skbuff.h 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. #include <net/flow_keys.h>
  33. /* Don't change this without changing skb_csum_unnecessary! */
  34. #define CHECKSUM_NONE 0
  35. #define CHECKSUM_UNNECESSARY 1
  36. #define CHECKSUM_COMPLETE 2
  37. #define CHECKSUM_PARTIAL 3
  38. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  39. ~(SMP_CACHE_BYTES - 1))
  40. #define SKB_WITH_OVERHEAD(X) \
  41. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  42. #define SKB_MAX_ORDER(X, ORDER) \
  43. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  44. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  45. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  46. /* return minimum truesize of one skb containing X bytes of data */
  47. #define SKB_TRUESIZE(X) ((X) + \
  48. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  49. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  50. /* A. Checksumming of received packets by device.
  51. *
  52. * NONE: device failed to checksum this packet.
  53. * skb->csum is undefined.
  54. *
  55. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  56. * skb->csum is undefined.
  57. * It is bad option, but, unfortunately, many of vendors do this.
  58. * Apparently with secret goal to sell you new device, when you
  59. * will add new protocol to your host. F.e. IPv6. 8)
  60. *
  61. * COMPLETE: the most generic way. Device supplied checksum of _all_
  62. * the packet as seen by netif_rx in skb->csum.
  63. * NOTE: Even if device supports only some protocols, but
  64. * is able to produce some skb->csum, it MUST use COMPLETE,
  65. * not UNNECESSARY.
  66. *
  67. * PARTIAL: identical to the case for output below. This may occur
  68. * on a packet received directly from another Linux OS, e.g.,
  69. * a virtualised Linux kernel on the same host. The packet can
  70. * be treated in the same way as UNNECESSARY except that on
  71. * output (i.e., forwarding) the checksum must be filled in
  72. * by the OS or the hardware.
  73. *
  74. * B. Checksumming on output.
  75. *
  76. * NONE: skb is checksummed by protocol or csum is not required.
  77. *
  78. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  79. * from skb->csum_start to the end and to record the checksum
  80. * at skb->csum_start + skb->csum_offset.
  81. *
  82. * Device must show its capabilities in dev->features, set
  83. * at device setup time.
  84. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  85. * everything.
  86. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  87. * TCP/UDP over IPv4. Sigh. Vendors like this
  88. * way by an unknown reason. Though, see comment above
  89. * about CHECKSUM_UNNECESSARY. 8)
  90. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  91. *
  92. * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
  93. * that do not want net to perform the checksum calculation should use
  94. * this flag in their outgoing skbs.
  95. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
  96. * offload. Correspondingly, the FCoE protocol driver
  97. * stack should use CHECKSUM_UNNECESSARY.
  98. *
  99. * Any questions? No questions, good. --ANK
  100. */
  101. struct net_device;
  102. struct scatterlist;
  103. struct pipe_inode_info;
  104. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  105. struct nf_conntrack {
  106. atomic_t use;
  107. };
  108. #endif
  109. #ifdef CONFIG_BRIDGE_NETFILTER
  110. struct nf_bridge_info {
  111. atomic_t use;
  112. unsigned int mask;
  113. struct net_device *physindev;
  114. struct net_device *physoutdev;
  115. unsigned long data[32 / sizeof(unsigned long)];
  116. };
  117. #endif
  118. struct sk_buff_head {
  119. /* These two members must be first. */
  120. struct sk_buff *next;
  121. struct sk_buff *prev;
  122. __u32 qlen;
  123. spinlock_t lock;
  124. };
  125. struct sk_buff;
  126. /* To allow 64K frame to be packed as single skb without frag_list we
  127. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  128. * buffers which do not start on a page boundary.
  129. *
  130. * Since GRO uses frags we allocate at least 16 regardless of page
  131. * size.
  132. */
  133. #if (65536/PAGE_SIZE + 1) < 16
  134. #define MAX_SKB_FRAGS 16UL
  135. #else
  136. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  137. #endif
  138. typedef struct skb_frag_struct skb_frag_t;
  139. struct skb_frag_struct {
  140. struct {
  141. struct page *p;
  142. } page;
  143. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  144. __u32 page_offset;
  145. __u32 size;
  146. #else
  147. __u16 page_offset;
  148. __u16 size;
  149. #endif
  150. };
  151. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  152. {
  153. return frag->size;
  154. }
  155. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  156. {
  157. frag->size = size;
  158. }
  159. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  160. {
  161. frag->size += delta;
  162. }
  163. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  164. {
  165. frag->size -= delta;
  166. }
  167. #define HAVE_HW_TIME_STAMP
  168. /**
  169. * struct skb_shared_hwtstamps - hardware time stamps
  170. * @hwtstamp: hardware time stamp transformed into duration
  171. * since arbitrary point in time
  172. * @syststamp: hwtstamp transformed to system time base
  173. *
  174. * Software time stamps generated by ktime_get_real() are stored in
  175. * skb->tstamp. The relation between the different kinds of time
  176. * stamps is as follows:
  177. *
  178. * syststamp and tstamp can be compared against each other in
  179. * arbitrary combinations. The accuracy of a
  180. * syststamp/tstamp/"syststamp from other device" comparison is
  181. * limited by the accuracy of the transformation into system time
  182. * base. This depends on the device driver and its underlying
  183. * hardware.
  184. *
  185. * hwtstamps can only be compared against other hwtstamps from
  186. * the same device.
  187. *
  188. * This structure is attached to packets as part of the
  189. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  190. */
  191. struct skb_shared_hwtstamps {
  192. ktime_t hwtstamp;
  193. ktime_t syststamp;
  194. };
  195. /* Definitions for tx_flags in struct skb_shared_info */
  196. enum {
  197. /* generate hardware time stamp */
  198. SKBTX_HW_TSTAMP = 1 << 0,
  199. /* generate software time stamp */
  200. SKBTX_SW_TSTAMP = 1 << 1,
  201. /* device driver is going to provide hardware time stamp */
  202. SKBTX_IN_PROGRESS = 1 << 2,
  203. /* device driver supports TX zero-copy buffers */
  204. SKBTX_DEV_ZEROCOPY = 1 << 3,
  205. /* generate wifi status information (where possible) */
  206. SKBTX_WIFI_STATUS = 1 << 4,
  207. /* This indicates at least one fragment might be overwritten
  208. * (as in vmsplice(), sendfile() ...)
  209. * If we need to compute a TX checksum, we'll need to copy
  210. * all frags to avoid possible bad checksum
  211. */
  212. SKBTX_SHARED_FRAG = 1 << 5,
  213. };
  214. /*
  215. * The callback notifies userspace to release buffers when skb DMA is done in
  216. * lower device, the skb last reference should be 0 when calling this.
  217. * The zerocopy_success argument is true if zero copy transmit occurred,
  218. * false on data copy or out of memory error caused by data copy attempt.
  219. * The ctx field is used to track device context.
  220. * The desc field is used to track userspace buffer index.
  221. */
  222. struct ubuf_info {
  223. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  224. void *ctx;
  225. unsigned long desc;
  226. };
  227. /* This data is invariant across clones and lives at
  228. * the end of the header data, ie. at skb->end.
  229. */
  230. struct skb_shared_info {
  231. unsigned char nr_frags;
  232. __u8 tx_flags;
  233. unsigned short gso_size;
  234. /* Warning: this field is not always filled in (UFO)! */
  235. unsigned short gso_segs;
  236. unsigned short gso_type;
  237. struct sk_buff *frag_list;
  238. struct skb_shared_hwtstamps hwtstamps;
  239. __be32 ip6_frag_id;
  240. /*
  241. * Warning : all fields before dataref are cleared in __alloc_skb()
  242. */
  243. atomic_t dataref;
  244. /* Intermediate layers must ensure that destructor_arg
  245. * remains valid until skb destructor */
  246. void * destructor_arg;
  247. /* must be last field, see pskb_expand_head() */
  248. skb_frag_t frags[MAX_SKB_FRAGS];
  249. };
  250. /* We divide dataref into two halves. The higher 16 bits hold references
  251. * to the payload part of skb->data. The lower 16 bits hold references to
  252. * the entire skb->data. A clone of a headerless skb holds the length of
  253. * the header in skb->hdr_len.
  254. *
  255. * All users must obey the rule that the skb->data reference count must be
  256. * greater than or equal to the payload reference count.
  257. *
  258. * Holding a reference to the payload part means that the user does not
  259. * care about modifications to the header part of skb->data.
  260. */
  261. #define SKB_DATAREF_SHIFT 16
  262. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  263. enum {
  264. SKB_FCLONE_UNAVAILABLE,
  265. SKB_FCLONE_ORIG,
  266. SKB_FCLONE_CLONE,
  267. };
  268. enum {
  269. SKB_GSO_TCPV4 = 1 << 0,
  270. SKB_GSO_UDP = 1 << 1,
  271. /* This indicates the skb is from an untrusted source. */
  272. SKB_GSO_DODGY = 1 << 2,
  273. /* This indicates the tcp segment has CWR set. */
  274. SKB_GSO_TCP_ECN = 1 << 3,
  275. SKB_GSO_TCPV6 = 1 << 4,
  276. SKB_GSO_FCOE = 1 << 5,
  277. SKB_GSO_GRE = 1 << 6,
  278. SKB_GSO_IPIP = 1 << 7,
  279. SKB_GSO_SIT = 1 << 8,
  280. SKB_GSO_UDP_TUNNEL = 1 << 9,
  281. SKB_GSO_MPLS = 1 << 10,
  282. };
  283. #if BITS_PER_LONG > 32
  284. #define NET_SKBUFF_DATA_USES_OFFSET 1
  285. #endif
  286. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  287. typedef unsigned int sk_buff_data_t;
  288. #else
  289. typedef unsigned char *sk_buff_data_t;
  290. #endif
  291. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  292. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  293. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  294. #endif
  295. /**
  296. * struct sk_buff - socket buffer
  297. * @next: Next buffer in list
  298. * @prev: Previous buffer in list
  299. * @tstamp: Time we arrived
  300. * @sk: Socket we are owned by
  301. * @dev: Device we arrived on/are leaving by
  302. * @cb: Control buffer. Free for use by every layer. Put private vars here
  303. * @_skb_refdst: destination entry (with norefcount bit)
  304. * @sp: the security path, used for xfrm
  305. * @len: Length of actual data
  306. * @data_len: Data length
  307. * @mac_len: Length of link layer header
  308. * @hdr_len: writable header length of cloned skb
  309. * @csum: Checksum (must include start/offset pair)
  310. * @csum_start: Offset from skb->head where checksumming should start
  311. * @csum_offset: Offset from csum_start where checksum should be stored
  312. * @priority: Packet queueing priority
  313. * @local_df: allow local fragmentation
  314. * @cloned: Head may be cloned (check refcnt to be sure)
  315. * @ip_summed: Driver fed us an IP checksum
  316. * @nohdr: Payload reference only, must not modify header
  317. * @nfctinfo: Relationship of this skb to the connection
  318. * @pkt_type: Packet class
  319. * @fclone: skbuff clone status
  320. * @ipvs_property: skbuff is owned by ipvs
  321. * @peeked: this packet has been seen already, so stats have been
  322. * done for it, don't do them again
  323. * @nf_trace: netfilter packet trace flag
  324. * @protocol: Packet protocol from driver
  325. * @destructor: Destruct function
  326. * @nfct: Associated connection, if any
  327. * @nfct_reasm: netfilter conntrack re-assembly pointer
  328. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  329. * @skb_iif: ifindex of device we arrived on
  330. * @tc_index: Traffic control index
  331. * @tc_verd: traffic control verdict
  332. * @rxhash: the packet hash computed on receive
  333. * @queue_mapping: Queue mapping for multiqueue devices
  334. * @ndisc_nodetype: router type (from link layer)
  335. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  336. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  337. * ports.
  338. * @wifi_acked_valid: wifi_acked was set
  339. * @wifi_acked: whether frame was acked on wifi or not
  340. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  341. * @dma_cookie: a cookie to one of several possible DMA operations
  342. * done by skb DMA functions
  343. * @napi_id: id of the NAPI struct this skb came from
  344. * @secmark: security marking
  345. * @mark: Generic packet mark
  346. * @dropcount: total number of sk_receive_queue overflows
  347. * @vlan_proto: vlan encapsulation protocol
  348. * @vlan_tci: vlan tag control information
  349. * @inner_protocol: Protocol (encapsulation)
  350. * @inner_transport_header: Inner transport layer header (encapsulation)
  351. * @inner_network_header: Network layer header (encapsulation)
  352. * @inner_mac_header: Link layer header (encapsulation)
  353. * @transport_header: Transport layer header
  354. * @network_header: Network layer header
  355. * @mac_header: Link layer header
  356. * @tail: Tail pointer
  357. * @end: End pointer
  358. * @head: Head of buffer
  359. * @data: Data head pointer
  360. * @truesize: Buffer size
  361. * @users: User count - see {datagram,tcp}.c
  362. */
  363. struct sk_buff {
  364. /* These two members must be first. */
  365. struct sk_buff *next;
  366. struct sk_buff *prev;
  367. ktime_t tstamp;
  368. struct sock *sk;
  369. struct net_device *dev;
  370. /*
  371. * This is the control buffer. It is free to use for every
  372. * layer. Please put your private variables there. If you
  373. * want to keep them across layers you have to do a skb_clone()
  374. * first. This is owned by whoever has the skb queued ATM.
  375. */
  376. char cb[48] __aligned(8);
  377. unsigned long _skb_refdst;
  378. #ifdef CONFIG_XFRM
  379. struct sec_path *sp;
  380. #endif
  381. unsigned int len,
  382. data_len;
  383. __u16 mac_len,
  384. hdr_len;
  385. union {
  386. __wsum csum;
  387. struct {
  388. __u16 csum_start;
  389. __u16 csum_offset;
  390. };
  391. };
  392. __u32 priority;
  393. kmemcheck_bitfield_begin(flags1);
  394. __u8 local_df:1,
  395. cloned:1,
  396. ip_summed:2,
  397. nohdr:1,
  398. nfctinfo:3;
  399. __u8 pkt_type:3,
  400. fclone:2,
  401. ipvs_property:1,
  402. peeked:1,
  403. nf_trace:1;
  404. kmemcheck_bitfield_end(flags1);
  405. __be16 protocol;
  406. void (*destructor)(struct sk_buff *skb);
  407. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  408. struct nf_conntrack *nfct;
  409. #endif
  410. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  411. struct sk_buff *nfct_reasm;
  412. #endif
  413. #ifdef CONFIG_BRIDGE_NETFILTER
  414. struct nf_bridge_info *nf_bridge;
  415. #endif
  416. int skb_iif;
  417. __u32 rxhash;
  418. __be16 vlan_proto;
  419. __u16 vlan_tci;
  420. #ifdef CONFIG_NET_SCHED
  421. __u16 tc_index; /* traffic control index */
  422. #ifdef CONFIG_NET_CLS_ACT
  423. __u16 tc_verd; /* traffic control verdict */
  424. #endif
  425. #endif
  426. __u16 queue_mapping;
  427. kmemcheck_bitfield_begin(flags2);
  428. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  429. __u8 ndisc_nodetype:2;
  430. #endif
  431. __u8 pfmemalloc:1;
  432. __u8 ooo_okay:1;
  433. __u8 l4_rxhash:1;
  434. __u8 wifi_acked_valid:1;
  435. __u8 wifi_acked:1;
  436. __u8 no_fcs:1;
  437. __u8 head_frag:1;
  438. /* Encapsulation protocol and NIC drivers should use
  439. * this flag to indicate to each other if the skb contains
  440. * encapsulated packet or not and maybe use the inner packet
  441. * headers if needed
  442. */
  443. __u8 encapsulation:1;
  444. /* 6/8 bit hole (depending on ndisc_nodetype presence) */
  445. kmemcheck_bitfield_end(flags2);
  446. #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
  447. union {
  448. unsigned int napi_id;
  449. dma_cookie_t dma_cookie;
  450. };
  451. #endif
  452. #ifdef CONFIG_NETWORK_SECMARK
  453. __u32 secmark;
  454. #endif
  455. union {
  456. __u32 mark;
  457. __u32 dropcount;
  458. __u32 reserved_tailroom;
  459. };
  460. __be16 inner_protocol;
  461. __u16 inner_transport_header;
  462. __u16 inner_network_header;
  463. __u16 inner_mac_header;
  464. __u16 transport_header;
  465. __u16 network_header;
  466. __u16 mac_header;
  467. /* These elements must be at the end, see alloc_skb() for details. */
  468. sk_buff_data_t tail;
  469. sk_buff_data_t end;
  470. unsigned char *head,
  471. *data;
  472. unsigned int truesize;
  473. atomic_t users;
  474. };
  475. #ifdef __KERNEL__
  476. /*
  477. * Handling routines are only of interest to the kernel
  478. */
  479. #include <linux/slab.h>
  480. #define SKB_ALLOC_FCLONE 0x01
  481. #define SKB_ALLOC_RX 0x02
  482. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  483. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  484. {
  485. return unlikely(skb->pfmemalloc);
  486. }
  487. /*
  488. * skb might have a dst pointer attached, refcounted or not.
  489. * _skb_refdst low order bit is set if refcount was _not_ taken
  490. */
  491. #define SKB_DST_NOREF 1UL
  492. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  493. /**
  494. * skb_dst - returns skb dst_entry
  495. * @skb: buffer
  496. *
  497. * Returns skb dst_entry, regardless of reference taken or not.
  498. */
  499. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  500. {
  501. /* If refdst was not refcounted, check we still are in a
  502. * rcu_read_lock section
  503. */
  504. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  505. !rcu_read_lock_held() &&
  506. !rcu_read_lock_bh_held());
  507. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  508. }
  509. /**
  510. * skb_dst_set - sets skb dst
  511. * @skb: buffer
  512. * @dst: dst entry
  513. *
  514. * Sets skb dst, assuming a reference was taken on dst and should
  515. * be released by skb_dst_drop()
  516. */
  517. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  518. {
  519. skb->_skb_refdst = (unsigned long)dst;
  520. }
  521. void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
  522. bool force);
  523. /**
  524. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  525. * @skb: buffer
  526. * @dst: dst entry
  527. *
  528. * Sets skb dst, assuming a reference was not taken on dst.
  529. * If dst entry is cached, we do not take reference and dst_release
  530. * will be avoided by refdst_drop. If dst entry is not cached, we take
  531. * reference, so that last dst_release can destroy the dst immediately.
  532. */
  533. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  534. {
  535. __skb_dst_set_noref(skb, dst, false);
  536. }
  537. /**
  538. * skb_dst_set_noref_force - sets skb dst, without taking reference
  539. * @skb: buffer
  540. * @dst: dst entry
  541. *
  542. * Sets skb dst, assuming a reference was not taken on dst.
  543. * No reference is taken and no dst_release will be called. While for
  544. * cached dsts deferred reclaim is a basic feature, for entries that are
  545. * not cached it is caller's job to guarantee that last dst_release for
  546. * provided dst happens when nobody uses it, eg. after a RCU grace period.
  547. */
  548. static inline void skb_dst_set_noref_force(struct sk_buff *skb,
  549. struct dst_entry *dst)
  550. {
  551. __skb_dst_set_noref(skb, dst, true);
  552. }
  553. /**
  554. * skb_dst_is_noref - Test if skb dst isn't refcounted
  555. * @skb: buffer
  556. */
  557. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  558. {
  559. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  560. }
  561. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  562. {
  563. return (struct rtable *)skb_dst(skb);
  564. }
  565. void kfree_skb(struct sk_buff *skb);
  566. void kfree_skb_list(struct sk_buff *segs);
  567. void skb_tx_error(struct sk_buff *skb);
  568. void consume_skb(struct sk_buff *skb);
  569. void __kfree_skb(struct sk_buff *skb);
  570. extern struct kmem_cache *skbuff_head_cache;
  571. void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  572. bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  573. bool *fragstolen, int *delta_truesize);
  574. struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
  575. int node);
  576. struct sk_buff *build_skb(void *data, unsigned int frag_size);
  577. static inline struct sk_buff *alloc_skb(unsigned int size,
  578. gfp_t priority)
  579. {
  580. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  581. }
  582. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  583. gfp_t priority)
  584. {
  585. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  586. }
  587. struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
  588. static inline struct sk_buff *alloc_skb_head(gfp_t priority)
  589. {
  590. return __alloc_skb_head(priority, -1);
  591. }
  592. struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  593. int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  594. struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
  595. struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
  596. struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask);
  597. int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
  598. struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  599. unsigned int headroom);
  600. struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
  601. int newtailroom, gfp_t priority);
  602. int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
  603. int len);
  604. int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
  605. int skb_pad(struct sk_buff *skb, int pad);
  606. #define dev_kfree_skb(a) consume_skb(a)
  607. int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  608. int getfrag(void *from, char *to, int offset,
  609. int len, int odd, struct sk_buff *skb),
  610. void *from, int length);
  611. struct skb_seq_state {
  612. __u32 lower_offset;
  613. __u32 upper_offset;
  614. __u32 frag_idx;
  615. __u32 stepped_offset;
  616. struct sk_buff *root_skb;
  617. struct sk_buff *cur_skb;
  618. __u8 *frag_data;
  619. };
  620. void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
  621. unsigned int to, struct skb_seq_state *st);
  622. unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  623. struct skb_seq_state *st);
  624. void skb_abort_seq_read(struct skb_seq_state *st);
  625. unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  626. unsigned int to, struct ts_config *config,
  627. struct ts_state *state);
  628. void __skb_get_rxhash(struct sk_buff *skb);
  629. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  630. {
  631. if (!skb->l4_rxhash)
  632. __skb_get_rxhash(skb);
  633. return skb->rxhash;
  634. }
  635. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  636. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  637. {
  638. return skb->head + skb->end;
  639. }
  640. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  641. {
  642. return skb->end;
  643. }
  644. #else
  645. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  646. {
  647. return skb->end;
  648. }
  649. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  650. {
  651. return skb->end - skb->head;
  652. }
  653. #endif
  654. /* Internal */
  655. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  656. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  657. {
  658. return &skb_shinfo(skb)->hwtstamps;
  659. }
  660. /**
  661. * skb_queue_empty - check if a queue is empty
  662. * @list: queue head
  663. *
  664. * Returns true if the queue is empty, false otherwise.
  665. */
  666. static inline int skb_queue_empty(const struct sk_buff_head *list)
  667. {
  668. return list->next == (struct sk_buff *)list;
  669. }
  670. /**
  671. * skb_queue_is_last - check if skb is the last entry in the queue
  672. * @list: queue head
  673. * @skb: buffer
  674. *
  675. * Returns true if @skb is the last buffer on the list.
  676. */
  677. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  678. const struct sk_buff *skb)
  679. {
  680. return skb->next == (struct sk_buff *)list;
  681. }
  682. /**
  683. * skb_queue_is_first - check if skb is the first entry in the queue
  684. * @list: queue head
  685. * @skb: buffer
  686. *
  687. * Returns true if @skb is the first buffer on the list.
  688. */
  689. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  690. const struct sk_buff *skb)
  691. {
  692. return skb->prev == (struct sk_buff *)list;
  693. }
  694. /**
  695. * skb_queue_next - return the next packet in the queue
  696. * @list: queue head
  697. * @skb: current buffer
  698. *
  699. * Return the next packet in @list after @skb. It is only valid to
  700. * call this if skb_queue_is_last() evaluates to false.
  701. */
  702. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  703. const struct sk_buff *skb)
  704. {
  705. /* This BUG_ON may seem severe, but if we just return then we
  706. * are going to dereference garbage.
  707. */
  708. BUG_ON(skb_queue_is_last(list, skb));
  709. return skb->next;
  710. }
  711. /**
  712. * skb_queue_prev - return the prev packet in the queue
  713. * @list: queue head
  714. * @skb: current buffer
  715. *
  716. * Return the prev packet in @list before @skb. It is only valid to
  717. * call this if skb_queue_is_first() evaluates to false.
  718. */
  719. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  720. const struct sk_buff *skb)
  721. {
  722. /* This BUG_ON may seem severe, but if we just return then we
  723. * are going to dereference garbage.
  724. */
  725. BUG_ON(skb_queue_is_first(list, skb));
  726. return skb->prev;
  727. }
  728. /**
  729. * skb_get - reference buffer
  730. * @skb: buffer to reference
  731. *
  732. * Makes another reference to a socket buffer and returns a pointer
  733. * to the buffer.
  734. */
  735. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  736. {
  737. atomic_inc(&skb->users);
  738. return skb;
  739. }
  740. /*
  741. * If users == 1, we are the only owner and are can avoid redundant
  742. * atomic change.
  743. */
  744. /**
  745. * skb_cloned - is the buffer a clone
  746. * @skb: buffer to check
  747. *
  748. * Returns true if the buffer was generated with skb_clone() and is
  749. * one of multiple shared copies of the buffer. Cloned buffers are
  750. * shared data so must not be written to under normal circumstances.
  751. */
  752. static inline int skb_cloned(const struct sk_buff *skb)
  753. {
  754. return skb->cloned &&
  755. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  756. }
  757. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  758. {
  759. might_sleep_if(pri & __GFP_WAIT);
  760. if (skb_cloned(skb))
  761. return pskb_expand_head(skb, 0, 0, pri);
  762. return 0;
  763. }
  764. /**
  765. * skb_header_cloned - is the header a clone
  766. * @skb: buffer to check
  767. *
  768. * Returns true if modifying the header part of the buffer requires
  769. * the data to be copied.
  770. */
  771. static inline int skb_header_cloned(const struct sk_buff *skb)
  772. {
  773. int dataref;
  774. if (!skb->cloned)
  775. return 0;
  776. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  777. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  778. return dataref != 1;
  779. }
  780. /**
  781. * skb_header_release - release reference to header
  782. * @skb: buffer to operate on
  783. *
  784. * Drop a reference to the header part of the buffer. This is done
  785. * by acquiring a payload reference. You must not read from the header
  786. * part of skb->data after this.
  787. */
  788. static inline void skb_header_release(struct sk_buff *skb)
  789. {
  790. BUG_ON(skb->nohdr);
  791. skb->nohdr = 1;
  792. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  793. }
  794. /**
  795. * skb_shared - is the buffer shared
  796. * @skb: buffer to check
  797. *
  798. * Returns true if more than one person has a reference to this
  799. * buffer.
  800. */
  801. static inline int skb_shared(const struct sk_buff *skb)
  802. {
  803. return atomic_read(&skb->users) != 1;
  804. }
  805. /**
  806. * skb_share_check - check if buffer is shared and if so clone it
  807. * @skb: buffer to check
  808. * @pri: priority for memory allocation
  809. *
  810. * If the buffer is shared the buffer is cloned and the old copy
  811. * drops a reference. A new clone with a single reference is returned.
  812. * If the buffer is not shared the original buffer is returned. When
  813. * being called from interrupt status or with spinlocks held pri must
  814. * be GFP_ATOMIC.
  815. *
  816. * NULL is returned on a memory allocation failure.
  817. */
  818. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  819. {
  820. might_sleep_if(pri & __GFP_WAIT);
  821. if (skb_shared(skb)) {
  822. struct sk_buff *nskb = skb_clone(skb, pri);
  823. if (likely(nskb))
  824. consume_skb(skb);
  825. else
  826. kfree_skb(skb);
  827. skb = nskb;
  828. }
  829. return skb;
  830. }
  831. /*
  832. * Copy shared buffers into a new sk_buff. We effectively do COW on
  833. * packets to handle cases where we have a local reader and forward
  834. * and a couple of other messy ones. The normal one is tcpdumping
  835. * a packet thats being forwarded.
  836. */
  837. /**
  838. * skb_unshare - make a copy of a shared buffer
  839. * @skb: buffer to check
  840. * @pri: priority for memory allocation
  841. *
  842. * If the socket buffer is a clone then this function creates a new
  843. * copy of the data, drops a reference count on the old copy and returns
  844. * the new copy with the reference count at 1. If the buffer is not a clone
  845. * the original buffer is returned. When called with a spinlock held or
  846. * from interrupt state @pri must be %GFP_ATOMIC
  847. *
  848. * %NULL is returned on a memory allocation failure.
  849. */
  850. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  851. gfp_t pri)
  852. {
  853. might_sleep_if(pri & __GFP_WAIT);
  854. if (skb_cloned(skb)) {
  855. struct sk_buff *nskb = skb_copy(skb, pri);
  856. kfree_skb(skb); /* Free our shared copy */
  857. skb = nskb;
  858. }
  859. return skb;
  860. }
  861. /**
  862. * skb_peek - peek at the head of an &sk_buff_head
  863. * @list_: list to peek at
  864. *
  865. * Peek an &sk_buff. Unlike most other operations you _MUST_
  866. * be careful with this one. A peek leaves the buffer on the
  867. * list and someone else may run off with it. You must hold
  868. * the appropriate locks or have a private queue to do this.
  869. *
  870. * Returns %NULL for an empty list or a pointer to the head element.
  871. * The reference count is not incremented and the reference is therefore
  872. * volatile. Use with caution.
  873. */
  874. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  875. {
  876. struct sk_buff *skb = list_->next;
  877. if (skb == (struct sk_buff *)list_)
  878. skb = NULL;
  879. return skb;
  880. }
  881. /**
  882. * skb_peek_next - peek skb following the given one from a queue
  883. * @skb: skb to start from
  884. * @list_: list to peek at
  885. *
  886. * Returns %NULL when the end of the list is met or a pointer to the
  887. * next element. The reference count is not incremented and the
  888. * reference is therefore volatile. Use with caution.
  889. */
  890. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  891. const struct sk_buff_head *list_)
  892. {
  893. struct sk_buff *next = skb->next;
  894. if (next == (struct sk_buff *)list_)
  895. next = NULL;
  896. return next;
  897. }
  898. /**
  899. * skb_peek_tail - peek at the tail of an &sk_buff_head
  900. * @list_: list to peek at
  901. *
  902. * Peek an &sk_buff. Unlike most other operations you _MUST_
  903. * be careful with this one. A peek leaves the buffer on the
  904. * list and someone else may run off with it. You must hold
  905. * the appropriate locks or have a private queue to do this.
  906. *
  907. * Returns %NULL for an empty list or a pointer to the tail element.
  908. * The reference count is not incremented and the reference is therefore
  909. * volatile. Use with caution.
  910. */
  911. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  912. {
  913. struct sk_buff *skb = list_->prev;
  914. if (skb == (struct sk_buff *)list_)
  915. skb = NULL;
  916. return skb;
  917. }
  918. /**
  919. * skb_queue_len - get queue length
  920. * @list_: list to measure
  921. *
  922. * Return the length of an &sk_buff queue.
  923. */
  924. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  925. {
  926. return list_->qlen;
  927. }
  928. /**
  929. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  930. * @list: queue to initialize
  931. *
  932. * This initializes only the list and queue length aspects of
  933. * an sk_buff_head object. This allows to initialize the list
  934. * aspects of an sk_buff_head without reinitializing things like
  935. * the spinlock. It can also be used for on-stack sk_buff_head
  936. * objects where the spinlock is known to not be used.
  937. */
  938. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  939. {
  940. list->prev = list->next = (struct sk_buff *)list;
  941. list->qlen = 0;
  942. }
  943. /*
  944. * This function creates a split out lock class for each invocation;
  945. * this is needed for now since a whole lot of users of the skb-queue
  946. * infrastructure in drivers have different locking usage (in hardirq)
  947. * than the networking core (in softirq only). In the long run either the
  948. * network layer or drivers should need annotation to consolidate the
  949. * main types of usage into 3 classes.
  950. */
  951. static inline void skb_queue_head_init(struct sk_buff_head *list)
  952. {
  953. spin_lock_init(&list->lock);
  954. __skb_queue_head_init(list);
  955. }
  956. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  957. struct lock_class_key *class)
  958. {
  959. skb_queue_head_init(list);
  960. lockdep_set_class(&list->lock, class);
  961. }
  962. /*
  963. * Insert an sk_buff on a list.
  964. *
  965. * The "__skb_xxxx()" functions are the non-atomic ones that
  966. * can only be called with interrupts disabled.
  967. */
  968. void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
  969. struct sk_buff_head *list);
  970. static inline void __skb_insert(struct sk_buff *newsk,
  971. struct sk_buff *prev, struct sk_buff *next,
  972. struct sk_buff_head *list)
  973. {
  974. newsk->next = next;
  975. newsk->prev = prev;
  976. next->prev = prev->next = newsk;
  977. list->qlen++;
  978. }
  979. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  980. struct sk_buff *prev,
  981. struct sk_buff *next)
  982. {
  983. struct sk_buff *first = list->next;
  984. struct sk_buff *last = list->prev;
  985. first->prev = prev;
  986. prev->next = first;
  987. last->next = next;
  988. next->prev = last;
  989. }
  990. /**
  991. * skb_queue_splice - join two skb lists, this is designed for stacks
  992. * @list: the new list to add
  993. * @head: the place to add it in the first list
  994. */
  995. static inline void skb_queue_splice(const struct sk_buff_head *list,
  996. struct sk_buff_head *head)
  997. {
  998. if (!skb_queue_empty(list)) {
  999. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1000. head->qlen += list->qlen;
  1001. }
  1002. }
  1003. /**
  1004. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1005. * @list: the new list to add
  1006. * @head: the place to add it in the first list
  1007. *
  1008. * The list at @list is reinitialised
  1009. */
  1010. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1011. struct sk_buff_head *head)
  1012. {
  1013. if (!skb_queue_empty(list)) {
  1014. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1015. head->qlen += list->qlen;
  1016. __skb_queue_head_init(list);
  1017. }
  1018. }
  1019. /**
  1020. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1021. * @list: the new list to add
  1022. * @head: the place to add it in the first list
  1023. */
  1024. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1025. struct sk_buff_head *head)
  1026. {
  1027. if (!skb_queue_empty(list)) {
  1028. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1029. head->qlen += list->qlen;
  1030. }
  1031. }
  1032. /**
  1033. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1034. * @list: the new list to add
  1035. * @head: the place to add it in the first list
  1036. *
  1037. * Each of the lists is a queue.
  1038. * The list at @list is reinitialised
  1039. */
  1040. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1041. struct sk_buff_head *head)
  1042. {
  1043. if (!skb_queue_empty(list)) {
  1044. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1045. head->qlen += list->qlen;
  1046. __skb_queue_head_init(list);
  1047. }
  1048. }
  1049. /**
  1050. * __skb_queue_after - queue a buffer at the list head
  1051. * @list: list to use
  1052. * @prev: place after this buffer
  1053. * @newsk: buffer to queue
  1054. *
  1055. * Queue a buffer int the middle of a list. This function takes no locks
  1056. * and you must therefore hold required locks before calling it.
  1057. *
  1058. * A buffer cannot be placed on two lists at the same time.
  1059. */
  1060. static inline void __skb_queue_after(struct sk_buff_head *list,
  1061. struct sk_buff *prev,
  1062. struct sk_buff *newsk)
  1063. {
  1064. __skb_insert(newsk, prev, prev->next, list);
  1065. }
  1066. void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1067. struct sk_buff_head *list);
  1068. static inline void __skb_queue_before(struct sk_buff_head *list,
  1069. struct sk_buff *next,
  1070. struct sk_buff *newsk)
  1071. {
  1072. __skb_insert(newsk, next->prev, next, list);
  1073. }
  1074. /**
  1075. * __skb_queue_head - queue a buffer at the list head
  1076. * @list: list to use
  1077. * @newsk: buffer to queue
  1078. *
  1079. * Queue a buffer at the start of a list. This function takes no locks
  1080. * and you must therefore hold required locks before calling it.
  1081. *
  1082. * A buffer cannot be placed on two lists at the same time.
  1083. */
  1084. void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1085. static inline void __skb_queue_head(struct sk_buff_head *list,
  1086. struct sk_buff *newsk)
  1087. {
  1088. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1089. }
  1090. /**
  1091. * __skb_queue_tail - queue a buffer at the list tail
  1092. * @list: list to use
  1093. * @newsk: buffer to queue
  1094. *
  1095. * Queue a buffer at the end of a list. This function takes no locks
  1096. * and you must therefore hold required locks before calling it.
  1097. *
  1098. * A buffer cannot be placed on two lists at the same time.
  1099. */
  1100. void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1101. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1102. struct sk_buff *newsk)
  1103. {
  1104. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1105. }
  1106. /*
  1107. * remove sk_buff from list. _Must_ be called atomically, and with
  1108. * the list known..
  1109. */
  1110. void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1111. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1112. {
  1113. struct sk_buff *next, *prev;
  1114. list->qlen--;
  1115. next = skb->next;
  1116. prev = skb->prev;
  1117. skb->next = skb->prev = NULL;
  1118. next->prev = prev;
  1119. prev->next = next;
  1120. }
  1121. /**
  1122. * __skb_dequeue - remove from the head of the queue
  1123. * @list: list to dequeue from
  1124. *
  1125. * Remove the head of the list. This function does not take any locks
  1126. * so must be used with appropriate locks held only. The head item is
  1127. * returned or %NULL if the list is empty.
  1128. */
  1129. struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1130. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1131. {
  1132. struct sk_buff *skb = skb_peek(list);
  1133. if (skb)
  1134. __skb_unlink(skb, list);
  1135. return skb;
  1136. }
  1137. /**
  1138. * __skb_dequeue_tail - remove from the tail of the queue
  1139. * @list: list to dequeue from
  1140. *
  1141. * Remove the tail of the list. This function does not take any locks
  1142. * so must be used with appropriate locks held only. The tail item is
  1143. * returned or %NULL if the list is empty.
  1144. */
  1145. struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1146. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1147. {
  1148. struct sk_buff *skb = skb_peek_tail(list);
  1149. if (skb)
  1150. __skb_unlink(skb, list);
  1151. return skb;
  1152. }
  1153. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1154. {
  1155. return skb->data_len;
  1156. }
  1157. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1158. {
  1159. return skb->len - skb->data_len;
  1160. }
  1161. static inline int skb_pagelen(const struct sk_buff *skb)
  1162. {
  1163. int i, len = 0;
  1164. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1165. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1166. return len + skb_headlen(skb);
  1167. }
  1168. /**
  1169. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1170. * @skb: buffer containing fragment to be initialised
  1171. * @i: paged fragment index to initialise
  1172. * @page: the page to use for this fragment
  1173. * @off: the offset to the data with @page
  1174. * @size: the length of the data
  1175. *
  1176. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1177. * offset @off within @page.
  1178. *
  1179. * Does not take any additional reference on the fragment.
  1180. */
  1181. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1182. struct page *page, int off, int size)
  1183. {
  1184. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1185. /*
  1186. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1187. * that not all callers have unique ownership of the page. If
  1188. * pfmemalloc is set, we check the mapping as a mapping implies
  1189. * page->index is set (index and pfmemalloc share space).
  1190. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1191. * do not lose pfmemalloc information as the pages would not be
  1192. * allocated using __GFP_MEMALLOC.
  1193. */
  1194. frag->page.p = page;
  1195. frag->page_offset = off;
  1196. skb_frag_size_set(frag, size);
  1197. page = compound_head(page);
  1198. if (page->pfmemalloc && !page->mapping)
  1199. skb->pfmemalloc = true;
  1200. }
  1201. /**
  1202. * skb_fill_page_desc - initialise a paged fragment in an skb
  1203. * @skb: buffer containing fragment to be initialised
  1204. * @i: paged fragment index to initialise
  1205. * @page: the page to use for this fragment
  1206. * @off: the offset to the data with @page
  1207. * @size: the length of the data
  1208. *
  1209. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1210. * @skb to point to &size bytes at offset @off within @page. In
  1211. * addition updates @skb such that @i is the last fragment.
  1212. *
  1213. * Does not take any additional reference on the fragment.
  1214. */
  1215. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1216. struct page *page, int off, int size)
  1217. {
  1218. __skb_fill_page_desc(skb, i, page, off, size);
  1219. skb_shinfo(skb)->nr_frags = i + 1;
  1220. }
  1221. void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
  1222. int size, unsigned int truesize);
  1223. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1224. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1225. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1226. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1227. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1228. {
  1229. return skb->head + skb->tail;
  1230. }
  1231. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1232. {
  1233. skb->tail = skb->data - skb->head;
  1234. }
  1235. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1236. {
  1237. skb_reset_tail_pointer(skb);
  1238. skb->tail += offset;
  1239. }
  1240. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1241. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1242. {
  1243. return skb->tail;
  1244. }
  1245. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1246. {
  1247. skb->tail = skb->data;
  1248. }
  1249. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1250. {
  1251. skb->tail = skb->data + offset;
  1252. }
  1253. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1254. /*
  1255. * Add data to an sk_buff
  1256. */
  1257. unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1258. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1259. {
  1260. unsigned char *tmp = skb_tail_pointer(skb);
  1261. SKB_LINEAR_ASSERT(skb);
  1262. skb->tail += len;
  1263. skb->len += len;
  1264. return tmp;
  1265. }
  1266. unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1267. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1268. {
  1269. skb->data -= len;
  1270. skb->len += len;
  1271. return skb->data;
  1272. }
  1273. unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1274. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1275. {
  1276. skb->len -= len;
  1277. BUG_ON(skb->len < skb->data_len);
  1278. return skb->data += len;
  1279. }
  1280. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1281. {
  1282. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1283. }
  1284. unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1285. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1286. {
  1287. if (len > skb_headlen(skb) &&
  1288. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1289. return NULL;
  1290. skb->len -= len;
  1291. return skb->data += len;
  1292. }
  1293. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1294. {
  1295. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1296. }
  1297. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1298. {
  1299. if (likely(len <= skb_headlen(skb)))
  1300. return 1;
  1301. if (unlikely(len > skb->len))
  1302. return 0;
  1303. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1304. }
  1305. /**
  1306. * skb_headroom - bytes at buffer head
  1307. * @skb: buffer to check
  1308. *
  1309. * Return the number of bytes of free space at the head of an &sk_buff.
  1310. */
  1311. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1312. {
  1313. return skb->data - skb->head;
  1314. }
  1315. /**
  1316. * skb_tailroom - bytes at buffer end
  1317. * @skb: buffer to check
  1318. *
  1319. * Return the number of bytes of free space at the tail of an sk_buff
  1320. */
  1321. static inline int skb_tailroom(const struct sk_buff *skb)
  1322. {
  1323. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1324. }
  1325. /**
  1326. * skb_availroom - bytes at buffer end
  1327. * @skb: buffer to check
  1328. *
  1329. * Return the number of bytes of free space at the tail of an sk_buff
  1330. * allocated by sk_stream_alloc()
  1331. */
  1332. static inline int skb_availroom(const struct sk_buff *skb)
  1333. {
  1334. if (skb_is_nonlinear(skb))
  1335. return 0;
  1336. return skb->end - skb->tail - skb->reserved_tailroom;
  1337. }
  1338. /**
  1339. * skb_reserve - adjust headroom
  1340. * @skb: buffer to alter
  1341. * @len: bytes to move
  1342. *
  1343. * Increase the headroom of an empty &sk_buff by reducing the tail
  1344. * room. This is only allowed for an empty buffer.
  1345. */
  1346. static inline void skb_reserve(struct sk_buff *skb, int len)
  1347. {
  1348. skb->data += len;
  1349. skb->tail += len;
  1350. }
  1351. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1352. {
  1353. skb->inner_mac_header = skb->mac_header;
  1354. skb->inner_network_header = skb->network_header;
  1355. skb->inner_transport_header = skb->transport_header;
  1356. }
  1357. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1358. {
  1359. skb->mac_len = skb->network_header - skb->mac_header;
  1360. }
  1361. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1362. *skb)
  1363. {
  1364. return skb->head + skb->inner_transport_header;
  1365. }
  1366. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1367. {
  1368. skb->inner_transport_header = skb->data - skb->head;
  1369. }
  1370. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1371. const int offset)
  1372. {
  1373. skb_reset_inner_transport_header(skb);
  1374. skb->inner_transport_header += offset;
  1375. }
  1376. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1377. {
  1378. return skb->head + skb->inner_network_header;
  1379. }
  1380. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1381. {
  1382. skb->inner_network_header = skb->data - skb->head;
  1383. }
  1384. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1385. const int offset)
  1386. {
  1387. skb_reset_inner_network_header(skb);
  1388. skb->inner_network_header += offset;
  1389. }
  1390. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1391. {
  1392. return skb->head + skb->inner_mac_header;
  1393. }
  1394. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1395. {
  1396. skb->inner_mac_header = skb->data - skb->head;
  1397. }
  1398. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1399. const int offset)
  1400. {
  1401. skb_reset_inner_mac_header(skb);
  1402. skb->inner_mac_header += offset;
  1403. }
  1404. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1405. {
  1406. return skb->transport_header != (typeof(skb->transport_header))~0U;
  1407. }
  1408. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1409. {
  1410. return skb->head + skb->transport_header;
  1411. }
  1412. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1413. {
  1414. skb->transport_header = skb->data - skb->head;
  1415. }
  1416. static inline void skb_set_transport_header(struct sk_buff *skb,
  1417. const int offset)
  1418. {
  1419. skb_reset_transport_header(skb);
  1420. skb->transport_header += offset;
  1421. }
  1422. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1423. {
  1424. return skb->head + skb->network_header;
  1425. }
  1426. static inline void skb_reset_network_header(struct sk_buff *skb)
  1427. {
  1428. skb->network_header = skb->data - skb->head;
  1429. }
  1430. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1431. {
  1432. skb_reset_network_header(skb);
  1433. skb->network_header += offset;
  1434. }
  1435. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1436. {
  1437. return skb->head + skb->mac_header;
  1438. }
  1439. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1440. {
  1441. return skb->mac_header != (typeof(skb->mac_header))~0U;
  1442. }
  1443. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1444. {
  1445. skb->mac_header = skb->data - skb->head;
  1446. }
  1447. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1448. {
  1449. skb_reset_mac_header(skb);
  1450. skb->mac_header += offset;
  1451. }
  1452. static inline void skb_probe_transport_header(struct sk_buff *skb,
  1453. const int offset_hint)
  1454. {
  1455. struct flow_keys keys;
  1456. if (skb_transport_header_was_set(skb))
  1457. return;
  1458. else if (skb_flow_dissect(skb, &keys))
  1459. skb_set_transport_header(skb, keys.thoff);
  1460. else
  1461. skb_set_transport_header(skb, offset_hint);
  1462. }
  1463. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1464. {
  1465. if (skb_mac_header_was_set(skb)) {
  1466. const unsigned char *old_mac = skb_mac_header(skb);
  1467. skb_set_mac_header(skb, -skb->mac_len);
  1468. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1469. }
  1470. }
  1471. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1472. {
  1473. return skb->csum_start - skb_headroom(skb);
  1474. }
  1475. static inline int skb_transport_offset(const struct sk_buff *skb)
  1476. {
  1477. return skb_transport_header(skb) - skb->data;
  1478. }
  1479. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1480. {
  1481. return skb->transport_header - skb->network_header;
  1482. }
  1483. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1484. {
  1485. return skb->inner_transport_header - skb->inner_network_header;
  1486. }
  1487. static inline int skb_network_offset(const struct sk_buff *skb)
  1488. {
  1489. return skb_network_header(skb) - skb->data;
  1490. }
  1491. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1492. {
  1493. return skb_inner_network_header(skb) - skb->data;
  1494. }
  1495. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1496. {
  1497. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1498. }
  1499. /*
  1500. * CPUs often take a performance hit when accessing unaligned memory
  1501. * locations. The actual performance hit varies, it can be small if the
  1502. * hardware handles it or large if we have to take an exception and fix it
  1503. * in software.
  1504. *
  1505. * Since an ethernet header is 14 bytes network drivers often end up with
  1506. * the IP header at an unaligned offset. The IP header can be aligned by
  1507. * shifting the start of the packet by 2 bytes. Drivers should do this
  1508. * with:
  1509. *
  1510. * skb_reserve(skb, NET_IP_ALIGN);
  1511. *
  1512. * The downside to this alignment of the IP header is that the DMA is now
  1513. * unaligned. On some architectures the cost of an unaligned DMA is high
  1514. * and this cost outweighs the gains made by aligning the IP header.
  1515. *
  1516. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1517. * to be overridden.
  1518. */
  1519. #ifndef NET_IP_ALIGN
  1520. #define NET_IP_ALIGN 2
  1521. #endif
  1522. /*
  1523. * The networking layer reserves some headroom in skb data (via
  1524. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1525. * the header has to grow. In the default case, if the header has to grow
  1526. * 32 bytes or less we avoid the reallocation.
  1527. *
  1528. * Unfortunately this headroom changes the DMA alignment of the resulting
  1529. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1530. * on some architectures. An architecture can override this value,
  1531. * perhaps setting it to a cacheline in size (since that will maintain
  1532. * cacheline alignment of the DMA). It must be a power of 2.
  1533. *
  1534. * Various parts of the networking layer expect at least 32 bytes of
  1535. * headroom, you should not reduce this.
  1536. *
  1537. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1538. * to reduce average number of cache lines per packet.
  1539. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1540. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1541. */
  1542. #ifndef NET_SKB_PAD
  1543. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1544. #endif
  1545. int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1546. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1547. {
  1548. if (unlikely(skb_is_nonlinear(skb))) {
  1549. WARN_ON(1);
  1550. return;
  1551. }
  1552. skb->len = len;
  1553. skb_set_tail_pointer(skb, len);
  1554. }
  1555. void skb_trim(struct sk_buff *skb, unsigned int len);
  1556. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1557. {
  1558. if (skb->data_len)
  1559. return ___pskb_trim(skb, len);
  1560. __skb_trim(skb, len);
  1561. return 0;
  1562. }
  1563. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1564. {
  1565. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1566. }
  1567. /**
  1568. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1569. * @skb: buffer to alter
  1570. * @len: new length
  1571. *
  1572. * This is identical to pskb_trim except that the caller knows that
  1573. * the skb is not cloned so we should never get an error due to out-
  1574. * of-memory.
  1575. */
  1576. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1577. {
  1578. int err = pskb_trim(skb, len);
  1579. BUG_ON(err);
  1580. }
  1581. /**
  1582. * skb_orphan - orphan a buffer
  1583. * @skb: buffer to orphan
  1584. *
  1585. * If a buffer currently has an owner then we call the owner's
  1586. * destructor function and make the @skb unowned. The buffer continues
  1587. * to exist but is no longer charged to its former owner.
  1588. */
  1589. static inline void skb_orphan(struct sk_buff *skb)
  1590. {
  1591. if (skb->destructor) {
  1592. skb->destructor(skb);
  1593. skb->destructor = NULL;
  1594. skb->sk = NULL;
  1595. } else {
  1596. BUG_ON(skb->sk);
  1597. }
  1598. }
  1599. /**
  1600. * skb_orphan_frags - orphan the frags contained in a buffer
  1601. * @skb: buffer to orphan frags from
  1602. * @gfp_mask: allocation mask for replacement pages
  1603. *
  1604. * For each frag in the SKB which needs a destructor (i.e. has an
  1605. * owner) create a copy of that frag and release the original
  1606. * page by calling the destructor.
  1607. */
  1608. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1609. {
  1610. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1611. return 0;
  1612. return skb_copy_ubufs(skb, gfp_mask);
  1613. }
  1614. /**
  1615. * __skb_queue_purge - empty a list
  1616. * @list: list to empty
  1617. *
  1618. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1619. * the list and one reference dropped. This function does not take the
  1620. * list lock and the caller must hold the relevant locks to use it.
  1621. */
  1622. void skb_queue_purge(struct sk_buff_head *list);
  1623. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1624. {
  1625. struct sk_buff *skb;
  1626. while ((skb = __skb_dequeue(list)) != NULL)
  1627. kfree_skb(skb);
  1628. }
  1629. #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
  1630. #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
  1631. #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
  1632. void *netdev_alloc_frag(unsigned int fragsz);
  1633. struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
  1634. gfp_t gfp_mask);
  1635. /**
  1636. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1637. * @dev: network device to receive on
  1638. * @length: length to allocate
  1639. *
  1640. * Allocate a new &sk_buff and assign it a usage count of one. The
  1641. * buffer has unspecified headroom built in. Users should allocate
  1642. * the headroom they think they need without accounting for the
  1643. * built in space. The built in space is used for optimisations.
  1644. *
  1645. * %NULL is returned if there is no free memory. Although this function
  1646. * allocates memory it can be called from an interrupt.
  1647. */
  1648. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1649. unsigned int length)
  1650. {
  1651. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1652. }
  1653. /* legacy helper around __netdev_alloc_skb() */
  1654. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1655. gfp_t gfp_mask)
  1656. {
  1657. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1658. }
  1659. /* legacy helper around netdev_alloc_skb() */
  1660. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1661. {
  1662. return netdev_alloc_skb(NULL, length);
  1663. }
  1664. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1665. unsigned int length, gfp_t gfp)
  1666. {
  1667. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1668. if (NET_IP_ALIGN && skb)
  1669. skb_reserve(skb, NET_IP_ALIGN);
  1670. return skb;
  1671. }
  1672. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1673. unsigned int length)
  1674. {
  1675. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1676. }
  1677. /**
  1678. * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
  1679. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1680. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1681. * @order: size of the allocation
  1682. *
  1683. * Allocate a new page.
  1684. *
  1685. * %NULL is returned if there is no free memory.
  1686. */
  1687. static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
  1688. struct sk_buff *skb,
  1689. unsigned int order)
  1690. {
  1691. struct page *page;
  1692. gfp_mask |= __GFP_COLD;
  1693. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1694. gfp_mask |= __GFP_MEMALLOC;
  1695. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  1696. if (skb && page && page->pfmemalloc)
  1697. skb->pfmemalloc = true;
  1698. return page;
  1699. }
  1700. /**
  1701. * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
  1702. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1703. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1704. *
  1705. * Allocate a new page.
  1706. *
  1707. * %NULL is returned if there is no free memory.
  1708. */
  1709. static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
  1710. struct sk_buff *skb)
  1711. {
  1712. return __skb_alloc_pages(gfp_mask, skb, 0);
  1713. }
  1714. /**
  1715. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  1716. * @page: The page that was allocated from skb_alloc_page
  1717. * @skb: The skb that may need pfmemalloc set
  1718. */
  1719. static inline void skb_propagate_pfmemalloc(struct page *page,
  1720. struct sk_buff *skb)
  1721. {
  1722. if (page && page->pfmemalloc)
  1723. skb->pfmemalloc = true;
  1724. }
  1725. /**
  1726. * skb_frag_page - retrieve the page refered to by a paged fragment
  1727. * @frag: the paged fragment
  1728. *
  1729. * Returns the &struct page associated with @frag.
  1730. */
  1731. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1732. {
  1733. return frag->page.p;
  1734. }
  1735. /**
  1736. * __skb_frag_ref - take an addition reference on a paged fragment.
  1737. * @frag: the paged fragment
  1738. *
  1739. * Takes an additional reference on the paged fragment @frag.
  1740. */
  1741. static inline void __skb_frag_ref(skb_frag_t *frag)
  1742. {
  1743. get_page(skb_frag_page(frag));
  1744. }
  1745. /**
  1746. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1747. * @skb: the buffer
  1748. * @f: the fragment offset.
  1749. *
  1750. * Takes an additional reference on the @f'th paged fragment of @skb.
  1751. */
  1752. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1753. {
  1754. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1755. }
  1756. /**
  1757. * __skb_frag_unref - release a reference on a paged fragment.
  1758. * @frag: the paged fragment
  1759. *
  1760. * Releases a reference on the paged fragment @frag.
  1761. */
  1762. static inline void __skb_frag_unref(skb_frag_t *frag)
  1763. {
  1764. put_page(skb_frag_page(frag));
  1765. }
  1766. /**
  1767. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1768. * @skb: the buffer
  1769. * @f: the fragment offset
  1770. *
  1771. * Releases a reference on the @f'th paged fragment of @skb.
  1772. */
  1773. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1774. {
  1775. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1776. }
  1777. /**
  1778. * skb_frag_address - gets the address of the data contained in a paged fragment
  1779. * @frag: the paged fragment buffer
  1780. *
  1781. * Returns the address of the data within @frag. The page must already
  1782. * be mapped.
  1783. */
  1784. static inline void *skb_frag_address(const skb_frag_t *frag)
  1785. {
  1786. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1787. }
  1788. /**
  1789. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1790. * @frag: the paged fragment buffer
  1791. *
  1792. * Returns the address of the data within @frag. Checks that the page
  1793. * is mapped and returns %NULL otherwise.
  1794. */
  1795. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1796. {
  1797. void *ptr = page_address(skb_frag_page(frag));
  1798. if (unlikely(!ptr))
  1799. return NULL;
  1800. return ptr + frag->page_offset;
  1801. }
  1802. /**
  1803. * __skb_frag_set_page - sets the page contained in a paged fragment
  1804. * @frag: the paged fragment
  1805. * @page: the page to set
  1806. *
  1807. * Sets the fragment @frag to contain @page.
  1808. */
  1809. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1810. {
  1811. frag->page.p = page;
  1812. }
  1813. /**
  1814. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1815. * @skb: the buffer
  1816. * @f: the fragment offset
  1817. * @page: the page to set
  1818. *
  1819. * Sets the @f'th fragment of @skb to contain @page.
  1820. */
  1821. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1822. struct page *page)
  1823. {
  1824. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1825. }
  1826. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
  1827. /**
  1828. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1829. * @dev: the device to map the fragment to
  1830. * @frag: the paged fragment to map
  1831. * @offset: the offset within the fragment (starting at the
  1832. * fragment's own offset)
  1833. * @size: the number of bytes to map
  1834. * @dir: the direction of the mapping (%PCI_DMA_*)
  1835. *
  1836. * Maps the page associated with @frag to @device.
  1837. */
  1838. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1839. const skb_frag_t *frag,
  1840. size_t offset, size_t size,
  1841. enum dma_data_direction dir)
  1842. {
  1843. return dma_map_page(dev, skb_frag_page(frag),
  1844. frag->page_offset + offset, size, dir);
  1845. }
  1846. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1847. gfp_t gfp_mask)
  1848. {
  1849. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1850. }
  1851. /**
  1852. * skb_clone_writable - is the header of a clone writable
  1853. * @skb: buffer to check
  1854. * @len: length up to which to write
  1855. *
  1856. * Returns true if modifying the header part of the cloned buffer
  1857. * does not requires the data to be copied.
  1858. */
  1859. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1860. {
  1861. return !skb_header_cloned(skb) &&
  1862. skb_headroom(skb) + len <= skb->hdr_len;
  1863. }
  1864. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1865. int cloned)
  1866. {
  1867. int delta = 0;
  1868. if (headroom > skb_headroom(skb))
  1869. delta = headroom - skb_headroom(skb);
  1870. if (delta || cloned)
  1871. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1872. GFP_ATOMIC);
  1873. return 0;
  1874. }
  1875. /**
  1876. * skb_cow - copy header of skb when it is required
  1877. * @skb: buffer to cow
  1878. * @headroom: needed headroom
  1879. *
  1880. * If the skb passed lacks sufficient headroom or its data part
  1881. * is shared, data is reallocated. If reallocation fails, an error
  1882. * is returned and original skb is not changed.
  1883. *
  1884. * The result is skb with writable area skb->head...skb->tail
  1885. * and at least @headroom of space at head.
  1886. */
  1887. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1888. {
  1889. return __skb_cow(skb, headroom, skb_cloned(skb));
  1890. }
  1891. /**
  1892. * skb_cow_head - skb_cow but only making the head writable
  1893. * @skb: buffer to cow
  1894. * @headroom: needed headroom
  1895. *
  1896. * This function is identical to skb_cow except that we replace the
  1897. * skb_cloned check by skb_header_cloned. It should be used when
  1898. * you only need to push on some header and do not need to modify
  1899. * the data.
  1900. */
  1901. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1902. {
  1903. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1904. }
  1905. /**
  1906. * skb_padto - pad an skbuff up to a minimal size
  1907. * @skb: buffer to pad
  1908. * @len: minimal length
  1909. *
  1910. * Pads up a buffer to ensure the trailing bytes exist and are
  1911. * blanked. If the buffer already contains sufficient data it
  1912. * is untouched. Otherwise it is extended. Returns zero on
  1913. * success. The skb is freed on error.
  1914. */
  1915. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1916. {
  1917. unsigned int size = skb->len;
  1918. if (likely(size >= len))
  1919. return 0;
  1920. return skb_pad(skb, len - size);
  1921. }
  1922. static inline int skb_add_data(struct sk_buff *skb,
  1923. char __user *from, int copy)
  1924. {
  1925. const int off = skb->len;
  1926. if (skb->ip_summed == CHECKSUM_NONE) {
  1927. int err = 0;
  1928. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1929. copy, 0, &err);
  1930. if (!err) {
  1931. skb->csum = csum_block_add(skb->csum, csum, off);
  1932. return 0;
  1933. }
  1934. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1935. return 0;
  1936. __skb_trim(skb, off);
  1937. return -EFAULT;
  1938. }
  1939. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  1940. const struct page *page, int off)
  1941. {
  1942. if (i) {
  1943. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1944. return page == skb_frag_page(frag) &&
  1945. off == frag->page_offset + skb_frag_size(frag);
  1946. }
  1947. return false;
  1948. }
  1949. static inline int __skb_linearize(struct sk_buff *skb)
  1950. {
  1951. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1952. }
  1953. /**
  1954. * skb_linearize - convert paged skb to linear one
  1955. * @skb: buffer to linarize
  1956. *
  1957. * If there is no free memory -ENOMEM is returned, otherwise zero
  1958. * is returned and the old skb data released.
  1959. */
  1960. static inline int skb_linearize(struct sk_buff *skb)
  1961. {
  1962. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1963. }
  1964. /**
  1965. * skb_has_shared_frag - can any frag be overwritten
  1966. * @skb: buffer to test
  1967. *
  1968. * Return true if the skb has at least one frag that might be modified
  1969. * by an external entity (as in vmsplice()/sendfile())
  1970. */
  1971. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  1972. {
  1973. return skb_is_nonlinear(skb) &&
  1974. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  1975. }
  1976. /**
  1977. * skb_linearize_cow - make sure skb is linear and writable
  1978. * @skb: buffer to process
  1979. *
  1980. * If there is no free memory -ENOMEM is returned, otherwise zero
  1981. * is returned and the old skb data released.
  1982. */
  1983. static inline int skb_linearize_cow(struct sk_buff *skb)
  1984. {
  1985. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1986. __skb_linearize(skb) : 0;
  1987. }
  1988. /**
  1989. * skb_postpull_rcsum - update checksum for received skb after pull
  1990. * @skb: buffer to update
  1991. * @start: start of data before pull
  1992. * @len: length of data pulled
  1993. *
  1994. * After doing a pull on a received packet, you need to call this to
  1995. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1996. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1997. */
  1998. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1999. const void *start, unsigned int len)
  2000. {
  2001. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2002. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  2003. }
  2004. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2005. /**
  2006. * pskb_trim_rcsum - trim received skb and update checksum
  2007. * @skb: buffer to trim
  2008. * @len: new length
  2009. *
  2010. * This is exactly the same as pskb_trim except that it ensures the
  2011. * checksum of received packets are still valid after the operation.
  2012. */
  2013. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2014. {
  2015. if (likely(len >= skb->len))
  2016. return 0;
  2017. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2018. skb->ip_summed = CHECKSUM_NONE;
  2019. return __pskb_trim(skb, len);
  2020. }
  2021. #define skb_queue_walk(queue, skb) \
  2022. for (skb = (queue)->next; \
  2023. skb != (struct sk_buff *)(queue); \
  2024. skb = skb->next)
  2025. #define skb_queue_walk_safe(queue, skb, tmp) \
  2026. for (skb = (queue)->next, tmp = skb->next; \
  2027. skb != (struct sk_buff *)(queue); \
  2028. skb = tmp, tmp = skb->next)
  2029. #define skb_queue_walk_from(queue, skb) \
  2030. for (; skb != (struct sk_buff *)(queue); \
  2031. skb = skb->next)
  2032. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2033. for (tmp = skb->next; \
  2034. skb != (struct sk_buff *)(queue); \
  2035. skb = tmp, tmp = skb->next)
  2036. #define skb_queue_reverse_walk(queue, skb) \
  2037. for (skb = (queue)->prev; \
  2038. skb != (struct sk_buff *)(queue); \
  2039. skb = skb->prev)
  2040. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2041. for (skb = (queue)->prev, tmp = skb->prev; \
  2042. skb != (struct sk_buff *)(queue); \
  2043. skb = tmp, tmp = skb->prev)
  2044. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2045. for (tmp = skb->prev; \
  2046. skb != (struct sk_buff *)(queue); \
  2047. skb = tmp, tmp = skb->prev)
  2048. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2049. {
  2050. return skb_shinfo(skb)->frag_list != NULL;
  2051. }
  2052. static inline void skb_frag_list_init(struct sk_buff *skb)
  2053. {
  2054. skb_shinfo(skb)->frag_list = NULL;
  2055. }
  2056. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  2057. {
  2058. frag->next = skb_shinfo(skb)->frag_list;
  2059. skb_shinfo(skb)->frag_list = frag;
  2060. }
  2061. #define skb_walk_frags(skb, iter) \
  2062. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2063. struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2064. int *peeked, int *off, int *err);
  2065. struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
  2066. int *err);
  2067. unsigned int datagram_poll(struct file *file, struct socket *sock,
  2068. struct poll_table_struct *wait);
  2069. int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
  2070. struct iovec *to, int size);
  2071. int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
  2072. struct iovec *iov);
  2073. int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
  2074. const struct iovec *from, int from_offset,
  2075. int len);
  2076. int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
  2077. int offset, size_t count);
  2078. int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
  2079. const struct iovec *to, int to_offset,
  2080. int size);
  2081. void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2082. void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
  2083. int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
  2084. __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
  2085. __wsum csum);
  2086. int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
  2087. int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
  2088. __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
  2089. int len, __wsum csum);
  2090. int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
  2091. struct pipe_inode_info *pipe, unsigned int len,
  2092. unsigned int flags);
  2093. void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2094. void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
  2095. int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
  2096. void skb_scrub_packet(struct sk_buff *skb, bool xnet);
  2097. struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
  2098. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  2099. int len, void *buffer)
  2100. {
  2101. int hlen = skb_headlen(skb);
  2102. if (hlen - offset >= len)
  2103. return skb->data + offset;
  2104. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  2105. return NULL;
  2106. return buffer;
  2107. }
  2108. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2109. void *to,
  2110. const unsigned int len)
  2111. {
  2112. memcpy(to, skb->data, len);
  2113. }
  2114. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2115. const int offset, void *to,
  2116. const unsigned int len)
  2117. {
  2118. memcpy(to, skb->data + offset, len);
  2119. }
  2120. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2121. const void *from,
  2122. const unsigned int len)
  2123. {
  2124. memcpy(skb->data, from, len);
  2125. }
  2126. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2127. const int offset,
  2128. const void *from,
  2129. const unsigned int len)
  2130. {
  2131. memcpy(skb->data + offset, from, len);
  2132. }
  2133. void skb_init(void);
  2134. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2135. {
  2136. return skb->tstamp;
  2137. }
  2138. /**
  2139. * skb_get_timestamp - get timestamp from a skb
  2140. * @skb: skb to get stamp from
  2141. * @stamp: pointer to struct timeval to store stamp in
  2142. *
  2143. * Timestamps are stored in the skb as offsets to a base timestamp.
  2144. * This function converts the offset back to a struct timeval and stores
  2145. * it in stamp.
  2146. */
  2147. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2148. struct timeval *stamp)
  2149. {
  2150. *stamp = ktime_to_timeval(skb->tstamp);
  2151. }
  2152. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2153. struct timespec *stamp)
  2154. {
  2155. *stamp = ktime_to_timespec(skb->tstamp);
  2156. }
  2157. static inline void __net_timestamp(struct sk_buff *skb)
  2158. {
  2159. skb->tstamp = ktime_get_real();
  2160. }
  2161. static inline ktime_t net_timedelta(ktime_t t)
  2162. {
  2163. return ktime_sub(ktime_get_real(), t);
  2164. }
  2165. static inline ktime_t net_invalid_timestamp(void)
  2166. {
  2167. return ktime_set(0, 0);
  2168. }
  2169. void skb_timestamping_init(void);
  2170. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2171. void skb_clone_tx_timestamp(struct sk_buff *skb);
  2172. bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2173. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2174. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2175. {
  2176. }
  2177. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2178. {
  2179. return false;
  2180. }
  2181. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2182. /**
  2183. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2184. *
  2185. * PHY drivers may accept clones of transmitted packets for
  2186. * timestamping via their phy_driver.txtstamp method. These drivers
  2187. * must call this function to return the skb back to the stack, with
  2188. * or without a timestamp.
  2189. *
  2190. * @skb: clone of the the original outgoing packet
  2191. * @hwtstamps: hardware time stamps, may be NULL if not available
  2192. *
  2193. */
  2194. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2195. struct skb_shared_hwtstamps *hwtstamps);
  2196. /**
  2197. * skb_tstamp_tx - queue clone of skb with send time stamps
  2198. * @orig_skb: the original outgoing packet
  2199. * @hwtstamps: hardware time stamps, may be NULL if not available
  2200. *
  2201. * If the skb has a socket associated, then this function clones the
  2202. * skb (thus sharing the actual data and optional structures), stores
  2203. * the optional hardware time stamping information (if non NULL) or
  2204. * generates a software time stamp (otherwise), then queues the clone
  2205. * to the error queue of the socket. Errors are silently ignored.
  2206. */
  2207. void skb_tstamp_tx(struct sk_buff *orig_skb,
  2208. struct skb_shared_hwtstamps *hwtstamps);
  2209. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2210. {
  2211. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2212. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2213. skb_tstamp_tx(skb, NULL);
  2214. }
  2215. /**
  2216. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2217. *
  2218. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2219. * function immediately before giving the sk_buff to the MAC hardware.
  2220. *
  2221. * @skb: A socket buffer.
  2222. */
  2223. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2224. {
  2225. skb_clone_tx_timestamp(skb);
  2226. sw_tx_timestamp(skb);
  2227. }
  2228. /**
  2229. * skb_complete_wifi_ack - deliver skb with wifi status
  2230. *
  2231. * @skb: the original outgoing packet
  2232. * @acked: ack status
  2233. *
  2234. */
  2235. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2236. __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2237. __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2238. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2239. {
  2240. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2241. }
  2242. /**
  2243. * skb_checksum_complete - Calculate checksum of an entire packet
  2244. * @skb: packet to process
  2245. *
  2246. * This function calculates the checksum over the entire packet plus
  2247. * the value of skb->csum. The latter can be used to supply the
  2248. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2249. * checksum.
  2250. *
  2251. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2252. * this function can be used to verify that checksum on received
  2253. * packets. In that case the function should return zero if the
  2254. * checksum is correct. In particular, this function will return zero
  2255. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2256. * hardware has already verified the correctness of the checksum.
  2257. */
  2258. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2259. {
  2260. return skb_csum_unnecessary(skb) ?
  2261. 0 : __skb_checksum_complete(skb);
  2262. }
  2263. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2264. void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2265. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2266. {
  2267. if (nfct && atomic_dec_and_test(&nfct->use))
  2268. nf_conntrack_destroy(nfct);
  2269. }
  2270. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2271. {
  2272. if (nfct)
  2273. atomic_inc(&nfct->use);
  2274. }
  2275. #endif
  2276. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2277. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2278. {
  2279. if (skb)
  2280. atomic_inc(&skb->users);
  2281. }
  2282. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2283. {
  2284. if (skb)
  2285. kfree_skb(skb);
  2286. }
  2287. #endif
  2288. #ifdef CONFIG_BRIDGE_NETFILTER
  2289. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2290. {
  2291. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2292. kfree(nf_bridge);
  2293. }
  2294. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2295. {
  2296. if (nf_bridge)
  2297. atomic_inc(&nf_bridge->use);
  2298. }
  2299. #endif /* CONFIG_BRIDGE_NETFILTER */
  2300. static inline void nf_reset(struct sk_buff *skb)
  2301. {
  2302. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2303. nf_conntrack_put(skb->nfct);
  2304. skb->nfct = NULL;
  2305. #endif
  2306. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2307. nf_conntrack_put_reasm(skb->nfct_reasm);
  2308. skb->nfct_reasm = NULL;
  2309. #endif
  2310. #ifdef CONFIG_BRIDGE_NETFILTER
  2311. nf_bridge_put(skb->nf_bridge);
  2312. skb->nf_bridge = NULL;
  2313. #endif
  2314. }
  2315. static inline void nf_reset_trace(struct sk_buff *skb)
  2316. {
  2317. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
  2318. skb->nf_trace = 0;
  2319. #endif
  2320. }
  2321. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2322. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2323. {
  2324. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2325. dst->nfct = src->nfct;
  2326. nf_conntrack_get(src->nfct);
  2327. dst->nfctinfo = src->nfctinfo;
  2328. #endif
  2329. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2330. dst->nfct_reasm = src->nfct_reasm;
  2331. nf_conntrack_get_reasm(src->nfct_reasm);
  2332. #endif
  2333. #ifdef CONFIG_BRIDGE_NETFILTER
  2334. dst->nf_bridge = src->nf_bridge;
  2335. nf_bridge_get(src->nf_bridge);
  2336. #endif
  2337. }
  2338. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2339. {
  2340. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2341. nf_conntrack_put(dst->nfct);
  2342. #endif
  2343. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2344. nf_conntrack_put_reasm(dst->nfct_reasm);
  2345. #endif
  2346. #ifdef CONFIG_BRIDGE_NETFILTER
  2347. nf_bridge_put(dst->nf_bridge);
  2348. #endif
  2349. __nf_copy(dst, src);
  2350. }
  2351. #ifdef CONFIG_NETWORK_SECMARK
  2352. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2353. {
  2354. to->secmark = from->secmark;
  2355. }
  2356. static inline void skb_init_secmark(struct sk_buff *skb)
  2357. {
  2358. skb->secmark = 0;
  2359. }
  2360. #else
  2361. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2362. { }
  2363. static inline void skb_init_secmark(struct sk_buff *skb)
  2364. { }
  2365. #endif
  2366. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2367. {
  2368. skb->queue_mapping = queue_mapping;
  2369. }
  2370. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2371. {
  2372. return skb->queue_mapping;
  2373. }
  2374. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2375. {
  2376. to->queue_mapping = from->queue_mapping;
  2377. }
  2378. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2379. {
  2380. skb->queue_mapping = rx_queue + 1;
  2381. }
  2382. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2383. {
  2384. return skb->queue_mapping - 1;
  2385. }
  2386. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2387. {
  2388. return skb->queue_mapping != 0;
  2389. }
  2390. u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
  2391. unsigned int num_tx_queues);
  2392. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2393. {
  2394. #ifdef CONFIG_XFRM
  2395. return skb->sp;
  2396. #else
  2397. return NULL;
  2398. #endif
  2399. }
  2400. /* Keeps track of mac header offset relative to skb->head.
  2401. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  2402. * For non-tunnel skb it points to skb_mac_header() and for
  2403. * tunnel skb it points to outer mac header.
  2404. * Keeps track of level of encapsulation of network headers.
  2405. */
  2406. struct skb_gso_cb {
  2407. int mac_offset;
  2408. int encap_level;
  2409. };
  2410. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
  2411. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  2412. {
  2413. return (skb_mac_header(inner_skb) - inner_skb->head) -
  2414. SKB_GSO_CB(inner_skb)->mac_offset;
  2415. }
  2416. static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
  2417. {
  2418. int new_headroom, headroom;
  2419. int ret;
  2420. headroom = skb_headroom(skb);
  2421. ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
  2422. if (ret)
  2423. return ret;
  2424. new_headroom = skb_headroom(skb);
  2425. SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
  2426. return 0;
  2427. }
  2428. static inline bool skb_is_gso(const struct sk_buff *skb)
  2429. {
  2430. return skb_shinfo(skb)->gso_size;
  2431. }
  2432. /* Note: Should be called only if skb_is_gso(skb) is true */
  2433. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2434. {
  2435. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2436. }
  2437. void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2438. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2439. {
  2440. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2441. * wanted then gso_type will be set. */
  2442. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2443. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2444. unlikely(shinfo->gso_type == 0)) {
  2445. __skb_warn_lro_forwarding(skb);
  2446. return true;
  2447. }
  2448. return false;
  2449. }
  2450. static inline void skb_forward_csum(struct sk_buff *skb)
  2451. {
  2452. /* Unfortunately we don't support this one. Any brave souls? */
  2453. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2454. skb->ip_summed = CHECKSUM_NONE;
  2455. }
  2456. /**
  2457. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2458. * @skb: skb to check
  2459. *
  2460. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2461. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2462. * use this helper, to document places where we make this assertion.
  2463. */
  2464. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2465. {
  2466. #ifdef DEBUG
  2467. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2468. #endif
  2469. }
  2470. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2471. u32 __skb_get_poff(const struct sk_buff *skb);
  2472. /**
  2473. * skb_head_is_locked - Determine if the skb->head is locked down
  2474. * @skb: skb to check
  2475. *
  2476. * The head on skbs build around a head frag can be removed if they are
  2477. * not cloned. This function returns true if the skb head is locked down
  2478. * due to either being allocated via kmalloc, or by being a clone with
  2479. * multiple references to the head.
  2480. */
  2481. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2482. {
  2483. return !skb->head_frag || skb_cloned(skb);
  2484. }
  2485. #endif /* __KERNEL__ */
  2486. #endif /* _LINUX_SKBUFF_H */