sched_rt.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_RT_GROUP_SCHED
  6. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  7. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  8. {
  9. #ifdef CONFIG_SCHED_DEBUG
  10. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  11. #endif
  12. return container_of(rt_se, struct task_struct, rt);
  13. }
  14. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  15. {
  16. return rt_rq->rq;
  17. }
  18. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  19. {
  20. return rt_se->rt_rq;
  21. }
  22. #else /* CONFIG_RT_GROUP_SCHED */
  23. #define rt_entity_is_task(rt_se) (1)
  24. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  25. {
  26. return container_of(rt_se, struct task_struct, rt);
  27. }
  28. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  29. {
  30. return container_of(rt_rq, struct rq, rt);
  31. }
  32. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  33. {
  34. struct task_struct *p = rt_task_of(rt_se);
  35. struct rq *rq = task_rq(p);
  36. return &rq->rt;
  37. }
  38. #endif /* CONFIG_RT_GROUP_SCHED */
  39. #ifdef CONFIG_SMP
  40. static inline int rt_overloaded(struct rq *rq)
  41. {
  42. return atomic_read(&rq->rd->rto_count);
  43. }
  44. static inline void rt_set_overload(struct rq *rq)
  45. {
  46. if (!rq->online)
  47. return;
  48. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  49. /*
  50. * Make sure the mask is visible before we set
  51. * the overload count. That is checked to determine
  52. * if we should look at the mask. It would be a shame
  53. * if we looked at the mask, but the mask was not
  54. * updated yet.
  55. */
  56. wmb();
  57. atomic_inc(&rq->rd->rto_count);
  58. }
  59. static inline void rt_clear_overload(struct rq *rq)
  60. {
  61. if (!rq->online)
  62. return;
  63. /* the order here really doesn't matter */
  64. atomic_dec(&rq->rd->rto_count);
  65. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  66. }
  67. static void update_rt_migration(struct rt_rq *rt_rq)
  68. {
  69. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  70. if (!rt_rq->overloaded) {
  71. rt_set_overload(rq_of_rt_rq(rt_rq));
  72. rt_rq->overloaded = 1;
  73. }
  74. } else if (rt_rq->overloaded) {
  75. rt_clear_overload(rq_of_rt_rq(rt_rq));
  76. rt_rq->overloaded = 0;
  77. }
  78. }
  79. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  80. {
  81. if (!rt_entity_is_task(rt_se))
  82. return;
  83. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  84. rt_rq->rt_nr_total++;
  85. if (rt_se->nr_cpus_allowed > 1)
  86. rt_rq->rt_nr_migratory++;
  87. update_rt_migration(rt_rq);
  88. }
  89. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  90. {
  91. if (!rt_entity_is_task(rt_se))
  92. return;
  93. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  94. rt_rq->rt_nr_total--;
  95. if (rt_se->nr_cpus_allowed > 1)
  96. rt_rq->rt_nr_migratory--;
  97. update_rt_migration(rt_rq);
  98. }
  99. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  100. {
  101. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  102. plist_node_init(&p->pushable_tasks, p->prio);
  103. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  104. }
  105. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  106. {
  107. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  108. }
  109. static inline int has_pushable_tasks(struct rq *rq)
  110. {
  111. return !plist_head_empty(&rq->rt.pushable_tasks);
  112. }
  113. #else
  114. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  115. {
  116. }
  117. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  118. {
  119. }
  120. static inline
  121. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  122. {
  123. }
  124. static inline
  125. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  126. {
  127. }
  128. #endif /* CONFIG_SMP */
  129. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  130. {
  131. return !list_empty(&rt_se->run_list);
  132. }
  133. #ifdef CONFIG_RT_GROUP_SCHED
  134. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  135. {
  136. if (!rt_rq->tg)
  137. return RUNTIME_INF;
  138. return rt_rq->rt_runtime;
  139. }
  140. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  141. {
  142. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  143. }
  144. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  145. {
  146. list_add_rcu(&rt_rq->leaf_rt_rq_list,
  147. &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
  148. }
  149. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  150. {
  151. list_del_rcu(&rt_rq->leaf_rt_rq_list);
  152. }
  153. #define for_each_leaf_rt_rq(rt_rq, rq) \
  154. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  155. #define for_each_sched_rt_entity(rt_se) \
  156. for (; rt_se; rt_se = rt_se->parent)
  157. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  158. {
  159. return rt_se->my_q;
  160. }
  161. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
  162. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  163. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  164. {
  165. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  166. struct sched_rt_entity *rt_se;
  167. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  168. rt_se = rt_rq->tg->rt_se[cpu];
  169. if (rt_rq->rt_nr_running) {
  170. if (rt_se && !on_rt_rq(rt_se))
  171. enqueue_rt_entity(rt_se, false);
  172. if (rt_rq->highest_prio.curr < curr->prio)
  173. resched_task(curr);
  174. }
  175. }
  176. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  177. {
  178. struct sched_rt_entity *rt_se;
  179. int cpu = cpu_of(rq_of_rt_rq(rt_rq));
  180. rt_se = rt_rq->tg->rt_se[cpu];
  181. if (rt_se && on_rt_rq(rt_se))
  182. dequeue_rt_entity(rt_se);
  183. }
  184. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  185. {
  186. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  187. }
  188. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  189. {
  190. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  191. struct task_struct *p;
  192. if (rt_rq)
  193. return !!rt_rq->rt_nr_boosted;
  194. p = rt_task_of(rt_se);
  195. return p->prio != p->normal_prio;
  196. }
  197. #ifdef CONFIG_SMP
  198. static inline const struct cpumask *sched_rt_period_mask(void)
  199. {
  200. return cpu_rq(smp_processor_id())->rd->span;
  201. }
  202. #else
  203. static inline const struct cpumask *sched_rt_period_mask(void)
  204. {
  205. return cpu_online_mask;
  206. }
  207. #endif
  208. static inline
  209. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  210. {
  211. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  212. }
  213. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  214. {
  215. return &rt_rq->tg->rt_bandwidth;
  216. }
  217. #else /* !CONFIG_RT_GROUP_SCHED */
  218. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  219. {
  220. return rt_rq->rt_runtime;
  221. }
  222. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  223. {
  224. return ktime_to_ns(def_rt_bandwidth.rt_period);
  225. }
  226. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  227. {
  228. }
  229. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  230. {
  231. }
  232. #define for_each_leaf_rt_rq(rt_rq, rq) \
  233. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  234. #define for_each_sched_rt_entity(rt_se) \
  235. for (; rt_se; rt_se = NULL)
  236. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  237. {
  238. return NULL;
  239. }
  240. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  241. {
  242. if (rt_rq->rt_nr_running)
  243. resched_task(rq_of_rt_rq(rt_rq)->curr);
  244. }
  245. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  246. {
  247. }
  248. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  249. {
  250. return rt_rq->rt_throttled;
  251. }
  252. static inline const struct cpumask *sched_rt_period_mask(void)
  253. {
  254. return cpu_online_mask;
  255. }
  256. static inline
  257. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  258. {
  259. return &cpu_rq(cpu)->rt;
  260. }
  261. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  262. {
  263. return &def_rt_bandwidth;
  264. }
  265. #endif /* CONFIG_RT_GROUP_SCHED */
  266. #ifdef CONFIG_SMP
  267. /*
  268. * We ran out of runtime, see if we can borrow some from our neighbours.
