kvm_main.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #define CREATE_TRACE_POINTS
  55. #include <trace/events/kvm.h>
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. /*
  59. * Ordering of locks:
  60. *
  61. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  62. */
  63. DEFINE_SPINLOCK(kvm_lock);
  64. LIST_HEAD(vm_list);
  65. static cpumask_var_t cpus_hardware_enabled;
  66. static int kvm_usage_count = 0;
  67. static atomic_t hardware_enable_failed;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static int hardware_enable_all(void);
  75. static void hardware_disable_all(void);
  76. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  77. static bool kvm_rebooting;
  78. static bool largepages_enabled = true;
  79. static struct page *hwpoison_page;
  80. static pfn_t hwpoison_pfn;
  81. static struct page *fault_page;
  82. static pfn_t fault_pfn;
  83. inline int kvm_is_mmio_pfn(pfn_t pfn)
  84. {
  85. if (pfn_valid(pfn)) {
  86. struct page *page = compound_head(pfn_to_page(pfn));
  87. return PageReserved(page);
  88. }
  89. return true;
  90. }
  91. /*
  92. * Switches to specified vcpu, until a matching vcpu_put()
  93. */
  94. void vcpu_load(struct kvm_vcpu *vcpu)
  95. {
  96. int cpu;
  97. mutex_lock(&vcpu->mutex);
  98. cpu = get_cpu();
  99. preempt_notifier_register(&vcpu->preempt_notifier);
  100. kvm_arch_vcpu_load(vcpu, cpu);
  101. put_cpu();
  102. }
  103. void vcpu_put(struct kvm_vcpu *vcpu)
  104. {
  105. preempt_disable();
  106. kvm_arch_vcpu_put(vcpu);
  107. preempt_notifier_unregister(&vcpu->preempt_notifier);
  108. preempt_enable();
  109. mutex_unlock(&vcpu->mutex);
  110. }
  111. static void ack_flush(void *_completed)
  112. {
  113. }
  114. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  115. {
  116. int i, cpu, me;
  117. cpumask_var_t cpus;
  118. bool called = true;
  119. struct kvm_vcpu *vcpu;
  120. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  121. raw_spin_lock(&kvm->requests_lock);
  122. me = smp_processor_id();
  123. kvm_for_each_vcpu(i, vcpu, kvm) {
  124. if (kvm_make_check_request(req, vcpu))
  125. continue;
  126. cpu = vcpu->cpu;
  127. if (cpus != NULL && cpu != -1 && cpu != me)
  128. cpumask_set_cpu(cpu, cpus);
  129. }
  130. if (unlikely(cpus == NULL))
  131. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  132. else if (!cpumask_empty(cpus))
  133. smp_call_function_many(cpus, ack_flush, NULL, 1);
  134. else
  135. called = false;
  136. raw_spin_unlock(&kvm->requests_lock);
  137. free_cpumask_var(cpus);
  138. return called;
  139. }
  140. void kvm_flush_remote_tlbs(struct kvm *kvm)
  141. {
  142. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  143. ++kvm->stat.remote_tlb_flush;
  144. }
  145. void kvm_reload_remote_mmus(struct kvm *kvm)
  146. {
  147. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  148. }
  149. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  150. {
  151. struct page *page;
  152. int r;
  153. mutex_init(&vcpu->mutex);
  154. vcpu->cpu = -1;
  155. vcpu->kvm = kvm;
  156. vcpu->vcpu_id = id;
  157. init_waitqueue_head(&vcpu->wq);
  158. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  159. if (!page) {
  160. r = -ENOMEM;
  161. goto fail;
  162. }
  163. vcpu->run = page_address(page);
  164. r = kvm_arch_vcpu_init(vcpu);
  165. if (r < 0)
  166. goto fail_free_run;
  167. return 0;
  168. fail_free_run:
  169. free_page((unsigned long)vcpu->run);
  170. fail:
  171. return r;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  174. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  175. {
  176. kvm_arch_vcpu_uninit(vcpu);
  177. free_page((unsigned long)vcpu->run);
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  180. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  181. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  182. {
  183. return container_of(mn, struct kvm, mmu_notifier);
  184. }
  185. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  186. struct mm_struct *mm,
  187. unsigned long address)
  188. {
  189. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  190. int need_tlb_flush, idx;
  191. /*
  192. * When ->invalidate_page runs, the linux pte has been zapped
  193. * already but the page is still allocated until
  194. * ->invalidate_page returns. So if we increase the sequence
  195. * here the kvm page fault will notice if the spte can't be
  196. * established because the page is going to be freed. If
  197. * instead the kvm page fault establishes the spte before
  198. * ->invalidate_page runs, kvm_unmap_hva will release it
  199. * before returning.
  200. *
  201. * The sequence increase only need to be seen at spin_unlock
  202. * time, and not at spin_lock time.
  203. *
  204. * Increasing the sequence after the spin_unlock would be
  205. * unsafe because the kvm page fault could then establish the
  206. * pte after kvm_unmap_hva returned, without noticing the page
  207. * is going to be freed.
  208. */
  209. idx = srcu_read_lock(&kvm->srcu);
  210. spin_lock(&kvm->mmu_lock);
  211. kvm->mmu_notifier_seq++;
  212. need_tlb_flush = kvm_unmap_hva(kvm, address);
  213. spin_unlock(&kvm->mmu_lock);
  214. srcu_read_unlock(&kvm->srcu, idx);
  215. /* we've to flush the tlb before the pages can be freed */
  216. if (need_tlb_flush)
  217. kvm_flush_remote_tlbs(kvm);
  218. }
  219. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  220. struct mm_struct *mm,
  221. unsigned long address,
  222. pte_t pte)
  223. {
  224. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  225. int idx;
  226. idx = srcu_read_lock(&kvm->srcu);
  227. spin_lock(&kvm->mmu_lock);
  228. kvm->mmu_notifier_seq++;
  229. kvm_set_spte_hva(kvm, address, pte);
  230. spin_unlock(&kvm->mmu_lock);
  231. srcu_read_unlock(&kvm->srcu, idx);
  232. }
  233. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  234. struct mm_struct *mm,
  235. unsigned long start,
  236. unsigned long end)
  237. {
  238. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  239. int need_tlb_flush = 0, idx;
  240. idx = srcu_read_lock(&kvm->srcu);
  241. spin_lock(&kvm->mmu_lock);
  242. /*
  243. * The count increase must become visible at unlock time as no
  244. * spte can be established without taking the mmu_lock and
  245. * count is also read inside the mmu_lock critical section.
  246. */
  247. kvm->mmu_notifier_count++;
  248. for (; start < end; start += PAGE_SIZE)
  249. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  250. spin_unlock(&kvm->mmu_lock);
  251. srcu_read_unlock(&kvm->srcu, idx);
  252. /* we've to flush the tlb before the pages can be freed */
  253. if (need_tlb_flush)
  254. kvm_flush_remote_tlbs(kvm);
  255. }
  256. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  257. struct mm_struct *mm,
  258. unsigned long start,
  259. unsigned long end)
  260. {
  261. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  262. spin_lock(&kvm->mmu_lock);
  263. /*
  264. * This sequence increase will notify the kvm page fault that
  265. * the page that is going to be mapped in the spte could have
  266. * been freed.
  267. */
  268. kvm->mmu_notifier_seq++;
  269. /*
  270. * The above sequence increase must be visible before the
  271. * below count decrease but both values are read by the kvm
  272. * page fault under mmu_lock spinlock so we don't need to add
  273. * a smb_wmb() here in between the two.
