spi_bfin5xx.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457
  1. /*
  2. * File: drivers/spi/bfin5xx_spi.c
  3. * Maintainer:
  4. * Bryan Wu <bryan.wu@analog.com>
  5. * Original Author:
  6. * Luke Yang (Analog Devices Inc.)
  7. *
  8. * Created: March. 10th 2006
  9. * Description: SPI controller driver for Blackfin BF5xx
  10. * Bugs: Enter bugs at http://blackfin.uclinux.org/
  11. *
  12. * Modified:
  13. * March 10, 2006 bfin5xx_spi.c Created. (Luke Yang)
  14. * August 7, 2006 added full duplex mode (Axel Weiss & Luke Yang)
  15. * July 17, 2007 add support for BF54x SPI0 controller (Bryan Wu)
  16. * July 30, 2007 add platfrom_resource interface to support multi-port
  17. * SPI controller (Bryan Wu)
  18. *
  19. * Copyright 2004-2007 Analog Devices Inc.
  20. *
  21. * This program is free software ; you can redistribute it and/or modify
  22. * it under the terms of the GNU General Public License as published by
  23. * the Free Software Foundation ; either version 2, or (at your option)
  24. * any later version.
  25. *
  26. * This program is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY ; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  29. * GNU General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU General Public License
  32. * along with this program ; see the file COPYING.
  33. * If not, write to the Free Software Foundation,
  34. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  35. */
  36. #include <linux/init.h>
  37. #include <linux/module.h>
  38. #include <linux/delay.h>
  39. #include <linux/device.h>
  40. #include <linux/io.h>
  41. #include <linux/ioport.h>
  42. #include <linux/irq.h>
  43. #include <linux/errno.h>
  44. #include <linux/interrupt.h>
  45. #include <linux/platform_device.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/spi/spi.h>
  48. #include <linux/workqueue.h>
  49. #include <asm/dma.h>
  50. #include <asm/portmux.h>
  51. #include <asm/bfin5xx_spi.h>
  52. #define DRV_NAME "bfin-spi"
  53. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  54. #define DRV_DESC "Blackfin BF5xx on-chip SPI Contoller Driver"
  55. #define DRV_VERSION "1.0"
  56. MODULE_AUTHOR(DRV_AUTHOR);
  57. MODULE_DESCRIPTION(DRV_DESC);
  58. MODULE_LICENSE("GPL");
  59. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07) == 0)
  60. #define START_STATE ((void *)0)
  61. #define RUNNING_STATE ((void *)1)
  62. #define DONE_STATE ((void *)2)
  63. #define ERROR_STATE ((void *)-1)
  64. #define QUEUE_RUNNING 0
  65. #define QUEUE_STOPPED 1
  66. struct driver_data {
  67. /* Driver model hookup */
  68. struct platform_device *pdev;
  69. /* SPI framework hookup */
  70. struct spi_master *master;
  71. /* Regs base of SPI controller */
  72. u32 regs_base;
  73. /* BFIN hookup */
  74. struct bfin5xx_spi_master *master_info;
  75. /* Driver message queue */
  76. struct workqueue_struct *workqueue;
  77. struct work_struct pump_messages;
  78. spinlock_t lock;
  79. struct list_head queue;
  80. int busy;
  81. int run;
  82. /* Message Transfer pump */
  83. struct tasklet_struct pump_transfers;
  84. /* Current message transfer state info */
  85. struct spi_message *cur_msg;
  86. struct spi_transfer *cur_transfer;
  87. struct chip_data *cur_chip;
  88. size_t len_in_bytes;
  89. size_t len;
  90. void *tx;
  91. void *tx_end;
  92. void *rx;
  93. void *rx_end;
  94. /* DMA stuffs */
  95. int dma_channel;
  96. int dma_mapped;
  97. int dma_requested;
  98. dma_addr_t rx_dma;
  99. dma_addr_t tx_dma;
  100. size_t rx_map_len;
  101. size_t tx_map_len;
  102. u8 n_bytes;
  103. int cs_change;
  104. void (*write) (struct driver_data *);
  105. void (*read) (struct driver_data *);
  106. void (*duplex) (struct driver_data *);
  107. };
  108. struct chip_data {
  109. u16 ctl_reg;
  110. u16 baud;
  111. u16 flag;
  112. u8 chip_select_num;
  113. u8 n_bytes;
  114. u8 width; /* 0 or 1 */
  115. u8 enable_dma;
  116. u8 bits_per_word; /* 8 or 16 */
  117. u8 cs_change_per_word;
  118. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  119. void (*write) (struct driver_data *);
  120. void (*read) (struct driver_data *);
  121. void (*duplex) (struct driver_data *);
  122. };
  123. #define DEFINE_SPI_REG(reg, off) \
  124. static inline u16 read_##reg(struct driver_data *drv_data) \
  125. { return bfin_read16(drv_data->regs_base + off); } \
  126. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  127. { bfin_write16(drv_data->regs_base + off, v); }
  128. DEFINE_SPI_REG(CTRL, 0x00)
  129. DEFINE_SPI_REG(FLAG, 0x04)
  130. DEFINE_SPI_REG(STAT, 0x08)
  131. DEFINE_SPI_REG(TDBR, 0x0C)
  132. DEFINE_SPI_REG(RDBR, 0x10)
  133. DEFINE_SPI_REG(BAUD, 0x14)
  134. DEFINE_SPI_REG(SHAW, 0x18)
  135. static void bfin_spi_enable(struct driver_data *drv_data)
  136. {
  137. u16 cr;
  138. cr = read_CTRL(drv_data);
  139. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  140. }
  141. static void bfin_spi_disable(struct driver_data *drv_data)
  142. {
  143. u16 cr;
  144. cr = read_CTRL(drv_data);
  145. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  146. }
  147. /* Caculate the SPI_BAUD register value based on input HZ */
  148. static u16 hz_to_spi_baud(u32 speed_hz)
  149. {
  150. u_long sclk = get_sclk();
  151. u16 spi_baud = (sclk / (2 * speed_hz));
  152. if ((sclk % (2 * speed_hz)) > 0)
  153. spi_baud++;
  154. return spi_baud;
  155. }
  156. static int flush(struct driver_data *drv_data)
  157. {
  158. unsigned long limit = loops_per_jiffy << 1;
  159. /* wait for stop and clear stat */
  160. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && limit--)
  161. continue;
  162. write_STAT(drv_data, BIT_STAT_CLR);
  163. return limit;
  164. }
  165. /* Chip select operation functions for cs_change flag */
