hrtimer.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814
  1. /*
  2. * linux/kernel/hrtimer.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * High-resolution kernel timers
  9. *
  10. * In contrast to the low-resolution timeout API implemented in
  11. * kernel/timer.c, hrtimers provide finer resolution and accuracy
  12. * depending on system configuration and capabilities.
  13. *
  14. * These timers are currently used for:
  15. * - itimers
  16. * - POSIX timers
  17. * - nanosleep
  18. * - precise in-kernel timing
  19. *
  20. * Started by: Thomas Gleixner and Ingo Molnar
  21. *
  22. * Credits:
  23. * based on kernel/timer.c
  24. *
  25. * Help, testing, suggestions, bugfixes, improvements were
  26. * provided by:
  27. *
  28. * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29. * et. al.
  30. *
  31. * For licencing details see kernel-base/COPYING
  32. */
  33. #include <linux/cpu.h>
  34. #include <linux/module.h>
  35. #include <linux/percpu.h>
  36. #include <linux/hrtimer.h>
  37. #include <linux/notifier.h>
  38. #include <linux/syscalls.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/tick.h>
  42. #include <linux/seq_file.h>
  43. #include <linux/err.h>
  44. #include <linux/debugobjects.h>
  45. #include <linux/sched.h>
  46. #include <linux/timer.h>
  47. #include <asm/uaccess.h>
  48. /**
  49. * ktime_get - get the monotonic time in ktime_t format
  50. *
  51. * returns the time in ktime_t format
  52. */
  53. ktime_t ktime_get(void)
  54. {
  55. struct timespec now;
  56. ktime_get_ts(&now);
  57. return timespec_to_ktime(now);
  58. }
  59. EXPORT_SYMBOL_GPL(ktime_get);
  60. /**
  61. * ktime_get_real - get the real (wall-) time in ktime_t format
  62. *
  63. * returns the time in ktime_t format
  64. */
  65. ktime_t ktime_get_real(void)
  66. {
  67. struct timespec now;
  68. getnstimeofday(&now);
  69. return timespec_to_ktime(now);
  70. }
  71. EXPORT_SYMBOL_GPL(ktime_get_real);
  72. /*
  73. * The timer bases:
  74. *
  75. * Note: If we want to add new timer bases, we have to skip the two
  76. * clock ids captured by the cpu-timers. We do this by holding empty
  77. * entries rather than doing math adjustment of the clock ids.
  78. * This ensures that we capture erroneous accesses to these clock ids
  79. * rather than moving them into the range of valid clock id's.
  80. */
  81. DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  82. {
  83. .clock_base =
  84. {
  85. {
  86. .index = CLOCK_REALTIME,
  87. .get_time = &ktime_get_real,
  88. .resolution = KTIME_LOW_RES,
  89. },
  90. {
  91. .index = CLOCK_MONOTONIC,
  92. .get_time = &ktime_get,
  93. .resolution = KTIME_LOW_RES,
  94. },
  95. }
  96. };
  97. /**
  98. * ktime_get_ts - get the monotonic clock in timespec format
  99. * @ts: pointer to timespec variable
  100. *
  101. * The function calculates the monotonic clock from the realtime
  102. * clock and the wall_to_monotonic offset and stores the result
  103. * in normalized timespec format in the variable pointed to by @ts.
  104. */
  105. void ktime_get_ts(struct timespec *ts)
  106. {
  107. struct timespec tomono;
  108. unsigned long seq;
  109. do {
  110. seq = read_seqbegin(&xtime_lock);
  111. getnstimeofday(ts);
  112. tomono = wall_to_monotonic;
  113. } while (read_seqretry(&xtime_lock, seq));
  114. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  115. ts->tv_nsec + tomono.tv_nsec);
  116. }
  117. EXPORT_SYMBOL_GPL(ktime_get_ts);
  118. /*
  119. * Get the coarse grained time at the softirq based on xtime and
  120. * wall_to_monotonic.
  121. */
  122. static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
  123. {
  124. ktime_t xtim, tomono;
  125. struct timespec xts, tom;
  126. unsigned long seq;
  127. do {
  128. seq = read_seqbegin(&xtime_lock);
  129. xts = current_kernel_time();
  130. tom = wall_to_monotonic;
  131. } while (read_seqretry(&xtime_lock, seq));
  132. xtim = timespec_to_ktime(xts);
  133. tomono = timespec_to_ktime(tom);
  134. base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
  135. base->clock_base[CLOCK_MONOTONIC].softirq_time =
  136. ktime_add(xtim, tomono);
  137. }
  138. /*
  139. * Functions and macros which are different for UP/SMP systems are kept in a
  140. * single place
  141. */
  142. #ifdef CONFIG_SMP
  143. /*
  144. * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  145. * means that all timers which are tied to this base via timer->base are
  146. * locked, and the base itself is locked too.
  147. *
  148. * So __run_timers/migrate_timers can safely modify all timers which could
  149. * be found on the lists/queues.
  150. *
  151. * When the timer's base is locked, and the timer removed from list, it is
  152. * possible to set timer->base = NULL and drop the lock: the timer remains
  153. * locked.
  154. */
  155. static
  156. struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
  157. unsigned long *flags)
  158. {
  159. struct hrtimer_clock_base *base;
  160. for (;;) {
  161. base = timer->base;
  162. if (likely(base != NULL)) {
  163. spin_lock_irqsave(&base->cpu_base->lock, *flags);
  164. if (likely(base == timer->base))
  165. return base;
  166. /* The timer has migrated to another CPU: */
  167. spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
  168. }
  169. cpu_relax();
  170. }
  171. }
  172. /*
  173. * Switch the timer base to the current CPU when possible.
  174. */
  175. static inline struct hrtimer_clock_base *
  176. switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
  177. int pinned)
  178. {
  179. struct hrtimer_clock_base *new_base;
  180. struct hrtimer_cpu_base *new_cpu_base;
  181. int cpu, preferred_cpu = -1;
  182. cpu = smp_processor_id();
  183. #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
  184. if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
  185. preferred_cpu = get_nohz_load_balancer();
  186. if (preferred_cpu >= 0)
  187. cpu = preferred_cpu;
  188. }
  189. #endif
  190. again:
  191. new_cpu_base = &per_cpu(hrtimer_bases, cpu);
  192. new_base = &new_cpu_base->clock_base[base->index];
  193. if (base != new_base) {
  194. /*
  195. * We are trying to schedule the timer on the local CPU.
  196. * However we can't change timer's base while it is running,
  197. * so we keep it on the same CPU. No hassle vs. reprogramming
  198. * the event source in the high resolution case. The softirq
  199. * code will take care of this when the timer function has
  200. * completed. There is no conflict as we hold the lock until
  201. * the timer is enqueued.