  274. */
  275. kvm->mmu_notifier_count--;
  276. spin_unlock(&kvm->mmu_lock);
  277. BUG_ON(kvm->mmu_notifier_count < 0);
  278. }
  279. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  280. struct mm_struct *mm,
  281. unsigned long address)
  282. {
  283. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  284. int young, idx;
  285. idx = srcu_read_lock(&kvm->srcu);
  286. spin_lock(&kvm->mmu_lock);
  287. young = kvm_age_hva(kvm, address);
  288. spin_unlock(&kvm->mmu_lock);
  289. srcu_read_unlock(&kvm->srcu, idx);
  290. if (young)
  291. kvm_flush_remote_tlbs(kvm);
  292. return young;
  293. }
  294. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  295. struct mm_struct *mm)
  296. {
  297. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  298. int idx;
  299. idx = srcu_read_lock(&kvm->srcu);
  300. kvm_arch_flush_shadow(kvm);
  301. srcu_read_unlock(&kvm->srcu, idx);
  302. }
  303. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  304. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  305. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  306. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  307. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  308. .change_pte = kvm_mmu_notifier_change_pte,
  309. .release = kvm_mmu_notifier_release,
  310. };
  311. static int kvm_init_mmu_notifier(struct kvm *kvm)
  312. {
  313. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  314. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  315. }
  316. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  317. static int kvm_init_mmu_notifier(struct kvm *kvm)
  318. {
  319. return 0;
  320. }
  321. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  322. static struct kvm *kvm_create_vm(void)
  323. {
  324. int r = 0, i;
  325. struct kvm *kvm = kvm_arch_create_vm();
  326. if (IS_ERR(kvm))
  327. goto out;
  328. r = hardware_enable_all();
  329. if (r)
  330. goto out_err_nodisable;
  331. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  332. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  333. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  334. #endif
  335. r = -ENOMEM;
  336. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  337. if (!kvm->memslots)
  338. goto out_err;
  339. if (init_srcu_struct(&kvm->srcu))
  340. goto out_err;
  341. for (i = 0; i < KVM_NR_BUSES; i++) {
  342. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  343. GFP_KERNEL);
  344. if (!kvm->buses[i]) {
  345. cleanup_srcu_struct(&kvm->srcu);
  346. goto out_err;
  347. }
  348. }
  349. r = kvm_init_mmu_notifier(kvm);
  350. if (r) {
  351. cleanup_srcu_struct(&kvm->srcu);
  352. goto out_err;
  353. }
  354. kvm->mm = current->mm;
  355. atomic_inc(&kvm->mm->mm_count);
  356. spin_lock_init(&kvm->mmu_lock);
  357. raw_spin_lock_init(&kvm->requests_lock);
  358. kvm_eventfd_init(kvm);
  359. mutex_init(&kvm->lock);
  360. mutex_init(&kvm->irq_lock);
  361. mutex_init(&kvm->slots_lock);
  362. atomic_set(&kvm->users_count, 1);
  363. spin_lock(&kvm_lock);
  364. list_add(&kvm->vm_list, &vm_list);
  365. spin_unlock(&kvm_lock);
  366. out:
  367. return kvm;
  368. out_err:
  369. hardware_disable_all();
  370. out_err_nodisable:
  371. for (i = 0; i < KVM_NR_BUSES; i++)
  372. kfree(kvm->buses[i]);
  373. kfree(kvm->memslots);
  374. kfree(kvm);
  375. return ERR_PTR(r);
  376. }
  377. /*
  378. * Free any memory in @free but not in @dont.
  379. */
  380. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  381. struct kvm_memory_slot *dont)
  382. {
  383. int i;
  384. if (!dont || free->rmap != dont->rmap)
  385. vfree(free->rmap);
  386. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  387. vfree(free->dirty_bitmap);
  388. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  389. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  390. vfree(free->lpage_info[i]);
  391. free->lpage_info[i] = NULL;
  392. }
  393. }
  394. free->npages = 0;
  395. free->dirty_bitmap = NULL;
  396. free->rmap = NULL;
  397. }
  398. void kvm_free_physmem(struct kvm *kvm)
  399. {
  400. int i;
  401. struct kvm_memslots *slots = kvm->memslots;
  402. for (i = 0; i < slots->nmemslots; ++i)
  403. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  404. kfree(kvm->memslots);
  405. }
  406. static void kvm_destroy_vm(struct kvm *kvm)
  407. {
  408. int i;
  409. struct mm_struct *mm = kvm->mm;
  410. kvm_arch_sync_events(kvm);
  411. spin_lock(&kvm_lock);
  412. list_del(&kvm->vm_list);
  413. spin_unlock(&kvm_lock);
  414. kvm_free_irq_routing(kvm);
  415. for (i = 0; i < KVM_NR_BUSES; i++)
  416. kvm_io_bus_destroy(kvm->buses[i]);
  417. kvm_coalesced_mmio_free(kvm);
  418. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  419. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  420. #else
  421. kvm_arch_flush_shadow(kvm);
  422. #endif
  423. kvm_arch_destroy_vm(kvm);
  424. hardware_disable_all();
  425. mmdrop(mm);
  426. }
  427. void kvm_get_kvm(struct kvm *kvm)
  428. {
  429. atomic_inc(&kvm->users_count);
  430. }
  431. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  432. void kvm_put_kvm(struct kvm *kvm)
  433. {
  434. if (atomic_dec_and_test(&kvm->users_count))
  435. kvm_destroy_vm(kvm);
  436. }
  437. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  438. static int kvm_vm_release(struct inode *inode, struct file *filp)
  439. {
  440. struct kvm *kvm = filp->private_data;
  441. kvm_irqfd_release(kvm);
  442. kvm_put_kvm(kvm);
  443. return 0;
  444. }
  445. /*
  446. * Allocate some memory and give it an address in the guest physical address
  447. * space.
  448. *
  449. * Discontiguous memory is allowed, mostly for framebuffers.
  450. *
  451. * Must be called holding mmap_sem for write.
  452. */
  453. int __kvm_set_memory_region(struct kvm *kvm,
  454. struct kvm_userspace_memory_region *mem,
  455. int user_alloc)
  456. {
  457. int r, flush_shadow = 0;
  458. gfn_t base_gfn;
  459. unsigned long npages;
  460. unsigned long i;
  461. struct kvm_memory_slot *memslot;
  462. struct kvm_memory_slot old, new;
  463. struct kvm_memslots *slots, *old_memslots;
  464. r = -EINVAL;
  465. /* General sanity checks */
  466. if (mem->memory_size & (PAGE_SIZE - 1))
  467. goto out;
  468. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  469. goto out;
  470. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  471. goto out;
  472. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  473. goto out;
  474. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  475. goto out;
  476. memslot = &kvm->memslots->memslots[mem->slot];
  477. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  478. npages = mem->memory_size >> PAGE_SHIFT;
  479. r = -EINVAL;
  480. if (npages > KVM_MEM_MAX_NR_PAGES)
  481. goto out;
  482. if (!npages)
  483. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  484. new = old = *memslot;
  485. new.id = mem->slot;
  486. new.base_gfn = base_gfn;
  487. new.npages = npages;
  488. new.flags = mem->flags;
  489. /* Disallow changing a memory slot's size. */
  490. r = -EINVAL;
  491. if (npages && old.npages && npages != old.npages)
  492. goto out_free;
  493. /* Check for overlaps */
  494. r = -EEXIST;
  495. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  496. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  497. if (s == memslot || !s->npages)
  498. continue;
  499. if (!((base_gfn + npages <= s->base_gfn) ||
  500. (base_gfn >= s->base_gfn + s->npages)))
  501. goto out_free;
  502. }
  503. /* Free page dirty bitmap if unneeded */
  504. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  505. new.dirty_bitmap = NULL;
  506. r = -ENOMEM;
  507. /* Allocate if a slot is being created */
  508. #ifndef CONFIG_S390
  509. if (npages && !new.rmap) {
  510. new.rmap = vmalloc(npages * sizeof(*new.rmap));
  511. if (!new.rmap)
  512. goto out_free;
  513. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  514. new.user_alloc = user_alloc;
  515. new.userspace_addr = mem->userspace_addr;
  516. }
  517. if (!npages)
  518. goto skip_lpage;
  519. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  520. unsigned long ugfn;
  521. unsigned long j;
  522. int lpages;
  523. int level = i + 2;
  524. /* Avoid unused variable warning if no large pages */
  525. (void)level;
  526. if (new.lpage_info[i])
  527. continue;
  528. lpages = 1 + ((base_gfn + npages - 1)
  529. >> KVM_HPAGE_GFN_SHIFT(level));
  530. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  531. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  532. if (!new.lpage_info[i])
  533. goto out_free;
  534. memset(new.lpage_info[i], 0,
  535. lpages * sizeof(*new.lpage_info[i]));
  536. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  537. new.lpage_info[i][0].write_count = 1;
  538. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  539. new.lpage_info[i][lpages - 1].write_count = 1;
  540. ugfn = new.userspace_addr >> PAGE_SHIFT;
  541. /*
  542. * If the gfn and userspace address are not aligned wrt each
  543. * other, or if explicitly asked to, disable large page
  544. * support for this slot
  545. */
  546. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  547. !largepages_enabled)
  548. for (j = 0; j < lpages; ++j)
  549. new.lpage_info[i][j].write_count = 1;
  550. }
  551. skip_lpage:
  552. /* Allocate page dirty bitmap if needed */
  553. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  554. unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
  555. new.dirty_bitmap = vmalloc(dirty_bytes);
  556. if (!new.dirty_bitmap)
  557. goto out_free;
  558. memset(new.dirty_bitmap, 0, dirty_bytes);
  559. /* destroy any largepage mappings for dirty tracking */
  560. if (old.npages)
  561. flush_shadow = 1;
  562. }
  563. #else /* not defined CONFIG_S390 */
  564. new.user_alloc = user_alloc;
  565. if (user_alloc)
  566. new.userspace_addr = mem->userspace_addr;
  567. #endif /* not defined CONFIG_S390 */
  568. if (!npages) {
  569. r = -ENOMEM;
  570. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  571. if (!slots)
  572. goto out_free;
  573. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  574. if (mem->slot >= slots->nmemslots)
  575. slots->nmemslots = mem->slot + 1;
  576. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  577. old_memslots = kvm->memslots;
  578. rcu_assign_pointer(kvm->memslots, slots);
  579. synchronize_srcu_expedited(&kvm->srcu);
  580. /* From this point no new shadow pages pointing to a deleted
  581. * memslot will be created.
