sched.h 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367
  1. #include <linux/sched.h>
  2. #include <linux/sched/sysctl.h>
  3. #include <linux/sched/rt.h>
  4. #include <linux/mutex.h>
  5. #include <linux/spinlock.h>
  6. #include <linux/stop_machine.h>
  7. #include <linux/tick.h>
  8. #include "cpupri.h"
  9. #include "cpuacct.h"
  10. struct rq;
  11. extern __read_mostly int scheduler_running;
  12. extern unsigned long calc_load_update;
  13. extern atomic_long_t calc_load_tasks;
  14. extern long calc_load_fold_active(struct rq *this_rq);
  15. extern void update_cpu_load_active(struct rq *this_rq);
  16. /*
  17. * Convert user-nice values [ -20 ... 0 ... 19 ]
  18. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  19. * and back.
  20. */
  21. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  22. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  23. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  24. /*
  25. * 'User priority' is the nice value converted to something we
  26. * can work with better when scaling various scheduler parameters,
  27. * it's a [ 0 ... 39 ] range.
  28. */
  29. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  30. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  31. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  32. /*
  33. * Helpers for converting nanosecond timing to jiffy resolution
  34. */
  35. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  36. /*
  37. * Increase resolution of nice-level calculations for 64-bit architectures.
  38. * The extra resolution improves shares distribution and load balancing of
  39. * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  40. * hierarchies, especially on larger systems. This is not a user-visible change
  41. * and does not change the user-interface for setting shares/weights.
  42. *
  43. * We increase resolution only if we have enough bits to allow this increased
  44. * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  45. * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  46. * increased costs.
  47. */
  48. #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
  49. # define SCHED_LOAD_RESOLUTION 10
  50. # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
  51. # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
  52. #else
  53. # define SCHED_LOAD_RESOLUTION 0
  54. # define scale_load(w) (w)
  55. # define scale_load_down(w) (w)
  56. #endif
  57. #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
  58. #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
  59. #define NICE_0_LOAD SCHED_LOAD_SCALE
  60. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  61. /*
  62. * These are the 'tuning knobs' of the scheduler:
  63. */
  64. /*
  65. * single value that denotes runtime == period, ie unlimited time.
  66. */
  67. #define RUNTIME_INF ((u64)~0ULL)
  68. static inline int rt_policy(int policy)
  69. {
  70. if (policy == SCHED_FIFO || policy == SCHED_RR)
  71. return 1;
  72. return 0;
  73. }
  74. static inline int task_has_rt_policy(struct task_struct *p)
  75. {
  76. return rt_policy(p->policy);
  77. }
  78. /*
  79. * This is the priority-queue data structure of the RT scheduling class:
  80. */
  81. struct rt_prio_array {
  82. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  83. struct list_head queue[MAX_RT_PRIO];
  84. };
  85. struct rt_bandwidth {
  86. /* nests inside the rq lock: */
  87. raw_spinlock_t rt_runtime_lock;
  88. ktime_t rt_period;
  89. u64 rt_runtime;
  90. struct hrtimer rt_period_timer;
  91. };
  92. extern struct mutex sched_domains_mutex;
  93. #ifdef CONFIG_CGROUP_SCHED
  94. #include <linux/cgroup.h>
  95. struct cfs_rq;
  96. struct rt_rq;
  97. extern struct list_head task_groups;
  98. struct cfs_bandwidth {
  99. #ifdef CONFIG_CFS_BANDWIDTH
  100. raw_spinlock_t lock;
  101. ktime_t period;
  102. u64 quota, runtime;
  103. s64 hierarchal_quota;
  104. u64 runtime_expires;
  105. int idle, timer_active;
  106. struct hrtimer period_timer, slack_timer;
  107. struct list_head throttled_cfs_rq;
  108. /* statistics */
  109. int nr_periods, nr_throttled;
  110. u64 throttled_time;
  111. #endif
  112. };
  113. /* task group related information */
  114. struct task_group {
  115. struct cgroup_subsys_state css;
  116. #ifdef CONFIG_FAIR_GROUP_SCHED
  117. /* schedulable entities of this group on each cpu */
  118. struct sched_entity **se;
  119. /* runqueue "owned" by this group on each cpu */
  120. struct cfs_rq **cfs_rq;
  121. unsigned long shares;
  122. #ifdef CONFIG_SMP
  123. atomic_long_t load_avg;
  124. atomic_t runnable_avg;
  125. #endif
  126. #endif
  127. #ifdef CONFIG_RT_GROUP_SCHED
  128. struct sched_rt_entity **rt_se;
  129. struct rt_rq **rt_rq;
  130. struct rt_bandwidth rt_bandwidth;
  131. #endif
  132. struct rcu_head rcu;
  133. struct list_head list;
  134. struct task_group *parent;
  135. struct list_head siblings;
  136. struct list_head children;
  137. #ifdef CONFIG_SCHED_AUTOGROUP
  138. struct autogroup *autogroup;
  139. #endif
  140. struct cfs_bandwidth cfs_bandwidth;
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  144. /*
  145. * A weight of 0 or 1 can cause arithmetics problems.