  202. */
  203. if (unlikely(hrtimer_callback_running(timer)))
  204. return base;
  205. /* See the comment in lock_timer_base() */
  206. timer->base = NULL;
  207. spin_unlock(&base->cpu_base->lock);
  208. spin_lock(&new_base->cpu_base->lock);
  209. /* Optimized away for NOHZ=n SMP=n */
  210. if (cpu == preferred_cpu) {
  211. /* Calculate clock monotonic expiry time */
  212. #ifdef CONFIG_HIGH_RES_TIMERS
  213. ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
  214. new_base->offset);
  215. #else
  216. ktime_t expires = hrtimer_get_expires(timer);
  217. #endif
  218. /*
  219. * Get the next event on target cpu from the
  220. * clock events layer.
  221. * This covers the highres=off nohz=on case as well.
  222. */
  223. ktime_t next = clockevents_get_next_event(cpu);
  224. ktime_t delta = ktime_sub(expires, next);
  225. /*
  226. * We do not migrate the timer when it is expiring
  227. * before the next event on the target cpu because
  228. * we cannot reprogram the target cpu hardware and
  229. * we would cause it to fire late.
  230. */
  231. if (delta.tv64 < 0) {
  232. cpu = smp_processor_id();
  233. spin_unlock(&new_base->cpu_base->lock);
  234. spin_lock(&base->cpu_base->lock);
  235. timer->base = base;
  236. goto again;
  237. }
  238. }
  239. timer->base = new_base;
  240. }
  241. return new_base;
  242. }
  243. #else /* CONFIG_SMP */
  244. static inline struct hrtimer_clock_base *
  245. lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  246. {
  247. struct hrtimer_clock_base *base = timer->base;
  248. spin_lock_irqsave(&base->cpu_base->lock, *flags);
  249. return base;
  250. }
  251. # define switch_hrtimer_base(t, b, p) (b)
  252. #endif /* !CONFIG_SMP */
  253. /*
  254. * Functions for the union type storage format of ktime_t which are
  255. * too large for inlining:
  256. */
  257. #if BITS_PER_LONG < 64
  258. # ifndef CONFIG_KTIME_SCALAR
  259. /**
  260. * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
  261. * @kt: addend
  262. * @nsec: the scalar nsec value to add
  263. *
  264. * Returns the sum of kt and nsec in ktime_t format
  265. */
  266. ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
  267. {
  268. ktime_t tmp;
  269. if (likely(nsec < NSEC_PER_SEC)) {
  270. tmp.tv64 = nsec;
  271. } else {
  272. unsigned long rem = do_div(nsec, NSEC_PER_SEC);
  273. tmp = ktime_set((long)nsec, rem);
  274. }
  275. return ktime_add(kt, tmp);
  276. }
  277. EXPORT_SYMBOL_GPL(ktime_add_ns);
  278. /**
  279. * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
  280. * @kt: minuend
  281. * @nsec: the scalar nsec value to subtract
  282. *
  283. * Returns the subtraction of @nsec from @kt in ktime_t format
  284. */
  285. ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
  286. {
  287. ktime_t tmp;
  288. if (likely(nsec < NSEC_PER_SEC)) {
  289. tmp.tv64 = nsec;
  290. } else {
  291. unsigned long rem = do_div(nsec, NSEC_PER_SEC);
  292. tmp = ktime_set((long)nsec, rem);
  293. }
  294. return ktime_sub(kt, tmp);
  295. }
  296. EXPORT_SYMBOL_GPL(ktime_sub_ns);
  297. # endif /* !CONFIG_KTIME_SCALAR */
  298. /*
  299. * Divide a ktime value by a nanosecond value
  300. */
  301. u64 ktime_divns(const ktime_t kt, s64 div)
  302. {
  303. u64 dclc;
  304. int sft = 0;
  305. dclc = ktime_to_ns(kt);
  306. /* Make sure the divisor is less than 2^32: */
  307. while (div >> 32) {
  308. sft++;
  309. div >>= 1;
  310. }
  311. dclc >>= sft;
  312. do_div(dclc, (unsigned long) div);
  313. return dclc;
  314. }
  315. #endif /* BITS_PER_LONG >= 64 */
  316. /*
  317. * Add two ktime values and do a safety check for overflow:
  318. */
  319. ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
  320. {
  321. ktime_t res = ktime_add(lhs, rhs);
  322. /*
  323. * We use KTIME_SEC_MAX here, the maximum timeout which we can
  324. * return to user space in a timespec:
  325. */
  326. if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
  327. res = ktime_set(KTIME_SEC_MAX, 0);
  328. return res;
  329. }
  330. EXPORT_SYMBOL_GPL(ktime_add_safe);
  331. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  332. static struct debug_obj_descr hrtimer_debug_descr;
  333. /*
  334. * fixup_init is called when:
  335. * - an active object is initialized
  336. */
  337. static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
  338. {
  339. struct hrtimer *timer = addr;
  340. switch (state) {
  341. case ODEBUG_STATE_ACTIVE:
  342. hrtimer_cancel(timer);
  343. debug_object_init(timer, &hrtimer_debug_descr);
  344. return 1;
  345. default:
  346. return 0;
  347. }
  348. }
  349. /*
  350. * fixup_activate is called when:
  351. * - an active object is activated
  352. * - an unknown object is activated (might be a statically initialized object)
  353. */
  354. static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
  355. {
  356. switch (state) {
  357. case ODEBUG_STATE_NOTAVAILABLE:
  358. WARN_ON_ONCE(1);
  359. return 0;
  360. case ODEBUG_STATE_ACTIVE:
  361. WARN_ON(1);
  362. default:
  363. return 0;
  364. }
  365. }
  366. /*
  367. * fixup_free is called when:
  368. * - an active object is freed
  369. */
  370. static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
  371. {
  372. struct hrtimer *timer = addr;
  373. switch (state) {
  374. case ODEBUG_STATE_ACTIVE:
  375. hrtimer_cancel(timer);
  376. debug_object_free(timer, &hrtimer_debug_descr);
  377. return 1;
  378. default:
  379. return 0;
  380. }
  381. }
  382. static struct debug_obj_descr hrtimer_debug_descr = {
  383. .name = "hrtimer",
  384. .fixup_init = hrtimer_fixup_init,
  385. .fixup_activate = hrtimer_fixup_activate,
  386. .fixup_free = hrtimer_fixup_free,
  387. };
  388. static inline void debug_hrtimer_init(struct hrtimer *timer)
  389. {
  390. debug_object_init(timer, &hrtimer_debug_descr);
  391. }
  392. static inline void debug_hrtimer_activate(struct hrtimer *timer)
  393. {
  394. debug_object_activate(timer, &hrtimer_debug_descr);
  395. }
  396. static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
  397. {
  398. debug_object_deactivate(timer, &hrtimer_debug_descr);
  399. }
  400. static inline void debug_hrtimer_free(struct hrtimer *timer)
  401. {
  402. debug_object_free(timer, &hrtimer_debug_descr);
  403. }
  404. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  405. enum hrtimer_mode mode);
  406. void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
  407. enum hrtimer_mode mode)
  408. {
  409. debug_object_init_on_stack(timer, &hrtimer_debug_descr);
  410. __hrtimer_init(timer, clock_id, mode);
  411. }
  412. void destroy_hrtimer_on_stack(struct hrtimer *timer)
  413. {
  414. debug_object_free(timer, &hrtimer_debug_descr);
  415. }
  416. #else
  417. static inline void debug_hrtimer_init(struct hrtimer *timer) { }
  418. static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
  419. static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
  420. #endif
  421. /* High resolution timer related functions */
  422. #ifdef CONFIG_HIGH_RES_TIMERS
  423. /*
  424. * High resolution timer enabled ?