  582. *
  583. * validation of sp->gfn happens in:
  584. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  585. * - kvm_is_visible_gfn (mmu_check_roots)
  586. */
  587. kvm_arch_flush_shadow(kvm);
  588. kfree(old_memslots);
  589. }
  590. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  591. if (r)
  592. goto out_free;
  593. #ifdef CONFIG_DMAR
  594. /* map the pages in iommu page table */
  595. if (npages) {
  596. r = kvm_iommu_map_pages(kvm, &new);
  597. if (r)
  598. goto out_free;
  599. }
  600. #endif
  601. r = -ENOMEM;
  602. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  603. if (!slots)
  604. goto out_free;
  605. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  606. if (mem->slot >= slots->nmemslots)
  607. slots->nmemslots = mem->slot + 1;
  608. /* actual memory is freed via old in kvm_free_physmem_slot below */
  609. if (!npages) {
  610. new.rmap = NULL;
  611. new.dirty_bitmap = NULL;
  612. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  613. new.lpage_info[i] = NULL;
  614. }
  615. slots->memslots[mem->slot] = new;
  616. old_memslots = kvm->memslots;
  617. rcu_assign_pointer(kvm->memslots, slots);
  618. synchronize_srcu_expedited(&kvm->srcu);
  619. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  620. kvm_free_physmem_slot(&old, &new);
  621. kfree(old_memslots);
  622. if (flush_shadow)
  623. kvm_arch_flush_shadow(kvm);
  624. return 0;
  625. out_free:
  626. kvm_free_physmem_slot(&new, &old);
  627. out:
  628. return r;
  629. }
  630. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  631. int kvm_set_memory_region(struct kvm *kvm,
  632. struct kvm_userspace_memory_region *mem,
  633. int user_alloc)
  634. {
  635. int r;
  636. mutex_lock(&kvm->slots_lock);
  637. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  638. mutex_unlock(&kvm->slots_lock);
  639. return r;
  640. }
  641. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  642. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  643. struct
  644. kvm_userspace_memory_region *mem,
  645. int user_alloc)
  646. {
  647. if (mem->slot >= KVM_MEMORY_SLOTS)
  648. return -EINVAL;
  649. return kvm_set_memory_region(kvm, mem, user_alloc);
  650. }
  651. int kvm_get_dirty_log(struct kvm *kvm,
  652. struct kvm_dirty_log *log, int *is_dirty)
  653. {
  654. struct kvm_memory_slot *memslot;
  655. int r, i;
  656. unsigned long n;
  657. unsigned long any = 0;
  658. r = -EINVAL;
  659. if (log->slot >= KVM_MEMORY_SLOTS)
  660. goto out;
  661. memslot = &kvm->memslots->memslots[log->slot];
  662. r = -ENOENT;
  663. if (!memslot->dirty_bitmap)
  664. goto out;
  665. n = kvm_dirty_bitmap_bytes(memslot);
  666. for (i = 0; !any && i < n/sizeof(long); ++i)
  667. any = memslot->dirty_bitmap[i];
  668. r = -EFAULT;
  669. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  670. goto out;
  671. if (any)
  672. *is_dirty = 1;
  673. r = 0;
  674. out:
  675. return r;
  676. }
  677. void kvm_disable_largepages(void)
  678. {
  679. largepages_enabled = false;
  680. }
  681. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  682. int is_error_page(struct page *page)
  683. {
  684. return page == bad_page || page == hwpoison_page || page == fault_page;
  685. }
  686. EXPORT_SYMBOL_GPL(is_error_page);
  687. int is_error_pfn(pfn_t pfn)
  688. {
  689. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  690. }
  691. EXPORT_SYMBOL_GPL(is_error_pfn);
  692. int is_hwpoison_pfn(pfn_t pfn)
  693. {
  694. return pfn == hwpoison_pfn;
  695. }
  696. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  697. int is_fault_pfn(pfn_t pfn)
  698. {
  699. return pfn == fault_pfn;
  700. }
  701. EXPORT_SYMBOL_GPL(is_fault_pfn);
  702. static inline unsigned long bad_hva(void)
  703. {
  704. return PAGE_OFFSET;
  705. }
  706. int kvm_is_error_hva(unsigned long addr)
  707. {
  708. return addr == bad_hva();
  709. }
  710. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  711. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  712. {
  713. int i;
  714. struct kvm_memslots *slots = kvm_memslots(kvm);
  715. for (i = 0; i < slots->nmemslots; ++i) {
  716. struct kvm_memory_slot *memslot = &slots->memslots[i];
  717. if (gfn >= memslot->base_gfn
  718. && gfn < memslot->base_gfn + memslot->npages)
  719. return memslot;
  720. }
  721. return NULL;
  722. }
  723. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  724. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  725. {
  726. int i;
  727. struct kvm_memslots *slots = kvm_memslots(kvm);
  728. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  729. struct kvm_memory_slot *memslot = &slots->memslots[i];
  730. if (memslot->flags & KVM_MEMSLOT_INVALID)
  731. continue;
  732. if (gfn >= memslot->base_gfn
  733. && gfn < memslot->base_gfn + memslot->npages)
  734. return 1;
  735. }
  736. return 0;
  737. }
  738. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  739. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  740. {
  741. struct vm_area_struct *vma;
  742. unsigned long addr, size;
  743. size = PAGE_SIZE;
  744. addr = gfn_to_hva(kvm, gfn);
  745. if (kvm_is_error_hva(addr))
  746. return PAGE_SIZE;
  747. down_read(&current->mm->mmap_sem);
  748. vma = find_vma(current->mm, addr);
  749. if (!vma)
  750. goto out;
  751. size = vma_kernel_pagesize(vma);
  752. out:
  753. up_read(&current->mm->mmap_sem);
  754. return size;
  755. }
  756. int memslot_id(struct kvm *kvm, gfn_t gfn)
  757. {
  758. int i;
  759. struct kvm_memslots *slots = kvm_memslots(kvm);
  760. struct kvm_memory_slot *memslot = NULL;
  761. for (i = 0; i < slots->nmemslots; ++i) {
  762. memslot = &slots->memslots[i];
  763. if (gfn >= memslot->base_gfn
  764. && gfn < memslot->base_gfn + memslot->npages)
  765. break;
  766. }
  767. return memslot - slots->memslots;
  768. }
  769. static unsigned long gfn_to_hva_many(struct kvm *kvm, gfn_t gfn,
  770. gfn_t *nr_pages)
  771. {
  772. struct kvm_memory_slot *slot;
  773. slot = gfn_to_memslot(kvm, gfn);
  774. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  775. return bad_hva();
  776. if (nr_pages)
  777. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  778. return gfn_to_hva_memslot(slot, gfn);
  779. }
  780. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  781. {
  782. return gfn_to_hva_many(kvm, gfn, NULL);
  783. }
  784. EXPORT_SYMBOL_GPL(gfn_to_hva);
  785. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic)
  786. {
  787. struct page *page[1];
  788. int npages;
  789. pfn_t pfn;
  790. if (atomic)
  791. npages = __get_user_pages_fast(addr, 1, 1, page);
  792. else {
  793. might_sleep();
  794. npages = get_user_pages_fast(addr, 1, 1, page);
  795. }
  796. if (unlikely(npages != 1)) {
  797. struct vm_area_struct *vma;
  798. if (atomic)
  799. goto return_fault_page;
  800. down_read(&current->mm->mmap_sem);
  801. if (is_hwpoison_address(addr)) {