  166. static void cs_active(struct driver_data *drv_data, struct chip_data *chip)
  167. {
  168. u16 flag = read_FLAG(drv_data);
  169. flag |= chip->flag;
  170. flag &= ~(chip->flag << 8);
  171. write_FLAG(drv_data, flag);
  172. }
  173. static void cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  174. {
  175. u16 flag = read_FLAG(drv_data);
  176. flag |= (chip->flag << 8);
  177. write_FLAG(drv_data, flag);
  178. /* Move delay here for consistency */
  179. if (chip->cs_chg_udelay)
  180. udelay(chip->cs_chg_udelay);
  181. }
  182. #define MAX_SPI_SSEL 7
  183. /* stop controller and re-config current chip*/
  184. static int restore_state(struct driver_data *drv_data)
  185. {
  186. struct chip_data *chip = drv_data->cur_chip;
  187. int ret = 0;
  188. /* Clear status and disable clock */
  189. write_STAT(drv_data, BIT_STAT_CLR);
  190. bfin_spi_disable(drv_data);
  191. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  192. /* Load the registers */
  193. cs_deactive(drv_data, chip);
  194. write_BAUD(drv_data, chip->baud);
  195. chip->ctl_reg &= (~BIT_CTL_TIMOD);
  196. chip->ctl_reg |= (chip->width << 8);
  197. write_CTRL(drv_data, chip->ctl_reg);
  198. bfin_spi_enable(drv_data);
  199. if (ret)
  200. dev_dbg(&drv_data->pdev->dev,
  201. ": request chip select number %d failed\n",
  202. chip->chip_select_num);
  203. return ret;
  204. }
  205. /* used to kick off transfer in rx mode */
  206. static unsigned short dummy_read(struct driver_data *drv_data)
  207. {
  208. unsigned short tmp;
  209. tmp = read_RDBR(drv_data);
  210. return tmp;
  211. }
  212. static void null_writer(struct driver_data *drv_data)
  213. {
  214. u8 n_bytes = drv_data->n_bytes;
  215. while (drv_data->tx < drv_data->tx_end) {
  216. write_TDBR(drv_data, 0);
  217. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  218. continue;
  219. drv_data->tx += n_bytes;
  220. }
  221. }
  222. static void null_reader(struct driver_data *drv_data)
  223. {
  224. u8 n_bytes = drv_data->n_bytes;
  225. dummy_read(drv_data);
  226. while (drv_data->rx < drv_data->rx_end) {
  227. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  228. continue;
  229. dummy_read(drv_data);
  230. drv_data->rx += n_bytes;
  231. }
  232. }
  233. static void u8_writer(struct driver_data *drv_data)
  234. {
  235. dev_dbg(&drv_data->pdev->dev,
  236. "cr8-s is 0x%x\n", read_STAT(drv_data));
  237. /* poll for SPI completion before start */
  238. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  239. continue;
  240. while (drv_data->tx < drv_data->tx_end) {
  241. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  242. while (read_STAT(drv_data) & BIT_STAT_TXS)
  243. continue;
  244. ++drv_data->tx;
  245. }
  246. }
  247. static void u8_cs_chg_writer(struct driver_data *drv_data)
  248. {
  249. struct chip_data *chip = drv_data->cur_chip;
  250. /* poll for SPI completion before start */
  251. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  252. continue;
  253. while (drv_data->tx < drv_data->tx_end) {
  254. cs_active(drv_data, chip);
  255. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  256. while (read_STAT(drv_data) & BIT_STAT_TXS)
  257. continue;
  258. cs_deactive(drv_data, chip);
  259. ++drv_data->tx;
  260. }
  261. }
  262. static void u8_reader(struct driver_data *drv_data)
  263. {
  264. dev_dbg(&drv_data->pdev->dev,
  265. "cr-8 is 0x%x\n", read_STAT(drv_data));
  266. /* poll for SPI completion before start */
  267. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  268. continue;
  269. /* clear TDBR buffer before read(else it will be shifted out) */
  270. write_TDBR(drv_data, 0xFFFF);
  271. dummy_read(drv_data);
  272. while (drv_data->rx < drv_data->rx_end - 1) {
  273. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  274. continue;
  275. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  276. ++drv_data->rx;
  277. }
  278. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  279. continue;
  280. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  281. ++drv_data->rx;
  282. }
  283. static void u8_cs_chg_reader(struct driver_data *drv_data)
  284. {
  285. struct chip_data *chip = drv_data->cur_chip;
  286. /* poll for SPI completion before start */
  287. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  288. continue;
  289. /* clear TDBR buffer before read(else it will be shifted out) */
  290. write_TDBR(drv_data, 0xFFFF);
  291. cs_active(drv_data, chip);
  292. dummy_read(drv_data);
  293. while (drv_data->rx < drv_data->rx_end - 1) {
  294. cs_deactive(drv_data, chip);
  295. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  296. continue;
  297. cs_active(drv_data, chip);
  298. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  299. ++drv_data->rx;
  300. }
  301. cs_deactive(drv_data, chip);
  302. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  303. continue;
  304. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  305. ++drv_data->rx;
  306. }
  307. static void u8_duplex(struct driver_data *drv_data)
  308. {
  309. /* poll for SPI completion before start */
  310. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  311. continue;
  312. /* in duplex mode, clk is triggered by writing of TDBR */
  313. while (drv_data->rx < drv_data->rx_end) {
  314. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  315. while (read_STAT(drv_data) & BIT_STAT_TXS)
  316. continue;
  317. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  318. continue;
  319. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  320. ++drv_data->rx;
  321. ++drv_data->tx;
  322. }
  323. }
  324. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  325. {
  326. struct chip_data *chip = drv_data->cur_chip;
  327. /* poll for SPI completion before start */