  146. * A weight of a cfs_rq is the sum of weights of which entities
  147. * are queued on this cfs_rq, so a weight of a entity should not be
  148. * too large, so as the shares value of a task group.
  149. * (The default weight is 1024 - so there's no practical
  150. * limitation from this.)
  151. */
  152. #define MIN_SHARES (1UL << 1)
  153. #define MAX_SHARES (1UL << 18)
  154. #endif
  155. typedef int (*tg_visitor)(struct task_group *, void *);
  156. extern int walk_tg_tree_from(struct task_group *from,
  157. tg_visitor down, tg_visitor up, void *data);
  158. /*
  159. * Iterate the full tree, calling @down when first entering a node and @up when
  160. * leaving it for the final time.
  161. *
  162. * Caller must hold rcu_lock or sufficient equivalent.
  163. */
  164. static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  165. {
  166. return walk_tg_tree_from(&root_task_group, down, up, data);
  167. }
  168. extern int tg_nop(struct task_group *tg, void *data);
  169. extern void free_fair_sched_group(struct task_group *tg);
  170. extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
  171. extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
  172. extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  173. struct sched_entity *se, int cpu,
  174. struct sched_entity *parent);
  175. extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  176. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  177. extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
  178. extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
  179. extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
  180. extern void free_rt_sched_group(struct task_group *tg);
  181. extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
  182. extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  183. struct sched_rt_entity *rt_se, int cpu,
  184. struct sched_rt_entity *parent);
  185. extern struct task_group *sched_create_group(struct task_group *parent);
  186. extern void sched_online_group(struct task_group *tg,
  187. struct task_group *parent);
  188. extern void sched_destroy_group(struct task_group *tg);
  189. extern void sched_offline_group(struct task_group *tg);
  190. extern void sched_move_task(struct task_struct *tsk);
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
  193. #endif
  194. #else /* CONFIG_CGROUP_SCHED */
  195. struct cfs_bandwidth { };
  196. #endif /* CONFIG_CGROUP_SCHED */
  197. /* CFS-related fields in a runqueue */
  198. struct cfs_rq {
  199. struct load_weight load;
  200. unsigned int nr_running, h_nr_running;
  201. u64 exec_clock;
  202. u64 min_vruntime;
  203. #ifndef CONFIG_64BIT
  204. u64 min_vruntime_copy;
  205. #endif
  206. struct rb_root tasks_timeline;
  207. struct rb_node *rb_leftmost;
  208. /*
  209. * 'curr' points to currently running entity on this cfs_rq.
  210. * It is set to NULL otherwise (i.e when none are currently running).
  211. */
  212. struct sched_entity *curr, *next, *last, *skip;
  213. #ifdef CONFIG_SCHED_DEBUG
  214. unsigned int nr_spread_over;
  215. #endif
  216. #ifdef CONFIG_SMP
  217. /*
  218. * CFS Load tracking
  219. * Under CFS, load is tracked on a per-entity basis and aggregated up.
  220. * This allows for the description of both thread and group usage (in
  221. * the FAIR_GROUP_SCHED case).
  222. */
  223. unsigned long runnable_load_avg, blocked_load_avg;
  224. atomic64_t decay_counter;
  225. u64 last_decay;
  226. atomic_long_t removed_load;
  227. #ifdef CONFIG_FAIR_GROUP_SCHED
  228. /* Required to track per-cpu representation of a task_group */
  229. u32 tg_runnable_contrib;
  230. unsigned long tg_load_contrib;
  231. /*
  232. * h_load = weight * f(tg)
  233. *
  234. * Where f(tg) is the recursive weight fraction assigned to
  235. * this group.
  236. */
  237. unsigned long h_load;
  238. u64 last_h_load_update;
  239. struct sched_entity *h_load_next;
  240. #endif /* CONFIG_FAIR_GROUP_SCHED */
  241. #endif /* CONFIG_SMP */
  242. #ifdef CONFIG_FAIR_GROUP_SCHED
  243. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  244. /*
  245. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  246. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  247. * (like users, containers etc.)
  248. *
  249. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  250. * list is used during load balance.