  802. up_read(&current->mm->mmap_sem);
  803. get_page(hwpoison_page);
  804. return page_to_pfn(hwpoison_page);
  805. }
  806. vma = find_vma(current->mm, addr);
  807. if (vma == NULL || addr < vma->vm_start ||
  808. !(vma->vm_flags & VM_PFNMAP)) {
  809. up_read(&current->mm->mmap_sem);
  810. return_fault_page:
  811. get_page(fault_page);
  812. return page_to_pfn(fault_page);
  813. }
  814. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  815. up_read(&current->mm->mmap_sem);
  816. BUG_ON(!kvm_is_mmio_pfn(pfn));
  817. } else
  818. pfn = page_to_pfn(page[0]);
  819. return pfn;
  820. }
  821. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  822. {
  823. return hva_to_pfn(kvm, addr, true);
  824. }
  825. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  826. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic)
  827. {
  828. unsigned long addr;
  829. addr = gfn_to_hva(kvm, gfn);
  830. if (kvm_is_error_hva(addr)) {
  831. get_page(bad_page);
  832. return page_to_pfn(bad_page);
  833. }
  834. return hva_to_pfn(kvm, addr, atomic);
  835. }
  836. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  837. {
  838. return __gfn_to_pfn(kvm, gfn, true);
  839. }
  840. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  841. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  842. {
  843. return __gfn_to_pfn(kvm, gfn, false);
  844. }
  845. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  846. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  847. struct kvm_memory_slot *slot, gfn_t gfn)
  848. {
  849. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  850. return hva_to_pfn(kvm, addr, false);
  851. }
  852. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  853. int nr_pages)
  854. {
  855. unsigned long addr;
  856. gfn_t entry;
  857. addr = gfn_to_hva_many(kvm, gfn, &entry);
  858. if (kvm_is_error_hva(addr))
  859. return -1;
  860. if (entry < nr_pages)
  861. return 0;
  862. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  863. }
  864. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  865. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  866. {
  867. pfn_t pfn;
  868. pfn = gfn_to_pfn(kvm, gfn);
  869. if (!kvm_is_mmio_pfn(pfn))
  870. return pfn_to_page(pfn);
  871. WARN_ON(kvm_is_mmio_pfn(pfn));
  872. get_page(bad_page);
  873. return bad_page;
  874. }
  875. EXPORT_SYMBOL_GPL(gfn_to_page);
  876. void kvm_release_page_clean(struct page *page)
  877. {
  878. kvm_release_pfn_clean(page_to_pfn(page));
  879. }
  880. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  881. void kvm_release_pfn_clean(pfn_t pfn)
  882. {
  883. if (!kvm_is_mmio_pfn(pfn))
  884. put_page(pfn_to_page(pfn));
  885. }
  886. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  887. void kvm_release_page_dirty(struct page *page)
  888. {
  889. kvm_release_pfn_dirty(page_to_pfn(page));
  890. }
  891. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  892. void kvm_release_pfn_dirty(pfn_t pfn)
  893. {
  894. kvm_set_pfn_dirty(pfn);
  895. kvm_release_pfn_clean(pfn);
  896. }
  897. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  898. void kvm_set_page_dirty(struct page *page)
  899. {
  900. kvm_set_pfn_dirty(page_to_pfn(page));
  901. }
  902. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  903. void kvm_set_pfn_dirty(pfn_t pfn)
  904. {
  905. if (!kvm_is_mmio_pfn(pfn)) {
  906. struct page *page = pfn_to_page(pfn);
  907. if (!PageReserved(page))
  908. SetPageDirty(page);
  909. }
  910. }
  911. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  912. void kvm_set_pfn_accessed(pfn_t pfn)
  913. {
  914. if (!kvm_is_mmio_pfn(pfn))
  915. mark_page_accessed(pfn_to_page(pfn));
  916. }
  917. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  918. void kvm_get_pfn(pfn_t pfn)
  919. {
  920. if (!kvm_is_mmio_pfn(pfn))
  921. get_page(pfn_to_page(pfn));
  922. }
  923. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  924. static int next_segment(unsigned long len, int offset)
  925. {
  926. if (len > PAGE_SIZE - offset)
  927. return PAGE_SIZE - offset;
  928. else
  929. return len;
  930. }
  931. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  932. int len)
  933. {
  934. int r;
  935. unsigned long addr;
  936. addr = gfn_to_hva(kvm, gfn);
  937. if (kvm_is_error_hva(addr))
  938. return -EFAULT;
  939. r = copy_from_user(data, (void __user *)addr + offset, len);
  940. if (r)
  941. return -EFAULT;
  942. return 0;
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  945. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  946. {
  947. gfn_t gfn = gpa >> PAGE_SHIFT;
  948. int seg;
  949. int offset = offset_in_page(gpa);
  950. int ret;
  951. while ((seg = next_segment(len, offset)) != 0) {
  952. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  953. if (ret < 0)
  954. return ret;
  955. offset = 0;
  956. len -= seg;
  957. data += seg;
  958. ++gfn;
  959. }
  960. return 0;
  961. }
  962. EXPORT_SYMBOL_GPL(kvm_read_guest);
  963. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  964. unsigned long len)
  965. {
  966. int r;
  967. unsigned long addr;
  968. gfn_t gfn = gpa >> PAGE_SHIFT;
  969. int offset = offset_in_page(gpa);
  970. addr = gfn_to_hva(kvm, gfn);
  971. if (kvm_is_error_hva(addr))
  972. return -EFAULT;
  973. pagefault_disable();
  974. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  975. pagefault_enable();
  976. if (r)
  977. return -EFAULT;
  978. return 0;
  979. }
  980. EXPORT_SYMBOL(kvm_read_guest_atomic);
  981. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  982. int offset, int len)
  983. {
  984. int r;
  985. unsigned long addr;
  986. addr = gfn_to_hva(kvm, gfn);
  987. if (kvm_is_error_hva(addr))
  988. return -EFAULT;
  989. r = copy_to_user((void __user *)addr + offset, data, len);
  990. if (r)
  991. return -EFAULT;
  992. mark_page_dirty(kvm, gfn);
  993. return 0;
  994. }
  995. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  996. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  997. unsigned long len)
  998. {
  999. gfn_t gfn = gpa >> PAGE_SHIFT;
  1000. int seg;
  1001. int offset = offset_in_page(gpa);
  1002. int ret;
  1003. while ((seg = next_segment(len, offset)) != 0) {
  1004. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1005. if (ret < 0)
  1006. return ret;
  1007. offset = 0;
  1008. len -= seg;
  1009. data += seg;
  1010. ++gfn;
  1011. }
  1012. return 0;
  1013. }
  1014. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1015. {
  1016. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1017. }
  1018. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1019. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1020. {
  1021. gfn_t gfn = gpa >> PAGE_SHIFT;
  1022. int seg;
  1023. int offset = offset_in_page(gpa);
  1024. int ret;
  1025. while ((seg = next_segment(len, offset)) != 0) {