  328. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  329. continue;
  330. while (drv_data->rx < drv_data->rx_end) {
  331. cs_active(drv_data, chip);
  332. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  333. while (read_STAT(drv_data) & BIT_STAT_TXS)
  334. continue;
  335. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  336. continue;
  337. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  338. cs_deactive(drv_data, chip);
  339. ++drv_data->rx;
  340. ++drv_data->tx;
  341. }
  342. }
  343. static void u16_writer(struct driver_data *drv_data)
  344. {
  345. dev_dbg(&drv_data->pdev->dev,
  346. "cr16 is 0x%x\n", read_STAT(drv_data));
  347. /* poll for SPI completion before start */
  348. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  349. continue;
  350. while (drv_data->tx < drv_data->tx_end) {
  351. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  352. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  353. continue;
  354. drv_data->tx += 2;
  355. }
  356. }
  357. static void u16_cs_chg_writer(struct driver_data *drv_data)
  358. {
  359. struct chip_data *chip = drv_data->cur_chip;
  360. /* poll for SPI completion before start */
  361. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  362. continue;
  363. while (drv_data->tx < drv_data->tx_end) {
  364. cs_active(drv_data, chip);
  365. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  366. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  367. continue;
  368. cs_deactive(drv_data, chip);
  369. drv_data->tx += 2;
  370. }
  371. }
  372. static void u16_reader(struct driver_data *drv_data)
  373. {
  374. dev_dbg(&drv_data->pdev->dev,
  375. "cr-16 is 0x%x\n", read_STAT(drv_data));
  376. /* poll for SPI completion before start */
  377. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  378. continue;
  379. /* clear TDBR buffer before read(else it will be shifted out) */
  380. write_TDBR(drv_data, 0xFFFF);
  381. dummy_read(drv_data);
  382. while (drv_data->rx < (drv_data->rx_end - 2)) {
  383. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  384. continue;
  385. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  386. drv_data->rx += 2;
  387. }
  388. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  389. continue;
  390. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  391. drv_data->rx += 2;
  392. }
  393. static void u16_cs_chg_reader(struct driver_data *drv_data)
  394. {
  395. struct chip_data *chip = drv_data->cur_chip;
  396. /* poll for SPI completion before start */
  397. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  398. continue;
  399. /* clear TDBR buffer before read(else it will be shifted out) */
  400. write_TDBR(drv_data, 0xFFFF);
  401. cs_active(drv_data, chip);
  402. dummy_read(drv_data);
  403. while (drv_data->rx < drv_data->rx_end - 2) {
  404. cs_deactive(drv_data, chip);
  405. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  406. continue;
  407. cs_active(drv_data, chip);
  408. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  409. drv_data->rx += 2;
  410. }
  411. cs_deactive(drv_data, chip);
  412. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  413. continue;
  414. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  415. drv_data->rx += 2;
  416. }
  417. static void u16_duplex(struct driver_data *drv_data)
  418. {
  419. /* poll for SPI completion before start */
  420. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  421. continue;
  422. /* in duplex mode, clk is triggered by writing of TDBR */
  423. while (drv_data->tx < drv_data->tx_end) {
  424. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  425. while (read_STAT(drv_data) & BIT_STAT_TXS)
  426. continue;
  427. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  428. continue;
  429. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  430. drv_data->rx += 2;
  431. drv_data->tx += 2;
  432. }
  433. }
  434. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  435. {
  436. struct chip_data *chip = drv_data->cur_chip;
  437. /* poll for SPI completion before start */
  438. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  439. continue;
  440. while (drv_data->tx < drv_data->tx_end) {
  441. cs_active(drv_data, chip);
  442. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  443. while (read_STAT(drv_data) & BIT_STAT_TXS)
  444. continue;
  445. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  446. continue;
  447. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  448. cs_deactive(drv_data, chip);
  449. drv_data->rx += 2;
  450. drv_data->tx += 2;
  451. }
  452. }
  453. /* test if ther is more transfer to be done */
  454. static void *next_transfer(struct driver_data *drv_data)
  455. {
  456. struct spi_message *msg = drv_data->cur_msg;
  457. struct spi_transfer *trans = drv_data->cur_transfer;
  458. /* Move to next transfer */
  459. if (trans->transfer_list.next != &msg->transfers) {
  460. drv_data->cur_transfer =
  461. list_entry(trans->transfer_list.next,
  462. struct spi_transfer, transfer_list);
  463. return RUNNING_STATE;
  464. } else
  465. return DONE_STATE;
  466. }
  467. /*
  468. * caller already set message->status;
  469. * dma and pio irqs are blocked give finished message back
  470. */
  471. static void giveback(struct driver_data *drv_data)
  472. {
  473. struct chip_data *chip = drv_data->cur_chip;
  474. struct spi_transfer *last_transfer;
  475. unsigned long flags;
  476. struct spi_message *msg;
  477. spin_lock_irqsave(&drv_data->lock, flags);
  478. msg = drv_data->cur_msg;
  479. drv_data->cur_msg = NULL;
  480. drv_data->cur_transfer = NULL;
  481. drv_data->cur_chip = NULL;
  482. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  483. spin_unlock_irqrestore(&drv_data->lock, flags);