  425. */
  426. static int hrtimer_hres_enabled __read_mostly = 1;
  427. /*
  428. * Enable / Disable high resolution mode
  429. */
  430. static int __init setup_hrtimer_hres(char *str)
  431. {
  432. if (!strcmp(str, "off"))
  433. hrtimer_hres_enabled = 0;
  434. else if (!strcmp(str, "on"))
  435. hrtimer_hres_enabled = 1;
  436. else
  437. return 0;
  438. return 1;
  439. }
  440. __setup("highres=", setup_hrtimer_hres);
  441. /*
  442. * hrtimer_high_res_enabled - query, if the highres mode is enabled
  443. */
  444. static inline int hrtimer_is_hres_enabled(void)
  445. {
  446. return hrtimer_hres_enabled;
  447. }
  448. /*
  449. * Is the high resolution mode active ?
  450. */
  451. static inline int hrtimer_hres_active(void)
  452. {
  453. return __get_cpu_var(hrtimer_bases).hres_active;
  454. }
  455. /*
  456. * Reprogram the event source with checking both queues for the
  457. * next event
  458. * Called with interrupts disabled and base->lock held
  459. */
  460. static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
  461. {
  462. int i;
  463. struct hrtimer_clock_base *base = cpu_base->clock_base;
  464. ktime_t expires;
  465. cpu_base->expires_next.tv64 = KTIME_MAX;
  466. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
  467. struct hrtimer *timer;
  468. if (!base->first)
  469. continue;
  470. timer = rb_entry(base->first, struct hrtimer, node);
  471. expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  472. /*
  473. * clock_was_set() has changed base->offset so the
  474. * result might be negative. Fix it up to prevent a
  475. * false positive in clockevents_program_event()
  476. */
  477. if (expires.tv64 < 0)
  478. expires.tv64 = 0;
  479. if (expires.tv64 < cpu_base->expires_next.tv64)
  480. cpu_base->expires_next = expires;
  481. }
  482. if (cpu_base->expires_next.tv64 != KTIME_MAX)
  483. tick_program_event(cpu_base->expires_next, 1);
  484. }
  485. /*
  486. * Shared reprogramming for clock_realtime and clock_monotonic
  487. *
  488. * When a timer is enqueued and expires earlier than the already enqueued
  489. * timers, we have to check, whether it expires earlier than the timer for
  490. * which the clock event device was armed.
  491. *
  492. * Called with interrupts disabled and base->cpu_base.lock held
  493. */
  494. static int hrtimer_reprogram(struct hrtimer *timer,
  495. struct hrtimer_clock_base *base)
  496. {
  497. ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
  498. ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  499. int res;
  500. WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
  501. /*
  502. * When the callback is running, we do not reprogram the clock event
  503. * device. The timer callback is either running on a different CPU or
  504. * the callback is executed in the hrtimer_interrupt context. The
  505. * reprogramming is handled either by the softirq, which called the
  506. * callback or at the end of the hrtimer_interrupt.
  507. */
  508. if (hrtimer_callback_running(timer))
  509. return 0;
  510. /*
  511. * CLOCK_REALTIME timer might be requested with an absolute
  512. * expiry time which is less than base->offset. Nothing wrong
  513. * about that, just avoid to call into the tick code, which
  514. * has now objections against negative expiry values.
  515. */
  516. if (expires.tv64 < 0)
  517. return -ETIME;
  518. if (expires.tv64 >= expires_next->tv64)
  519. return 0;
  520. /*
  521. * Clockevents returns -ETIME, when the event was in the past.
  522. */
  523. res = tick_program_event(expires, 0);
  524. if (!IS_ERR_VALUE(res))
  525. *expires_next = expires;
  526. return res;
  527. }
  528. /*
  529. * Retrigger next event is called after clock was set
  530. *
  531. * Called with interrupts disabled via on_each_cpu()
  532. */
  533. static void retrigger_next_event(void *arg)
  534. {
  535. struct hrtimer_cpu_base *base;
  536. struct timespec realtime_offset;
  537. unsigned long seq;
  538. if (!hrtimer_hres_active())
  539. return;
  540. do {
  541. seq = read_seqbegin(&xtime_lock);
  542. set_normalized_timespec(&realtime_offset,
  543. -wall_to_monotonic.tv_sec,
  544. -wall_to_monotonic.tv_nsec);
  545. } while (read_seqretry(&xtime_lock, seq));
  546. base = &__get_cpu_var(hrtimer_bases);
  547. /* Adjust CLOCK_REALTIME offset */
  548. spin_lock(&base->lock);
  549. base->clock_base[CLOCK_REALTIME].offset =
  550. timespec_to_ktime(realtime_offset);
  551. hrtimer_force_reprogram(base);
  552. spin_unlock(&base->lock);
  553. }
  554. /*
  555. * Clock realtime was set
  556. *
  557. * Change the offset of the realtime clock vs. the monotonic
  558. * clock.
  559. *
  560. * We might have to reprogram the high resolution timer interrupt. On
  561. * SMP we call the architecture specific code to retrigger _all_ high
  562. * resolution timer interrupts. On UP we just disable interrupts and
  563. * call the high resolution interrupt code.
  564. */
  565. void clock_was_set(void)
  566. {
  567. /* Retrigger the CPU local events everywhere */
  568. on_each_cpu(retrigger_next_event, NULL, 1);
  569. }
  570. /*
  571. * During resume we might have to reprogram the high resolution timer
  572. * interrupt (on the local CPU):
  573. */
  574. void hres_timers_resume(void)
  575. {
  576. WARN_ONCE(!irqs_disabled(),
  577. KERN_INFO "hres_timers_resume() called with IRQs enabled!");
  578. retrigger_next_event(NULL);
  579. }
  580. /*
  581. * Initialize the high resolution related parts of cpu_base
  582. */
  583. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
  584. {
  585. base->expires_next.tv64 = KTIME_MAX;
  586. base->hres_active = 0;
  587. }
  588. /*
  589. * Initialize the high resolution related parts of a hrtimer
  590. */
  591. static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
  592. {
  593. }
  594. /*
  595. * When High resolution timers are active, try to reprogram. Note, that in case
  596. * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
  597. * check happens. The timer gets enqueued into the rbtree. The reprogramming
  598. * and expiry check is done in the hrtimer_interrupt or in the softirq.