  251. */
  252. int on_list;
  253. struct list_head leaf_cfs_rq_list;
  254. struct task_group *tg; /* group that "owns" this runqueue */
  255. #ifdef CONFIG_CFS_BANDWIDTH
  256. int runtime_enabled;
  257. u64 runtime_expires;
  258. s64 runtime_remaining;
  259. u64 throttled_clock, throttled_clock_task;
  260. u64 throttled_clock_task_time;
  261. int throttled, throttle_count;
  262. struct list_head throttled_list;
  263. #endif /* CONFIG_CFS_BANDWIDTH */
  264. #endif /* CONFIG_FAIR_GROUP_SCHED */
  265. };
  266. static inline int rt_bandwidth_enabled(void)
  267. {
  268. return sysctl_sched_rt_runtime >= 0;
  269. }
  270. /* Real-Time classes' related field in a runqueue: */
  271. struct rt_rq {
  272. struct rt_prio_array active;
  273. unsigned int rt_nr_running;
  274. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  275. struct {
  276. int curr; /* highest queued rt task prio */
  277. #ifdef CONFIG_SMP
  278. int next; /* next highest */
  279. #endif
  280. } highest_prio;
  281. #endif
  282. #ifdef CONFIG_SMP
  283. unsigned long rt_nr_migratory;
  284. unsigned long rt_nr_total;
  285. int overloaded;
  286. struct plist_head pushable_tasks;
  287. #endif
  288. int rt_throttled;
  289. u64 rt_time;
  290. u64 rt_runtime;
  291. /* Nests inside the rq lock: */
  292. raw_spinlock_t rt_runtime_lock;
  293. #ifdef CONFIG_RT_GROUP_SCHED
  294. unsigned long rt_nr_boosted;
  295. struct rq *rq;
  296. struct task_group *tg;
  297. #endif
  298. };
  299. #ifdef CONFIG_SMP
  300. /*
  301. * We add the notion of a root-domain which will be used to define per-domain
  302. * variables. Each exclusive cpuset essentially defines an island domain by
  303. * fully partitioning the member cpus from any other cpuset. Whenever a new
  304. * exclusive cpuset is created, we also create and attach a new root-domain
  305. * object.
  306. *
  307. */
  308. struct root_domain {
  309. atomic_t refcount;
  310. atomic_t rto_count;
  311. struct rcu_head rcu;
  312. cpumask_var_t span;
  313. cpumask_var_t online;
  314. /*
  315. * The "RT overload" flag: it gets set if a CPU has more than
  316. * one runnable RT task.
  317. */
  318. cpumask_var_t rto_mask;
  319. struct cpupri cpupri;
  320. };
  321. extern struct root_domain def_root_domain;
  322. #endif /* CONFIG_SMP */
  323. /*
  324. * This is the main, per-CPU runqueue data structure.
  325. *
  326. * Locking rule: those places that want to lock multiple runqueues
  327. * (such as the load balancing or the thread migration code), lock
  328. * acquire operations must be ordered by ascending &runqueue.
  329. */
  330. struct rq {
  331. /* runqueue lock: */
  332. raw_spinlock_t lock;
  333. /*
  334. * nr_running and cpu_load should be in the same cacheline because
  335. * remote CPUs use both these fields when doing load calculation.
  336. */
  337. unsigned int nr_running;
  338. #define CPU_LOAD_IDX_MAX 5
  339. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  340. unsigned long last_load_update_tick;
  341. #ifdef CONFIG_NO_HZ_COMMON
  342. u64 nohz_stamp;
  343. unsigned long nohz_flags;
  344. #endif
  345. #ifdef CONFIG_NO_HZ_FULL
  346. unsigned long last_sched_tick;
  347. #endif
  348. int skip_clock_update;
  349. /* capture load from *all* tasks on this cpu: */
  350. struct load_weight load;
  351. unsigned long nr_load_updates;
  352. u64 nr_switches;
  353. struct cfs_rq cfs;
  354. struct rt_rq rt;
  355. #ifdef CONFIG_FAIR_GROUP_SCHED
  356. /* list of leaf cfs_rq on this cpu: */
  357. struct list_head leaf_cfs_rq_list;
  358. #endif /* CONFIG_FAIR_GROUP_SCHED */
  359. #ifdef CONFIG_RT_GROUP_SCHED
  360. struct list_head leaf_rt_rq_list;
  361. #endif
  362. /*
  363. * This is part of a global counter where only the total sum
  364. * over all CPUs matters. A task can increase this counter on
  365. * one CPU and if it got migrated afterwards it may decrease
  366. * it on another CPU. Always updated under the runqueue lock:
  367. */
  368. unsigned long nr_uninterruptible;
  369. struct task_struct *curr, *idle, *stop;
  370. unsigned long next_balance;
  371. struct mm_struct *prev_mm;
  372. u64 clock;
  373. u64 clock_task;
  374. atomic_t nr_iowait;
  375. #ifdef CONFIG_SMP
  376. struct root_domain *rd;
  377. struct sched_domain *sd;
  378. unsigned long cpu_power;
  379. unsigned char idle_balance;
  380. /* For active balancing */
  381. int post_schedule;
  382. int active_balance;
  383. int push_cpu;
  384. struct cpu_stop_work active_balance_work;
  385. /* cpu of this runqueue: */
  386. int cpu;
  387. int online;
  388. struct list_head cfs_tasks;
  389. u64 rt_avg;
  390. u64 age_stamp;
  391. u64 idle_stamp;
  392. u64 avg_idle;
  393. #endif
  394. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  395. u64 prev_irq_time;
  396. #endif
  397. #ifdef CONFIG_PARAVIRT
  398. u64 prev_steal_time;
  399. #endif
  400. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  401. u64 prev_steal_time_rq;
  402. #endif
  403. /* calc_load related fields */