  484. last_transfer = list_entry(msg->transfers.prev,
  485. struct spi_transfer, transfer_list);
  486. msg->state = NULL;
  487. /* disable chip select signal. And not stop spi in autobuffer mode */
  488. if (drv_data->tx_dma != 0xFFFF) {
  489. cs_deactive(drv_data, chip);
  490. bfin_spi_disable(drv_data);
  491. }
  492. if (!drv_data->cs_change)
  493. cs_deactive(drv_data, chip);
  494. if (msg->complete)
  495. msg->complete(msg->context);
  496. }
  497. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  498. {
  499. struct driver_data *drv_data = (struct driver_data *)dev_id;
  500. struct chip_data *chip = drv_data->cur_chip;
  501. struct spi_message *msg = drv_data->cur_msg;
  502. dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
  503. clear_dma_irqstat(drv_data->dma_channel);
  504. /* Wait for DMA to complete */
  505. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  506. continue;
  507. /*
  508. * wait for the last transaction shifted out. HRM states:
  509. * at this point there may still be data in the SPI DMA FIFO waiting
  510. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  511. * register until it goes low for 2 successive reads
  512. */
  513. if (drv_data->tx != NULL) {
  514. while ((read_STAT(drv_data) & TXS) ||
  515. (read_STAT(drv_data) & TXS))
  516. continue;
  517. }
  518. while (!(read_STAT(drv_data) & SPIF))
  519. continue;
  520. msg->actual_length += drv_data->len_in_bytes;
  521. if (drv_data->cs_change)
  522. cs_deactive(drv_data, chip);
  523. /* Move to next transfer */
  524. msg->state = next_transfer(drv_data);
  525. /* Schedule transfer tasklet */
  526. tasklet_schedule(&drv_data->pump_transfers);
  527. /* free the irq handler before next transfer */
  528. dev_dbg(&drv_data->pdev->dev,
  529. "disable dma channel irq%d\n",
  530. drv_data->dma_channel);
  531. dma_disable_irq(drv_data->dma_channel);
  532. return IRQ_HANDLED;
  533. }
  534. static void pump_transfers(unsigned long data)
  535. {
  536. struct driver_data *drv_data = (struct driver_data *)data;
  537. struct spi_message *message = NULL;
  538. struct spi_transfer *transfer = NULL;
  539. struct spi_transfer *previous = NULL;
  540. struct chip_data *chip = NULL;
  541. u8 width;
  542. u16 cr, dma_width, dma_config;
  543. u32 tranf_success = 1;
  544. /* Get current state information */
  545. message = drv_data->cur_msg;
  546. transfer = drv_data->cur_transfer;
  547. chip = drv_data->cur_chip;
  548. /*
  549. * if msg is error or done, report it back using complete() callback
  550. */
  551. /* Handle for abort */
  552. if (message->state == ERROR_STATE) {
  553. message->status = -EIO;
  554. giveback(drv_data);
  555. return;
  556. }
  557. /* Handle end of message */
  558. if (message->state == DONE_STATE) {
  559. message->status = 0;
  560. giveback(drv_data);
  561. return;
  562. }
  563. /* Delay if requested at end of transfer */
  564. if (message->state == RUNNING_STATE) {
  565. previous = list_entry(transfer->transfer_list.prev,
  566. struct spi_transfer, transfer_list);
  567. if (previous->delay_usecs)
  568. udelay(previous->delay_usecs);
  569. }
  570. /* Setup the transfer state based on the type of transfer */
  571. if (flush(drv_data) == 0) {
  572. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  573. message->status = -EIO;
  574. giveback(drv_data);
  575. return;
  576. }
  577. if (transfer->tx_buf != NULL) {
  578. drv_data->tx = (void *)transfer->tx_buf;
  579. drv_data->tx_end = drv_data->tx + transfer->len;
  580. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  581. transfer->tx_buf, drv_data->tx_end);
  582. } else {
  583. drv_data->tx = NULL;
  584. }
  585. if (transfer->rx_buf != NULL) {
  586. drv_data->rx = transfer->rx_buf;
  587. drv_data->rx_end = drv_data->rx + transfer->len;
  588. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  589. transfer->rx_buf, drv_data->rx_end);
  590. } else {
  591. drv_data->rx = NULL;
  592. }
  593. drv_data->rx_dma = transfer->rx_dma;
  594. drv_data->tx_dma = transfer->tx_dma;
  595. drv_data->len_in_bytes = transfer->len;
  596. drv_data->cs_change = transfer->cs_change;
  597. width = chip->width;
  598. if (width == CFG_SPI_WORDSIZE16) {
  599. drv_data->len = (transfer->len) >> 1;
  600. } else {
  601. drv_data->len = transfer->len;
  602. }
  603. drv_data->write = drv_data->tx ? chip->write : null_writer;
  604. drv_data->read = drv_data->rx ? chip->read : null_reader;
  605. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  606. dev_dbg(&drv_data->pdev->dev, "transfer: ",
  607. "drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  608. drv_data->write, chip->write, null_writer);
  609. /* speed and width has been set on per message */
  610. message->state = RUNNING_STATE;
  611. dma_config = 0;
  612. write_STAT(drv_data, BIT_STAT_CLR);
  613. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  614. cs_active(drv_data, chip);
  615. dev_dbg(&drv_data->pdev->dev,
  616. "now pumping a transfer: width is %d, len is %d\n",
  617. width, transfer->len);
  618. /*
  619. * Try to map dma buffer and do a dma transfer if
  620. * successful use different way to r/w according to
  621. * drv_data->cur_chip->enable_dma
  622. */
  623. if (drv_data->cur_chip->enable_dma && drv_data->len > 6) {
  624. disable_dma(drv_data->dma_channel);
  625. clear_dma_irqstat(drv_data->dma_channel);
  626. /* config dma channel */
  627. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  628. if (width == CFG_SPI_WORDSIZE16) {
  629. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  630. set_dma_x_modify(drv_data->dma_channel, 2);
  631. dma_width = WDSIZE_16;
  632. } else {
  633. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  634. set_dma_x_modify(drv_data->dma_channel, 1);