  269. */
  270. static int do_balance_runtime(struct rt_rq *rt_rq)
  271. {
  272. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  273. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  274. int i, weight, more = 0;
  275. u64 rt_period;
  276. weight = cpumask_weight(rd->span);
  277. raw_spin_lock(&rt_b->rt_runtime_lock);
  278. rt_period = ktime_to_ns(rt_b->rt_period);
  279. for_each_cpu(i, rd->span) {
  280. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  281. s64 diff;
  282. if (iter == rt_rq)
  283. continue;
  284. raw_spin_lock(&iter->rt_runtime_lock);
  285. /*
  286. * Either all rqs have inf runtime and there's nothing to steal
  287. * or __disable_runtime() below sets a specific rq to inf to
  288. * indicate its been disabled and disalow stealing.
  289. */
  290. if (iter->rt_runtime == RUNTIME_INF)
  291. goto next;
  292. /*
  293. * From runqueues with spare time, take 1/n part of their
  294. * spare time, but no more than our period.
  295. */
  296. diff = iter->rt_runtime - iter->rt_time;
  297. if (diff > 0) {
  298. diff = div_u64((u64)diff, weight);
  299. if (rt_rq->rt_runtime + diff > rt_period)
  300. diff = rt_period - rt_rq->rt_runtime;
  301. iter->rt_runtime -= diff;
  302. rt_rq->rt_runtime += diff;
  303. more = 1;
  304. if (rt_rq->rt_runtime == rt_period) {
  305. raw_spin_unlock(&iter->rt_runtime_lock);
  306. break;
  307. }
  308. }
  309. next:
  310. raw_spin_unlock(&iter->rt_runtime_lock);
  311. }
  312. raw_spin_unlock(&rt_b->rt_runtime_lock);
  313. return more;
  314. }
  315. /*
  316. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  317. */
  318. static void __disable_runtime(struct rq *rq)
  319. {
  320. struct root_domain *rd = rq->rd;
  321. struct rt_rq *rt_rq;
  322. if (unlikely(!scheduler_running))
  323. return;
  324. for_each_leaf_rt_rq(rt_rq, rq) {
  325. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  326. s64 want;
  327. int i;
  328. raw_spin_lock(&rt_b->rt_runtime_lock);
  329. raw_spin_lock(&rt_rq->rt_runtime_lock);
  330. /*
  331. * Either we're all inf and nobody needs to borrow, or we're
  332. * already disabled and thus have nothing to do, or we have
  333. * exactly the right amount of runtime to take out.
  334. */
  335. if (rt_rq->rt_runtime == RUNTIME_INF ||
  336. rt_rq->rt_runtime == rt_b->rt_runtime)
  337. goto balanced;
  338. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  339. /*
  340. * Calculate the difference between what we started out with
  341. * and what we current have, that's the amount of runtime
  342. * we lend and now have to reclaim.
  343. */
  344. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  345. /*
  346. * Greedy reclaim, take back as much as we can.
  347. */
  348. for_each_cpu(i, rd->span) {
  349. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  350. s64 diff;
  351. /*
  352. * Can't reclaim from ourselves or disabled runqueues.
  353. */
  354. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  355. continue;
  356. raw_spin_lock(&iter->rt_runtime_lock);
  357. if (want > 0) {
  358. diff = min_t(s64, iter->rt_runtime, want);
  359. iter->rt_runtime -= diff;
  360. want -= diff;
  361. } else {
  362. iter->rt_runtime -= want;
  363. want -= want;
  364. }
  365. raw_spin_unlock(&iter->rt_runtime_lock);
  366. if (!want)
  367. break;
  368. }
  369. raw_spin_lock(&rt_rq->rt_runtime_lock);
  370. /*
  371. * We cannot be left wanting - that would mean some runtime
  372. * leaked out of the system.
  373. */
  374. BUG_ON(want);
  375. balanced:
  376. /*
  377. * Disable all the borrow logic by pretending we have inf
  378. * runtime - in which case borrowing doesn't make sense.
  379. */
  380. rt_rq->rt_runtime = RUNTIME_INF;
  381. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  382. raw_spin_unlock(&rt_b->rt_runtime_lock);
  383. }
  384. }
  385. static void disable_runtime(struct rq *rq)
  386. {
  387. unsigned long flags;
  388. raw_spin_lock_irqsave(&rq->lock, flags);
  389. __disable_runtime(rq);
  390. raw_spin_unlock_irqrestore(&rq->lock, flags);
  391. }
  392. static void __enable_runtime(struct rq *rq)
  393. {
  394. struct rt_rq *rt_rq;
  395. if (unlikely(!scheduler_running))
  396. return;
  397. /*
  398. * Reset each runqueue's bandwidth settings
  399. */
  400. for_each_leaf_rt_rq(rt_rq, rq) {
  401. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  402. raw_spin_lock(&rt_b->rt_runtime_lock);
  403. raw_spin_lock(&rt_rq->rt_runtime_lock);
  404. rt_rq->rt_runtime = rt_b->rt_runtime;
  405. rt_rq->rt_time = 0;
  406. rt_rq->rt_throttled = 0;
  407. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  408. raw_spin_unlock(&rt_b->rt_runtime_lock);
  409. }
  410. }
  411. static void enable_runtime(struct rq *rq)
  412. {
  413. unsigned long flags;
  414. raw_spin_lock_irqsave(&rq->lock, flags);
  415. __enable_runtime(rq);
  416. raw_spin_unlock_irqrestore(&rq->lock, flags);
  417. }
  418. static int balance_runtime(struct rt_rq *rt_rq)
  419. {
  420. int more = 0;
  421. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  422. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  423. more = do_balance_runtime(rt_rq);
  424. raw_spin_lock(&rt_rq->rt_runtime_lock);
  425. }
  426. return more;
  427. }
  428. #else /* !CONFIG_SMP */
  429. static inline int balance_runtime(struct rt_rq *rt_rq)
  430. {
  431. return 0;
  432. }
  433. #endif /* CONFIG_SMP */
  434. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  435. {
  436. int i, idle = 1;
  437. const struct cpumask *span;
  438. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  439. return 1;
  440. span = sched_rt_period_mask();
  441. for_each_cpu(i, span) {
  442. int enqueue = 0;
  443. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  444. struct rq *rq = rq_of_rt_rq(rt_rq);
  445. raw_spin_lock(&rq->lock);
  446. if (rt_rq->rt_time) {
  447. u64 runtime;
  448. raw_spin_lock(&rt_rq->rt_runtime_lock);
  449. if (rt_rq->rt_throttled)
  450. balance_runtime(rt_rq);
  451. runtime = rt_rq->rt_runtime;
  452. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  453. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  454. rt_rq->rt_throttled = 0;
  455. enqueue = 1;
  456. /*
  457. * Force a clock update if the CPU was idle,
  458. * lest wakeup -> unthrottle time accumulate.
  459. */
  460. if (rt_rq->rt_nr_running && rq->curr == rq->idle)
  461. rq->skip_clock_update = -1;
  462. }
  463. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  464. idle = 0;
  465. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  466. } else if (rt_rq->rt_nr_running) {
  467. idle = 0;
  468. if (!rt_rq_throttled(rt_rq))
  469. enqueue = 1;
  470. }
  471. if (enqueue)
  472. sched_rt_rq_enqueue(rt_rq);
  473. raw_spin_unlock(&rq->lock);
  474. }
  475. return idle;
  476. }
  477. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  478. {
  479. #ifdef CONFIG_RT_GROUP_SCHED
  480. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  481. if (rt_rq)
  482. return rt_rq->highest_prio.curr;
  483. #endif
  484. return rt_task_of(rt_se)->prio;
  485. }
  486. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  487. {
  488. u64 runtime = sched_rt_runtime(rt_rq);
  489. if (rt_rq->rt_throttled)
  490. return rt_rq_throttled(rt_rq);
  491. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  492. return 0;
  493. balance_runtime(rt_rq);
  494. runtime = sched_rt_runtime(rt_rq);
  495. if (runtime == RUNTIME_INF)
  496. return 0;
  497. if (rt_rq->rt_time > runtime) {
  498. rt_rq->rt_throttled = 1;
  499. if (rt_rq_throttled(rt_rq)) {
  500. sched_rt_rq_dequeue(rt_rq);
  501. return 1;
  502. }
  503. }
  504. return 0;
  505. }
  506. /*
  507. * Update the current task's runtime statistics. Skip current tasks that
  508. * are not in our scheduling class.
  509. */
  510. static void update_curr_rt(struct rq *rq)
  511. {
  512. struct task_struct *curr = rq->curr;
  513. struct sched_rt_entity *rt_se = &curr->rt;
  514. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  515. u64 delta_exec;
  516. if (curr->sched_class != &rt_sched_class)
  517. return;
  518. delta_exec = rq->clock_task - curr->se.exec_start;
  519. if (unlikely((s64)delta_exec < 0))
  520. delta_exec = 0;
  521. schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
  522. curr->se.sum_exec_runtime += delta_exec;
  523. account_group_exec_runtime(curr, delta_exec);
  524. curr->se.exec_start = rq->clock_task;
  525. cpuacct_charge(curr, delta_exec);
  526. sched_rt_avg_update(rq, delta_exec);
  527. if (!rt_bandwidth_enabled())
  528. return;
  529. for_each_sched_rt_entity(rt_se) {
  530. rt_rq = rt_rq_of_se(rt_se);
  531. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  532. raw_spin_lock(&rt_rq->rt_runtime_lock);
  533. rt_rq->rt_time += delta_exec;
  534. if (sched_rt_runtime_exceeded(rt_rq))
  535. resched_task(curr);
  536. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  537. }
  538. }
  539. }
  540. #if defined CONFIG_SMP
  541. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
  542. static inline int next_prio(struct rq *rq)
  543. {
  544. struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
  545. if (next && rt_prio(next->prio))
  546. return next->prio;
  547. else
  548. return MAX_RT_PRIO;
  549. }
  550. static void
  551. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  552. {
  553. struct rq *rq = rq_of_rt_rq(rt_rq);
  554. if (prio < prev_prio) {
  555. /*
  556. * If the new task is higher in priority than anything on the
  557. * run-queue, we know that the previous high becomes our
  558. * next-highest.
  559. */
  560. rt_rq->highest_prio.next = prev_prio;
  561. if (rq->online)
  562. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  563. } else if (prio == rt_rq->highest_prio.curr)
  564. /*
  565. * If the next task is equal in priority to the highest on
  566. * the run-queue, then we implicitly know that the next highest
  567. * task cannot be any lower than current
  568. */
  569. rt_rq->highest_prio.next = prio;
  570. else if (prio < rt_rq->highest_prio.next)
  571. /*
  572. * Otherwise, we need to recompute next-highest
  573. */
  574. rt_rq->highest_prio.next = next_prio(rq);
  575. }
  576. static void
  577. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  578. {
  579. struct rq *rq = rq_of_rt_rq(rt_rq);
  580. if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
  581. rt_rq->highest_prio.next = next_prio(rq);
  582. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  583. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  584. }
  585. #else /* CONFIG_SMP */
  586. static inline
  587. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  588. static inline
  589. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  590. #endif /* CONFIG_SMP */
  591. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  592. static void
  593. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  594. {
  595. int prev_prio = rt_rq->highest_prio.curr;
  596. if (prio < prev_prio)
  597. rt_rq->highest_prio.curr = prio;
  598. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  599. }
  600. static void
  601. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  602. {
  603. int prev_prio = rt_rq->highest_prio.curr;
  604. if (rt_rq->rt_nr_running) {
  605. WARN_ON(prio < prev_prio);
  606. /*
  607. * This may have been our highest task, and therefore
  608. * we may have some recomputation to do
  609. */
  610. if (prio == prev_prio) {
  611. struct rt_prio_array *array = &rt_rq->active;
  612. rt_rq->highest_prio.curr =
  613. sched_find_first_bit(array->bitmap);
  614. }
  615. } else
  616. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  617. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  618. }
  619. #else
  620. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  621. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  622. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  623. #ifdef CONFIG_RT_GROUP_SCHED
  624. static void
  625. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  626. {
  627. if (rt_se_boosted(rt_se))
  628. rt_rq->rt_nr_boosted++;
  629. if (rt_rq->tg)
  630. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  631. }
  632. static void
  633. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  634. {
  635. if (rt_se_boosted(rt_se))
  636. rt_rq->rt_nr_boosted--;
  637. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  638. }
  639. #else /* CONFIG_RT_GROUP_SCHED */
  640. static void
  641. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  642. {
  643. start_rt_bandwidth(&def_rt_bandwidth);
  644. }
  645. static inline
  646. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  647. #endif /* CONFIG_RT_GROUP_SCHED */
  648. static inline
  649. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  650. {
  651. int prio = rt_se_prio(rt_se);
  652. WARN_ON(!rt_prio(prio));
  653. rt_rq->rt_nr_running++;
  654. inc_rt_prio(rt_rq, prio);
  655. inc_rt_migration(rt_se, rt_rq);
  656. inc_rt_group(rt_se, rt_rq);
  657. }
  658. static inline
  659. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  660. {
  661. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  662. WARN_ON(!rt_rq->rt_nr_running);
  663. rt_rq->rt_nr_running--;
  664. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  665. dec_rt_migration(rt_se, rt_rq);
  666. dec_rt_group(rt_se, rt_rq);
  667. }
  668. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  669. {
  670. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  671. struct rt_prio_array *array = &rt_rq->active;
  672. struct rt_rq *group_rq = group_rt_rq(rt_se);
  673. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  674. /*
  675. * Don't enqueue the group if its throttled, or when empty.
  676. * The latter is a consequence of the former when a child group
  677. * get throttled and the current group doesn't have any other
  678. * active members.
  679. */
  680. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  681. return;
  682. if (!rt_rq->rt_nr_running)
  683. list_add_leaf_rt_rq(rt_rq);
  684. if (head)
  685. list_add(&rt_se->run_list, queue);
  686. else
  687. list_add_tail(&rt_se->run_list, queue);
  688. __set_bit(rt_se_prio(rt_se), array->bitmap);
  689. inc_rt_tasks(rt_se, rt_rq);
  690. }
  691. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  692. {
  693. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  694. struct rt_prio_array *array = &rt_rq->active;
  695. list_del_init(&rt_se->run_list);
  696. if (list_empty(array->queue + rt_se_prio(rt_se)))
  697. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  698. dec_rt_tasks(rt_se, rt_rq);
  699. if (!rt_rq->rt_nr_running)
  700. list_del_leaf_rt_rq(rt_rq);
  701. }
  702. /*
  703. * Because the prio of an upper entry depends on the lower
  704. * entries, we must remove entries top - down.
  705. */
  706. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  707. {
  708. struct sched_rt_entity *back = NULL;
  709. for_each_sched_rt_entity(rt_se) {
  710. rt_se->back = back;
  711. back = rt_se;
  712. }
  713. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  714. if (on_rt_rq(rt_se))
  715. __dequeue_rt_entity(rt_se);
  716. }
  717. }
  718. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  719. {
  720. dequeue_rt_stack(rt_se);
  721. for_each_sched_rt_entity(rt_se)
  722. __enqueue_rt_entity(rt_se, head);
  723. }
  724. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  725. {
  726. dequeue_rt_stack(rt_se);
  727. for_each_sched_rt_entity(rt_se) {
  728. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  729. if (rt_rq && rt_rq->rt_nr_running)
  730. __enqueue_rt_entity(rt_se, false);
  731. }
  732. }
  733. /*
  734. * Adding/removing a task to/from a priority array:
  735. */
  736. static void
  737. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  738. {
  739. struct sched_rt_entity *rt_se = &p->rt;
  740. if (flags & ENQUEUE_WAKEUP)
  741. rt_se->timeout = 0;
  742. enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
  743. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  744. enqueue_pushable_task(rq, p);
  745. }
  746. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  747. {
  748. struct sched_rt_entity *rt_se = &p->rt;
  749. update_curr_rt(rq);
  750. dequeue_rt_entity(rt_se);
  751. dequeue_pushable_task(rq, p);
  752. }
  753. /*
  754. * Put task to the end of the run list without the overhead of dequeue
  755. * followed by enqueue.
  756. */
  757. static void
  758. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  759. {
  760. if (on_rt_rq(rt_se)) {
  761. struct rt_prio_array *array = &rt_rq->active;
  762. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  763. if (head)
  764. list_move(&rt_se->run_list, queue);
  765. else
  766. list_move_tail(&rt_se->run_list, queue);
  767. }
  768. }
  769. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  770. {
  771. struct sched_rt_entity *rt_se = &p->rt;
  772. struct rt_rq *rt_rq;
  773. for_each_sched_rt_entity(rt_se) {
  774. rt_rq = rt_rq_of_se(rt_se);
  775. requeue_rt_entity(rt_rq, rt_se, head);
  776. }
  777. }
  778. static void yield_task_rt(struct rq *rq)
  779. {
  780. requeue_task_rt(rq, rq->curr, 0);
  781. }
  782. #ifdef CONFIG_SMP
  783. static int find_lowest_rq(struct task_struct *task);
  784. static int
  785. select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
  786. {
  787. struct task_struct *curr;
  788. struct rq *rq;
  789. int cpu;
  790. if (sd_flag != SD_BALANCE_WAKE)
  791. return smp_processor_id();
  792. cpu = task_cpu(p);
  793. rq = cpu_rq(cpu);
  794. rcu_read_lock();
  795. curr = ACCESS_ONCE(rq->curr); /* unlocked access */
  796. /*
  797. * If the current task on @p's runqueue is an RT task, then
  798. * try to see if we can wake this RT task up on another
  799. * runqueue. Otherwise simply start this RT task
  800. * on its current runqueue.
  801. *
  802. * We want to avoid overloading runqueues. If the woken
  803. * task is a higher priority, then it will stay on this CPU
  804. * and the lower prio task should be moved to another CPU.
  805. * Even though this will probably make the lower prio task
  806. * lose its cache, we do not want to bounce a higher task
  807. * around just because it gave up its CPU, perhaps for a
  808. * lock?
  809. *
  810. * For equal prio tasks, we just let the scheduler sort it out.
  811. *
  812. * Otherwise, just let it ride on the affined RQ and the
  813. * post-schedule router will push the preempted task away
  814. *
  815. * This test is optimistic, if we get it wrong the load-balancer
  816. * will have to sort it out.
  817. */
  818. if (curr && unlikely(rt_task(curr)) &&
  819. (curr->rt.nr_cpus_allowed < 2 ||
  820. curr->prio < p->prio) &&
  821. (p->rt.nr_cpus_allowed > 1)) {
  822. int target = find_lowest_rq(p);
  823. if (target != -1)
  824. cpu = target;
  825. }
  826. rcu_read_unlock();
  827. return cpu;
  828. }
  829. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  830. {
  831. if (rq->curr->rt.nr_cpus_allowed == 1)
  832. return;
  833. if (p->rt.nr_cpus_allowed != 1
  834. && cpupri_find(&rq->rd->cpupri, p, NULL))
  835. return;
  836. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  837. return;
  838. /*
  839. * There appears to be other cpus that can accept
  840. * current and none to run 'p', so lets reschedule
  841. * to try and push current away:
  842. */
  843. requeue_task_rt(rq, p, 1);
  844. resched_task(rq->curr);
  845. }
  846. #endif /* CONFIG_SMP */
  847. /*
  848. * Preempt the current task with a newly woken task if needed:
  849. */
  850. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  851. {
  852. if (p->prio < rq->curr->prio) {
  853. resched_task(rq->curr);
  854. return;
  855. }
  856. #ifdef CONFIG_SMP
  857. /*
  858. * If:
  859. *
  860. * - the newly woken task is of equal priority to the current task
  861. * - the newly woken task is non-migratable while current is migratable
  862. * - current will be preempted on the next reschedule
  863. *
  864. * we should check to see if current can readily move to a different
  865. * cpu. If so, we will reschedule to allow the push logic to try
  866. * to move current somewhere else, making room for our non-migratable
  867. * task.
  868. */
  869. if (p->prio == rq->curr->prio && !need_resched())
  870. check_preempt_equal_prio(rq, p);
  871. #endif
  872. }
  873. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  874. struct rt_rq *rt_rq)
  875. {
  876. struct rt_prio_array *array = &rt_rq->active;
  877. struct sched_rt_entity *next = NULL;
  878. struct list_head *queue;
  879. int idx;
  880. idx = sched_find_first_bit(array->bitmap);
  881. BUG_ON(idx >= MAX_RT_PRIO);
  882. queue = array->queue + idx;
  883. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  884. return next;
  885. }
  886. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  887. {
  888. struct sched_rt_entity *rt_se;
  889. struct task_struct *p;
  890. struct rt_rq *rt_rq;
  891. rt_rq = &rq->rt;
  892. if (unlikely(!rt_rq->rt_nr_running))
  893. return NULL;
  894. if (rt_rq_throttled(rt_rq))
  895. return NULL;
  896. do {
  897. rt_se = pick_next_rt_entity(rq, rt_rq);
  898. BUG_ON(!rt_se);
  899. rt_rq = group_rt_rq(rt_se);
  900. } while (rt_rq);
  901. p = rt_task_of(rt_se);
  902. p->se.exec_start = rq->clock_task;
  903. return p;
  904. }
  905. static struct task_struct *pick_next_task_rt(struct rq *rq)
  906. {
  907. struct task_struct *p = _pick_next_task_rt(rq);
  908. /* The running task is never eligible for pushing */
  909. if (p)
  910. dequeue_pushable_task(rq, p);
  911. #ifdef CONFIG_SMP
  912. /*
  913. * We detect this state here so that we can avoid taking the RQ
  914. * lock again later if there is no need to push
  915. */
  916. rq->post_schedule = has_pushable_tasks(rq);
  917. #endif
  918. return p;
  919. }
  920. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  921. {
  922. update_curr_rt(rq);
  923. p->se.exec_start = 0;
  924. /*
  925. * The previous task needs to be made eligible for pushing
  926. * if it is still active
  927. */
  928. if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
  929. enqueue_pushable_task(rq, p);
  930. }
  931. #ifdef CONFIG_SMP
  932. /* Only try algorithms three times */
  933. #define RT_MAX_TRIES 3
  934. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  935. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  936. {
  937. if (!task_running(rq, p) &&
  938. (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
  939. (p->rt.nr_cpus_allowed > 1))
  940. return 1;
  941. return 0;
  942. }
  943. /* Return the second highest RT task, NULL otherwise */
  944. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  945. {
  946. struct task_struct *next = NULL;
  947. struct sched_rt_entity *rt_se;
  948. struct rt_prio_array *array;
  949. struct rt_rq *rt_rq;
  950. int idx;
  951. for_each_leaf_rt_rq(rt_rq, rq) {
  952. array = &rt_rq->active;
  953. idx = sched_find_first_bit(array->bitmap);
  954. next_idx:
  955. if (idx >= MAX_RT_PRIO)
  956. continue;
  957. if (next && next->prio < idx)
  958. continue;
  959. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  960. struct task_struct *p;
  961. if (!rt_entity_is_task(rt_se))
  962. continue;
  963. p = rt_task_of(rt_se);
  964. if (pick_rt_task(rq, p, cpu)) {
  965. next = p;
  966. break;
  967. }
  968. }
  969. if (!next) {
  970. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  971. goto next_idx;
  972. }
  973. }
  974. return next;
  975. }
  976. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  977. static int find_lowest_rq(struct task_struct *task)
  978. {
  979. struct sched_domain *sd;
  980. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  981. int this_cpu = smp_processor_id();
  982. int cpu = task_cpu(task);
  983. if (task->rt.nr_cpus_allowed == 1)
  984. return -1; /* No other targets possible */
  985. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  986. return -1; /* No targets found */
  987. /*
  988. * At this point we have built a mask of cpus representing the
  989. * lowest priority tasks in the system. Now we want to elect
  990. * the best one based on our affinity and topology.
  991. *
  992. * We prioritize the last cpu that the task executed on since
  993. * it is most likely cache-hot in that location.
  994. */
  995. if (cpumask_test_cpu(cpu, lowest_mask))
  996. return cpu;
  997. /*
  998. * Otherwise, we consult the sched_domains span maps to figure
  999. * out which cpu is logically closest to our hot cache data.
  1000. */
  1001. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  1002. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  1003. for_each_domain(cpu, sd) {
  1004. if (sd->flags & SD_WAKE_AFFINE) {
  1005. int best_cpu;
  1006. /*
  1007. * "this_cpu" is cheaper to preempt than a
  1008. * remote processor.
  1009. */
  1010. if (this_cpu != -1 &&
  1011. cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
  1012. return this_cpu;
  1013. best_cpu = cpumask_first_and(lowest_mask,
  1014. sched_domain_span(sd));
  1015. if (best_cpu < nr_cpu_ids)
  1016. return best_cpu;
  1017. }
  1018. }
  1019. /*
  1020. * And finally, if there were no matches within the domains
  1021. * just give the caller *something* to work with from the compatible
  1022. * locations.
  1023. */
  1024. if (this_cpu != -1)
  1025. return this_cpu;
  1026. cpu = cpumask_any(lowest_mask);
  1027. if (cpu < nr_cpu_ids)
  1028. return cpu;
  1029. return -1;
  1030. }
  1031. /* Will lock the rq it finds */
  1032. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  1033. {
  1034. struct rq *lowest_rq = NULL;
  1035. int tries;
  1036. int cpu;
  1037. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  1038. cpu = find_lowest_rq(task);
  1039. if ((cpu == -1) || (cpu == rq->cpu))
  1040. break;
  1041. lowest_rq = cpu_rq(cpu);
  1042. /* if the prio of this runqueue changed, try again */
  1043. if (double_lock_balance(rq, lowest_rq)) {
  1044. /*
  1045. * We had to unlock the run queue. In
  1046. * the mean time, task could have
  1047. * migrated already or had its affinity changed.
  1048. * Also make sure that it wasn't scheduled on its rq.
  1049. */
  1050. if (unlikely(task_rq(task) != rq ||
  1051. !cpumask_test_cpu(lowest_rq->cpu,
  1052. &task->cpus_allowed) ||
  1053. task_running(rq, task) ||
  1054. !task->on_rq)) {
  1055. raw_spin_unlock(&lowest_rq->lock);
  1056. lowest_rq = NULL;
  1057. break;
  1058. }
  1059. }
  1060. /* If this rq is still suitable use it. */
  1061. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1062. break;
  1063. /* try again */
  1064. double_unlock_balance(rq, lowest_rq);
  1065. lowest_rq = NULL;
  1066. }
  1067. return lowest_rq;
  1068. }
  1069. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1070. {
  1071. struct task_struct *p;
  1072. if (!has_pushable_tasks(rq))
  1073. return NULL;
  1074. p = plist_first_entry(&rq->rt.pushable_tasks,
  1075. struct task_struct, pushable_tasks);
  1076. BUG_ON(rq->cpu != task_cpu(p));
  1077. BUG_ON(task_current(rq, p));
  1078. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1079. BUG_ON(!p->on_rq);
  1080. BUG_ON(!rt_task(p));
  1081. return p;
  1082. }
  1083. /*
  1084. * If the current CPU has more than one RT task, see if the non
  1085. * running task can migrate over to a CPU that is running a task
  1086. * of lesser priority.
  1087. */
  1088. static int push_rt_task(struct rq *rq)
  1089. {
  1090. struct task_struct *next_task;
  1091. struct rq *lowest_rq;
  1092. if (!rq->rt.overloaded)
  1093. return 0;
  1094. next_task = pick_next_pushable_task(rq);
  1095. if (!next_task)
  1096. return 0;
  1097. retry:
  1098. if (unlikely(next_task == rq->curr)) {
  1099. WARN_ON(1);
  1100. return 0;
  1101. }
  1102. /*
  1103. * It's possible that the next_task slipped in of
  1104. * higher priority than current. If that's the case
  1105. * just reschedule current.
  1106. */
  1107. if (unlikely(next_task->prio < rq->curr->prio)) {
  1108. resched_task(rq->curr);
  1109. return 0;
  1110. }
  1111. /* We might release rq lock */
  1112. get_task_struct(next_task);
  1113. /* find_lock_lowest_rq locks the rq if found */
  1114. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1115. if (!lowest_rq) {
  1116. struct task_struct *task;
  1117. /*
  1118. * find lock_lowest_rq releases rq->lock
  1119. * so it is possible that next_task has migrated.
  1120. *
  1121. * We need to make sure that the task is still on the same
  1122. * run-queue and is also still the next task eligible for
  1123. * pushing.
  1124. */
  1125. task = pick_next_pushable_task(rq);
  1126. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1127. /*
  1128. * If we get here, the task hasn't moved at all, but
  1129. * it has failed to push. We will not try again,
  1130. * since the other cpus will pull from us when they
  1131. * are ready.
  1132. */
  1133. dequeue_pushable_task(rq, next_task);
  1134. goto out;
  1135. }
  1136. if (!task)
  1137. /* No more tasks, just exit */
  1138. goto out;
  1139. /*
  1140. * Something has shifted, try again.
  1141. */
  1142. put_task_struct(next_task);
  1143. next_task = task;
  1144. goto retry;
  1145. }
  1146. deactivate_task(rq, next_task, 0);
  1147. set_task_cpu(next_task, lowest_rq->cpu);
  1148. activate_task(lowest_rq, next_task, 0);
  1149. resched_task(lowest_rq->curr);
  1150. double_unlock_balance(rq, lowest_rq);
  1151. out:
  1152. put_task_struct(next_task);
  1153. return 1;
  1154. }
  1155. static void push_rt_tasks(struct rq *rq)
  1156. {
  1157. /* push_rt_task will return true if it moved an RT */
  1158. while (push_rt_task(rq))
  1159. ;
  1160. }
  1161. static int pull_rt_task(struct rq *this_rq)
  1162. {
  1163. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1164. struct task_struct *p;
  1165. struct rq *src_rq;
  1166. if (likely(!rt_overloaded(this_rq)))
  1167. return 0;
  1168. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1169. if (this_cpu == cpu)
  1170. continue;
  1171. src_rq = cpu_rq(cpu);
  1172. /*
  1173. * Don't bother taking the src_rq->lock if the next highest
  1174. * task is known to be lower-priority than our current task.
  1175. * This may look racy, but if this value is about to go
  1176. * logically higher, the src_rq will push this task away.
  1177. * And if its going logically lower, we do not care
  1178. */
  1179. if (src_rq->rt.highest_prio.next >=
  1180. this_rq->rt.highest_prio.curr)
  1181. continue;
  1182. /*
  1183. * We can potentially drop this_rq's lock in
  1184. * double_lock_balance, and another CPU could
  1185. * alter this_rq
  1186. */
  1187. double_lock_balance(this_rq, src_rq);
  1188. /*
  1189. * Are there still pullable RT tasks?
  1190. */
  1191. if (src_rq->rt.rt_nr_running <= 1)
  1192. goto skip;
  1193. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1194. /*
  1195. * Do we have an RT task that preempts
  1196. * the to-be-scheduled task?
  1197. */
  1198. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1199. WARN_ON(p == src_rq->curr);
  1200. WARN_ON(!p->on_rq);
  1201. /*
  1202. * There's a chance that p is higher in priority
  1203. * than what's currently running on its cpu.
  1204. * This is just that p is wakeing up and hasn't
  1205. * had a chance to schedule. We only pull
  1206. * p if it is lower in priority than the
  1207. * current task on the run queue
  1208. */
  1209. if (p->prio < src_rq->curr->prio)
  1210. goto skip;
  1211. ret = 1;
  1212. deactivate_task(src_rq, p, 0);
  1213. set_task_cpu(p, this_cpu);
  1214. activate_task(this_rq, p, 0);
  1215. /*
  1216. * We continue with the search, just in
  1217. * case there's an even higher prio task
  1218. * in another runqueue. (low likelihood
  1219. * but possible)
  1220. */
  1221. }
  1222. skip:
  1223. double_unlock_balance(this_rq, src_rq);
  1224. }
  1225. return ret;
  1226. }
  1227. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1228. {
  1229. /* Try to pull RT tasks here if we lower this rq's prio */
  1230. if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
  1231. pull_rt_task(rq);
  1232. }
  1233. static void post_schedule_rt(struct rq *rq)
  1234. {
  1235. push_rt_tasks(rq);
  1236. }
  1237. /*
  1238. * If we are not running and we are not going to reschedule soon, we should
  1239. * try to push tasks away now
  1240. */
  1241. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1242. {
  1243. if (!task_running(rq, p) &&
  1244. !test_tsk_need_resched(rq->curr) &&
  1245. has_pushable_tasks(rq) &&
  1246. p->rt.nr_cpus_allowed > 1 &&
  1247. rt_task(rq->curr) &&
  1248. (rq->curr->rt.nr_cpus_allowed < 2 ||
  1249. rq->curr->prio < p->prio))
  1250. push_rt_tasks(rq);
  1251. }
  1252. static void set_cpus_allowed_rt(struct task_struct *p,
  1253. const struct cpumask *new_mask)
  1254. {
  1255. int weight = cpumask_weight(new_mask);
  1256. BUG_ON(!rt_task(p));
  1257. /*
  1258. * Update the migration status of the RQ if we have an RT task
  1259. * which is running AND changing its weight value.
  1260. */
  1261. if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1262. struct rq *rq = task_rq(p);
  1263. if (!task_current(rq, p)) {
  1264. /*
  1265. * Make sure we dequeue this task from the pushable list
  1266. * before going further. It will either remain off of
  1267. * the list because we are no longer pushable, or it
  1268. * will be requeued.
  1269. */
  1270. if (p->rt.nr_cpus_allowed > 1)
  1271. dequeue_pushable_task(rq, p);
  1272. /*
  1273. * Requeue if our weight is changing and still > 1
  1274. */
  1275. if (weight > 1)
  1276. enqueue_pushable_task(rq, p);
  1277. }
  1278. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1279. rq->rt.rt_nr_migratory++;
  1280. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1281. BUG_ON(!rq->rt.rt_nr_migratory);
  1282. rq->rt.rt_nr_migratory--;
  1283. }
  1284. update_rt_migration(&rq->rt);
  1285. }
  1286. cpumask_copy(&p->cpus_allowed, new_mask);
  1287. p->rt.nr_cpus_allowed = weight;
  1288. }
  1289. /* Assumes rq->lock is held */
  1290. static void rq_online_rt(struct rq *rq)
  1291. {
  1292. if (rq->rt.overloaded)
  1293. rt_set_overload(rq);
  1294. __enable_runtime(rq);
  1295. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1296. }
  1297. /* Assumes rq->lock is held */
  1298. static void rq_offline_rt(struct rq *rq)
  1299. {
  1300. if (rq->rt.overloaded)
  1301. rt_clear_overload(rq);
  1302. __disable_runtime(rq);
  1303. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1304. }
  1305. /*
  1306. * When switch from the rt queue, we bring ourselves to a position
  1307. * that we might want to pull RT tasks from other runqueues.
  1308. */
  1309. static void switched_from_rt(struct rq *rq, struct task_struct *p)
  1310. {
  1311. /*
  1312. * If there are other RT tasks then we will reschedule
  1313. * and the scheduling of the other RT tasks will handle
  1314. * the balancing. But if we are the last RT task
  1315. * we may need to handle the pulling of RT tasks
  1316. * now.
  1317. */
  1318. if (p->on_rq && !rq->rt.rt_nr_running)
  1319. pull_rt_task(rq);
  1320. }
  1321. static inline void init_sched_rt_class(void)
  1322. {
  1323. unsigned int i;
  1324. for_each_possible_cpu(i)
  1325. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1326. GFP_KERNEL, cpu_to_node(i));
  1327. }
  1328. #endif /* CONFIG_SMP */
  1329. /*
  1330. * When switching a task to RT, we may overload the runqueue
  1331. * with RT tasks. In this case we try to push them off to
  1332. * other runqueues.
  1333. */
  1334. static void switched_to_rt(struct rq *rq, struct task_struct *p)
  1335. {
  1336. int check_resched = 1;
  1337. /*
  1338. * If we are already running, then there's nothing
  1339. * that needs to be done. But if we are not running
  1340. * we may need to preempt the current running task.
  1341. * If that current running task is also an RT task
  1342. * then see if we can move to another run queue.
  1343. */
  1344. if (p->on_rq && rq->curr != p) {
  1345. #ifdef CONFIG_SMP
  1346. if (rq->rt.overloaded && push_rt_task(rq) &&
  1347. /* Don't resched if we changed runqueues */
  1348. rq != task_rq(p))
  1349. check_resched = 0;
  1350. #endif /* CONFIG_SMP */
  1351. if (check_resched && p->prio < rq->curr->prio)
  1352. resched_task(rq->curr);
  1353. }
  1354. }
  1355. /*
  1356. * Priority of the task has changed. This may cause
  1357. * us to initiate a push or pull.
  1358. */
  1359. static void
  1360. prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
  1361. {
  1362. if (!p->on_rq)
  1363. return;
  1364. if (rq->curr == p) {
  1365. #ifdef CONFIG_SMP
  1366. /*
  1367. * If our priority decreases while running, we
  1368. * may need to pull tasks to this runqueue.
  1369. */
  1370. if (oldprio < p->prio)
  1371. pull_rt_task(rq);
  1372. /*
  1373. * If there's a higher priority task waiting to run
  1374. * then reschedule. Note, the above pull_rt_task
  1375. * can release the rq lock and p could migrate.
  1376. * Only reschedule if p is still on the same runqueue.
  1377. */
  1378. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1379. resched_task(p);
  1380. #else
  1381. /* For UP simply resched on drop of prio */
  1382. if (oldprio < p->prio)
  1383. resched_task(p);
  1384. #endif /* CONFIG_SMP */
  1385. } else {
  1386. /*
  1387. * This task is not running, but if it is
  1388. * greater than the current running task
  1389. * then reschedule.
  1390. */
  1391. if (p->prio < rq->curr->prio)
  1392. resched_task(rq->curr);
  1393. }
  1394. }
  1395. static void watchdog(struct rq *rq, struct task_struct *p)
  1396. {
  1397. unsigned long soft, hard;
  1398. /* max may change after cur was read, this will be fixed next tick */
  1399. soft = task_rlimit(p, RLIMIT_RTTIME);
  1400. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1401. if (soft != RLIM_INFINITY) {
  1402. unsigned long next;
  1403. p->rt.timeout++;
  1404. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1405. if (p->rt.timeout > next)
  1406. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1407. }
  1408. }
  1409. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1410. {
  1411. update_curr_rt(rq);
  1412. watchdog(rq, p);
  1413. /*
  1414. * RR tasks need a special form of timeslice management.
  1415. * FIFO tasks have no timeslices.
  1416. */
  1417. if (p->policy != SCHED_RR)
  1418. return;
  1419. if (--p->rt.time_slice)
  1420. return;
  1421. p->rt.time_slice = DEF_TIMESLICE;
  1422. /*
  1423. * Requeue to the end of queue if we are not the only element
  1424. * on the queue:
  1425. */
  1426. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1427. requeue_task_rt(rq, p, 0);
  1428. set_tsk_need_resched(p);
  1429. }
  1430. }
  1431. static void set_curr_task_rt(struct rq *rq)
  1432. {
  1433. struct task_struct *p = rq->curr;
  1434. p->se.exec_start = rq->clock_task;
  1435. /* The running task is never eligible for pushing */
  1436. dequeue_pushable_task(rq, p);
  1437. }
  1438. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1439. {
  1440. /*
  1441. * Time slice is 0 for SCHED_FIFO tasks
  1442. */
  1443. if (task->policy == SCHED_RR)
  1444. return DEF_TIMESLICE;
  1445. else
  1446. return 0;
  1447. }
  1448. static const struct sched_class rt_sched_class = {
  1449. .next = &fair_sched_class,
  1450. .enqueue_task = enqueue_task_rt,
  1451. .dequeue_task = dequeue_task_rt,
  1452. .yield_task = yield_task_rt,
  1453. .check_preempt_curr = check_preempt_curr_rt,
  1454. .pick_next_task = pick_next_task_rt,
  1455. .put_prev_task = put_prev_task_rt,
  1456. #ifdef CONFIG_SMP
  1457. .select_task_rq = select_task_rq_rt,
  1458. .set_cpus_allowed = set_cpus_allowed_rt,
  1459. .rq_online = rq_online_rt,
  1460. .rq_offline = rq_offline_rt,
  1461. .pre_schedule = pre_schedule_rt,
  1462. .post_schedule = post_schedule_rt,
  1463. .task_woken = task_woken_rt,
  1464. .switched_from = switched_from_rt,
  1465. #endif
  1466. .set_curr_task = set_curr_task_rt,
  1467. .task_tick = task_tick_rt,
  1468. .get_rr_interval = get_rr_interval_rt,
  1469. .prio_changed = prio_changed_rt,
  1470. .switched_to = switched_to_rt,
  1471. };
  1472. #ifdef CONFIG_SCHED_DEBUG
  1473. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1474. static void print_rt_stats(struct seq_file *m, int cpu)
  1475. {
  1476. struct rt_rq *rt_rq;
  1477. rcu_read_lock();
  1478. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1479. print_rt_rq(m, cpu, rt_rq);
  1480. rcu_read_unlock();
  1481. }
  1482. #endif /* CONFIG_SCHED_DEBUG */