  404. unsigned long calc_load_update;
  405. long calc_load_active;
  406. #ifdef CONFIG_SCHED_HRTICK
  407. #ifdef CONFIG_SMP
  408. int hrtick_csd_pending;
  409. struct call_single_data hrtick_csd;
  410. #endif
  411. struct hrtimer hrtick_timer;
  412. #endif
  413. #ifdef CONFIG_SCHEDSTATS
  414. /* latency stats */
  415. struct sched_info rq_sched_info;
  416. unsigned long long rq_cpu_time;
  417. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  418. /* sys_sched_yield() stats */
  419. unsigned int yld_count;
  420. /* schedule() stats */
  421. unsigned int sched_count;
  422. unsigned int sched_goidle;
  423. /* try_to_wake_up() stats */
  424. unsigned int ttwu_count;
  425. unsigned int ttwu_local;
  426. #endif
  427. #ifdef CONFIG_SMP
  428. struct llist_head wake_list;
  429. #endif
  430. struct sched_avg avg;
  431. };
  432. static inline int cpu_of(struct rq *rq)
  433. {
  434. #ifdef CONFIG_SMP
  435. return rq->cpu;
  436. #else
  437. return 0;
  438. #endif
  439. }
  440. DECLARE_PER_CPU(struct rq, runqueues);
  441. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  442. #define this_rq() (&__get_cpu_var(runqueues))
  443. #define task_rq(p) cpu_rq(task_cpu(p))
  444. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  445. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  446. static inline u64 rq_clock(struct rq *rq)
  447. {
  448. return rq->clock;
  449. }
  450. static inline u64 rq_clock_task(struct rq *rq)
  451. {
  452. return rq->clock_task;
  453. }
  454. #ifdef CONFIG_SMP
  455. #define rcu_dereference_check_sched_domain(p) \
  456. rcu_dereference_check((p), \
  457. lockdep_is_held(&sched_domains_mutex))
  458. /*
  459. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  460. * See detach_destroy_domains: synchronize_sched for details.
  461. *
  462. * The domain tree of any CPU may only be accessed from within
  463. * preempt-disabled sections.
  464. */
  465. #define for_each_domain(cpu, __sd) \
  466. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
  467. __sd; __sd = __sd->parent)
  468. #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
  469. /**
  470. * highest_flag_domain - Return highest sched_domain containing flag.
  471. * @cpu: The cpu whose highest level of sched domain is to
  472. * be returned.
  473. * @flag: The flag to check for the highest sched_domain
  474. * for the given cpu.
  475. *
  476. * Returns the highest sched_domain of a cpu which contains the given flag.
  477. */
  478. static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
  479. {
  480. struct sched_domain *sd, *hsd = NULL;
  481. for_each_domain(cpu, sd) {
  482. if (!(sd->flags & flag))
  483. break;
  484. hsd = sd;
  485. }
  486. return hsd;
  487. }
  488. DECLARE_PER_CPU(struct sched_domain *, sd_llc);
  489. DECLARE_PER_CPU(int, sd_llc_size);
  490. DECLARE_PER_CPU(int, sd_llc_id);
  491. struct sched_group_power {
  492. atomic_t ref;
  493. /*
  494. * CPU power of this group, SCHED_LOAD_SCALE being max power for a
  495. * single CPU.
  496. */
  497. unsigned int power, power_orig;
  498. unsigned long next_update;
  499. int imbalance; /* XXX unrelated to power but shared group state */
  500. /*
  501. * Number of busy cpus in this group.
  502. */
  503. atomic_t nr_busy_cpus;
  504. unsigned long cpumask[0]; /* iteration mask */
  505. };
  506. struct sched_group {
  507. struct sched_group *next; /* Must be a circular list */
  508. atomic_t ref;
  509. unsigned int group_weight;
  510. struct sched_group_power *sgp;
  511. /*
  512. * The CPUs this group covers.
  513. *
  514. * NOTE: this field is variable length. (Allocated dynamically
  515. * by attaching extra space to the end of the structure,
  516. * depending on how many CPUs the kernel has booted up with)
  517. */
  518. unsigned long cpumask[0];
  519. };
  520. static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
  521. {
  522. return to_cpumask(sg->cpumask);
  523. }
  524. /*
  525. * cpumask masking which cpus in the group are allowed to iterate up the domain
  526. * tree.
  527. */
  528. static inline struct cpumask *sched_group_mask(struct sched_group *sg)
  529. {
  530. return to_cpumask(sg->sgp->cpumask);
  531. }
  532. /**
  533. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  534. * @group: The group whose first cpu is to be returned.
  535. */
  536. static inline unsigned int group_first_cpu(struct sched_group *group)
  537. {
  538. return cpumask_first(sched_group_cpus(group));
  539. }
  540. extern int group_balance_cpu(struct sched_group *sg);
  541. #endif /* CONFIG_SMP */
  542. #include "stats.h"
  543. #include "auto_group.h"
  544. #ifdef CONFIG_CGROUP_SCHED
  545. /*
  546. * Return the group to which this tasks belongs.
  547. *
  548. * We cannot use task_css() and friends because the cgroup subsystem
  549. * changes that value before the cgroup_subsys::attach() method is called,
  550. * therefore we cannot pin it and might observe the wrong value.