  599. */
  600. static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
  601. struct hrtimer_clock_base *base,
  602. int wakeup)
  603. {
  604. if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
  605. if (wakeup) {
  606. spin_unlock(&base->cpu_base->lock);
  607. raise_softirq_irqoff(HRTIMER_SOFTIRQ);
  608. spin_lock(&base->cpu_base->lock);
  609. } else
  610. __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
  611. return 1;
  612. }
  613. return 0;
  614. }
  615. /*
  616. * Switch to high resolution mode
  617. */
  618. static int hrtimer_switch_to_hres(void)
  619. {
  620. int cpu = smp_processor_id();
  621. struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
  622. unsigned long flags;
  623. if (base->hres_active)
  624. return 1;
  625. local_irq_save(flags);
  626. if (tick_init_highres()) {
  627. local_irq_restore(flags);
  628. printk(KERN_WARNING "Could not switch to high resolution "
  629. "mode on CPU %d\n", cpu);
  630. return 0;
  631. }
  632. base->hres_active = 1;
  633. base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
  634. base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
  635. tick_setup_sched_timer();
  636. /* "Retrigger" the interrupt to get things going */
  637. retrigger_next_event(NULL);
  638. local_irq_restore(flags);
  639. printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
  640. smp_processor_id());
  641. return 1;
  642. }
  643. #else
  644. static inline int hrtimer_hres_active(void) { return 0; }
  645. static inline int hrtimer_is_hres_enabled(void) { return 0; }
  646. static inline int hrtimer_switch_to_hres(void) { return 0; }
  647. static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
  648. static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
  649. struct hrtimer_clock_base *base,
  650. int wakeup)
  651. {
  652. return 0;
  653. }
  654. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
  655. static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
  656. #endif /* CONFIG_HIGH_RES_TIMERS */
  657. #ifdef CONFIG_TIMER_STATS
  658. void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
  659. {
  660. if (timer->start_site)
  661. return;
  662. timer->start_site = addr;
  663. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  664. timer->start_pid = current->pid;
  665. }
  666. #endif
  667. /*
  668. * Counterpart to lock_hrtimer_base above:
  669. */
  670. static inline
  671. void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  672. {
  673. spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
  674. }
  675. /**
  676. * hrtimer_forward - forward the timer expiry
  677. * @timer: hrtimer to forward
  678. * @now: forward past this time
  679. * @interval: the interval to forward
  680. *
  681. * Forward the timer expiry so it will expire in the future.
  682. * Returns the number of overruns.
  683. */
  684. u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
  685. {
  686. u64 orun = 1;
  687. ktime_t delta;
  688. delta = ktime_sub(now, hrtimer_get_expires(timer));
  689. if (delta.tv64 < 0)
  690. return 0;
  691. if (interval.tv64 < timer->base->resolution.tv64)
  692. interval.tv64 = timer->base->resolution.tv64;
  693. if (unlikely(delta.tv64 >= interval.tv64)) {
  694. s64 incr = ktime_to_ns(interval);
  695. orun = ktime_divns(delta, incr);
  696. hrtimer_add_expires_ns(timer, incr * orun);
  697. if (hrtimer_get_expires_tv64(timer) > now.tv64)
  698. return orun;
  699. /*
  700. * This (and the ktime_add() below) is the
  701. * correction for exact:
  702. */
  703. orun++;
  704. }
  705. hrtimer_add_expires(timer, interval);
  706. return orun;
  707. }
  708. EXPORT_SYMBOL_GPL(hrtimer_forward);
  709. /*
  710. * enqueue_hrtimer - internal function to (re)start a timer
  711. *
  712. * The timer is inserted in expiry order. Insertion into the
  713. * red black tree is O(log(n)). Must hold the base lock.
  714. *
  715. * Returns 1 when the new timer is the leftmost timer in the tree.
  716. */
  717. static int enqueue_hrtimer(struct hrtimer *timer,
  718. struct hrtimer_clock_base *base)
  719. {
  720. struct rb_node **link = &base->active.rb_node;
  721. struct rb_node *parent = NULL;
  722. struct hrtimer *entry;
  723. int leftmost = 1;
  724. debug_hrtimer_activate(timer);
  725. /*
  726. * Find the right place in the rbtree:
  727. */
  728. while (*link) {
  729. parent = *link;
  730. entry = rb_entry(parent, struct hrtimer, node);
  731. /*
  732. * We dont care about collisions. Nodes with
  733. * the same expiry time stay together.
  734. */
  735. if (hrtimer_get_expires_tv64(timer) <
  736. hrtimer_get_expires_tv64(entry)) {
  737. link = &(*link)->rb_left;
  738. } else {
  739. link = &(*link)->rb_right;
  740. leftmost = 0;
  741. }
  742. }
  743. /*
  744. * Insert the timer to the rbtree and check whether it
  745. * replaces the first pending timer
  746. */
  747. if (leftmost)
  748. base->first = &timer->node;
  749. rb_link_node(&timer->node, parent, link);
  750. rb_insert_color(&timer->node, &base->active);
  751. /*
  752. * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
  753. * state of a possibly running callback.
  754. */
  755. timer->state |= HRTIMER_STATE_ENQUEUED;
  756. return leftmost;
  757. }
  758. /*
  759. * __remove_hrtimer - internal function to remove a timer
  760. *
  761. * Caller must hold the base lock.
  762. *
  763. * High resolution timer mode reprograms the clock event device when the
  764. * timer is the one which expires next. The caller can disable this by setting
  765. * reprogram to zero. This is useful, when the context does a reprogramming
  766. * anyway (e.g. timer interrupt)
  767. */
  768. static void __remove_hrtimer(struct hrtimer *timer,
  769. struct hrtimer_clock_base *base,
  770. unsigned long newstate, int reprogram)
  771. {
  772. if (timer->state & HRTIMER_STATE_ENQUEUED) {
  773. /*
  774. * Remove the timer from the rbtree and replace the
  775. * first entry pointer if necessary.
  776. */
  777. if (base->first == &timer->node) {
  778. base->first = rb_next(&timer->node);
  779. /* Reprogram the clock event device. if enabled */
  780. if (reprogram && hrtimer_hres_active())
  781. hrtimer_force_reprogram(base->cpu_base);
  782. }
  783. rb_erase(&timer->node, &base->active);
  784. }
  785. timer->state = newstate;
  786. }
  787. /*
  788. * remove hrtimer, called with base lock held
  789. */
  790. static inline int
  791. remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
  792. {
  793. if (hrtimer_is_queued(timer)) {
  794. int reprogram;
  795. /*
  796. * Remove the timer and force reprogramming when high
  797. * resolution mode is active and the timer is on the current
  798. * CPU. If we remove a timer on another CPU, reprogramming is
  799. * skipped. The interrupt event on this CPU is fired and
  800. * reprogramming happens in the interrupt handler. This is a
  801. * rare case and less expensive than a smp call.
  802. */
  803. debug_hrtimer_deactivate(timer);
  804. timer_stats_hrtimer_clear_start_info(timer);
  805. reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
  806. __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
  807. reprogram);
  808. return 1;
  809. }
  810. return 0;
  811. }
  812. int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
  813. unsigned long delta_ns, const enum hrtimer_mode mode,
  814. int wakeup)
  815. {
  816. struct hrtimer_clock_base *base, *new_base;
  817. unsigned long flags;
  818. int ret, leftmost;
  819. base = lock_hrtimer_base(timer, &flags);
  820. /* Remove an active timer from the queue: */
  821. ret = remove_hrtimer(timer, base);
  822. /* Switch the timer base, if necessary: */
  823. new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
  824. if (mode & HRTIMER_MODE_REL) {
  825. tim = ktime_add_safe(tim, new_base->get_time());
  826. /*
  827. * CONFIG_TIME_LOW_RES is a temporary way for architectures
  828. * to signal that they simply return xtime in
  829. * do_gettimeoffset(). In this case we want to round up by
  830. * resolution when starting a relative timer, to avoid short
  831. * timeouts. This will go away with the GTOD framework.
  832. */
  833. #ifdef CONFIG_TIME_LOW_RES
  834. tim = ktime_add_safe(tim, base->resolution);
  835. #endif
  836. }
  837. hrtimer_set_expires_range_ns(timer, tim, delta_ns);
  838. timer_stats_hrtimer_set_start_info(timer);
  839. leftmost = enqueue_hrtimer(timer, new_base);
  840. /*
  841. * Only allow reprogramming if the new base is on this CPU.
  842. * (it might still be on another CPU if the timer was pending)
  843. *
  844. * XXX send_remote_softirq() ?
  845. */
  846. if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
  847. hrtimer_enqueue_reprogram(timer, new_base, wakeup);
  848. unlock_hrtimer_base(timer, &flags);
  849. return ret;
  850. }
  851. /**
  852. * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
  853. * @timer: the timer to be added
  854. * @tim: expiry time
  855. * @delta_ns: "slack" range for the timer
  856. * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
  857. *
  858. * Returns:
  859. * 0 on success
  860. * 1 when the timer was active
  861. */
  862. int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
  863. unsigned long delta_ns, const enum hrtimer_mode mode)
  864. {
  865. return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
  866. }
  867. EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
  868. /**
  869. * hrtimer_start - (re)start an hrtimer on the current CPU
  870. * @timer: the timer to be added
  871. * @tim: expiry time
  872. * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
  873. *
  874. * Returns:
  875. * 0 on success
  876. * 1 when the timer was active
  877. */
  878. int
  879. hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
  880. {
  881. return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
  882. }
  883. EXPORT_SYMBOL_GPL(hrtimer_start);
  884. /**
  885. * hrtimer_try_to_cancel - try to deactivate a timer
  886. * @timer: hrtimer to stop
  887. *
  888. * Returns:
  889. * 0 when the timer was not active
  890. * 1 when the timer was active
  891. * -1 when the timer is currently excuting the callback function and
  892. * cannot be stopped
  893. */
  894. int hrtimer_try_to_cancel(struct hrtimer *timer)
  895. {
  896. struct hrtimer_clock_base *base;
  897. unsigned long flags;
  898. int ret = -1;
  899. base = lock_hrtimer_base(timer, &flags);
  900. if (!hrtimer_callback_running(timer))
  901. ret = remove_hrtimer(timer, base);
  902. unlock_hrtimer_base(timer, &flags);
  903. return ret;
  904. }
  905. EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
  906. /**
  907. * hrtimer_cancel - cancel a timer and wait for the handler to finish.
  908. * @timer: the timer to be cancelled
  909. *
  910. * Returns:
  911. * 0 when the timer was not active
  912. * 1 when the timer was active
  913. */
  914. int hrtimer_cancel(struct hrtimer *timer)
  915. {
  916. for (;;) {
  917. int ret = hrtimer_try_to_cancel(timer);
  918. if (ret >= 0)
  919. return ret;
  920. cpu_relax();
  921. }
  922. }
  923. EXPORT_SYMBOL_GPL(hrtimer_cancel);
  924. /**
  925. * hrtimer_get_remaining - get remaining time for the timer
  926. * @timer: the timer to read
  927. */
  928. ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
  929. {
  930. struct hrtimer_clock_base *base;
  931. unsigned long flags;
  932. ktime_t rem;
  933. base = lock_hrtimer_base(timer, &flags);
  934. rem = hrtimer_expires_remaining(timer);
  935. unlock_hrtimer_base(timer, &flags);
  936. return rem;
  937. }
  938. EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
  939. #ifdef CONFIG_NO_HZ
  940. /**
  941. * hrtimer_get_next_event - get the time until next expiry event
  942. *
  943. * Returns the delta to the next expiry event or KTIME_MAX if no timer
  944. * is pending.
  945. */
  946. ktime_t hrtimer_get_next_event(void)
  947. {
  948. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  949. struct hrtimer_clock_base *base = cpu_base->clock_base;
  950. ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
  951. unsigned long flags;
  952. int i;
  953. spin_lock_irqsave(&cpu_base->lock, flags);
  954. if (!hrtimer_hres_active()) {
  955. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
  956. struct hrtimer *timer;
  957. if (!base->first)
  958. continue;
  959. timer = rb_entry(base->first, struct hrtimer, node);
  960. delta.tv64 = hrtimer_get_expires_tv64(timer);
  961. delta = ktime_sub(delta, base->get_time());
  962. if (delta.tv64 < mindelta.tv64)
  963. mindelta.tv64 = delta.tv64;
  964. }
  965. }
  966. spin_unlock_irqrestore(&cpu_base->lock, flags);
  967. if (mindelta.tv64 < 0)
  968. mindelta.tv64 = 0;
  969. return mindelta;
  970. }
  971. #endif
  972. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  973. enum hrtimer_mode mode)
  974. {
  975. struct hrtimer_cpu_base *cpu_base;
  976. memset(timer, 0, sizeof(struct hrtimer));
  977. cpu_base = &__raw_get_cpu_var(hrtimer_bases);
  978. if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
  979. clock_id = CLOCK_MONOTONIC;
  980. timer->base = &cpu_base->clock_base[clock_id];
  981. INIT_LIST_HEAD(&timer->cb_entry);
  982. hrtimer_init_timer_hres(timer);
  983. #ifdef CONFIG_TIMER_STATS
  984. timer->start_site = NULL;
  985. timer->start_pid = -1;
  986. memset(timer->start_comm, 0, TASK_COMM_LEN);
  987. #endif
  988. }
  989. /**
  990. * hrtimer_init - initialize a timer to the given clock
  991. * @timer: the timer to be initialized
  992. * @clock_id: the clock to be used
  993. * @mode: timer mode abs/rel
  994. */
  995. void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  996. enum hrtimer_mode mode)
  997. {
  998. debug_hrtimer_init(timer);
  999. __hrtimer_init(timer, clock_id, mode);
  1000. }
  1001. EXPORT_SYMBOL_GPL(hrtimer_init);
  1002. /**
  1003. * hrtimer_get_res - get the timer resolution for a clock
  1004. * @which_clock: which clock to query
  1005. * @tp: pointer to timespec variable to store the resolution
  1006. *
  1007. * Store the resolution of the clock selected by @which_clock in the
  1008. * variable pointed to by @tp.
  1009. */
  1010. int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
  1011. {
  1012. struct hrtimer_cpu_base *cpu_base;
  1013. cpu_base = &__raw_get_cpu_var(hrtimer_bases);
  1014. *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
  1015. return 0;
  1016. }
  1017. EXPORT_SYMBOL_GPL(hrtimer_get_res);
  1018. static void __run_hrtimer(struct hrtimer *timer)
  1019. {
  1020. struct hrtimer_clock_base *base = timer->base;
  1021. struct hrtimer_cpu_base *cpu_base = base->cpu_base;
  1022. enum hrtimer_restart (*fn)(struct hrtimer *);
  1023. int restart;
  1024. WARN_ON(!irqs_disabled());
  1025. debug_hrtimer_deactivate(timer);
  1026. __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
  1027. timer_stats_account_hrtimer(timer);
  1028. fn = timer->function;
  1029. /*
  1030. * Because we run timers from hardirq context, there is no chance
  1031. * they get migrated to another cpu, therefore its safe to unlock
  1032. * the timer base.
  1033. */
  1034. spin_unlock(&cpu_base->lock);
  1035. restart = fn(timer);
  1036. spin_lock(&cpu_base->lock);
  1037. /*
  1038. * Note: We clear the CALLBACK bit after enqueue_hrtimer and
  1039. * we do not reprogramm the event hardware. Happens either in
  1040. * hrtimer_start_range_ns() or in hrtimer_interrupt()
  1041. */
  1042. if (restart != HRTIMER_NORESTART) {
  1043. BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
  1044. enqueue_hrtimer(timer, base);
  1045. }
  1046. timer->state &= ~HRTIMER_STATE_CALLBACK;
  1047. }
  1048. #ifdef CONFIG_HIGH_RES_TIMERS
  1049. static int force_clock_reprogram;
  1050. /*
  1051. * After 5 iteration's attempts, we consider that hrtimer_interrupt()
  1052. * is hanging, which could happen with something that slows the interrupt
  1053. * such as the tracing. Then we force the clock reprogramming for each future
  1054. * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
  1055. * threshold that we will overwrite.
  1056. * The next tick event will be scheduled to 3 times we currently spend on
  1057. * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
  1058. * 1/4 of their time to process the hrtimer interrupts. This is enough to
  1059. * let it running without serious starvation.
  1060. */
  1061. static inline void
  1062. hrtimer_interrupt_hanging(struct clock_event_device *dev,
  1063. ktime_t try_time)
  1064. {
  1065. force_clock_reprogram = 1;
  1066. dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
  1067. printk(KERN_WARNING "hrtimer: interrupt too slow, "
  1068. "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
  1069. }
  1070. /*
  1071. * High resolution timer interrupt
  1072. * Called with interrupts disabled
  1073. */
  1074. void hrtimer_interrupt(struct clock_event_device *dev)
  1075. {
  1076. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  1077. struct hrtimer_clock_base *base;
  1078. ktime_t expires_next, now;
  1079. int nr_retries = 0;
  1080. int i;
  1081. BUG_ON(!cpu_base->hres_active);
  1082. cpu_base->nr_events++;
  1083. dev->next_event.tv64 = KTIME_MAX;
  1084. retry:
  1085. /* 5 retries is enough to notice a hang */
  1086. if (!(++nr_retries % 5))
  1087. hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
  1088. now = ktime_get();
  1089. expires_next.tv64 = KTIME_MAX;
  1090. base = cpu_base->clock_base;
  1091. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1092. ktime_t basenow;
  1093. struct rb_node *node;
  1094. spin_lock(&cpu_base->lock);
  1095. basenow = ktime_add(now, base->offset);
  1096. while ((node = base->first)) {
  1097. struct hrtimer *timer;
  1098. timer = rb_entry(node, struct hrtimer, node);
  1099. /*
  1100. * The immediate goal for using the softexpires is
  1101. * minimizing wakeups, not running timers at the
  1102. * earliest interrupt after their soft expiration.
  1103. * This allows us to avoid using a Priority Search
  1104. * Tree, which can answer a stabbing querry for
  1105. * overlapping intervals and instead use the simple
  1106. * BST we already have.
  1107. * We don't add extra wakeups by delaying timers that
  1108. * are right-of a not yet expired timer, because that
  1109. * timer will have to trigger a wakeup anyway.
  1110. */
  1111. if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
  1112. ktime_t expires;
  1113. expires = ktime_sub(hrtimer_get_expires(timer),
  1114. base->offset);
  1115. if (expires.tv64 < expires_next.tv64)
  1116. expires_next = expires;
  1117. break;
  1118. }
  1119. __run_hrtimer(timer);
  1120. }
  1121. spin_unlock(&cpu_base->lock);
  1122. base++;
  1123. }
  1124. cpu_base->expires_next = expires_next;
  1125. /* Reprogramming necessary ? */
  1126. if (expires_next.tv64 != KTIME_MAX) {
  1127. if (tick_program_event(expires_next, force_clock_reprogram))
  1128. goto retry;
  1129. }
  1130. }
  1131. /*
  1132. * local version of hrtimer_peek_ahead_timers() called with interrupts
  1133. * disabled.
  1134. */
  1135. static void __hrtimer_peek_ahead_timers(void)
  1136. {
  1137. struct tick_device *td;
  1138. if (!hrtimer_hres_active())
  1139. return;
  1140. td = &__get_cpu_var(tick_cpu_device);
  1141. if (td && td->evtdev)
  1142. hrtimer_interrupt(td->evtdev);
  1143. }
  1144. /**
  1145. * hrtimer_peek_ahead_timers -- run soft-expired timers now
  1146. *
  1147. * hrtimer_peek_ahead_timers will peek at the timer queue of
  1148. * the current cpu and check if there are any timers for which
  1149. * the soft expires time has passed. If any such timers exist,
  1150. * they are run immediately and then removed from the timer queue.
  1151. *
  1152. */
  1153. void hrtimer_peek_ahead_timers(void)
  1154. {
  1155. unsigned long flags;
  1156. local_irq_save(flags);
  1157. __hrtimer_peek_ahead_timers();
  1158. local_irq_restore(flags);
  1159. }
  1160. static void run_hrtimer_softirq(struct softirq_action *h)
  1161. {
  1162. hrtimer_peek_ahead_timers();
  1163. }
  1164. #else /* CONFIG_HIGH_RES_TIMERS */
  1165. static inline void __hrtimer_peek_ahead_timers(void) { }
  1166. #endif /* !CONFIG_HIGH_RES_TIMERS */
  1167. /*
  1168. * Called from timer softirq every jiffy, expire hrtimers:
  1169. *
  1170. * For HRT its the fall back code to run the softirq in the timer
  1171. * softirq context in case the hrtimer initialization failed or has
  1172. * not been done yet.
  1173. */
  1174. void hrtimer_run_pending(void)
  1175. {
  1176. if (hrtimer_hres_active())
  1177. return;
  1178. /*
  1179. * This _is_ ugly: We have to check in the softirq context,
  1180. * whether we can switch to highres and / or nohz mode. The
  1181. * clocksource switch happens in the timer interrupt with
  1182. * xtime_lock held. Notification from there only sets the
  1183. * check bit in the tick_oneshot code, otherwise we might
  1184. * deadlock vs. xtime_lock.
  1185. */
  1186. if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
  1187. hrtimer_switch_to_hres();
  1188. }
  1189. /*
  1190. * Called from hardirq context every jiffy
  1191. */
  1192. void hrtimer_run_queues(void)
  1193. {
  1194. struct rb_node *node;
  1195. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  1196. struct hrtimer_clock_base *base;
  1197. int index, gettime = 1;
  1198. if (hrtimer_hres_active())
  1199. return;
  1200. for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
  1201. base = &cpu_base->clock_base[index];
  1202. if (!base->first)
  1203. continue;
  1204. if (gettime) {
  1205. hrtimer_get_softirq_time(cpu_base);
  1206. gettime = 0;
  1207. }
  1208. spin_lock(&cpu_base->lock);
  1209. while ((node = base->first)) {
  1210. struct hrtimer *timer;
  1211. timer = rb_entry(node, struct hrtimer, node);
  1212. if (base->softirq_time.tv64 <=
  1213. hrtimer_get_expires_tv64(timer))
  1214. break;
  1215. __run_hrtimer(timer);
  1216. }
  1217. spin_unlock(&cpu_base->lock);
  1218. }
  1219. }
  1220. /*
  1221. * Sleep related functions:
  1222. */
  1223. static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
  1224. {
  1225. struct hrtimer_sleeper *t =
  1226. container_of(timer, struct hrtimer_sleeper, timer);
  1227. struct task_struct *task = t->task;
  1228. t->task = NULL;
  1229. if (task)
  1230. wake_up_process(task);
  1231. return HRTIMER_NORESTART;
  1232. }
  1233. void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
  1234. {
  1235. sl->timer.function = hrtimer_wakeup;
  1236. sl->task = task;
  1237. }
  1238. static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
  1239. {
  1240. hrtimer_init_sleeper(t, current);
  1241. do {
  1242. set_current_state(TASK_INTERRUPTIBLE);
  1243. hrtimer_start_expires(&t->timer, mode);
  1244. if (!hrtimer_active(&t->timer))
  1245. t->task = NULL;
  1246. if (likely(t->task))
  1247. schedule();
  1248. hrtimer_cancel(&t->timer);
  1249. mode = HRTIMER_MODE_ABS;
  1250. } while (t->task && !signal_pending(current));
  1251. __set_current_state(TASK_RUNNING);
  1252. return t->task == NULL;
  1253. }
  1254. static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
  1255. {
  1256. struct timespec rmt;
  1257. ktime_t rem;
  1258. rem = hrtimer_expires_remaining(timer);
  1259. if (rem.tv64 <= 0)
  1260. return 0;
  1261. rmt = ktime_to_timespec(rem);
  1262. if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
  1263. return -EFAULT;
  1264. return 1;
  1265. }
  1266. long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
  1267. {
  1268. struct hrtimer_sleeper t;
  1269. struct timespec __user *rmtp;
  1270. int ret = 0;
  1271. hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
  1272. HRTIMER_MODE_ABS);
  1273. hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
  1274. if (do_nanosleep(&t, HRTIMER_MODE_ABS))
  1275. goto out;
  1276. rmtp = restart->nanosleep.rmtp;
  1277. if (rmtp) {
  1278. ret = update_rmtp(&t.timer, rmtp);
  1279. if (ret <= 0)
  1280. goto out;
  1281. }
  1282. /* The other values in restart are already filled in */
  1283. ret = -ERESTART_RESTARTBLOCK;
  1284. out:
  1285. destroy_hrtimer_on_stack(&t.timer);
  1286. return ret;
  1287. }
  1288. long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
  1289. const enum hrtimer_mode mode, const clockid_t clockid)
  1290. {
  1291. struct restart_block *restart;
  1292. struct hrtimer_sleeper t;
  1293. int ret = 0;
  1294. unsigned long slack;
  1295. slack = current->timer_slack_ns;
  1296. if (rt_task(current))
  1297. slack = 0;
  1298. hrtimer_init_on_stack(&t.timer, clockid, mode);
  1299. hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
  1300. if (do_nanosleep(&t, mode))
  1301. goto out;
  1302. /* Absolute timers do not update the rmtp value and restart: */
  1303. if (mode == HRTIMER_MODE_ABS) {
  1304. ret = -ERESTARTNOHAND;
  1305. goto out;
  1306. }
  1307. if (rmtp) {
  1308. ret = update_rmtp(&t.timer, rmtp);
  1309. if (ret <= 0)
  1310. goto out;
  1311. }
  1312. restart = &current_thread_info()->restart_block;
  1313. restart->fn = hrtimer_nanosleep_restart;
  1314. restart->nanosleep.index = t.timer.base->index;
  1315. restart->nanosleep.rmtp = rmtp;
  1316. restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
  1317. ret = -ERESTART_RESTARTBLOCK;
  1318. out:
  1319. destroy_hrtimer_on_stack(&t.timer);
  1320. return ret;
  1321. }
  1322. SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
  1323. struct timespec __user *, rmtp)
  1324. {
  1325. struct timespec tu;
  1326. if (copy_from_user(&tu, rqtp, sizeof(tu)))
  1327. return -EFAULT;
  1328. if (!timespec_valid(&tu))
  1329. return -EINVAL;
  1330. return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
  1331. }
  1332. /*
  1333. * Functions related to boot-time initialization:
  1334. */
  1335. static void __cpuinit init_hrtimers_cpu(int cpu)
  1336. {
  1337. struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
  1338. int i;
  1339. spin_lock_init(&cpu_base->lock);
  1340. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
  1341. cpu_base->clock_base[i].cpu_base = cpu_base;
  1342. hrtimer_init_hres(cpu_base);
  1343. }
  1344. #ifdef CONFIG_HOTPLUG_CPU
  1345. static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
  1346. struct hrtimer_clock_base *new_base)
  1347. {
  1348. struct hrtimer *timer;
  1349. struct rb_node *node;
  1350. while ((node = rb_first(&old_base->active))) {
  1351. timer = rb_entry(node, struct hrtimer, node);
  1352. BUG_ON(hrtimer_callback_running(timer));
  1353. debug_hrtimer_deactivate(timer);
  1354. /*
  1355. * Mark it as STATE_MIGRATE not INACTIVE otherwise the
  1356. * timer could be seen as !active and just vanish away
  1357. * under us on another CPU
  1358. */
  1359. __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
  1360. timer->base = new_base;
  1361. /*
  1362. * Enqueue the timers on the new cpu. This does not
  1363. * reprogram the event device in case the timer
  1364. * expires before the earliest on this CPU, but we run
  1365. * hrtimer_interrupt after we migrated everything to
  1366. * sort out already expired timers and reprogram the
  1367. * event device.
  1368. */
  1369. enqueue_hrtimer(timer, new_base);
  1370. /* Clear the migration state bit */
  1371. timer->state &= ~HRTIMER_STATE_MIGRATE;
  1372. }
  1373. }
  1374. static void migrate_hrtimers(int scpu)
  1375. {
  1376. struct hrtimer_cpu_base *old_base, *new_base;
  1377. int i;
  1378. BUG_ON(cpu_online(scpu));
  1379. tick_cancel_sched_timer(scpu);
  1380. local_irq_disable();
  1381. old_base = &per_cpu(hrtimer_bases, scpu);
  1382. new_base = &__get_cpu_var(hrtimer_bases);
  1383. /*
  1384. * The caller is globally serialized and nobody else
  1385. * takes two locks at once, deadlock is not possible.
  1386. */
  1387. spin_lock(&new_base->lock);
  1388. spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1389. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1390. migrate_hrtimer_list(&old_base->clock_base[i],
  1391. &new_base->clock_base[i]);
  1392. }
  1393. spin_unlock(&old_base->lock);
  1394. spin_unlock(&new_base->lock);
  1395. /* Check, if we got expired work to do */
  1396. __hrtimer_peek_ahead_timers();
  1397. local_irq_enable();
  1398. }
  1399. #endif /* CONFIG_HOTPLUG_CPU */
  1400. static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
  1401. unsigned long action, void *hcpu)
  1402. {
  1403. int scpu = (long)hcpu;
  1404. switch (action) {
  1405. case CPU_UP_PREPARE:
  1406. case CPU_UP_PREPARE_FROZEN:
  1407. init_hrtimers_cpu(scpu);
  1408. break;
  1409. #ifdef CONFIG_HOTPLUG_CPU
  1410. case CPU_DYING:
  1411. case CPU_DYING_FROZEN:
  1412. clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
  1413. break;
  1414. case CPU_DEAD:
  1415. case CPU_DEAD_FROZEN:
  1416. {
  1417. clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
  1418. migrate_hrtimers(scpu);
  1419. break;
  1420. }
  1421. #endif
  1422. default:
  1423. break;
  1424. }
  1425. return NOTIFY_OK;
  1426. }
  1427. static struct notifier_block __cpuinitdata hrtimers_nb = {
  1428. .notifier_call = hrtimer_cpu_notify,
  1429. };
  1430. void __init hrtimers_init(void)
  1431. {
  1432. hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
  1433. (void *)(long)smp_processor_id());
  1434. register_cpu_notifier(&hrtimers_nb);
  1435. #ifdef CONFIG_HIGH_RES_TIMERS
  1436. open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
  1437. #endif
  1438. }
  1439. /**
  1440. * schedule_hrtimeout_range - sleep until timeout
  1441. * @expires: timeout value (ktime_t)
  1442. * @delta: slack in expires timeout (ktime_t)
  1443. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1444. *
  1445. * Make the current task sleep until the given expiry time has
  1446. * elapsed. The routine will return immediately unless
  1447. * the current task state has been set (see set_current_state()).
  1448. *
  1449. * The @delta argument gives the kernel the freedom to schedule the
  1450. * actual wakeup to a time that is both power and performance friendly.
  1451. * The kernel give the normal best effort behavior for "@expires+@delta",
  1452. * but may decide to fire the timer earlier, but no earlier than @expires.
  1453. *
  1454. * You can set the task state as follows -
  1455. *
  1456. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1457. * pass before the routine returns.
  1458. *
  1459. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1460. * delivered to the current task.
  1461. *
  1462. * The current task state is guaranteed to be TASK_RUNNING when this
  1463. * routine returns.
  1464. *
  1465. * Returns 0 when the timer has expired otherwise -EINTR
  1466. */
  1467. int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
  1468. const enum hrtimer_mode mode)
  1469. {
  1470. struct hrtimer_sleeper t;
  1471. /*
  1472. * Optimize when a zero timeout value is given. It does not
  1473. * matter whether this is an absolute or a relative time.
  1474. */
  1475. if (expires && !expires->tv64) {
  1476. __set_current_state(TASK_RUNNING);
  1477. return 0;
  1478. }
  1479. /*
  1480. * A NULL parameter means "inifinte"
  1481. */
  1482. if (!expires) {
  1483. schedule();
  1484. __set_current_state(TASK_RUNNING);
  1485. return -EINTR;
  1486. }
  1487. hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
  1488. hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
  1489. hrtimer_init_sleeper(&t, current);
  1490. hrtimer_start_expires(&t.timer, mode);
  1491. if (!hrtimer_active(&t.timer))
  1492. t.task = NULL;
  1493. if (likely(t.task))
  1494. schedule();
  1495. hrtimer_cancel(&t.timer);
  1496. destroy_hrtimer_on_stack(&t.timer);
  1497. __set_current_state(TASK_RUNNING);
  1498. return !t.task ? 0 : -EINTR;
  1499. }
  1500. EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
  1501. /**
  1502. * schedule_hrtimeout - sleep until timeout
  1503. * @expires: timeout value (ktime_t)
  1504. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1505. *
  1506. * Make the current task sleep until the given expiry time has
  1507. * elapsed. The routine will return immediately unless
  1508. * the current task state has been set (see set_current_state()).
  1509. *
  1510. * You can set the task state as follows -
  1511. *
  1512. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1513. * pass before the routine returns.
  1514. *
  1515. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1516. * delivered to the current task.
  1517. *
  1518. * The current task state is guaranteed to be TASK_RUNNING when this
  1519. * routine returns.
  1520. *
  1521. * Returns 0 when the timer has expired otherwise -EINTR
  1522. */
  1523. int __sched schedule_hrtimeout(ktime_t *expires,
  1524. const enum hrtimer_mode mode)
  1525. {
  1526. return schedule_hrtimeout_range(expires, 0, mode);
  1527. }
  1528. EXPORT_SYMBOL_GPL(schedule_hrtimeout);