  1026. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1027. if (ret < 0)
  1028. return ret;
  1029. offset = 0;
  1030. len -= seg;
  1031. ++gfn;
  1032. }
  1033. return 0;
  1034. }
  1035. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1036. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1037. {
  1038. struct kvm_memory_slot *memslot;
  1039. memslot = gfn_to_memslot(kvm, gfn);
  1040. if (memslot && memslot->dirty_bitmap) {
  1041. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1042. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1043. }
  1044. }
  1045. /*
  1046. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1047. */
  1048. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1049. {
  1050. DEFINE_WAIT(wait);
  1051. for (;;) {
  1052. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1053. if (kvm_arch_vcpu_runnable(vcpu)) {
  1054. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1055. break;
  1056. }
  1057. if (kvm_cpu_has_pending_timer(vcpu))
  1058. break;
  1059. if (signal_pending(current))
  1060. break;
  1061. schedule();
  1062. }
  1063. finish_wait(&vcpu->wq, &wait);
  1064. }
  1065. void kvm_resched(struct kvm_vcpu *vcpu)
  1066. {
  1067. if (!need_resched())
  1068. return;
  1069. cond_resched();
  1070. }
  1071. EXPORT_SYMBOL_GPL(kvm_resched);
  1072. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1073. {
  1074. ktime_t expires;
  1075. DEFINE_WAIT(wait);
  1076. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1077. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1078. expires = ktime_add_ns(ktime_get(), 100000UL);
  1079. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1080. finish_wait(&vcpu->wq, &wait);
  1081. }
  1082. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1083. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1084. {
  1085. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1086. struct page *page;
  1087. if (vmf->pgoff == 0)
  1088. page = virt_to_page(vcpu->run);
  1089. #ifdef CONFIG_X86
  1090. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1091. page = virt_to_page(vcpu->arch.pio_data);
  1092. #endif
  1093. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1094. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1095. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1096. #endif
  1097. else
  1098. return VM_FAULT_SIGBUS;
  1099. get_page(page);
  1100. vmf->page = page;
  1101. return 0;
  1102. }
  1103. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1104. .fault = kvm_vcpu_fault,
  1105. };
  1106. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1107. {
  1108. vma->vm_ops = &kvm_vcpu_vm_ops;
  1109. return 0;
  1110. }
  1111. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1112. {
  1113. struct kvm_vcpu *vcpu = filp->private_data;
  1114. kvm_put_kvm(vcpu->kvm);
  1115. return 0;
  1116. }
  1117. static struct file_operations kvm_vcpu_fops = {
  1118. .release = kvm_vcpu_release,
  1119. .unlocked_ioctl = kvm_vcpu_ioctl,
  1120. .compat_ioctl = kvm_vcpu_ioctl,
  1121. .mmap = kvm_vcpu_mmap,
  1122. };
  1123. /*
  1124. * Allocates an inode for the vcpu.
  1125. */
  1126. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1127. {
  1128. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1129. }
  1130. /*
  1131. * Creates some virtual cpus. Good luck creating more than one.
  1132. */
  1133. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1134. {
  1135. int r;
  1136. struct kvm_vcpu *vcpu, *v;
  1137. vcpu = kvm_arch_vcpu_create(kvm, id);
  1138. if (IS_ERR(vcpu))
  1139. return PTR_ERR(vcpu);
  1140. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1141. r = kvm_arch_vcpu_setup(vcpu);
  1142. if (r)
  1143. return r;
  1144. mutex_lock(&kvm->lock);
  1145. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1146. r = -EINVAL;
  1147. goto vcpu_destroy;
  1148. }
  1149. kvm_for_each_vcpu(r, v, kvm)
  1150. if (v->vcpu_id == id) {
  1151. r = -EEXIST;
  1152. goto vcpu_destroy;
  1153. }
  1154. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1155. /* Now it's all set up, let userspace reach it */
  1156. kvm_get_kvm(kvm);
  1157. r = create_vcpu_fd(vcpu);
  1158. if (r < 0) {
  1159. kvm_put_kvm(kvm);
  1160. goto vcpu_destroy;
  1161. }
  1162. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1163. smp_wmb();
  1164. atomic_inc(&kvm->online_vcpus);
  1165. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1166. if (kvm->bsp_vcpu_id == id)
  1167. kvm->bsp_vcpu = vcpu;
  1168. #endif
  1169. mutex_unlock(&kvm->lock);
  1170. return r;
  1171. vcpu_destroy:
  1172. mutex_unlock(&kvm->lock);
  1173. kvm_arch_vcpu_destroy(vcpu);
  1174. return r;
  1175. }
  1176. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1177. {
  1178. if (sigset) {
  1179. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1180. vcpu->sigset_active = 1;
  1181. vcpu->sigset = *sigset;
  1182. } else
  1183. vcpu->sigset_active = 0;
  1184. return 0;
  1185. }
  1186. static long kvm_vcpu_ioctl(struct file *filp,
  1187. unsigned int ioctl, unsigned long arg)
  1188. {
  1189. struct kvm_vcpu *vcpu = filp->private_data;
  1190. void __user *argp = (void __user *)arg;
  1191. int r;
  1192. struct kvm_fpu *fpu = NULL;
  1193. struct kvm_sregs *kvm_sregs = NULL;
  1194. if (vcpu->kvm->mm != current->mm)
  1195. return -EIO;
  1196. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1197. /*
  1198. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1199. * so vcpu_load() would break it.
  1200. */
  1201. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1202. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1203. #endif
  1204. vcpu_load(vcpu);
  1205. switch (ioctl) {
  1206. case KVM_RUN:
  1207. r = -EINVAL;
  1208. if (arg)
  1209. goto out;
  1210. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1211. break;
  1212. case KVM_GET_REGS: {
  1213. struct kvm_regs *kvm_regs;
  1214. r = -ENOMEM;
  1215. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1216. if (!kvm_regs)
  1217. goto out;
  1218. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1219. if (r)
  1220. goto out_free1;
  1221. r = -EFAULT;
  1222. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1223. goto out_free1;
  1224. r = 0;
  1225. out_free1:
  1226. kfree(kvm_regs);
  1227. break;
  1228. }
  1229. case KVM_SET_REGS: {
  1230. struct kvm_regs *kvm_regs;
  1231. r = -ENOMEM;
  1232. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1233. if (!kvm_regs)
  1234. goto out;
  1235. r = -EFAULT;
  1236. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1237. goto out_free2;
  1238. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1239. if (r)
  1240. goto out_free2;
  1241. r = 0;
  1242. out_free2:
  1243. kfree(kvm_regs);
  1244. break;
  1245. }
  1246. case KVM_GET_SREGS: {
  1247. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1248. r = -ENOMEM;
  1249. if (!kvm_sregs)