  551. *
  552. * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
  553. * core changes this before calling sched_move_task().
  554. *
  555. * Instead we use a 'copy' which is updated from sched_move_task() while
  556. * holding both task_struct::pi_lock and rq::lock.
  557. */
  558. static inline struct task_group *task_group(struct task_struct *p)
  559. {
  560. return p->sched_task_group;
  561. }
  562. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  563. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  564. {
  565. #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
  566. struct task_group *tg = task_group(p);
  567. #endif
  568. #ifdef CONFIG_FAIR_GROUP_SCHED
  569. p->se.cfs_rq = tg->cfs_rq[cpu];
  570. p->se.parent = tg->se[cpu];
  571. #endif
  572. #ifdef CONFIG_RT_GROUP_SCHED
  573. p->rt.rt_rq = tg->rt_rq[cpu];
  574. p->rt.parent = tg->rt_se[cpu];
  575. #endif
  576. }
  577. #else /* CONFIG_CGROUP_SCHED */
  578. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  579. static inline struct task_group *task_group(struct task_struct *p)
  580. {
  581. return NULL;
  582. }
  583. #endif /* CONFIG_CGROUP_SCHED */
  584. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  585. {
  586. set_task_rq(p, cpu);
  587. #ifdef CONFIG_SMP
  588. /*
  589. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  590. * successfuly executed on another CPU. We must ensure that updates of
  591. * per-task data have been completed by this moment.
  592. */
  593. smp_wmb();
  594. task_thread_info(p)->cpu = cpu;
  595. #endif
  596. }
  597. /*
  598. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  599. */
  600. #ifdef CONFIG_SCHED_DEBUG
  601. # include <linux/static_key.h>
  602. # define const_debug __read_mostly
  603. #else
  604. # define const_debug const
  605. #endif
  606. extern const_debug unsigned int sysctl_sched_features;
  607. #define SCHED_FEAT(name, enabled) \
  608. __SCHED_FEAT_##name ,
  609. enum {
  610. #include "features.h"
  611. __SCHED_FEAT_NR,
  612. };
  613. #undef SCHED_FEAT
  614. #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
  615. static __always_inline bool static_branch__true(struct static_key *key)
  616. {
  617. return static_key_true(key); /* Not out of line branch. */
  618. }
  619. static __always_inline bool static_branch__false(struct static_key *key)
  620. {
  621. return static_key_false(key); /* Out of line branch. */
  622. }
  623. #define SCHED_FEAT(name, enabled) \
  624. static __always_inline bool static_branch_##name(struct static_key *key) \
  625. { \
  626. return static_branch__##enabled(key); \
  627. }
  628. #include "features.h"
  629. #undef SCHED_FEAT
  630. extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
  631. #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
  632. #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
  633. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  634. #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
  635. #ifdef CONFIG_NUMA_BALANCING
  636. #define sched_feat_numa(x) sched_feat(x)
  637. #ifdef CONFIG_SCHED_DEBUG
  638. #define numabalancing_enabled sched_feat_numa(NUMA)
  639. #else
  640. extern bool numabalancing_enabled;
  641. #endif /* CONFIG_SCHED_DEBUG */
  642. #else
  643. #define sched_feat_numa(x) (0)
  644. #define numabalancing_enabled (0)
  645. #endif /* CONFIG_NUMA_BALANCING */
  646. static inline u64 global_rt_period(void)
  647. {
  648. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  649. }
  650. static inline u64 global_rt_runtime(void)
  651. {
  652. if (sysctl_sched_rt_runtime < 0)
  653. return RUNTIME_INF;
  654. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  655. }
  656. static inline int task_current(struct rq *rq, struct task_struct *p)
  657. {
  658. return rq->curr == p;
  659. }
  660. static inline int task_running(struct rq *rq, struct task_struct *p)
  661. {
  662. #ifdef CONFIG_SMP
  663. return p->on_cpu;
  664. #else
  665. return task_current(rq, p);
  666. #endif
  667. }
  668. #ifndef prepare_arch_switch
  669. # define prepare_arch_switch(next) do { } while (0)
  670. #endif
  671. #ifndef finish_arch_switch
  672. # define finish_arch_switch(prev) do { } while (0)
  673. #endif
  674. #ifndef finish_arch_post_lock_switch
  675. # define finish_arch_post_lock_switch() do { } while (0)
  676. #endif
  677. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  678. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  679. {
  680. #ifdef CONFIG_SMP
  681. /*
  682. * We can optimise this out completely for !SMP, because the
  683. * SMP rebalancing from interrupt is the only thing that cares
  684. * here.
  685. */
  686. next->on_cpu = 1;
  687. #endif
  688. }
  689. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  690. {
  691. #ifdef CONFIG_SMP
  692. /*
  693. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  694. * We must ensure this doesn't happen until the switch is completely
  695. * finished.