  635. dma_width = WDSIZE_8;
  636. }
  637. /* poll for SPI completion before start */
  638. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  639. continue;
  640. /* dirty hack for autobuffer DMA mode */
  641. if (drv_data->tx_dma == 0xFFFF) {
  642. dev_dbg(&drv_data->pdev->dev,
  643. "doing autobuffer DMA out.\n");
  644. /* set SPI transfer mode */
  645. write_CTRL(drv_data, (cr | CFG_SPI_DMAWRITE));
  646. /* no irq in autobuffer mode */
  647. dma_config =
  648. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  649. set_dma_config(drv_data->dma_channel, dma_config);
  650. set_dma_start_addr(drv_data->dma_channel,
  651. (unsigned long)drv_data->tx);
  652. enable_dma(drv_data->dma_channel);
  653. /* just return here, there can only be one transfer in this mode */
  654. message->status = 0;
  655. giveback(drv_data);
  656. return;
  657. }
  658. /* In dma mode, rx or tx must be NULL in one transfer */
  659. if (drv_data->rx != NULL) {
  660. /* set transfer mode, and enable SPI */
  661. dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
  662. /* set SPI transfer mode */
  663. write_CTRL(drv_data, (cr | CFG_SPI_DMAREAD));
  664. /* clear tx reg soformer data is not shifted out */
  665. write_TDBR(drv_data, 0xFFFF);
  666. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  667. /* start dma */
  668. dma_enable_irq(drv_data->dma_channel);
  669. dma_config = (WNR | RESTART | dma_width | DI_EN);
  670. set_dma_config(drv_data->dma_channel, dma_config);
  671. set_dma_start_addr(drv_data->dma_channel,
  672. (unsigned long)drv_data->rx);
  673. enable_dma(drv_data->dma_channel);
  674. } else if (drv_data->tx != NULL) {
  675. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  676. /* set SPI transfer mode */
  677. write_CTRL(drv_data, (cr | CFG_SPI_DMAWRITE));
  678. /* start dma */
  679. dma_enable_irq(drv_data->dma_channel);
  680. dma_config = (RESTART | dma_width | DI_EN);
  681. set_dma_config(drv_data->dma_channel, dma_config);
  682. set_dma_start_addr(drv_data->dma_channel,
  683. (unsigned long)drv_data->tx);
  684. enable_dma(drv_data->dma_channel);
  685. }
  686. } else {
  687. /* IO mode write then read */
  688. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  689. if (drv_data->tx != NULL && drv_data->rx != NULL) {
  690. /* full duplex mode */
  691. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  692. (drv_data->rx_end - drv_data->rx));
  693. dev_dbg(&drv_data->pdev->dev,
  694. "IO duplex: cr is 0x%x\n", cr);
  695. /* set SPI transfer mode */
  696. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  697. drv_data->duplex(drv_data);
  698. if (drv_data->tx != drv_data->tx_end)
  699. tranf_success = 0;
  700. } else if (drv_data->tx != NULL) {
  701. /* write only half duplex */
  702. dev_dbg(&drv_data->pdev->dev,
  703. "IO write: cr is 0x%x\n", cr);
  704. /* set SPI transfer mode */
  705. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  706. drv_data->write(drv_data);
  707. if (drv_data->tx != drv_data->tx_end)
  708. tranf_success = 0;
  709. } else if (drv_data->rx != NULL) {
  710. /* read only half duplex */
  711. dev_dbg(&drv_data->pdev->dev,
  712. "IO read: cr is 0x%x\n", cr);
  713. /* set SPI transfer mode */
  714. write_CTRL(drv_data, (cr | CFG_SPI_READ));
  715. drv_data->read(drv_data);
  716. if (drv_data->rx != drv_data->rx_end)
  717. tranf_success = 0;
  718. }
  719. if (!tranf_success) {
  720. dev_dbg(&drv_data->pdev->dev,
  721. "IO write error!\n");
  722. message->state = ERROR_STATE;
  723. } else {
  724. /* Update total byte transfered */
  725. message->actual_length += drv_data->len;
  726. /* Move to next transfer of this msg */
  727. message->state = next_transfer(drv_data);
  728. }
  729. /* Schedule next transfer tasklet */
  730. tasklet_schedule(&drv_data->pump_transfers);
  731. }
  732. }
  733. /* pop a msg from queue and kick off real transfer */
  734. static void pump_messages(struct work_struct *work)
  735. {
  736. struct driver_data *drv_data;
  737. unsigned long flags;
  738. drv_data = container_of(work, struct driver_data, pump_messages);
  739. /* Lock queue and check for queue work */
  740. spin_lock_irqsave(&drv_data->lock, flags);
  741. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  742. /* pumper kicked off but no work to do */
  743. drv_data->busy = 0;
  744. spin_unlock_irqrestore(&drv_data->lock, flags);
  745. return;
  746. }
  747. /* Make sure we are not already running a message */
  748. if (drv_data->cur_msg) {
  749. spin_unlock_irqrestore(&drv_data->lock, flags);
  750. return;
  751. }
  752. /* Extract head of queue */
  753. drv_data->cur_msg = list_entry(drv_data->queue.next,
  754. struct spi_message, queue);
  755. /* Setup the SSP using the per chip configuration */
  756. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  757. if (restore_state(drv_data)) {
  758. spin_unlock_irqrestore(&drv_data->lock, flags);
  759. return;
  760. };
  761. list_del_init(&drv_data->cur_msg->queue);
  762. /* Initial message state */
  763. drv_data->cur_msg->state = START_STATE;
  764. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  765. struct spi_transfer, transfer_list);
  766. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  767. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  768. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  769. drv_data->cur_chip->ctl_reg);
  770. dev_dbg(&drv_data->pdev->dev,
  771. "the first transfer len is %d\n",
  772. drv_data->cur_transfer->len);
  773. /* Mark as busy and launch transfers */
  774. tasklet_schedule(&drv_data->pump_transfers);
  775. drv_data->busy = 1;
  776. spin_unlock_irqrestore(&drv_data->lock, flags);
  777. }
  778. /*
  779. * got a msg to transfer, queue it in drv_data->queue.