  1250. goto out;
  1251. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1252. if (r)
  1253. goto out;
  1254. r = -EFAULT;
  1255. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1256. goto out;
  1257. r = 0;
  1258. break;
  1259. }
  1260. case KVM_SET_SREGS: {
  1261. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1262. r = -ENOMEM;
  1263. if (!kvm_sregs)
  1264. goto out;
  1265. r = -EFAULT;
  1266. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1267. goto out;
  1268. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1269. if (r)
  1270. goto out;
  1271. r = 0;
  1272. break;
  1273. }
  1274. case KVM_GET_MP_STATE: {
  1275. struct kvm_mp_state mp_state;
  1276. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1277. if (r)
  1278. goto out;
  1279. r = -EFAULT;
  1280. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1281. goto out;
  1282. r = 0;
  1283. break;
  1284. }
  1285. case KVM_SET_MP_STATE: {
  1286. struct kvm_mp_state mp_state;
  1287. r = -EFAULT;
  1288. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1289. goto out;
  1290. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1291. if (r)
  1292. goto out;
  1293. r = 0;
  1294. break;
  1295. }
  1296. case KVM_TRANSLATE: {
  1297. struct kvm_translation tr;
  1298. r = -EFAULT;
  1299. if (copy_from_user(&tr, argp, sizeof tr))
  1300. goto out;
  1301. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1302. if (r)
  1303. goto out;
  1304. r = -EFAULT;
  1305. if (copy_to_user(argp, &tr, sizeof tr))
  1306. goto out;
  1307. r = 0;
  1308. break;
  1309. }
  1310. case KVM_SET_GUEST_DEBUG: {
  1311. struct kvm_guest_debug dbg;
  1312. r = -EFAULT;
  1313. if (copy_from_user(&dbg, argp, sizeof dbg))
  1314. goto out;
  1315. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1316. if (r)
  1317. goto out;
  1318. r = 0;
  1319. break;
  1320. }
  1321. case KVM_SET_SIGNAL_MASK: {
  1322. struct kvm_signal_mask __user *sigmask_arg = argp;
  1323. struct kvm_signal_mask kvm_sigmask;
  1324. sigset_t sigset, *p;
  1325. p = NULL;
  1326. if (argp) {
  1327. r = -EFAULT;
  1328. if (copy_from_user(&kvm_sigmask, argp,
  1329. sizeof kvm_sigmask))
  1330. goto out;
  1331. r = -EINVAL;
  1332. if (kvm_sigmask.len != sizeof sigset)
  1333. goto out;
  1334. r = -EFAULT;
  1335. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1336. sizeof sigset))
  1337. goto out;
  1338. p = &sigset;
  1339. }
  1340. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1341. break;
  1342. }
  1343. case KVM_GET_FPU: {
  1344. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1345. r = -ENOMEM;
  1346. if (!fpu)
  1347. goto out;
  1348. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1349. if (r)
  1350. goto out;
  1351. r = -EFAULT;
  1352. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1353. goto out;
  1354. r = 0;
  1355. break;
  1356. }
  1357. case KVM_SET_FPU: {
  1358. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1359. r = -ENOMEM;
  1360. if (!fpu)
  1361. goto out;
  1362. r = -EFAULT;
  1363. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1364. goto out;
  1365. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1366. if (r)
  1367. goto out;
  1368. r = 0;
  1369. break;
  1370. }
  1371. default:
  1372. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1373. }
  1374. out:
  1375. vcpu_put(vcpu);
  1376. kfree(fpu);
  1377. kfree(kvm_sregs);
  1378. return r;
  1379. }
  1380. static long kvm_vm_ioctl(struct file *filp,
  1381. unsigned int ioctl, unsigned long arg)
  1382. {
  1383. struct kvm *kvm = filp->private_data;
  1384. void __user *argp = (void __user *)arg;
  1385. int r;
  1386. if (kvm->mm != current->mm)
  1387. return -EIO;
  1388. switch (ioctl) {
  1389. case KVM_CREATE_VCPU:
  1390. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1391. if (r < 0)
  1392. goto out;
  1393. break;
  1394. case KVM_SET_USER_MEMORY_REGION: {
  1395. struct kvm_userspace_memory_region kvm_userspace_mem;
  1396. r = -EFAULT;
  1397. if (copy_from_user(&kvm_userspace_mem, argp,
  1398. sizeof kvm_userspace_mem))
  1399. goto out;
  1400. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1401. if (r)
  1402. goto out;
  1403. break;
  1404. }
  1405. case KVM_GET_DIRTY_LOG: {
  1406. struct kvm_dirty_log log;
  1407. r = -EFAULT;
  1408. if (copy_from_user(&log, argp, sizeof log))
  1409. goto out;
  1410. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1411. if (r)
  1412. goto out;
  1413. break;
  1414. }
  1415. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1416. case KVM_REGISTER_COALESCED_MMIO: {
  1417. struct kvm_coalesced_mmio_zone zone;
  1418. r = -EFAULT;
  1419. if (copy_from_user(&zone, argp, sizeof zone))
  1420. goto out;
  1421. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1422. if (r)
  1423. goto out;
  1424. r = 0;
  1425. break;
  1426. }
  1427. case KVM_UNREGISTER_COALESCED_MMIO: {
  1428. struct kvm_coalesced_mmio_zone zone;
  1429. r = -EFAULT;
  1430. if (copy_from_user(&zone, argp, sizeof zone))
  1431. goto out;
  1432. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1433. if (r)
  1434. goto out;
  1435. r = 0;
  1436. break;
  1437. }
  1438. #endif
  1439. case KVM_IRQFD: {
  1440. struct kvm_irqfd data;
  1441. r = -EFAULT;
  1442. if (copy_from_user(&data, argp, sizeof data))
  1443. goto out;
  1444. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1445. break;
  1446. }
  1447. case KVM_IOEVENTFD: {
  1448. struct kvm_ioeventfd data;
  1449. r = -EFAULT;
  1450. if (copy_from_user(&data, argp, sizeof data))
  1451. goto out;
  1452. r = kvm_ioeventfd(kvm, &data);
  1453. break;
  1454. }
  1455. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1456. case KVM_SET_BOOT_CPU_ID:
  1457. r = 0;
  1458. mutex_lock(&kvm->lock);
  1459. if (atomic_read(&kvm->online_vcpus) != 0)
  1460. r = -EBUSY;
  1461. else
  1462. kvm->bsp_vcpu_id = arg;
  1463. mutex_unlock(&kvm->lock);
  1464. break;
  1465. #endif
  1466. default:
  1467. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1468. if (r == -ENOTTY)
  1469. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1470. }
  1471. out:
  1472. return r;
  1473. }
  1474. #ifdef CONFIG_COMPAT
  1475. struct compat_kvm_dirty_log {
  1476. __u32 slot;
  1477. __u32 padding1;
  1478. union {
  1479. compat_uptr_t dirty_bitmap; /* one bit per page */
  1480. __u64 padding2;
  1481. };
  1482. };
  1483. static long kvm_vm_compat_ioctl(struct file *filp,
  1484. unsigned int ioctl, unsigned long arg)
  1485. {
  1486. struct kvm *kvm = filp->private_data;
  1487. int r;
  1488. if (kvm->mm != current->mm)
  1489. return -EIO;
  1490. switch (ioctl) {
  1491. case KVM_GET_DIRTY_LOG: {
  1492. struct compat_kvm_dirty_log compat_log;
  1493. struct kvm_dirty_log log;
  1494. r = -EFAULT;
  1495. if (copy_from_user(&compat_log, (void __user *)arg,
  1496. sizeof(compat_log)))
  1497. goto out;