  696. */
  697. smp_wmb();
  698. prev->on_cpu = 0;
  699. #endif
  700. #ifdef CONFIG_DEBUG_SPINLOCK
  701. /* this is a valid case when another task releases the spinlock */
  702. rq->lock.owner = current;
  703. #endif
  704. /*
  705. * If we are tracking spinlock dependencies then we have to
  706. * fix up the runqueue lock - which gets 'carried over' from
  707. * prev into current:
  708. */
  709. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  710. raw_spin_unlock_irq(&rq->lock);
  711. }
  712. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  713. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  714. {
  715. #ifdef CONFIG_SMP
  716. /*
  717. * We can optimise this out completely for !SMP, because the
  718. * SMP rebalancing from interrupt is the only thing that cares
  719. * here.
  720. */
  721. next->on_cpu = 1;
  722. #endif
  723. raw_spin_unlock(&rq->lock);
  724. }
  725. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  726. {
  727. #ifdef CONFIG_SMP
  728. /*
  729. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  730. * We must ensure this doesn't happen until the switch is completely
  731. * finished.
  732. */
  733. smp_wmb();
  734. prev->on_cpu = 0;
  735. #endif
  736. local_irq_enable();
  737. }
  738. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  739. /*
  740. * wake flags
  741. */
  742. #define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
  743. #define WF_FORK 0x02 /* child wakeup after fork */
  744. #define WF_MIGRATED 0x4 /* internal use, task got migrated */
  745. /*
  746. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  747. * of tasks with abnormal "nice" values across CPUs the contribution that
  748. * each task makes to its run queue's load is weighted according to its
  749. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  750. * scaled version of the new time slice allocation that they receive on time
  751. * slice expiry etc.
  752. */
  753. #define WEIGHT_IDLEPRIO 3
  754. #define WMULT_IDLEPRIO 1431655765
  755. /*
  756. * Nice levels are multiplicative, with a gentle 10% change for every
  757. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  758. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  759. * that remained on nice 0.
  760. *
  761. * The "10% effect" is relative and cumulative: from _any_ nice level,
  762. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  763. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  764. * If a task goes up by ~10% and another task goes down by ~10% then
  765. * the relative distance between them is ~25%.)
  766. */
  767. static const int prio_to_weight[40] = {
  768. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  769. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  770. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  771. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  772. /* 0 */ 1024, 820, 655, 526, 423,
  773. /* 5 */ 335, 272, 215, 172, 137,
  774. /* 10 */ 110, 87, 70, 56, 45,
  775. /* 15 */ 36, 29, 23, 18, 15,
  776. };
  777. /*
  778. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  779. *
  780. * In cases where the weight does not change often, we can use the
  781. * precalculated inverse to speed up arithmetics by turning divisions
  782. * into multiplications:
  783. */
  784. static const u32 prio_to_wmult[40] = {
  785. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  786. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  787. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  788. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  789. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  790. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  791. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  792. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  793. };
  794. #define ENQUEUE_WAKEUP 1
  795. #define ENQUEUE_HEAD 2
  796. #ifdef CONFIG_SMP
  797. #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
  798. #else
  799. #define ENQUEUE_WAKING 0
  800. #endif
  801. #define DEQUEUE_SLEEP 1
  802. struct sched_class {
  803. const struct sched_class *next;
  804. void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
  805. void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
  806. void (*yield_task) (struct rq *rq);
  807. bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
  808. void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
  809. struct task_struct * (*pick_next_task) (struct rq *rq);
  810. void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  811. #ifdef CONFIG_SMP
  812. int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
  813. void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
  814. void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
  815. void (*post_schedule) (struct rq *this_rq);
  816. void (*task_waking) (struct task_struct *task);
  817. void (*task_woken) (struct rq *this_rq, struct task_struct *task);
  818. void (*set_cpus_allowed)(struct task_struct *p,
  819. const struct cpumask *newmask);
  820. void (*rq_online)(struct rq *rq);
  821. void (*rq_offline)(struct rq *rq);
  822. #endif
  823. void (*set_curr_task) (struct rq *rq);
  824. void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
  825. void (*task_fork) (struct task_struct *p);
  826. void (*switched_from) (struct rq *this_rq, struct task_struct *task);
