr)
  319. {
  320. struct net_device *dev;
  321. int ret;
  322. switch (dst_in->sa_family) {
  323. case AF_INET:
  324. {
  325. __be32 src_ip = ((struct sockaddr_in *) src_in)->sin_addr.s_addr;
  326. __be32 dst_ip = ((struct sockaddr_in *) dst_in)->sin_addr.s_addr;
  327. dev = ip_dev_find(&init_net, dst_ip);
  328. if (!dev)
  329. return -EADDRNOTAVAIL;
  330. if (ipv4_is_zeronet(src_ip)) {
  331. src_in->sa_family = dst_in->sa_family;
  332. ((struct sockaddr_in *) src_in)->sin_addr.s_addr = dst_ip;
  333. ret = rdma_copy_addr(addr, dev, dev->dev_addr);
  334. } else if (ipv4_is_loopback(src_ip)) {
  335. ret = rdma_translate_ip(dst_in, addr);
  336. if (!ret)
  337. memcpy(addr->dst_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  338. } else {
  339. ret = rdma_translate_ip(src_in, addr);
  340. if (!ret)
  341. memcpy(addr->dst_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  342. }
  343. dev_put(dev);
  344. break;
  345. }
  346. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  347. case AF_INET6:
  348. {
  349. struct in6_addr *a;
  350. read_lock(&dev_base_lock);
  351. for_each_netdev(&init_net, dev)
  352. if (ipv6_chk_addr(&init_net,
  353. &((struct sockaddr_in6 *) dst_in)->sin6_addr,
  354. dev, 1))
  355. break;
  356. if (!dev) {
  357. read_unlock(&dev_base_lock);
  358. return -EADDRNOTAVAIL;
  359. }
  360. a = &((struct sockaddr_in6 *) src_in)->sin6_addr;
  361. if (ipv6_addr_any(a)) {
  362. src_in->sa_family = dst_in->sa_family;
  363. ((struct sockaddr_in6 *) src_in)->sin6_addr =
  364. ((struct sockaddr_in6 *) dst_in)->sin6_addr;
  365. ret = rdma_copy_addr(addr, dev, dev->dev_addr);
  366. } else if (ipv6_addr_loopback(a)) {
  367. ret = rdma_translate_ip(dst_in, addr);
  368. if (!ret)
  369. memcpy(addr->dst_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  370. } else {
  371. ret = rdma_translate_ip(src_in, addr);
  372. if (!ret)
  373. memcpy(addr->dst_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  374. }
  375. read_unlock(&dev_base_lock);
  376. break;
  377. }
  378. #endif
  379. default:
  380. ret = -EADDRNOTAVAIL;
  381. break;
  382. }
  383. return ret;
  384. }
  385. int rdma_resolve_ip(struct rdma_addr_client *client,
  386. struct sockaddr *src_addr, struct sockaddr *dst_addr,
  387. struct rdma_dev_addr *addr, int timeout_ms,
  388. void (*callback)(int status, struct sockaddr *src_addr,
  389. struct rdma_dev_addr *addr, void *context),
  390. void *context)
  391. {
  392. struct sockaddr *src_in, *dst_in;
  393. struct addr_req *req;
  394. int ret = 0;
  395. req = kzalloc(sizeof *req, GFP_KERNEL);
  396. if (!req)
  397. return -ENOMEM;
  398. if (src_addr)
  399. memcpy(&req->src_addr, src_addr, ip_addr_size(src_addr));
  400. memcpy(&req->dst_addr, dst_addr, ip_addr_size(dst_addr));
  401. req->addr = addr;
  402. req->callback = callback;
  403. req->context = context;
  404. req->client = client;
  405. atomic_inc(&client->refcount);
  406. src_in = (struct sockaddr *) &req->src_addr;
  407. dst_in = (struct sockaddr *) &req->dst_addr;
  408. req->status = addr_resolve_local(src_in, dst_in, addr);
  409. if (req->status == -EADDRNOTAVAIL)
  410. req->status = addr_resolve_remote(src_in, dst_in, addr);
  411. switch (req->status) {
  412. case 0:
  413. req->timeout = jiffies;
  414. queue_req(req);
  415. break;
  416. case -ENODATA:
  417. req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
  418. queue_req(req);
  419. addr_send_arp(dst_in);
  420. break;
  421. default:
  422. ret = req->status;
  423. atomic_dec(&client->refcount);
  424. kfree(req);
  425. break;
  426. }
  427. return ret;
  428. }
  429. EXPORT_SYMBOL(rdma_resolve_ip);
  430. void rdma_addr_cancel(struct rdma_dev_addr *addr)
  431. {
  432. struct addr_req *req, *temp_req;
  433. mutex_lock(&lock);
  434. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  435. if (req->addr == addr) {
  436. req->status = -ECANCELED;
  437. req->timeout = jiffies;
  438. list_move(&req->list, &req_list);
  439. set_timeout(req->timeout);
  440. break;
  441. }
  442. }
  443. mutex_unlock(&lock);
  444. }
  445. EXPORT_SYMBOL(rdma_addr_cancel);
  446. static int netevent_callback(struct notifier_block *self, unsigned long event,
  447. void *ctx)
  448. {
  449. if (event == NETEVENT_NEIGH_UPDATE) {
  450. struct neighbour *neigh = ctx;
  451. if (neigh->nud_state & NUD_VALID) {
  452. set_timeout(jiffies);
  453. }
  454. }
  455. return 0;
  456. }
  457. static struct notifier_block nb = {
  458. .notifier_call = netevent_callback
  459. };
  460. static int __init addr_init(void)
  461. {
  462. addr_wq = create_singlethread_workqueue("ib_addr");
  463. if (!addr_wq)
  464. return -ENOMEM;
  465. register_netevent_notifier(&nb);
  466. return 0;
  467. }
  468. static void __exit addr_cleanup(void)
  469. {
  470. unregister_netevent_notifier(&nb);
  471. destroy_workqueue(addr_wq);
  472. }
  473. module_init(addr_init);
  474. module_exit(addr_cleanup);