  1498. log.slot = compat_log.slot;
  1499. log.padding1 = compat_log.padding1;
  1500. log.padding2 = compat_log.padding2;
  1501. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1502. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1503. if (r)
  1504. goto out;
  1505. break;
  1506. }
  1507. default:
  1508. r = kvm_vm_ioctl(filp, ioctl, arg);
  1509. }
  1510. out:
  1511. return r;
  1512. }
  1513. #endif
  1514. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1515. {
  1516. struct page *page[1];
  1517. unsigned long addr;
  1518. int npages;
  1519. gfn_t gfn = vmf->pgoff;
  1520. struct kvm *kvm = vma->vm_file->private_data;
  1521. addr = gfn_to_hva(kvm, gfn);
  1522. if (kvm_is_error_hva(addr))
  1523. return VM_FAULT_SIGBUS;
  1524. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1525. NULL);
  1526. if (unlikely(npages != 1))
  1527. return VM_FAULT_SIGBUS;
  1528. vmf->page = page[0];
  1529. return 0;
  1530. }
  1531. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1532. .fault = kvm_vm_fault,
  1533. };
  1534. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1535. {
  1536. vma->vm_ops = &kvm_vm_vm_ops;
  1537. return 0;
  1538. }
  1539. static struct file_operations kvm_vm_fops = {
  1540. .release = kvm_vm_release,
  1541. .unlocked_ioctl = kvm_vm_ioctl,
  1542. #ifdef CONFIG_COMPAT
  1543. .compat_ioctl = kvm_vm_compat_ioctl,
  1544. #endif
  1545. .mmap = kvm_vm_mmap,
  1546. };
  1547. static int kvm_dev_ioctl_create_vm(void)
  1548. {
  1549. int fd, r;
  1550. struct kvm *kvm;
  1551. kvm = kvm_create_vm();
  1552. if (IS_ERR(kvm))
  1553. return PTR_ERR(kvm);
  1554. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1555. r = kvm_coalesced_mmio_init(kvm);
  1556. if (r < 0) {
  1557. kvm_put_kvm(kvm);
  1558. return r;
  1559. }
  1560. #endif
  1561. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1562. if (fd < 0)
  1563. kvm_put_kvm(kvm);
  1564. return fd;
  1565. }
  1566. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1567. {
  1568. switch (arg) {
  1569. case KVM_CAP_USER_MEMORY:
  1570. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1571. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1572. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1573. case KVM_CAP_SET_BOOT_CPU_ID:
  1574. #endif
  1575. case KVM_CAP_INTERNAL_ERROR_DATA:
  1576. return 1;
  1577. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1578. case KVM_CAP_IRQ_ROUTING:
  1579. return KVM_MAX_IRQ_ROUTES;
  1580. #endif
  1581. default:
  1582. break;
  1583. }
  1584. return kvm_dev_ioctl_check_extension(arg);
  1585. }
  1586. static long kvm_dev_ioctl(struct file *filp,
  1587. unsigned int ioctl, unsigned long arg)
  1588. {
  1589. long r = -EINVAL;
  1590. switch (ioctl) {
  1591. case KVM_GET_API_VERSION:
  1592. r = -EINVAL;
  1593. if (arg)
  1594. goto out;
  1595. r = KVM_API_VERSION;
  1596. break;
  1597. case KVM_CREATE_VM:
  1598. r = -EINVAL;
  1599. if (arg)
  1600. goto out;
  1601. r = kvm_dev_ioctl_create_vm();
  1602. break;
  1603. case KVM_CHECK_EXTENSION:
  1604. r = kvm_dev_ioctl_check_extension_generic(arg);
  1605. break;
  1606. case KVM_GET_VCPU_MMAP_SIZE:
  1607. r = -EINVAL;
  1608. if (arg)
  1609. goto out;
  1610. r = PAGE_SIZE; /* struct kvm_run */
  1611. #ifdef CONFIG_X86
  1612. r += PAGE_SIZE; /* pio data page */
  1613. #endif
  1614. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1615. r += PAGE_SIZE; /* coalesced mmio ring page */
  1616. #endif
  1617. break;
  1618. case KVM_TRACE_ENABLE:
  1619. case KVM_TRACE_PAUSE:
  1620. case KVM_TRACE_DISABLE:
  1621. r = -EOPNOTSUPP;
  1622. break;
  1623. default:
  1624. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1625. }
  1626. out:
  1627. return r;
  1628. }
  1629. static struct file_operations kvm_chardev_ops = {
  1630. .unlocked_ioctl = kvm_dev_ioctl,
  1631. .compat_ioctl = kvm_dev_ioctl,
  1632. };
  1633. static struct miscdevice kvm_dev = {
  1634. KVM_MINOR,
  1635. "kvm",
  1636. &kvm_chardev_ops,
  1637. };
  1638. static void hardware_enable(void *junk)
  1639. {
  1640. int cpu = raw_smp_processor_id();
  1641. int r;
  1642. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1643. return;
  1644. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1645. r = kvm_arch_hardware_enable(NULL);
  1646. if (r) {
  1647. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1648. atomic_inc(&hardware_enable_failed);
  1649. printk(KERN_INFO "kvm: enabling virtualization on "
  1650. "CPU%d failed\n", cpu);
  1651. }
  1652. }
  1653. static void hardware_disable(void *junk)
  1654. {
  1655. int cpu = raw_smp_processor_id();
  1656. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1657. return;
  1658. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1659. kvm_arch_hardware_disable(NULL);
  1660. }
  1661. static void hardware_disable_all_nolock(void)
  1662. {
  1663. BUG_ON(!kvm_usage_count);
  1664. kvm_usage_count--;
  1665. if (!kvm_usage_count)
  1666. on_each_cpu(hardware_disable, NULL, 1);
  1667. }
  1668. static void hardware_disable_all(void)
  1669. {
  1670. spin_lock(&kvm_lock);
  1671. hardware_disable_all_nolock();
  1672. spin_unlock(&kvm_lock);
  1673. }
  1674. static int hardware_enable_all(void)
  1675. {
  1676. int r = 0;
  1677. spin_lock(&kvm_lock);
  1678. kvm_usage_count++;
  1679. if (kvm_usage_count == 1) {
  1680. atomic_set(&hardware_enable_failed, 0);
  1681. on_each_cpu(hardware_enable, NULL, 1);
  1682. if (atomic_read(&hardware_enable_failed)) {
  1683. hardware_disable_all_nolock();
  1684. r = -EBUSY;
  1685. }
  1686. }
  1687. spin_unlock(&kvm_lock);
  1688. return r;
  1689. }
  1690. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1691. void *v)
  1692. {
  1693. int cpu = (long)v;
  1694. if (!kvm_usage_count)
  1695. return NOTIFY_OK;
  1696. val &= ~CPU_TASKS_FROZEN;
  1697. switch (val) {
  1698. case CPU_DYING:
  1699. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1700. cpu);
  1701. hardware_disable(NULL);
  1702. break;
  1703. case CPU_STARTING:
  1704. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1705. cpu);
  1706. spin_lock(&kvm_lock);
  1707. hardware_enable(NULL);
  1708. spin_unlock(&kvm_lock);
  1709. break;
  1710. }
  1711. return NOTIFY_OK;
  1712. }
  1713. asmlinkage void kvm_handle_fault_on_reboot(void)
  1714. {
  1715. if (kvm_rebooting) {
  1716. /* spin while reset goes on */
  1717. local_irq_enable();
  1718. while (true)
  1719. cpu_relax();
  1720. }
  1721. /* Fault while not rebooting. We want the trace. */
  1722. BUG();
  1723. }
  1724. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1725. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1726. void *v)
  1727. {
  1728. /*
  1729. * Some (well, at least mine) BIOSes hang on reboot if
  1730. * in vmx root mode.
  1731. *
  1732. * And Intel TXT required VMX off for all cpu when system shutdown.