  827. void (*switched_to) (struct rq *this_rq, struct task_struct *task);
  828. void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
  829. int oldprio);
  830. unsigned int (*get_rr_interval) (struct rq *rq,
  831. struct task_struct *task);
  832. #ifdef CONFIG_FAIR_GROUP_SCHED
  833. void (*task_move_group) (struct task_struct *p, int on_rq);
  834. #endif
  835. };
  836. #define sched_class_highest (&stop_sched_class)
  837. #define for_each_class(class) \
  838. for (class = sched_class_highest; class; class = class->next)
  839. extern const struct sched_class stop_sched_class;
  840. extern const struct sched_class rt_sched_class;
  841. extern const struct sched_class fair_sched_class;
  842. extern const struct sched_class idle_sched_class;
  843. #ifdef CONFIG_SMP
  844. extern void update_group_power(struct sched_domain *sd, int cpu);
  845. extern void trigger_load_balance(struct rq *rq, int cpu);
  846. extern void idle_balance(int this_cpu, struct rq *this_rq);
  847. extern void idle_enter_fair(struct rq *this_rq);
  848. extern void idle_exit_fair(struct rq *this_rq);
  849. #else /* CONFIG_SMP */
  850. static inline void idle_balance(int cpu, struct rq *rq)
  851. {
  852. }
  853. #endif
  854. extern void sysrq_sched_debug_show(void);
  855. extern void sched_init_granularity(void);
  856. extern void update_max_interval(void);
  857. extern void init_sched_rt_class(void);
  858. extern void init_sched_fair_class(void);
  859. extern void resched_task(struct task_struct *p);
  860. extern void resched_cpu(int cpu);
  861. extern struct rt_bandwidth def_rt_bandwidth;
  862. extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
  863. extern void update_idle_cpu_load(struct rq *this_rq);
  864. extern void init_task_runnable_average(struct task_struct *p);
  865. #ifdef CONFIG_PARAVIRT
  866. static inline u64 steal_ticks(u64 steal)
  867. {
  868. if (unlikely(steal > NSEC_PER_SEC))
  869. return div_u64(steal, TICK_NSEC);
  870. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  871. }
  872. #endif
  873. static inline void inc_nr_running(struct rq *rq)
  874. {
  875. rq->nr_running++;
  876. #ifdef CONFIG_NO_HZ_FULL
  877. if (rq->nr_running == 2) {
  878. if (tick_nohz_full_cpu(rq->cpu)) {
  879. /* Order rq->nr_running write against the IPI */
  880. smp_wmb();
  881. smp_send_reschedule(rq->cpu);
  882. }
  883. }
  884. #endif
  885. }
  886. static inline void dec_nr_running(struct rq *rq)
  887. {
  888. rq->nr_running--;
  889. }
  890. static inline void rq_last_tick_reset(struct rq *rq)
  891. {
  892. #ifdef CONFIG_NO_HZ_FULL
  893. rq->last_sched_tick = jiffies;
  894. #endif
  895. }
  896. extern void update_rq_clock(struct rq *rq);
  897. extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
  898. extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
  899. extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  900. extern const_debug unsigned int sysctl_sched_time_avg;
  901. extern const_debug unsigned int sysctl_sched_nr_migrate;
  902. extern const_debug unsigned int sysctl_sched_migration_cost;
  903. static inline u64 sched_avg_period(void)
  904. {
  905. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  906. }
  907. #ifdef CONFIG_SCHED_HRTICK
  908. /*
  909. * Use hrtick when:
  910. * - enabled by features
  911. * - hrtimer is actually high res
  912. */
  913. static inline int hrtick_enabled(struct rq *rq)
  914. {
  915. if (!sched_feat(HRTICK))
  916. return 0;
  917. if (!cpu_active(cpu_of(rq)))
  918. return 0;
  919. return hrtimer_is_hres_active(&rq->hrtick_timer);
  920. }
  921. void hrtick_start(struct rq *rq, u64 delay);
  922. #else
  923. static inline int hrtick_enabled(struct rq *rq)
  924. {
  925. return 0;
  926. }
  927. #endif /* CONFIG_SCHED_HRTICK */
  928. #ifdef CONFIG_SMP
  929. extern void sched_avg_update(struct rq *rq);
  930. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  931. {
  932. rq->rt_avg += rt_delta;
  933. sched_avg_update(rq);
  934. }
  935. #else
  936. static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
  937. static inline void sched_avg_update(struct rq *rq) { }
  938. #endif
  939. extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
  940. #ifdef CONFIG_SMP
  941. #ifdef CONFIG_PREEMPT
  942. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
  943. /*
  944. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  945. * way at the expense of forcing extra atomic operations in all
  946. * invocations. This assures that the double_lock is acquired using the
  947. * same underlying policy as the spinlock_t on this architecture, which
  948. * reduces latency compared to the unfair variant below. However, it
  949. * also adds more overhead and therefore may reduce throughput.
  950. */
  951. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  952. __releases(this_rq->lock)
  953. __acquires(busiest->lock)
  954. __acquires(this_rq->lock)
  955. {
  956. raw_spin_unlock(&this_rq->lock);
  957. double_rq_lock(this_rq, busiest);
  958. return 1;
  959. }
  960. #else
  961. /*
  962. * Unfair double_lock_balance: Optimizes throughput at the expense of
  963. * latency by eliminating extra atomic operations when the locks are
  964. * already in proper order on entry. This favors lower cpu-ids and will
  965. * grant the double lock to lower cpus over higher ids under contention,
  966. * regardless of entry order into the function.