  780. * And kick off message pumper
  781. */
  782. static int transfer(struct spi_device *spi, struct spi_message *msg)
  783. {
  784. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  785. unsigned long flags;
  786. spin_lock_irqsave(&drv_data->lock, flags);
  787. if (drv_data->run == QUEUE_STOPPED) {
  788. spin_unlock_irqrestore(&drv_data->lock, flags);
  789. return -ESHUTDOWN;
  790. }
  791. msg->actual_length = 0;
  792. msg->status = -EINPROGRESS;
  793. msg->state = START_STATE;
  794. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  795. list_add_tail(&msg->queue, &drv_data->queue);
  796. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  797. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  798. spin_unlock_irqrestore(&drv_data->lock, flags);
  799. return 0;
  800. }
  801. #define MAX_SPI_SSEL 7
  802. static u16 ssel[3][MAX_SPI_SSEL] = {
  803. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  804. P_SPI0_SSEL4, P_SPI0_SSEL5,
  805. P_SPI0_SSEL6, P_SPI0_SSEL7},
  806. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  807. P_SPI1_SSEL4, P_SPI1_SSEL5,
  808. P_SPI1_SSEL6, P_SPI1_SSEL7},
  809. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  810. P_SPI2_SSEL4, P_SPI2_SSEL5,
  811. P_SPI2_SSEL6, P_SPI2_SSEL7},
  812. };
  813. /* first setup for new devices */
  814. static int setup(struct spi_device *spi)
  815. {
  816. struct bfin5xx_spi_chip *chip_info = NULL;
  817. struct chip_data *chip;
  818. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  819. u8 spi_flg;
  820. /* Abort device setup if requested features are not supported */
  821. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  822. dev_err(&spi->dev, "requested mode not fully supported\n");
  823. return -EINVAL;
  824. }
  825. /* Zero (the default) here means 8 bits */
  826. if (!spi->bits_per_word)
  827. spi->bits_per_word = 8;
  828. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  829. return -EINVAL;
  830. /* Only alloc (or use chip_info) on first setup */
  831. chip = spi_get_ctldata(spi);
  832. if (chip == NULL) {
  833. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  834. if (!chip)
  835. return -ENOMEM;
  836. chip->enable_dma = 0;
  837. chip_info = spi->controller_data;
  838. }
  839. /* chip_info isn't always needed */
  840. if (chip_info) {
  841. /* Make sure people stop trying to set fields via ctl_reg
  842. * when they should actually be using common SPI framework.
  843. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  844. * Not sure if a user actually needs/uses any of these,
  845. * but let's assume (for now) they do.
  846. */
  847. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  848. dev_err(&spi->dev, "do not set bits in ctl_reg "
  849. "that the SPI framework manages\n");
  850. return -EINVAL;
  851. }
  852. chip->enable_dma = chip_info->enable_dma != 0
  853. && drv_data->master_info->enable_dma;
  854. chip->ctl_reg = chip_info->ctl_reg;
  855. chip->bits_per_word = chip_info->bits_per_word;
  856. chip->cs_change_per_word = chip_info->cs_change_per_word;
  857. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  858. }
  859. /* translate common spi framework into our register */
  860. if (spi->mode & SPI_CPOL)
  861. chip->ctl_reg |= CPOL;
  862. if (spi->mode & SPI_CPHA)
  863. chip->ctl_reg |= CPHA;
  864. if (spi->mode & SPI_LSB_FIRST)
  865. chip->ctl_reg |= LSBF;
  866. /* we dont support running in slave mode (yet?) */
  867. chip->ctl_reg |= MSTR;
  868. /*
  869. * if any one SPI chip is registered and wants DMA, request the
  870. * DMA channel for it
  871. */
  872. if (chip->enable_dma && !drv_data->dma_requested) {
  873. /* register dma irq handler */
  874. if (request_dma(drv_data->dma_channel, "BF53x_SPI_DMA") < 0) {
  875. dev_dbg(&spi->dev,
  876. "Unable to request BlackFin SPI DMA channel\n");
  877. return -ENODEV;
  878. }
  879. if (set_dma_callback(drv_data->dma_channel,
  880. (void *)dma_irq_handler, drv_data) < 0) {
  881. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  882. return -EPERM;
  883. }
  884. dma_disable_irq(drv_data->dma_channel);
  885. drv_data->dma_requested = 1;
  886. }
  887. /*
  888. * Notice: for blackfin, the speed_hz is the value of register
  889. * SPI_BAUD, not the real baudrate
  890. */
  891. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  892. spi_flg = ~(1 << (spi->chip_select));
  893. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  894. chip->chip_select_num = spi->chip_select;
  895. switch (chip->bits_per_word) {
  896. case 8:
  897. chip->n_bytes = 1;
  898. chip->width = CFG_SPI_WORDSIZE8;
  899. chip->read = chip->cs_change_per_word ?
  900. u8_cs_chg_reader : u8_reader;
  901. chip->write = chip->cs_change_per_word ?
  902. u8_cs_chg_writer : u8_writer;
  903. chip->duplex = chip->cs_change_per_word ?
  904. u8_cs_chg_duplex : u8_duplex;
  905. break;
  906. case 16:
  907. chip->n_bytes = 2;
  908. chip->width = CFG_SPI_WORDSIZE16;
  909. chip->read = chip->cs_change_per_word ?
  910. u16_cs_chg_reader : u16_reader;
  911. chip->write = chip->cs_change_per_word ?
  912. u16_cs_chg_writer : u16_writer;
  913. chip->duplex = chip->cs_change_per_word ?
  914. u16_cs_chg_duplex : u16_duplex;
  915. break;
  916. default:
  917. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  918. chip->bits_per_word);
  919. kfree(chip);
  920. return -ENODEV;
  921. }
  922. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  923. spi->modalias, chip->width, chip->enable_dma);
  924. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  925. chip->ctl_reg, chip->flag);
  926. spi_set_ctldata(spi, chip);
  927. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  928. if ((chip->chip_select_num > 0)
  929. && (chip->chip_select_num <= spi->master->num_chipselect))
  930. peripheral_request(ssel[spi->master->bus_num]
  931. [chip->chip_select_num-1], DRV_NAME);
  932. return 0;
  933. }
  934. /*
  935. * callback for spi framework.
  936. * clean driver specific data
  937. */
  938. static void cleanup(struct spi_device *spi)
  939. {
  940. struct chip_data *chip = spi_get_ctldata(spi);
  941. if ((chip->chip_select_num > 0)
  942. && (chip->chip_select_num <= spi->master->num_chipselect))
  943. peripheral_free(ssel[spi->master->bus_num]
  944. [chip->chip_select_num-1]);
  945. kfree(chip);
  946. }
  947. static inline int init_queue(struct driver_data *drv_data)
  948. {
  949. INIT_LIST_HEAD(&drv_data->queue);
  950. spin_lock_init(&drv_data->lock);
  951. drv_data->run = QUEUE_STOPPED;
  952. drv_data->busy = 0;
  953. /* init transfer tasklet */
  954. tasklet_init(&drv_data->pump_transfers,
  955. pump_transfers, (unsigned long)drv_data);
  956. /* init messages workqueue */
  957. INIT_WORK(&drv_data->pump_messages, pump_messages);
  958. drv_data->workqueue =
  959. create_singlethread_workqueue(drv_data->master->dev.parent->bus_id);
  960. if (drv_data->workqueue == NULL)
  961. return -EBUSY;
  962. return 0;
  963. }
  964. static inline int start_queue(struct driver_data *drv_data)
  965. {
  966. unsigned long flags;
  967. spin_lock_irqsave(&drv_data->lock, flags);
  968. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  969. spin_unlock_irqrestore(&drv_data->lock, flags);
  970. return -EBUSY;
  971. }
  972. drv_data->run = QUEUE_RUNNING;
  973. drv_data->cur_msg = NULL;
  974. drv_data->cur_transfer = NULL;
  975. drv_data->cur_chip = NULL;
  976. spin_unlock_irqrestore(&drv_data->lock, flags);
  977. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  978. return 0;
  979. }
  980. static inline int stop_queue(struct driver_data *drv_data)
  981. {
  982. unsigned long flags;
  983. unsigned limit = 500;
  984. int status = 0;
  985. spin_lock_irqsave(&drv_data->lock, flags);
  986. /*
  987. * This is a bit lame, but is optimized for the common execution path.
  988. * A wait_queue on the drv_data->busy could be used, but then the common
  989. * execution path (pump_messages) would be required to call wake_up or
  990. * friends on every SPI message. Do this instead
  991. */
  992. drv_data->run = QUEUE_STOPPED;
  993. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  994. spin_unlock_irqrestore(&drv_data->lock, flags);
  995. msleep(10);
  996. spin_lock_irqsave(&drv_data->lock, flags);
  997. }
  998. if (!list_empty(&drv_data->queue) || drv_data->busy)
  999. status = -EBUSY;
  1000. spin_unlock_irqrestore(&drv_data->lock, flags);
  1001. return status;
  1002. }
  1003. static inline int destroy_queue(struct driver_data *drv_data)
  1004. {
  1005. int status;
  1006. status = stop_queue(drv_data);
  1007. if (status != 0)
  1008. return status;
  1009. destroy_workqueue(drv_data->workqueue);
  1010. return 0;
  1011. }
  1012. static int setup_pin_mux(int action, int bus_num)
  1013. {
  1014. u16 pin_req[3][4] = {
  1015. {P_SPI0_SCK, P_SPI0_MISO, P_SPI0_MOSI, 0},
  1016. {P_SPI1_SCK, P_SPI1_MISO, P_SPI1_MOSI, 0},
  1017. {P_SPI2_SCK, P_SPI2_MISO, P_SPI2_MOSI, 0},
  1018. };
  1019. if (action) {
  1020. if (peripheral_request_list(pin_req[bus_num], DRV_NAME))
  1021. return -EFAULT;
  1022. } else {
  1023. peripheral_free_list(pin_req[bus_num]);
  1024. }
  1025. return 0;
  1026. }
  1027. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  1028. {
  1029. struct device *dev = &pdev->dev;
  1030. struct bfin5xx_spi_master *platform_info;
  1031. struct spi_master *master;
  1032. struct driver_data *drv_data = 0;
  1033. struct resource *res;
  1034. int status = 0;
  1035. platform_info = dev->platform_data;
  1036. /* Allocate master with space for drv_data */
  1037. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1038. if (!master) {
  1039. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1040. return -ENOMEM;
  1041. }
  1042. drv_data = spi_master_get_devdata(master);
  1043. drv_data->master = master;
  1044. drv_data->master_info = platform_info;
  1045. drv_data->pdev = pdev;
  1046. master->bus_num = pdev->id;
  1047. master->num_chipselect = platform_info->num_chipselect;
  1048. master->cleanup = cleanup;
  1049. master->setup = setup;
  1050. master->transfer = transfer;
  1051. /* Find and map our resources */
  1052. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1053. if (res == NULL) {
  1054. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1055. status = -ENOENT;
  1056. goto out_error_get_res;
  1057. }
  1058. drv_data->regs_base = (u32) ioremap(res->start,
  1059. (res->end - res->start + 1));
  1060. if (!drv_data->regs_base) {
  1061. dev_err(dev, "Cannot map IO\n");
  1062. status = -ENXIO;
  1063. goto out_error_ioremap;
  1064. }
  1065. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1066. if (drv_data->dma_channel < 0) {
  1067. dev_err(dev, "No DMA channel specified\n");
  1068. status = -ENOENT;
  1069. goto out_error_no_dma_ch;
  1070. }
  1071. /* Initial and start queue */
  1072. status = init_queue(drv_data);
  1073. if (status != 0) {
  1074. dev_err(dev, "problem initializing queue\n");
  1075. goto out_error_queue_alloc;
  1076. }
  1077. status = start_queue(drv_data);
  1078. if (status != 0) {
  1079. dev_err(dev, "problem starting queue\n");
  1080. goto out_error_queue_alloc;
  1081. }
  1082. /* Register with the SPI framework */
  1083. platform_set_drvdata(pdev, drv_data);
  1084. status = spi_register_master(master);
  1085. if (status != 0) {
  1086. dev_err(dev, "problem registering spi master\n");
  1087. goto out_error_queue_alloc;
  1088. }
  1089. if (setup_pin_mux(1, master->bus_num)) {
  1090. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1091. goto out_error;
  1092. }
  1093. dev_info(dev, "%s, Version %s, regs_base@0x%08x, dma channel@%d\n",
  1094. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1095. drv_data->dma_channel);
  1096. return status;
  1097. out_error_queue_alloc:
  1098. destroy_queue(drv_data);
  1099. out_error_no_dma_ch:
  1100. iounmap((void *) drv_data->regs_base);
  1101. out_error_ioremap:
  1102. out_error_get_res:
  1103. out_error:
  1104. spi_master_put(master);
  1105. return status;
  1106. }
  1107. /* stop hardware and remove the driver */
  1108. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1109. {
  1110. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1111. int status = 0;
  1112. if (!drv_data)
  1113. return 0;
  1114. /* Remove the queue */
  1115. status = destroy_queue(drv_data);
  1116. if (status != 0)
  1117. return status;
  1118. /* Disable the SSP at the peripheral and SOC level */
  1119. bfin_spi_disable(drv_data);
  1120. /* Release DMA */
  1121. if (drv_data->master_info->enable_dma) {
  1122. if (dma_channel_active(drv_data->dma_channel))
  1123. free_dma(drv_data->dma_channel);
  1124. }
  1125. /* Disconnect from the SPI framework */
  1126. spi_unregister_master(drv_data->master);
  1127. setup_pin_mux(0, drv_data->master->bus_num);
  1128. /* Prevent double remove */
  1129. platform_set_drvdata(pdev, NULL);
  1130. return 0;
  1131. }
  1132. #ifdef CONFIG_PM
  1133. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1134. {
  1135. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1136. int status = 0;
  1137. status = stop_queue(drv_data);
  1138. if (status != 0)
  1139. return status;
  1140. /* stop hardware */
  1141. bfin_spi_disable(drv_data);
  1142. return 0;
  1143. }
  1144. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1145. {
  1146. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1147. int status = 0;
  1148. /* Enable the SPI interface */
  1149. bfin_spi_enable(drv_data);
  1150. /* Start the queue running */
  1151. status = start_queue(drv_data);
  1152. if (status != 0) {
  1153. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1154. return status;
  1155. }
  1156. return 0;
  1157. }
  1158. #else
  1159. #define bfin5xx_spi_suspend NULL
  1160. #define bfin5xx_spi_resume NULL
  1161. #endif /* CONFIG_PM */
  1162. MODULE_ALIAS("bfin-spi-master"); /* for platform bus hotplug */
  1163. static struct platform_driver bfin5xx_spi_driver = {
  1164. .driver = {
  1165. .name = DRV_NAME,
  1166. .owner = THIS_MODULE,
  1167. },
  1168. .suspend = bfin5xx_spi_suspend,
  1169. .resume = bfin5xx_spi_resume,
  1170. .remove = __devexit_p(bfin5xx_spi_remove),
  1171. };
  1172. static int __init bfin5xx_spi_init(void)
  1173. {
  1174. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1175. }
  1176. module_init(bfin5xx_spi_init);
  1177. static void __exit bfin5xx_spi_exit(void)
  1178. {
  1179. platform_driver_unregister(&bfin5xx_spi_driver);
  1180. }
  1181. module_exit(bfin5xx_spi_exit);