  1733. */
  1734. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1735. kvm_rebooting = true;
  1736. on_each_cpu(hardware_disable, NULL, 1);
  1737. return NOTIFY_OK;
  1738. }
  1739. static struct notifier_block kvm_reboot_notifier = {
  1740. .notifier_call = kvm_reboot,
  1741. .priority = 0,
  1742. };
  1743. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1744. {
  1745. int i;
  1746. for (i = 0; i < bus->dev_count; i++) {
  1747. struct kvm_io_device *pos = bus->devs[i];
  1748. kvm_iodevice_destructor(pos);
  1749. }
  1750. kfree(bus);
  1751. }
  1752. /* kvm_io_bus_write - called under kvm->slots_lock */
  1753. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1754. int len, const void *val)
  1755. {
  1756. int i;
  1757. struct kvm_io_bus *bus;
  1758. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1759. for (i = 0; i < bus->dev_count; i++)
  1760. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1761. return 0;
  1762. return -EOPNOTSUPP;
  1763. }
  1764. /* kvm_io_bus_read - called under kvm->slots_lock */
  1765. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1766. int len, void *val)
  1767. {
  1768. int i;
  1769. struct kvm_io_bus *bus;
  1770. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1771. for (i = 0; i < bus->dev_count; i++)
  1772. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1773. return 0;
  1774. return -EOPNOTSUPP;
  1775. }
  1776. /* Caller must hold slots_lock. */
  1777. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1778. struct kvm_io_device *dev)
  1779. {
  1780. struct kvm_io_bus *new_bus, *bus;
  1781. bus = kvm->buses[bus_idx];
  1782. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1783. return -ENOSPC;
  1784. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1785. if (!new_bus)
  1786. return -ENOMEM;
  1787. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1788. new_bus->devs[new_bus->dev_count++] = dev;
  1789. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1790. synchronize_srcu_expedited(&kvm->srcu);
  1791. kfree(bus);
  1792. return 0;
  1793. }
  1794. /* Caller must hold slots_lock. */
  1795. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1796. struct kvm_io_device *dev)
  1797. {
  1798. int i, r;
  1799. struct kvm_io_bus *new_bus, *bus;
  1800. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1801. if (!new_bus)
  1802. return -ENOMEM;
  1803. bus = kvm->buses[bus_idx];
  1804. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1805. r = -ENOENT;
  1806. for (i = 0; i < new_bus->dev_count; i++)
  1807. if (new_bus->devs[i] == dev) {
  1808. r = 0;
  1809. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1810. break;
  1811. }
  1812. if (r) {
  1813. kfree(new_bus);
  1814. return r;
  1815. }
  1816. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1817. synchronize_srcu_expedited(&kvm->srcu);
  1818. kfree(bus);
  1819. return r;
  1820. }
  1821. static struct notifier_block kvm_cpu_notifier = {
  1822. .notifier_call = kvm_cpu_hotplug,
  1823. };
  1824. static int vm_stat_get(void *_offset, u64 *val)
  1825. {
  1826. unsigned offset = (long)_offset;
  1827. struct kvm *kvm;
  1828. *val = 0;
  1829. spin_lock(&kvm_lock);
  1830. list_for_each_entry(kvm, &vm_list, vm_list)
  1831. *val += *(u32 *)((void *)kvm + offset);
  1832. spin_unlock(&kvm_lock);
  1833. return 0;
  1834. }
  1835. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1836. static int vcpu_stat_get(void *_offset, u64 *val)
  1837. {
  1838. unsigned offset = (long)_offset;
  1839. struct kvm *kvm;
  1840. struct kvm_vcpu *vcpu;
  1841. int i;
  1842. *val = 0;
  1843. spin_lock(&kvm_lock);
  1844. list_for_each_entry(kvm, &vm_list, vm_list)
  1845. kvm_for_each_vcpu(i, vcpu, kvm)
  1846. *val += *(u32 *)((void *)vcpu + offset);
  1847. spin_unlock(&kvm_lock);
  1848. return 0;
  1849. }
  1850. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1851. static const struct file_operations *stat_fops[] = {
  1852. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1853. [KVM_STAT_VM] = &vm_stat_fops,
  1854. };
  1855. static void kvm_init_debug(void)
  1856. {
  1857. struct kvm_stats_debugfs_item *p;
  1858. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1859. for (p = debugfs_entries; p->name; ++p)
  1860. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1861. (void *)(long)p->offset,
  1862. stat_fops[p->kind]);
  1863. }
  1864. static void kvm_exit_debug(void)
  1865. {
  1866. struct kvm_stats_debugfs_item *p;
  1867. for (p = debugfs_entries; p->name; ++p)
  1868. debugfs_remove(p->dentry);
  1869. debugfs_remove(kvm_debugfs_dir);
  1870. }
  1871. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1872. {
  1873. if (kvm_usage_count)
  1874. hardware_disable(NULL);
  1875. return 0;
  1876. }
  1877. static int kvm_resume(struct sys_device *dev)
  1878. {
  1879. if (kvm_usage_count) {
  1880. WARN_ON(spin_is_locked(&kvm_lock));
  1881. hardware_enable(NULL);
  1882. }
  1883. return 0;
  1884. }
  1885. static struct sysdev_class kvm_sysdev_class = {
  1886. .name = "kvm",
  1887. .suspend = kvm_suspend,
  1888. .resume = kvm_resume,
  1889. };
  1890. static struct sys_device kvm_sysdev = {
  1891. .id = 0,
  1892. .cls = &kvm_sysdev_class,
  1893. };
  1894. struct page *bad_page;
  1895. pfn_t bad_pfn;
  1896. static inline
  1897. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1898. {
  1899. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1900. }
  1901. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1902. {
  1903. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1904. kvm_arch_vcpu_load(vcpu, cpu);
  1905. }
  1906. static void kvm_sched_out(struct preempt_notifier *pn,
  1907. struct task_struct *next)
  1908. {
  1909. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1910. kvm_arch_vcpu_put(vcpu);
  1911. }
  1912. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  1913. struct module *module)
  1914. {
  1915. int r;
  1916. int cpu;
  1917. r = kvm_arch_init(opaque);
  1918. if (r)
  1919. goto out_fail;
  1920. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1921. if (bad_page == NULL) {
  1922. r = -ENOMEM;
  1923. goto out;
  1924. }
  1925. bad_pfn = page_to_pfn(bad_page);
  1926. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1927. if (hwpoison_page == NULL) {
  1928. r = -ENOMEM;
  1929. goto out_free_0;
  1930. }
  1931. hwpoison_pfn = page_to_pfn(hwpoison_page);
  1932. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1933. if (fault_page == NULL) {
  1934. r = -ENOMEM;
  1935. goto out_free_0;
  1936. }
  1937. fault_pfn = page_to_pfn(fault_page);
  1938. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1939. r = -ENOMEM;
  1940. goto out_free_0;
  1941. }
  1942. r = kvm_arch_hardware_setup();
  1943. if (r < 0)
  1944. goto out_free_0a;
  1945. for_each_online_cpu(cpu) {
  1946. smp_call_function_single(cpu,
  1947. kvm_arch_check_processor_compat,
  1948. &r, 1);
  1949. if (r < 0)
  1950. goto out_free_1;
  1951. }
  1952. r = register_cpu_notifier(&kvm_cpu_notifier);
  1953. if (r)
  1954. goto out_free_2;
  1955. register_reboot_notifier(&kvm_reboot_notifier);
  1956. r = sysdev_class_register(&kvm_sysdev_class);
  1957. if (r)
  1958. goto out_free_3;
  1959. r = sysdev_register(&kvm_sysdev);
  1960. if (r)
  1961. goto out_free_4;
  1962. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1963. if (!vcpu_align)
  1964. vcpu_align = __alignof__(struct kvm_vcpu);
  1965. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  1966. 0, NULL);
  1967. if (!kvm_vcpu_cache) {
  1968. r = -ENOMEM;
  1969. goto out_free_5;
  1970. }
  1971. kvm_chardev_ops.owner = module;
  1972. kvm_vm_fops.owner = module;
  1973. kvm_vcpu_fops.owner = module;
  1974. r = misc_register(&kvm_dev);
  1975. if (r) {
  1976. printk(KERN_ERR "kvm: misc device register failed\n");
  1977. goto out_free;
  1978. }
  1979. kvm_preempt_ops.sched_in = kvm_sched_in;
  1980. kvm_preempt_ops.sched_out = kvm_sched_out;
  1981. kvm_init_debug();
  1982. return 0;
  1983. out_free:
  1984. kmem_cache_destroy(kvm_vcpu_cache);
  1985. out_free_5:
  1986. sysdev_unregister(&kvm_sysdev);
  1987. out_free_4:
  1988. sysdev_class_unregister(&kvm_sysdev_class);
  1989. out_free_3:
  1990. unregister_reboot_notifier(&kvm_reboot_notifier);
  1991. unregister_cpu_notifier(&kvm_cpu_notifier);
  1992. out_free_2:
  1993. out_free_1:
  1994. kvm_arch_hardware_unsetup();
  1995. out_free_0a:
  1996. free_cpumask_var(cpus_hardware_enabled);
  1997. out_free_0:
  1998. if (fault_page)
  1999. __free_page(fault_page);
  2000. if (hwpoison_page)
  2001. __free_page(hwpoison_page);
  2002. __free_page(bad_page);
  2003. out:
  2004. kvm_arch_exit();
  2005. out_fail:
  2006. return r;
  2007. }
  2008. EXPORT_SYMBOL_GPL(kvm_init);
  2009. void kvm_exit(void)
  2010. {
  2011. kvm_exit_debug();
  2012. misc_deregister(&kvm_dev);
  2013. kmem_cache_destroy(kvm_vcpu_cache);
  2014. sysdev_unregister(&kvm_sysdev);
  2015. sysdev_class_unregister(&kvm_sysdev_class);
  2016. unregister_reboot_notifier(&kvm_reboot_notifier);
  2017. unregister_cpu_notifier(&kvm_cpu_notifier);
  2018. on_each_cpu(hardware_disable, NULL, 1);
  2019. kvm_arch_hardware_unsetup();
  2020. kvm_arch_exit();
  2021. free_cpumask_var(cpus_hardware_enabled);
  2022. __free_page(hwpoison_page);
  2023. __free_page(bad_page);
  2024. }
  2025. EXPORT_SYMBOL_GPL(kvm_exit);