  967. */
  968. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  969. __releases(this_rq->lock)
  970. __acquires(busiest->lock)
  971. __acquires(this_rq->lock)
  972. {
  973. int ret = 0;
  974. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  975. if (busiest < this_rq) {
  976. raw_spin_unlock(&this_rq->lock);
  977. raw_spin_lock(&busiest->lock);
  978. raw_spin_lock_nested(&this_rq->lock,
  979. SINGLE_DEPTH_NESTING);
  980. ret = 1;
  981. } else
  982. raw_spin_lock_nested(&busiest->lock,
  983. SINGLE_DEPTH_NESTING);
  984. }
  985. return ret;
  986. }
  987. #endif /* CONFIG_PREEMPT */
  988. /*
  989. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  990. */
  991. static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  992. {
  993. if (unlikely(!irqs_disabled())) {
  994. /* printk() doesn't work good under rq->lock */
  995. raw_spin_unlock(&this_rq->lock);
  996. BUG_ON(1);
  997. }
  998. return _double_lock_balance(this_rq, busiest);
  999. }
  1000. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1001. __releases(busiest->lock)
  1002. {
  1003. raw_spin_unlock(&busiest->lock);
  1004. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1005. }
  1006. /*
  1007. * double_rq_lock - safely lock two runqueues
  1008. *
  1009. * Note this does not disable interrupts like task_rq_lock,
  1010. * you need to do so manually before calling.
  1011. */
  1012. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1013. __acquires(rq1->lock)
  1014. __acquires(rq2->lock)
  1015. {
  1016. BUG_ON(!irqs_disabled());
  1017. if (rq1 == rq2) {
  1018. raw_spin_lock(&rq1->lock);
  1019. __acquire(rq2->lock); /* Fake it out ;) */
  1020. } else {
  1021. if (rq1 < rq2) {
  1022. raw_spin_lock(&rq1->lock);
  1023. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1024. } else {
  1025. raw_spin_lock(&rq2->lock);
  1026. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1027. }
  1028. }
  1029. }
  1030. /*
  1031. * double_rq_unlock - safely unlock two runqueues
  1032. *
  1033. * Note this does not restore interrupts like task_rq_unlock,
  1034. * you need to do so manually after calling.
  1035. */
  1036. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1037. __releases(rq1->lock)
  1038. __releases(rq2->lock)
  1039. {
  1040. raw_spin_unlock(&rq1->lock);
  1041. if (rq1 != rq2)
  1042. raw_spin_unlock(&rq2->lock);
  1043. else
  1044. __release(rq2->lock);
  1045. }
  1046. #else /* CONFIG_SMP */
  1047. /*
  1048. * double_rq_lock - safely lock two runqueues
  1049. *
  1050. * Note this does not disable interrupts like task_rq_lock,
  1051. * you need to do so manually before calling.
  1052. */
  1053. static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1054. __acquires(rq1->lock)
  1055. __acquires(rq2->lock)
  1056. {
  1057. BUG_ON(!irqs_disabled());
  1058. BUG_ON(rq1 != rq2);
  1059. raw_spin_lock(&rq1->lock);
  1060. __acquire(rq2->lock); /* Fake it out ;) */
  1061. }
  1062. /*
  1063. * double_rq_unlock - safely unlock two runqueues
  1064. *
  1065. * Note this does not restore interrupts like task_rq_unlock,
  1066. * you need to do so manually after calling.
  1067. */
  1068. static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1069. __releases(rq1->lock)
  1070. __releases(rq2->lock)
  1071. {
  1072. BUG_ON(rq1 != rq2);
  1073. raw_spin_unlock(&rq1->lock);
  1074. __release(rq2->lock);
  1075. }
  1076. #endif
  1077. extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
  1078. extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
  1079. extern void print_cfs_stats(struct seq_file *m, int cpu);
  1080. extern void print_rt_stats(struct seq_file *m, int cpu);
  1081. extern void init_cfs_rq(struct cfs_rq *cfs_rq);
  1082. extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
  1083. extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
  1084. #ifdef CONFIG_NO_HZ_COMMON
  1085. enum rq_nohz_flag_bits {
  1086. NOHZ_TICK_STOPPED,
  1087. NOHZ_BALANCE_KICK,
  1088. };
  1089. #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
  1090. #endif
  1091. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1092. DECLARE_PER_CPU(u64, cpu_hardirq_time);
  1093. DECLARE_PER_CPU(u64, cpu_softirq_time);
  1094. #ifndef CONFIG_64BIT
  1095. DECLARE_PER_CPU(seqcount_t, irq_time_seq);
  1096. static inline void irq_time_write_begin(void)
  1097. {
  1098. __this_cpu_inc(irq_time_seq.sequence);
  1099. smp_wmb();
  1100. }
  1101. static inline void irq_time_write_end(void)
  1102. {
  1103. smp_wmb();
  1104. __this_cpu_inc(irq_time_seq.sequence);
  1105. }
  1106. static inline u64 irq_time_read(int cpu)
  1107. {
  1108. u64 irq_time;
  1109. unsigned seq;
  1110. do {
  1111. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1112. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1113. per_cpu(cpu_hardirq_time, cpu);
  1114. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1115. return irq_time;
  1116. }
  1117. #else /* CONFIG_64BIT */
  1118. static inline void irq_time_write_begin(void)
  1119. {
  1120. }
  1121. static inline void irq_time_write_end(void)
  1122. {
  1123. }
  1124. static inline u64 irq_time_read(int cpu)
  1125. {
  1126. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1127. }
  1128. #endif /* CONFIG_64BIT */
  1129. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */