pid.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/kmemleak.h>
  39. #define pid_hashfn(nr, ns) \
  40. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  41. static struct hlist_head *pid_hash;
  42. static int pidhash_shift;
  43. struct pid init_struct_pid = INIT_STRUCT_PID;
  44. int pid_max = PID_MAX_DEFAULT;
  45. #define RESERVED_PIDS 300
  46. int pid_max_min = RESERVED_PIDS + 1;
  47. int pid_max_max = PID_MAX_LIMIT;
  48. #define BITS_PER_PAGE (PAGE_SIZE*8)
  49. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  50. static inline int mk_pid(struct pid_namespace *pid_ns,
  51. struct pidmap *map, int off)
  52. {
  53. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  54. }
  55. #define find_next_offset(map, off) \
  56. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  57. /*
  58. * PID-map pages start out as NULL, they get allocated upon
  59. * first use and are never deallocated. This way a low pid_max
  60. * value does not cause lots of bitmaps to be allocated, but
  61. * the scheme scales to up to 4 million PIDs, runtime.
  62. */
  63. struct pid_namespace init_pid_ns = {
  64. .kref = {
  65. .refcount = ATOMIC_INIT(2),
  66. },
  67. .pidmap = {
  68. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  69. },
  70. .last_pid = 0,
  71. .level = 0,
  72. .child_reaper = &init_task,
  73. };
  74. EXPORT_SYMBOL_GPL(init_pid_ns);
  75. int is_container_init(struct task_struct *tsk)
  76. {
  77. int ret = 0;
  78. struct pid *pid;
  79. rcu_read_lock();
  80. pid = task_pid(tsk);
  81. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  82. ret = 1;
  83. rcu_read_unlock();
  84. return ret;
  85. }
  86. EXPORT_SYMBOL(is_container_init);
  87. /*
  88. * Note: disable interrupts while the pidmap_lock is held as an
  89. * interrupt might come in and do read_lock(&tasklist_lock).
  90. *
  91. * If we don't disable interrupts there is a nasty deadlock between
  92. * detach_pid()->free_pid() and another cpu that does
  93. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  94. * read_lock(&tasklist_lock);
  95. *
  96. * After we clean up the tasklist_lock and know there are no
  97. * irq handlers that take it we can leave the interrupts enabled.
  98. * For now it is easier to be safe than to prove it can't happen.
  99. */
  100. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  101. static void free_pidmap(struct upid *upid)
  102. {
  103. int nr = upid->nr;
  104. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  105. int offset = nr & BITS_PER_PAGE_MASK;
  106. clear_bit(offset, map->page);
  107. atomic_inc(&map->nr_free);
  108. }
  109. static int alloc_pidmap(struct pid_namespace *pid_ns)
  110. {
  111. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  112. struct pidmap *map;
  113. pid = last + 1;
  114. if (pid >= pid_max)
  115. pid = RESERVED_PIDS;
  116. offset = pid & BITS_PER_PAGE_MASK;
  117. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  118. max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
  119. for (i = 0; i <= max_scan; ++i) {
  120. if (unlikely(!map->page)) {
  121. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  122. /*
  123. * Free the page if someone raced with us
  124. * installing it:
  125. */
  126. spin_lock_irq(&pidmap_lock);
  127. if (map->page)
  128. kfree(page);
  129. else
  130. map->page = page;
  131. spin_unlock_irq(&pidmap_lock);
  132. if (unlikely(!map->page))
  133. break;
  134. }
  135. if (likely(atomic_read(&map->nr_free))) {
  136. do {
  137. if (!test_and_set_bit(offset, map->page)) {
  138. atomic_dec(&map->nr_free);
  139. pid_ns->last_pid = pid;
  140. return pid;
  141. }
  142. offset = find_next_offset(map, offset);
  143. pid = mk_pid(pid_ns, map, offset);
  144. /*
  145. * find_next_offset() found a bit, the pid from it
  146. * is in-bounds, and if we fell back to the last
  147. * bitmap block and the final block was the same
  148. * as the starting point, pid is before last_pid.
  149. */
  150. } while (offset < BITS_PER_PAGE && pid < pid_max &&
  151. (i != max_scan || pid < last ||
  152. !((last+1) & BITS_PER_PAGE_MASK)));
  153. }
  154. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  155. ++map;
  156. offset = 0;
  157. } else {
  158. map = &pid_ns->pidmap[0];
  159. offset = RESERVED_PIDS;
  160. if (unlikely(last == offset))
  161. break;
  162. }
  163. pid = mk_pid(pid_ns, map, offset);
  164. }
  165. return -1;
  166. }
  167. int next_pidmap(struct pid_namespace *pid_ns, int last)
  168. {
  169. int offset;
  170. struct pidmap *map, *end;
  171. offset = (last + 1) & BITS_PER_PAGE_MASK;
  172. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  173. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  174. for (; map < end; map++, offset = 0) {
  175. if (unlikely(!map->page))
  176. continue;
  177. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  178. if (offset < BITS_PER_PAGE)
  179. return mk_pid(pid_ns, map, offset);
  180. }
  181. return -1;
  182. }
  183. void put_pid(struct pid *pid)
  184. {
  185. struct pid_namespace *ns;
  186. if (!pid)
  187. return;
  188. ns = pid->numbers[pid->level].ns;
  189. if ((atomic_read(&pid->count) == 1) ||
  190. atomic_dec_and_test(&pid->count)) {
  191. kmem_cache_free(ns->pid_cachep, pid);
  192. put_pid_ns(ns);
  193. }
  194. }
  195. EXPORT_SYMBOL_GPL(put_pid);
  196. static void delayed_put_pid(struct rcu_head *rhp)
  197. {
  198. struct pid *pid = container_of(rhp, struct pid, rcu);
  199. put_pid(pid);
  200. }
  201. void free_pid(struct pid *pid)
  202. {
  203. /* We can be called with write_lock_irq(&tasklist_lock) held */
  204. int i;
  205. unsigned long flags;
  206. spin_lock_irqsave(&pidmap_lock, flags);
  207. for (i = 0; i <= pid->level; i++)
  208. hlist_del_rcu(&pid->numbers[i].pid_chain);
  209. spin_unlock_irqrestore(&pidmap_lock, flags);
  210. for (i = 0; i <= pid->level; i++)
  211. free_pidmap(pid->numbers + i);
  212. call_rcu(&pid->rcu, delayed_put_pid);
  213. }
  214. struct pid *alloc_pid(struct pid_namespace *ns)
  215. {
  216. struct pid *pid;
  217. enum pid_type type;
  218. int i, nr;
  219. struct pid_namespace *tmp;
  220. struct upid *upid;
  221. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  222. if (!pid)
  223. goto out;
  224. tmp = ns;
  225. for (i = ns->level; i >= 0; i--) {
  226. nr = alloc_pidmap(tmp);
  227. if (nr < 0)
  228. goto out_free;
  229. pid->numbers[i].nr = nr;
  230. pid->numbers[i].ns = tmp;
  231. tmp = tmp->parent;
  232. }
  233. get_pid_ns(ns);
  234. pid->level = ns->level;
  235. atomic_set(&pid->count, 1);
  236. for (type = 0; type < PIDTYPE_MAX; ++type)
  237. INIT_HLIST_HEAD(&pid->tasks[type]);
  238. spin_lock_irq(&pidmap_lock);
  239. for (i = ns->level; i >= 0; i--) {
  240. upid = &pid->numbers[i];
  241. hlist_add_head_rcu(&upid->pid_chain,
  242. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  243. }
  244. spin_unlock_irq(&pidmap_lock);
  245. out:
  246. return pid;
  247. out_free:
  248. while (++i <= ns->level)
  249. free_pidmap(pid->numbers + i);
  250. kmem_cache_free(ns->pid_cachep, pid);
  251. pid = NULL;
  252. goto out;
  253. }
  254. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  255. {
  256. struct hlist_node *elem;
  257. struct upid *pnr;
  258. hlist_for_each_entry_rcu(pnr, elem,
  259. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  260. if (pnr->nr == nr && pnr->ns == ns)
  261. return container_of(pnr, struct pid,
  262. numbers[ns->level]);
  263. return NULL;
  264. }
  265. EXPORT_SYMBOL_GPL(find_pid_ns);
  266. struct pid *find_vpid(int nr)
  267. {
  268. return find_pid_ns(nr, current->nsproxy->pid_ns);
  269. }
  270. EXPORT_SYMBOL_GPL(find_vpid);
  271. /*
  272. * attach_pid() must be called with the tasklist_lock write-held.
  273. */
  274. void attach_pid(struct task_struct *task, enum pid_type type,
  275. struct pid *pid)
  276. {
  277. struct pid_link *link;
  278. link = &task->pids[type];
  279. link->pid = pid;
  280. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  281. }
  282. static void __change_pid(struct task_struct *task, enum pid_type type,
  283. struct pid *new)
  284. {
  285. struct pid_link *link;
  286. struct pid *pid;
  287. int tmp;
  288. link = &task->pids[type];
  289. pid = link->pid;
  290. hlist_del_rcu(&link->node);
  291. link->pid = new;
  292. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  293. if (!hlist_empty(&pid->tasks[tmp]))
  294. return;
  295. free_pid(pid);
  296. }
  297. void detach_pid(struct task_struct *task, enum pid_type type)
  298. {
  299. __change_pid(task, type, NULL);
  300. }
  301. void change_pid(struct task_struct *task, enum pid_type type,
  302. struct pid *pid)
  303. {
  304. __change_pid(task, type, pid);
  305. attach_pid(task, type, pid);
  306. }
  307. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  308. void transfer_pid(struct task_struct *old, struct task_struct *new,
  309. enum pid_type type)
  310. {
  311. new->pids[type].pid = old->pids[type].pid;
  312. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  313. }
  314. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  315. {
  316. struct task_struct *result = NULL;
  317. if (pid) {
  318. struct hlist_node *first;
  319. first = rcu_dereference(pid->tasks[type].first);
  320. if (first)
  321. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  322. }
  323. return result;
  324. }
  325. EXPORT_SYMBOL(pid_task);
  326. /*
  327. * Must be called under rcu_read_lock() or with tasklist_lock read-held.
  328. */
  329. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  330. {
  331. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  332. }
  333. struct task_struct *find_task_by_vpid(pid_t vnr)
  334. {
  335. return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
  336. }
  337. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  338. {
  339. struct pid *pid;
  340. rcu_read_lock();
  341. if (type != PIDTYPE_PID)
  342. task = task->group_leader;
  343. pid = get_pid(task->pids[type].pid);
  344. rcu_read_unlock();
  345. return pid;
  346. }
  347. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  348. {
  349. struct task_struct *result;
  350. rcu_read_lock();
  351. result = pid_task(pid, type);
  352. if (result)
  353. get_task_struct(result);
  354. rcu_read_unlock();
  355. return result;
  356. }
  357. struct pid *find_get_pid(pid_t nr)
  358. {
  359. struct pid *pid;
  360. rcu_read_lock();
  361. pid = get_pid(find_vpid(nr));
  362. rcu_read_unlock();
  363. return pid;
  364. }
  365. EXPORT_SYMBOL_GPL(find_get_pid);
  366. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  367. {
  368. struct upid *upid;
  369. pid_t nr = 0;
  370. if (pid && ns->level <= pid->level) {
  371. upid = &pid->numbers[ns->level];
  372. if (upid->ns == ns)
  373. nr = upid->nr;
  374. }
  375. return nr;
  376. }
  377. pid_t pid_vnr(struct pid *pid)
  378. {
  379. return pid_nr_ns(pid, current->nsproxy->pid_ns);
  380. }
  381. EXPORT_SYMBOL_GPL(pid_vnr);
  382. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  383. struct pid_namespace *ns)
  384. {
  385. pid_t nr = 0;
  386. rcu_read_lock();
  387. if (!ns)
  388. ns = current->nsproxy->pid_ns;
  389. if (likely(pid_alive(task))) {
  390. if (type != PIDTYPE_PID)
  391. task = task->group_leader;
  392. nr = pid_nr_ns(task->pids[type].pid, ns);
  393. }
  394. rcu_read_unlock();
  395. return nr;
  396. }
  397. EXPORT_SYMBOL(__task_pid_nr_ns);
  398. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  399. {
  400. return pid_nr_ns(task_tgid(tsk), ns);
  401. }
  402. EXPORT_SYMBOL(task_tgid_nr_ns);
  403. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  404. {
  405. return ns_of_pid(task_pid(tsk));
  406. }
  407. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  408. /*
  409. * Used by proc to find the first pid that is greater than or equal to nr.
  410. *
  411. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  412. */
  413. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  414. {
  415. struct pid *pid;
  416. do {
  417. pid = find_pid_ns(nr, ns);
  418. if (pid)
  419. break;
  420. nr = next_pidmap(ns, nr);
  421. } while (nr > 0);
  422. return pid;
  423. }
  424. /*
  425. * The pid hash table is scaled according to the amount of memory in the
  426. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  427. * more.
  428. */
  429. void __init pidhash_init(void)
  430. {
  431. int i, pidhash_size;
  432. unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
  433. pidhash_shift = max(4, fls(megabytes * 4));
  434. pidhash_shift = min(12, pidhash_shift);
  435. pidhash_size = 1 << pidhash_shift;
  436. printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
  437. pidhash_size, pidhash_shift,
  438. pidhash_size * sizeof(struct hlist_head));
  439. pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
  440. if (!pid_hash)
  441. panic("Could not alloc pidhash!\n");
  442. /*
  443. * pid_hash contains references to allocated struct pid objects and it
  444. * must be scanned by kmemleak to avoid false positives.
  445. */
  446. kmemleak_alloc(pid_hash, pidhash_size * sizeof(*(pid_hash)), 0,
  447. GFP_KERNEL);
  448. for (i = 0; i < pidhash_size; i++)
  449. INIT_HLIST_HEAD(&pid_hash[i]);
  450. }
  451. void __init pidmap_init(void)
  452. {
  453. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  454. /* Reserve PID 0. We never call free_pidmap(0) */
  455. set_bit(0, init_pid_ns.pidmap[0].page);
  456. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  457. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  458. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  459. }