nvme-core.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/nvme.h>
  19. #include <linux/bio.h>
  20. #include <linux/bitops.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/delay.h>
  23. #include <linux/errno.h>
  24. #include <linux/fs.h>
  25. #include <linux/genhd.h>
  26. #include <linux/idr.h>
  27. #include <linux/init.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/io.h>
  30. #include <linux/kdev_t.h>
  31. #include <linux/kthread.h>
  32. #include <linux/kernel.h>
  33. #include <linux/mm.h>
  34. #include <linux/module.h>
  35. #include <linux/moduleparam.h>
  36. #include <linux/pci.h>
  37. #include <linux/poison.h>
  38. #include <linux/sched.h>
  39. #include <linux/slab.h>
  40. #include <linux/types.h>
  41. #include <scsi/sg.h>
  42. #include <asm-generic/io-64-nonatomic-lo-hi.h>
  43. #define NVME_Q_DEPTH 1024
  44. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  45. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  46. #define NVME_MINORS 64
  47. #define ADMIN_TIMEOUT (60 * HZ)
  48. static int nvme_major;
  49. module_param(nvme_major, int, 0);
  50. static int use_threaded_interrupts;
  51. module_param(use_threaded_interrupts, int, 0);
  52. static DEFINE_SPINLOCK(dev_list_lock);
  53. static LIST_HEAD(dev_list);
  54. static struct task_struct *nvme_thread;
  55. /*
  56. * An NVM Express queue. Each device has at least two (one for admin
  57. * commands and one for I/O commands).
  58. */
  59. struct nvme_queue {
  60. struct device *q_dmadev;
  61. struct nvme_dev *dev;
  62. spinlock_t q_lock;
  63. struct nvme_command *sq_cmds;
  64. volatile struct nvme_completion *cqes;
  65. dma_addr_t sq_dma_addr;
  66. dma_addr_t cq_dma_addr;
  67. wait_queue_head_t sq_full;
  68. wait_queue_t sq_cong_wait;
  69. struct bio_list sq_cong;
  70. u32 __iomem *q_db;
  71. u16 q_depth;
  72. u16 cq_vector;
  73. u16 sq_head;
  74. u16 sq_tail;
  75. u16 cq_head;
  76. u16 cq_phase;
  77. unsigned long cmdid_data[];
  78. };
  79. /*
  80. * Check we didin't inadvertently grow the command struct
  81. */
  82. static inline void _nvme_check_size(void)
  83. {
  84. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  85. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  86. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  87. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  88. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  89. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  90. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  91. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  92. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  93. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  94. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  95. }
  96. typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
  97. struct nvme_completion *);
  98. struct nvme_cmd_info {
  99. nvme_completion_fn fn;
  100. void *ctx;
  101. unsigned long timeout;
  102. };
  103. static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
  104. {
  105. return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
  106. }
  107. /**
  108. * alloc_cmdid() - Allocate a Command ID
  109. * @nvmeq: The queue that will be used for this command
  110. * @ctx: A pointer that will be passed to the handler
  111. * @handler: The function to call on completion
  112. *
  113. * Allocate a Command ID for a queue. The data passed in will
  114. * be passed to the completion handler. This is implemented by using
  115. * the bottom two bits of the ctx pointer to store the handler ID.
  116. * Passing in a pointer that's not 4-byte aligned will cause a BUG.
  117. * We can change this if it becomes a problem.
  118. *
  119. * May be called with local interrupts disabled and the q_lock held,
  120. * or with interrupts enabled and no locks held.
  121. */
  122. static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
  123. nvme_completion_fn handler, unsigned timeout)
  124. {
  125. int depth = nvmeq->q_depth - 1;
  126. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  127. int cmdid;
  128. do {
  129. cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
  130. if (cmdid >= depth)
  131. return -EBUSY;
  132. } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
  133. info[cmdid].fn = handler;
  134. info[cmdid].ctx = ctx;
  135. info[cmdid].timeout = jiffies + timeout;
  136. return cmdid;
  137. }
  138. static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
  139. nvme_completion_fn handler, unsigned timeout)
  140. {
  141. int cmdid;
  142. wait_event_killable(nvmeq->sq_full,
  143. (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
  144. return (cmdid < 0) ? -EINTR : cmdid;
  145. }
  146. /* Special values must be less than 0x1000 */
  147. #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
  148. #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
  149. #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
  150. #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
  151. #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
  152. static void special_completion(struct nvme_dev *dev, void *ctx,
  153. struct nvme_completion *cqe)
  154. {
  155. if (ctx == CMD_CTX_CANCELLED)
  156. return;
  157. if (ctx == CMD_CTX_FLUSH)
  158. return;
  159. if (ctx == CMD_CTX_COMPLETED) {
  160. dev_warn(&dev->pci_dev->dev,
  161. "completed id %d twice on queue %d\n",
  162. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  163. return;
  164. }
  165. if (ctx == CMD_CTX_INVALID) {
  166. dev_warn(&dev->pci_dev->dev,
  167. "invalid id %d completed on queue %d\n",
  168. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  169. return;
  170. }
  171. dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
  172. }
  173. /*
  174. * Called with local interrupts disabled and the q_lock held. May not sleep.
  175. */
  176. static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
  177. nvme_completion_fn *fn)
  178. {
  179. void *ctx;
  180. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  181. if (cmdid >= nvmeq->q_depth) {
  182. *fn = special_completion;
  183. return CMD_CTX_INVALID;
  184. }
  185. if (fn)
  186. *fn = info[cmdid].fn;
  187. ctx = info[cmdid].ctx;
  188. info[cmdid].fn = special_completion;
  189. info[cmdid].ctx = CMD_CTX_COMPLETED;
  190. clear_bit(cmdid, nvmeq->cmdid_data);
  191. wake_up(&nvmeq->sq_full);
  192. return ctx;
  193. }
  194. static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
  195. nvme_completion_fn *fn)
  196. {
  197. void *ctx;
  198. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  199. if (fn)
  200. *fn = info[cmdid].fn;
  201. ctx = info[cmdid].ctx;
  202. info[cmdid].fn = special_completion;
  203. info[cmdid].ctx = CMD_CTX_CANCELLED;
  204. return ctx;
  205. }
  206. struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
  207. {
  208. return dev->queues[get_cpu() + 1];
  209. }
  210. void put_nvmeq(struct nvme_queue *nvmeq)
  211. {
  212. put_cpu();
  213. }
  214. /**
  215. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  216. * @nvmeq: The queue to use
  217. * @cmd: The command to send
  218. *
  219. * Safe to use from interrupt context
  220. */
  221. static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  222. {
  223. unsigned long flags;
  224. u16 tail;
  225. spin_lock_irqsave(&nvmeq->q_lock, flags);
  226. tail = nvmeq->sq_tail;
  227. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  228. if (++tail == nvmeq->q_depth)
  229. tail = 0;
  230. writel(tail, nvmeq->q_db);
  231. nvmeq->sq_tail = tail;
  232. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  233. return 0;
  234. }
  235. static __le64 **iod_list(struct nvme_iod *iod)
  236. {
  237. return ((void *)iod) + iod->offset;
  238. }
  239. /*
  240. * Will slightly overestimate the number of pages needed. This is OK
  241. * as it only leads to a small amount of wasted memory for the lifetime of
  242. * the I/O.
  243. */
  244. static int nvme_npages(unsigned size)
  245. {
  246. unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
  247. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  248. }
  249. static struct nvme_iod *
  250. nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
  251. {
  252. struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
  253. sizeof(__le64 *) * nvme_npages(nbytes) +
  254. sizeof(struct scatterlist) * nseg, gfp);
  255. if (iod) {
  256. iod->offset = offsetof(struct nvme_iod, sg[nseg]);
  257. iod->npages = -1;
  258. iod->length = nbytes;
  259. iod->nents = 0;
  260. iod->start_time = jiffies;
  261. }
  262. return iod;
  263. }
  264. void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
  265. {
  266. const int last_prp = PAGE_SIZE / 8 - 1;
  267. int i;
  268. __le64 **list = iod_list(iod);
  269. dma_addr_t prp_dma = iod->first_dma;
  270. if (iod->npages == 0)
  271. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  272. for (i = 0; i < iod->npages; i++) {
  273. __le64 *prp_list = list[i];
  274. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  275. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  276. prp_dma = next_prp_dma;
  277. }
  278. kfree(iod);
  279. }
  280. static void nvme_start_io_acct(struct bio *bio)
  281. {
  282. struct gendisk *disk = bio->bi_bdev->bd_disk;
  283. const int rw = bio_data_dir(bio);
  284. int cpu = part_stat_lock();
  285. part_round_stats(cpu, &disk->part0);
  286. part_stat_inc(cpu, &disk->part0, ios[rw]);
  287. part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
  288. part_inc_in_flight(&disk->part0, rw);
  289. part_stat_unlock();
  290. }
  291. static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
  292. {
  293. struct gendisk *disk = bio->bi_bdev->bd_disk;
  294. const int rw = bio_data_dir(bio);
  295. unsigned long duration = jiffies - start_time;
  296. int cpu = part_stat_lock();
  297. part_stat_add(cpu, &disk->part0, ticks[rw], duration);
  298. part_round_stats(cpu, &disk->part0);
  299. part_dec_in_flight(&disk->part0, rw);
  300. part_stat_unlock();
  301. }
  302. static void bio_completion(struct nvme_dev *dev, void *ctx,
  303. struct nvme_completion *cqe)
  304. {
  305. struct nvme_iod *iod = ctx;
  306. struct bio *bio = iod->private;
  307. u16 status = le16_to_cpup(&cqe->status) >> 1;
  308. if (iod->nents)
  309. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  310. bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  311. nvme_end_io_acct(bio, iod->start_time);
  312. nvme_free_iod(dev, iod);
  313. if (status)
  314. bio_endio(bio, -EIO);
  315. else
  316. bio_endio(bio, 0);
  317. }
  318. /* length is in bytes. gfp flags indicates whether we may sleep. */
  319. int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
  320. struct nvme_iod *iod, int total_len, gfp_t gfp)
  321. {
  322. struct dma_pool *pool;
  323. int length = total_len;
  324. struct scatterlist *sg = iod->sg;
  325. int dma_len = sg_dma_len(sg);
  326. u64 dma_addr = sg_dma_address(sg);
  327. int offset = offset_in_page(dma_addr);
  328. __le64 *prp_list;
  329. __le64 **list = iod_list(iod);
  330. dma_addr_t prp_dma;
  331. int nprps, i;
  332. cmd->prp1 = cpu_to_le64(dma_addr);
  333. length -= (PAGE_SIZE - offset);
  334. if (length <= 0)
  335. return total_len;
  336. dma_len -= (PAGE_SIZE - offset);
  337. if (dma_len) {
  338. dma_addr += (PAGE_SIZE - offset);
  339. } else {
  340. sg = sg_next(sg);
  341. dma_addr = sg_dma_address(sg);
  342. dma_len = sg_dma_len(sg);
  343. }
  344. if (length <= PAGE_SIZE) {
  345. cmd->prp2 = cpu_to_le64(dma_addr);
  346. return total_len;
  347. }
  348. nprps = DIV_ROUND_UP(length, PAGE_SIZE);
  349. if (nprps <= (256 / 8)) {
  350. pool = dev->prp_small_pool;
  351. iod->npages = 0;
  352. } else {
  353. pool = dev->prp_page_pool;
  354. iod->npages = 1;
  355. }
  356. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  357. if (!prp_list) {
  358. cmd->prp2 = cpu_to_le64(dma_addr);
  359. iod->npages = -1;
  360. return (total_len - length) + PAGE_SIZE;
  361. }
  362. list[0] = prp_list;
  363. iod->first_dma = prp_dma;
  364. cmd->prp2 = cpu_to_le64(prp_dma);
  365. i = 0;
  366. for (;;) {
  367. if (i == PAGE_SIZE / 8) {
  368. __le64 *old_prp_list = prp_list;
  369. prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
  370. if (!prp_list)
  371. return total_len - length;
  372. list[iod->npages++] = prp_list;
  373. prp_list[0] = old_prp_list[i - 1];
  374. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  375. i = 1;
  376. }
  377. prp_list[i++] = cpu_to_le64(dma_addr);
  378. dma_len -= PAGE_SIZE;
  379. dma_addr += PAGE_SIZE;
  380. length -= PAGE_SIZE;
  381. if (length <= 0)
  382. break;
  383. if (dma_len > 0)
  384. continue;
  385. BUG_ON(dma_len < 0);
  386. sg = sg_next(sg);
  387. dma_addr = sg_dma_address(sg);
  388. dma_len = sg_dma_len(sg);
  389. }
  390. return total_len;
  391. }
  392. struct nvme_bio_pair {
  393. struct bio b1, b2, *parent;
  394. struct bio_vec *bv1, *bv2;
  395. int err;
  396. atomic_t cnt;
  397. };
  398. static void nvme_bio_pair_endio(struct bio *bio, int err)
  399. {
  400. struct nvme_bio_pair *bp = bio->bi_private;
  401. if (err)
  402. bp->err = err;
  403. if (atomic_dec_and_test(&bp->cnt)) {
  404. bio_endio(bp->parent, bp->err);
  405. if (bp->bv1)
  406. kfree(bp->bv1);
  407. if (bp->bv2)
  408. kfree(bp->bv2);
  409. kfree(bp);
  410. }
  411. }
  412. static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
  413. int len, int offset)
  414. {
  415. struct nvme_bio_pair *bp;
  416. BUG_ON(len > bio->bi_size);
  417. BUG_ON(idx > bio->bi_vcnt);
  418. bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
  419. if (!bp)
  420. return NULL;
  421. bp->err = 0;
  422. bp->b1 = *bio;
  423. bp->b2 = *bio;
  424. bp->b1.bi_size = len;
  425. bp->b2.bi_size -= len;
  426. bp->b1.bi_vcnt = idx;
  427. bp->b2.bi_idx = idx;
  428. bp->b2.bi_sector += len >> 9;
  429. if (offset) {
  430. bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
  431. GFP_ATOMIC);
  432. if (!bp->bv1)
  433. goto split_fail_1;
  434. bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
  435. GFP_ATOMIC);
  436. if (!bp->bv2)
  437. goto split_fail_2;
  438. memcpy(bp->bv1, bio->bi_io_vec,
  439. bio->bi_max_vecs * sizeof(struct bio_vec));
  440. memcpy(bp->bv2, bio->bi_io_vec,
  441. bio->bi_max_vecs * sizeof(struct bio_vec));
  442. bp->b1.bi_io_vec = bp->bv1;
  443. bp->b2.bi_io_vec = bp->bv2;
  444. bp->b2.bi_io_vec[idx].bv_offset += offset;
  445. bp->b2.bi_io_vec[idx].bv_len -= offset;
  446. bp->b1.bi_io_vec[idx].bv_len = offset;
  447. bp->b1.bi_vcnt++;
  448. } else
  449. bp->bv1 = bp->bv2 = NULL;
  450. bp->b1.bi_private = bp;
  451. bp->b2.bi_private = bp;
  452. bp->b1.bi_end_io = nvme_bio_pair_endio;
  453. bp->b2.bi_end_io = nvme_bio_pair_endio;
  454. bp->parent = bio;
  455. atomic_set(&bp->cnt, 2);
  456. return bp;
  457. split_fail_2:
  458. kfree(bp->bv1);
  459. split_fail_1:
  460. kfree(bp);
  461. return NULL;
  462. }
  463. static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
  464. int idx, int len, int offset)
  465. {
  466. struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
  467. if (!bp)
  468. return -ENOMEM;
  469. if (bio_list_empty(&nvmeq->sq_cong))
  470. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  471. bio_list_add(&nvmeq->sq_cong, &bp->b1);
  472. bio_list_add(&nvmeq->sq_cong, &bp->b2);
  473. return 0;
  474. }
  475. /* NVMe scatterlists require no holes in the virtual address */
  476. #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
  477. (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
  478. static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
  479. struct bio *bio, enum dma_data_direction dma_dir, int psegs)
  480. {
  481. struct bio_vec *bvec, *bvprv = NULL;
  482. struct scatterlist *sg = NULL;
  483. int i, length = 0, nsegs = 0, split_len = bio->bi_size;
  484. if (nvmeq->dev->stripe_size)
  485. split_len = nvmeq->dev->stripe_size -
  486. ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
  487. sg_init_table(iod->sg, psegs);
  488. bio_for_each_segment(bvec, bio, i) {
  489. if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
  490. sg->length += bvec->bv_len;
  491. } else {
  492. if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
  493. return nvme_split_and_submit(bio, nvmeq, i,
  494. length, 0);
  495. sg = sg ? sg + 1 : iod->sg;
  496. sg_set_page(sg, bvec->bv_page, bvec->bv_len,
  497. bvec->bv_offset);
  498. nsegs++;
  499. }
  500. if (split_len - length < bvec->bv_len)
  501. return nvme_split_and_submit(bio, nvmeq, i, split_len,
  502. split_len - length);
  503. length += bvec->bv_len;
  504. bvprv = bvec;
  505. }
  506. iod->nents = nsegs;
  507. sg_mark_end(sg);
  508. if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
  509. return -ENOMEM;
  510. BUG_ON(length != bio->bi_size);
  511. return length;
  512. }
  513. /*
  514. * We reuse the small pool to allocate the 16-byte range here as it is not
  515. * worth having a special pool for these or additional cases to handle freeing
  516. * the iod.
  517. */
  518. static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  519. struct bio *bio, struct nvme_iod *iod, int cmdid)
  520. {
  521. struct nvme_dsm_range *range;
  522. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  523. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  524. &iod->first_dma);
  525. if (!range)
  526. return -ENOMEM;
  527. iod_list(iod)[0] = (__le64 *)range;
  528. iod->npages = 0;
  529. range->cattr = cpu_to_le32(0);
  530. range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
  531. range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
  532. memset(cmnd, 0, sizeof(*cmnd));
  533. cmnd->dsm.opcode = nvme_cmd_dsm;
  534. cmnd->dsm.command_id = cmdid;
  535. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  536. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  537. cmnd->dsm.nr = 0;
  538. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  539. if (++nvmeq->sq_tail == nvmeq->q_depth)
  540. nvmeq->sq_tail = 0;
  541. writel(nvmeq->sq_tail, nvmeq->q_db);
  542. return 0;
  543. }
  544. static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  545. int cmdid)
  546. {
  547. struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  548. memset(cmnd, 0, sizeof(*cmnd));
  549. cmnd->common.opcode = nvme_cmd_flush;
  550. cmnd->common.command_id = cmdid;
  551. cmnd->common.nsid = cpu_to_le32(ns->ns_id);
  552. if (++nvmeq->sq_tail == nvmeq->q_depth)
  553. nvmeq->sq_tail = 0;
  554. writel(nvmeq->sq_tail, nvmeq->q_db);
  555. return 0;
  556. }
  557. int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
  558. {
  559. int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
  560. special_completion, NVME_IO_TIMEOUT);
  561. if (unlikely(cmdid < 0))
  562. return cmdid;
  563. return nvme_submit_flush(nvmeq, ns, cmdid);
  564. }
  565. /*
  566. * Called with local interrupts disabled and the q_lock held. May not sleep.
  567. */
  568. static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  569. struct bio *bio)
  570. {
  571. struct nvme_command *cmnd;
  572. struct nvme_iod *iod;
  573. enum dma_data_direction dma_dir;
  574. int cmdid, length, result;
  575. u16 control;
  576. u32 dsmgmt;
  577. int psegs = bio_phys_segments(ns->queue, bio);
  578. if ((bio->bi_rw & REQ_FLUSH) && psegs) {
  579. result = nvme_submit_flush_data(nvmeq, ns);
  580. if (result)
  581. return result;
  582. }
  583. result = -ENOMEM;
  584. iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
  585. if (!iod)
  586. goto nomem;
  587. iod->private = bio;
  588. result = -EBUSY;
  589. cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
  590. if (unlikely(cmdid < 0))
  591. goto free_iod;
  592. if (bio->bi_rw & REQ_DISCARD) {
  593. result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
  594. if (result)
  595. goto free_cmdid;
  596. return result;
  597. }
  598. if ((bio->bi_rw & REQ_FLUSH) && !psegs)
  599. return nvme_submit_flush(nvmeq, ns, cmdid);
  600. control = 0;
  601. if (bio->bi_rw & REQ_FUA)
  602. control |= NVME_RW_FUA;
  603. if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
  604. control |= NVME_RW_LR;
  605. dsmgmt = 0;
  606. if (bio->bi_rw & REQ_RAHEAD)
  607. dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
  608. cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
  609. memset(cmnd, 0, sizeof(*cmnd));
  610. if (bio_data_dir(bio)) {
  611. cmnd->rw.opcode = nvme_cmd_write;
  612. dma_dir = DMA_TO_DEVICE;
  613. } else {
  614. cmnd->rw.opcode = nvme_cmd_read;
  615. dma_dir = DMA_FROM_DEVICE;
  616. }
  617. result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
  618. if (result <= 0)
  619. goto free_cmdid;
  620. length = result;
  621. cmnd->rw.command_id = cmdid;
  622. cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
  623. length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
  624. GFP_ATOMIC);
  625. cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
  626. cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
  627. cmnd->rw.control = cpu_to_le16(control);
  628. cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
  629. nvme_start_io_acct(bio);
  630. if (++nvmeq->sq_tail == nvmeq->q_depth)
  631. nvmeq->sq_tail = 0;
  632. writel(nvmeq->sq_tail, nvmeq->q_db);
  633. return 0;
  634. free_cmdid:
  635. free_cmdid(nvmeq, cmdid, NULL);
  636. free_iod:
  637. nvme_free_iod(nvmeq->dev, iod);
  638. nomem:
  639. return result;
  640. }
  641. static void nvme_make_request(struct request_queue *q, struct bio *bio)
  642. {
  643. struct nvme_ns *ns = q->queuedata;
  644. struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
  645. int result = -EBUSY;
  646. spin_lock_irq(&nvmeq->q_lock);
  647. if (bio_list_empty(&nvmeq->sq_cong))
  648. result = nvme_submit_bio_queue(nvmeq, ns, bio);
  649. if (unlikely(result)) {
  650. if (bio_list_empty(&nvmeq->sq_cong))
  651. add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
  652. bio_list_add(&nvmeq->sq_cong, bio);
  653. }
  654. spin_unlock_irq(&nvmeq->q_lock);
  655. put_nvmeq(nvmeq);
  656. }
  657. static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
  658. {
  659. u16 head, phase;
  660. head = nvmeq->cq_head;
  661. phase = nvmeq->cq_phase;
  662. for (;;) {
  663. void *ctx;
  664. nvme_completion_fn fn;
  665. struct nvme_completion cqe = nvmeq->cqes[head];
  666. if ((le16_to_cpu(cqe.status) & 1) != phase)
  667. break;
  668. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  669. if (++head == nvmeq->q_depth) {
  670. head = 0;
  671. phase = !phase;
  672. }
  673. ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
  674. fn(nvmeq->dev, ctx, &cqe);
  675. }
  676. /* If the controller ignores the cq head doorbell and continuously
  677. * writes to the queue, it is theoretically possible to wrap around
  678. * the queue twice and mistakenly return IRQ_NONE. Linux only
  679. * requires that 0.1% of your interrupts are handled, so this isn't
  680. * a big problem.
  681. */
  682. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  683. return IRQ_NONE;
  684. writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
  685. nvmeq->cq_head = head;
  686. nvmeq->cq_phase = phase;
  687. return IRQ_HANDLED;
  688. }
  689. static irqreturn_t nvme_irq(int irq, void *data)
  690. {
  691. irqreturn_t result;
  692. struct nvme_queue *nvmeq = data;
  693. spin_lock(&nvmeq->q_lock);
  694. result = nvme_process_cq(nvmeq);
  695. spin_unlock(&nvmeq->q_lock);
  696. return result;
  697. }
  698. static irqreturn_t nvme_irq_check(int irq, void *data)
  699. {
  700. struct nvme_queue *nvmeq = data;
  701. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  702. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  703. return IRQ_NONE;
  704. return IRQ_WAKE_THREAD;
  705. }
  706. static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
  707. {
  708. spin_lock_irq(&nvmeq->q_lock);
  709. cancel_cmdid(nvmeq, cmdid, NULL);
  710. spin_unlock_irq(&nvmeq->q_lock);
  711. }
  712. struct sync_cmd_info {
  713. struct task_struct *task;
  714. u32 result;
  715. int status;
  716. };
  717. static void sync_completion(struct nvme_dev *dev, void *ctx,
  718. struct nvme_completion *cqe)
  719. {
  720. struct sync_cmd_info *cmdinfo = ctx;
  721. cmdinfo->result = le32_to_cpup(&cqe->result);
  722. cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
  723. wake_up_process(cmdinfo->task);
  724. }
  725. /*
  726. * Returns 0 on success. If the result is negative, it's a Linux error code;
  727. * if the result is positive, it's an NVM Express status code
  728. */
  729. int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
  730. u32 *result, unsigned timeout)
  731. {
  732. int cmdid;
  733. struct sync_cmd_info cmdinfo;
  734. cmdinfo.task = current;
  735. cmdinfo.status = -EINTR;
  736. cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
  737. timeout);
  738. if (cmdid < 0)
  739. return cmdid;
  740. cmd->common.command_id = cmdid;
  741. set_current_state(TASK_KILLABLE);
  742. nvme_submit_cmd(nvmeq, cmd);
  743. schedule_timeout(timeout);
  744. if (cmdinfo.status == -EINTR) {
  745. nvme_abort_command(nvmeq, cmdid);
  746. return -EINTR;
  747. }
  748. if (result)
  749. *result = cmdinfo.result;
  750. return cmdinfo.status;
  751. }
  752. int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
  753. u32 *result)
  754. {
  755. return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
  756. }
  757. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  758. {
  759. int status;
  760. struct nvme_command c;
  761. memset(&c, 0, sizeof(c));
  762. c.delete_queue.opcode = opcode;
  763. c.delete_queue.qid = cpu_to_le16(id);
  764. status = nvme_submit_admin_cmd(dev, &c, NULL);
  765. if (status)
  766. return -EIO;
  767. return 0;
  768. }
  769. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  770. struct nvme_queue *nvmeq)
  771. {
  772. int status;
  773. struct nvme_command c;
  774. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  775. memset(&c, 0, sizeof(c));
  776. c.create_cq.opcode = nvme_admin_create_cq;
  777. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  778. c.create_cq.cqid = cpu_to_le16(qid);
  779. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  780. c.create_cq.cq_flags = cpu_to_le16(flags);
  781. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  782. status = nvme_submit_admin_cmd(dev, &c, NULL);
  783. if (status)
  784. return -EIO;
  785. return 0;
  786. }
  787. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  788. struct nvme_queue *nvmeq)
  789. {
  790. int status;
  791. struct nvme_command c;
  792. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  793. memset(&c, 0, sizeof(c));
  794. c.create_sq.opcode = nvme_admin_create_sq;
  795. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  796. c.create_sq.sqid = cpu_to_le16(qid);
  797. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  798. c.create_sq.sq_flags = cpu_to_le16(flags);
  799. c.create_sq.cqid = cpu_to_le16(qid);
  800. status = nvme_submit_admin_cmd(dev, &c, NULL);
  801. if (status)
  802. return -EIO;
  803. return 0;
  804. }
  805. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  806. {
  807. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  808. }
  809. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  810. {
  811. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  812. }
  813. int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
  814. dma_addr_t dma_addr)
  815. {
  816. struct nvme_command c;
  817. memset(&c, 0, sizeof(c));
  818. c.identify.opcode = nvme_admin_identify;
  819. c.identify.nsid = cpu_to_le32(nsid);
  820. c.identify.prp1 = cpu_to_le64(dma_addr);
  821. c.identify.cns = cpu_to_le32(cns);
  822. return nvme_submit_admin_cmd(dev, &c, NULL);
  823. }
  824. int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
  825. dma_addr_t dma_addr, u32 *result)
  826. {
  827. struct nvme_command c;
  828. memset(&c, 0, sizeof(c));
  829. c.features.opcode = nvme_admin_get_features;
  830. c.features.nsid = cpu_to_le32(nsid);
  831. c.features.prp1 = cpu_to_le64(dma_addr);
  832. c.features.fid = cpu_to_le32(fid);
  833. return nvme_submit_admin_cmd(dev, &c, result);
  834. }
  835. int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
  836. dma_addr_t dma_addr, u32 *result)
  837. {
  838. struct nvme_command c;
  839. memset(&c, 0, sizeof(c));
  840. c.features.opcode = nvme_admin_set_features;
  841. c.features.prp1 = cpu_to_le64(dma_addr);
  842. c.features.fid = cpu_to_le32(fid);
  843. c.features.dword11 = cpu_to_le32(dword11);
  844. return nvme_submit_admin_cmd(dev, &c, result);
  845. }
  846. /**
  847. * nvme_cancel_ios - Cancel outstanding I/Os
  848. * @queue: The queue to cancel I/Os on
  849. * @timeout: True to only cancel I/Os which have timed out
  850. */
  851. static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
  852. {
  853. int depth = nvmeq->q_depth - 1;
  854. struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
  855. unsigned long now = jiffies;
  856. int cmdid;
  857. for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
  858. void *ctx;
  859. nvme_completion_fn fn;
  860. static struct nvme_completion cqe = {
  861. .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
  862. };
  863. if (timeout && !time_after(now, info[cmdid].timeout))
  864. continue;
  865. if (info[cmdid].ctx == CMD_CTX_CANCELLED)
  866. continue;
  867. dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
  868. ctx = cancel_cmdid(nvmeq, cmdid, &fn);
  869. fn(nvmeq->dev, ctx, &cqe);
  870. }
  871. }
  872. static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
  873. {
  874. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  875. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  876. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  877. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  878. kfree(nvmeq);
  879. }
  880. static void nvme_free_queue(struct nvme_dev *dev, int qid)
  881. {
  882. struct nvme_queue *nvmeq = dev->queues[qid];
  883. int vector = dev->entry[nvmeq->cq_vector].vector;
  884. spin_lock_irq(&nvmeq->q_lock);
  885. nvme_cancel_ios(nvmeq, false);
  886. while (bio_list_peek(&nvmeq->sq_cong)) {
  887. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  888. bio_endio(bio, -EIO);
  889. }
  890. spin_unlock_irq(&nvmeq->q_lock);
  891. irq_set_affinity_hint(vector, NULL);
  892. free_irq(vector, nvmeq);
  893. /* Don't tell the adapter to delete the admin queue */
  894. if (qid) {
  895. adapter_delete_sq(dev, qid);
  896. adapter_delete_cq(dev, qid);
  897. }
  898. nvme_free_queue_mem(nvmeq);
  899. }
  900. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  901. int depth, int vector)
  902. {
  903. struct device *dmadev = &dev->pci_dev->dev;
  904. unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
  905. sizeof(struct nvme_cmd_info));
  906. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
  907. if (!nvmeq)
  908. return NULL;
  909. nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
  910. &nvmeq->cq_dma_addr, GFP_KERNEL);
  911. if (!nvmeq->cqes)
  912. goto free_nvmeq;
  913. memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
  914. nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
  915. &nvmeq->sq_dma_addr, GFP_KERNEL);
  916. if (!nvmeq->sq_cmds)
  917. goto free_cqdma;
  918. nvmeq->q_dmadev = dmadev;
  919. nvmeq->dev = dev;
  920. spin_lock_init(&nvmeq->q_lock);
  921. nvmeq->cq_head = 0;
  922. nvmeq->cq_phase = 1;
  923. init_waitqueue_head(&nvmeq->sq_full);
  924. init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
  925. bio_list_init(&nvmeq->sq_cong);
  926. nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
  927. nvmeq->q_depth = depth;
  928. nvmeq->cq_vector = vector;
  929. return nvmeq;
  930. free_cqdma:
  931. dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  932. nvmeq->cq_dma_addr);
  933. free_nvmeq:
  934. kfree(nvmeq);
  935. return NULL;
  936. }
  937. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  938. const char *name)
  939. {
  940. if (use_threaded_interrupts)
  941. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  942. nvme_irq_check, nvme_irq,
  943. IRQF_DISABLED | IRQF_SHARED,
  944. name, nvmeq);
  945. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  946. IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
  947. }
  948. static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
  949. int cq_size, int vector)
  950. {
  951. int result;
  952. struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
  953. if (!nvmeq)
  954. return ERR_PTR(-ENOMEM);
  955. result = adapter_alloc_cq(dev, qid, nvmeq);
  956. if (result < 0)
  957. goto free_nvmeq;
  958. result = adapter_alloc_sq(dev, qid, nvmeq);
  959. if (result < 0)
  960. goto release_cq;
  961. result = queue_request_irq(dev, nvmeq, "nvme");
  962. if (result < 0)
  963. goto release_sq;
  964. return nvmeq;
  965. release_sq:
  966. adapter_delete_sq(dev, qid);
  967. release_cq:
  968. adapter_delete_cq(dev, qid);
  969. free_nvmeq:
  970. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  971. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  972. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  973. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  974. kfree(nvmeq);
  975. return ERR_PTR(result);
  976. }
  977. static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
  978. {
  979. unsigned long timeout;
  980. u32 bit = enabled ? NVME_CSTS_RDY : 0;
  981. timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
  982. while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
  983. msleep(100);
  984. if (fatal_signal_pending(current))
  985. return -EINTR;
  986. if (time_after(jiffies, timeout)) {
  987. dev_err(&dev->pci_dev->dev,
  988. "Device not ready; aborting initialisation\n");
  989. return -ENODEV;
  990. }
  991. }
  992. return 0;
  993. }
  994. /*
  995. * If the device has been passed off to us in an enabled state, just clear
  996. * the enabled bit. The spec says we should set the 'shutdown notification
  997. * bits', but doing so may cause the device to complete commands to the
  998. * admin queue ... and we don't know what memory that might be pointing at!
  999. */
  1000. static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
  1001. {
  1002. u32 cc = readl(&dev->bar->cc);
  1003. if (cc & NVME_CC_ENABLE)
  1004. writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
  1005. return nvme_wait_ready(dev, cap, false);
  1006. }
  1007. static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
  1008. {
  1009. return nvme_wait_ready(dev, cap, true);
  1010. }
  1011. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1012. {
  1013. int result;
  1014. u32 aqa;
  1015. u64 cap = readq(&dev->bar->cap);
  1016. struct nvme_queue *nvmeq;
  1017. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1018. dev->db_stride = NVME_CAP_STRIDE(cap);
  1019. result = nvme_disable_ctrl(dev, cap);
  1020. if (result < 0)
  1021. return result;
  1022. nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
  1023. if (!nvmeq)
  1024. return -ENOMEM;
  1025. aqa = nvmeq->q_depth - 1;
  1026. aqa |= aqa << 16;
  1027. dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
  1028. dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
  1029. dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
  1030. dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
  1031. writel(aqa, &dev->bar->aqa);
  1032. writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
  1033. writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
  1034. writel(dev->ctrl_config, &dev->bar->cc);
  1035. result = nvme_enable_ctrl(dev, cap);
  1036. if (result)
  1037. goto free_q;
  1038. result = queue_request_irq(dev, nvmeq, "nvme admin");
  1039. if (result)
  1040. goto free_q;
  1041. dev->queues[0] = nvmeq;
  1042. return result;
  1043. free_q:
  1044. nvme_free_queue_mem(nvmeq);
  1045. return result;
  1046. }
  1047. struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
  1048. unsigned long addr, unsigned length)
  1049. {
  1050. int i, err, count, nents, offset;
  1051. struct scatterlist *sg;
  1052. struct page **pages;
  1053. struct nvme_iod *iod;
  1054. if (addr & 3)
  1055. return ERR_PTR(-EINVAL);
  1056. if (!length || length > INT_MAX - PAGE_SIZE)
  1057. return ERR_PTR(-EINVAL);
  1058. offset = offset_in_page(addr);
  1059. count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
  1060. pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
  1061. if (!pages)
  1062. return ERR_PTR(-ENOMEM);
  1063. err = get_user_pages_fast(addr, count, 1, pages);
  1064. if (err < count) {
  1065. count = err;
  1066. err = -EFAULT;
  1067. goto put_pages;
  1068. }
  1069. iod = nvme_alloc_iod(count, length, GFP_KERNEL);
  1070. sg = iod->sg;
  1071. sg_init_table(sg, count);
  1072. for (i = 0; i < count; i++) {
  1073. sg_set_page(&sg[i], pages[i],
  1074. min_t(unsigned, length, PAGE_SIZE - offset),
  1075. offset);
  1076. length -= (PAGE_SIZE - offset);
  1077. offset = 0;
  1078. }
  1079. sg_mark_end(&sg[i - 1]);
  1080. iod->nents = count;
  1081. err = -ENOMEM;
  1082. nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
  1083. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1084. if (!nents)
  1085. goto free_iod;
  1086. kfree(pages);
  1087. return iod;
  1088. free_iod:
  1089. kfree(iod);
  1090. put_pages:
  1091. for (i = 0; i < count; i++)
  1092. put_page(pages[i]);
  1093. kfree(pages);
  1094. return ERR_PTR(err);
  1095. }
  1096. void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
  1097. struct nvme_iod *iod)
  1098. {
  1099. int i;
  1100. dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
  1101. write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  1102. for (i = 0; i < iod->nents; i++)
  1103. put_page(sg_page(&iod->sg[i]));
  1104. }
  1105. static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
  1106. {
  1107. struct nvme_dev *dev = ns->dev;
  1108. struct nvme_queue *nvmeq;
  1109. struct nvme_user_io io;
  1110. struct nvme_command c;
  1111. unsigned length, meta_len;
  1112. int status, i;
  1113. struct nvme_iod *iod, *meta_iod = NULL;
  1114. dma_addr_t meta_dma_addr;
  1115. void *meta, *uninitialized_var(meta_mem);
  1116. if (copy_from_user(&io, uio, sizeof(io)))
  1117. return -EFAULT;
  1118. length = (io.nblocks + 1) << ns->lba_shift;
  1119. meta_len = (io.nblocks + 1) * ns->ms;
  1120. if (meta_len && ((io.metadata & 3) || !io.metadata))
  1121. return -EINVAL;
  1122. switch (io.opcode) {
  1123. case nvme_cmd_write:
  1124. case nvme_cmd_read:
  1125. case nvme_cmd_compare:
  1126. iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
  1127. break;
  1128. default:
  1129. return -EINVAL;
  1130. }
  1131. if (IS_ERR(iod))
  1132. return PTR_ERR(iod);
  1133. memset(&c, 0, sizeof(c));
  1134. c.rw.opcode = io.opcode;
  1135. c.rw.flags = io.flags;
  1136. c.rw.nsid = cpu_to_le32(ns->ns_id);
  1137. c.rw.slba = cpu_to_le64(io.slba);
  1138. c.rw.length = cpu_to_le16(io.nblocks);
  1139. c.rw.control = cpu_to_le16(io.control);
  1140. c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
  1141. c.rw.reftag = cpu_to_le32(io.reftag);
  1142. c.rw.apptag = cpu_to_le16(io.apptag);
  1143. c.rw.appmask = cpu_to_le16(io.appmask);
  1144. if (meta_len) {
  1145. meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
  1146. if (IS_ERR(meta_iod)) {
  1147. status = PTR_ERR(meta_iod);
  1148. meta_iod = NULL;
  1149. goto unmap;
  1150. }
  1151. meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
  1152. &meta_dma_addr, GFP_KERNEL);
  1153. if (!meta_mem) {
  1154. status = -ENOMEM;
  1155. goto unmap;
  1156. }
  1157. if (io.opcode & 1) {
  1158. int meta_offset = 0;
  1159. for (i = 0; i < meta_iod->nents; i++) {
  1160. meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
  1161. meta_iod->sg[i].offset;
  1162. memcpy(meta_mem + meta_offset, meta,
  1163. meta_iod->sg[i].length);
  1164. kunmap_atomic(meta);
  1165. meta_offset += meta_iod->sg[i].length;
  1166. }
  1167. }
  1168. c.rw.metadata = cpu_to_le64(meta_dma_addr);
  1169. }
  1170. length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
  1171. nvmeq = get_nvmeq(dev);
  1172. /*
  1173. * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
  1174. * disabled. We may be preempted at any point, and be rescheduled
  1175. * to a different CPU. That will cause cacheline bouncing, but no
  1176. * additional races since q_lock already protects against other CPUs.
  1177. */
  1178. put_nvmeq(nvmeq);
  1179. if (length != (io.nblocks + 1) << ns->lba_shift)
  1180. status = -ENOMEM;
  1181. else
  1182. status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
  1183. if (meta_len) {
  1184. if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
  1185. int meta_offset = 0;
  1186. for (i = 0; i < meta_iod->nents; i++) {
  1187. meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
  1188. meta_iod->sg[i].offset;
  1189. memcpy(meta, meta_mem + meta_offset,
  1190. meta_iod->sg[i].length);
  1191. kunmap_atomic(meta);
  1192. meta_offset += meta_iod->sg[i].length;
  1193. }
  1194. }
  1195. dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
  1196. meta_dma_addr);
  1197. }
  1198. unmap:
  1199. nvme_unmap_user_pages(dev, io.opcode & 1, iod);
  1200. nvme_free_iod(dev, iod);
  1201. if (meta_iod) {
  1202. nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
  1203. nvme_free_iod(dev, meta_iod);
  1204. }
  1205. return status;
  1206. }
  1207. static int nvme_user_admin_cmd(struct nvme_dev *dev,
  1208. struct nvme_admin_cmd __user *ucmd)
  1209. {
  1210. struct nvme_admin_cmd cmd;
  1211. struct nvme_command c;
  1212. int status, length;
  1213. struct nvme_iod *uninitialized_var(iod);
  1214. unsigned timeout;
  1215. if (!capable(CAP_SYS_ADMIN))
  1216. return -EACCES;
  1217. if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
  1218. return -EFAULT;
  1219. memset(&c, 0, sizeof(c));
  1220. c.common.opcode = cmd.opcode;
  1221. c.common.flags = cmd.flags;
  1222. c.common.nsid = cpu_to_le32(cmd.nsid);
  1223. c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
  1224. c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
  1225. c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
  1226. c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
  1227. c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
  1228. c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
  1229. c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
  1230. c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
  1231. length = cmd.data_len;
  1232. if (cmd.data_len) {
  1233. iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
  1234. length);
  1235. if (IS_ERR(iod))
  1236. return PTR_ERR(iod);
  1237. length = nvme_setup_prps(dev, &c.common, iod, length,
  1238. GFP_KERNEL);
  1239. }
  1240. timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
  1241. ADMIN_TIMEOUT;
  1242. if (length != cmd.data_len)
  1243. status = -ENOMEM;
  1244. else
  1245. status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
  1246. timeout);
  1247. if (cmd.data_len) {
  1248. nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
  1249. nvme_free_iod(dev, iod);
  1250. }
  1251. if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
  1252. sizeof(cmd.result)))
  1253. status = -EFAULT;
  1254. return status;
  1255. }
  1256. static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
  1257. unsigned long arg)
  1258. {
  1259. struct nvme_ns *ns = bdev->bd_disk->private_data;
  1260. switch (cmd) {
  1261. case NVME_IOCTL_ID:
  1262. return ns->ns_id;
  1263. case NVME_IOCTL_ADMIN_CMD:
  1264. return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
  1265. case NVME_IOCTL_SUBMIT_IO:
  1266. return nvme_submit_io(ns, (void __user *)arg);
  1267. case SG_GET_VERSION_NUM:
  1268. return nvme_sg_get_version_num((void __user *)arg);
  1269. case SG_IO:
  1270. return nvme_sg_io(ns, (void __user *)arg);
  1271. default:
  1272. return -ENOTTY;
  1273. }
  1274. }
  1275. static const struct block_device_operations nvme_fops = {
  1276. .owner = THIS_MODULE,
  1277. .ioctl = nvme_ioctl,
  1278. .compat_ioctl = nvme_ioctl,
  1279. };
  1280. static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
  1281. {
  1282. while (bio_list_peek(&nvmeq->sq_cong)) {
  1283. struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
  1284. struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
  1285. if (bio_list_empty(&nvmeq->sq_cong))
  1286. remove_wait_queue(&nvmeq->sq_full,
  1287. &nvmeq->sq_cong_wait);
  1288. if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
  1289. if (bio_list_empty(&nvmeq->sq_cong))
  1290. add_wait_queue(&nvmeq->sq_full,
  1291. &nvmeq->sq_cong_wait);
  1292. bio_list_add_head(&nvmeq->sq_cong, bio);
  1293. break;
  1294. }
  1295. }
  1296. }
  1297. static int nvme_kthread(void *data)
  1298. {
  1299. struct nvme_dev *dev;
  1300. while (!kthread_should_stop()) {
  1301. set_current_state(TASK_INTERRUPTIBLE);
  1302. spin_lock(&dev_list_lock);
  1303. list_for_each_entry(dev, &dev_list, node) {
  1304. int i;
  1305. for (i = 0; i < dev->queue_count; i++) {
  1306. struct nvme_queue *nvmeq = dev->queues[i];
  1307. if (!nvmeq)
  1308. continue;
  1309. spin_lock_irq(&nvmeq->q_lock);
  1310. if (nvme_process_cq(nvmeq))
  1311. printk("process_cq did something\n");
  1312. nvme_cancel_ios(nvmeq, true);
  1313. nvme_resubmit_bios(nvmeq);
  1314. spin_unlock_irq(&nvmeq->q_lock);
  1315. }
  1316. }
  1317. spin_unlock(&dev_list_lock);
  1318. schedule_timeout(round_jiffies_relative(HZ));
  1319. }
  1320. return 0;
  1321. }
  1322. static DEFINE_IDA(nvme_index_ida);
  1323. static int nvme_get_ns_idx(void)
  1324. {
  1325. int index, error;
  1326. do {
  1327. if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
  1328. return -1;
  1329. spin_lock(&dev_list_lock);
  1330. error = ida_get_new(&nvme_index_ida, &index);
  1331. spin_unlock(&dev_list_lock);
  1332. } while (error == -EAGAIN);
  1333. if (error)
  1334. index = -1;
  1335. return index;
  1336. }
  1337. static void nvme_put_ns_idx(int index)
  1338. {
  1339. spin_lock(&dev_list_lock);
  1340. ida_remove(&nvme_index_ida, index);
  1341. spin_unlock(&dev_list_lock);
  1342. }
  1343. static void nvme_config_discard(struct nvme_ns *ns)
  1344. {
  1345. u32 logical_block_size = queue_logical_block_size(ns->queue);
  1346. ns->queue->limits.discard_zeroes_data = 0;
  1347. ns->queue->limits.discard_alignment = logical_block_size;
  1348. ns->queue->limits.discard_granularity = logical_block_size;
  1349. ns->queue->limits.max_discard_sectors = 0xffffffff;
  1350. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
  1351. }
  1352. static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
  1353. struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
  1354. {
  1355. struct nvme_ns *ns;
  1356. struct gendisk *disk;
  1357. int lbaf;
  1358. if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
  1359. return NULL;
  1360. ns = kzalloc(sizeof(*ns), GFP_KERNEL);
  1361. if (!ns)
  1362. return NULL;
  1363. ns->queue = blk_alloc_queue(GFP_KERNEL);
  1364. if (!ns->queue)
  1365. goto out_free_ns;
  1366. ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
  1367. queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
  1368. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
  1369. blk_queue_make_request(ns->queue, nvme_make_request);
  1370. ns->dev = dev;
  1371. ns->queue->queuedata = ns;
  1372. disk = alloc_disk(NVME_MINORS);
  1373. if (!disk)
  1374. goto out_free_queue;
  1375. ns->ns_id = nsid;
  1376. ns->disk = disk;
  1377. lbaf = id->flbas & 0xf;
  1378. ns->lba_shift = id->lbaf[lbaf].ds;
  1379. ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
  1380. blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
  1381. if (dev->max_hw_sectors)
  1382. blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
  1383. disk->major = nvme_major;
  1384. disk->minors = NVME_MINORS;
  1385. disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
  1386. disk->fops = &nvme_fops;
  1387. disk->private_data = ns;
  1388. disk->queue = ns->queue;
  1389. disk->driverfs_dev = &dev->pci_dev->dev;
  1390. sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
  1391. set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
  1392. if (dev->oncs & NVME_CTRL_ONCS_DSM)
  1393. nvme_config_discard(ns);
  1394. return ns;
  1395. out_free_queue:
  1396. blk_cleanup_queue(ns->queue);
  1397. out_free_ns:
  1398. kfree(ns);
  1399. return NULL;
  1400. }
  1401. static void nvme_ns_free(struct nvme_ns *ns)
  1402. {
  1403. int index = ns->disk->first_minor / NVME_MINORS;
  1404. put_disk(ns->disk);
  1405. nvme_put_ns_idx(index);
  1406. blk_cleanup_queue(ns->queue);
  1407. kfree(ns);
  1408. }
  1409. static int set_queue_count(struct nvme_dev *dev, int count)
  1410. {
  1411. int status;
  1412. u32 result;
  1413. u32 q_count = (count - 1) | ((count - 1) << 16);
  1414. status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
  1415. &result);
  1416. if (status)
  1417. return -EIO;
  1418. return min(result & 0xffff, result >> 16) + 1;
  1419. }
  1420. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1421. {
  1422. struct pci_dev *pdev = dev->pci_dev;
  1423. int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
  1424. nr_io_queues = num_online_cpus();
  1425. result = set_queue_count(dev, nr_io_queues);
  1426. if (result < 0)
  1427. return result;
  1428. if (result < nr_io_queues)
  1429. nr_io_queues = result;
  1430. /* Deregister the admin queue's interrupt */
  1431. free_irq(dev->entry[0].vector, dev->queues[0]);
  1432. db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
  1433. if (db_bar_size > 8192) {
  1434. iounmap(dev->bar);
  1435. dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
  1436. dev->dbs = ((void __iomem *)dev->bar) + 4096;
  1437. dev->queues[0]->q_db = dev->dbs;
  1438. }
  1439. vecs = nr_io_queues;
  1440. for (i = 0; i < vecs; i++)
  1441. dev->entry[i].entry = i;
  1442. for (;;) {
  1443. result = pci_enable_msix(pdev, dev->entry, vecs);
  1444. if (result <= 0)
  1445. break;
  1446. vecs = result;
  1447. }
  1448. if (result < 0) {
  1449. vecs = nr_io_queues;
  1450. if (vecs > 32)
  1451. vecs = 32;
  1452. for (;;) {
  1453. result = pci_enable_msi_block(pdev, vecs);
  1454. if (result == 0) {
  1455. for (i = 0; i < vecs; i++)
  1456. dev->entry[i].vector = i + pdev->irq;
  1457. break;
  1458. } else if (result < 0) {
  1459. vecs = 1;
  1460. break;
  1461. }
  1462. vecs = result;
  1463. }
  1464. }
  1465. /*
  1466. * Should investigate if there's a performance win from allocating
  1467. * more queues than interrupt vectors; it might allow the submission
  1468. * path to scale better, even if the receive path is limited by the
  1469. * number of interrupts.
  1470. */
  1471. nr_io_queues = vecs;
  1472. result = queue_request_irq(dev, dev->queues[0], "nvme admin");
  1473. /* XXX: handle failure here */
  1474. cpu = cpumask_first(cpu_online_mask);
  1475. for (i = 0; i < nr_io_queues; i++) {
  1476. irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
  1477. cpu = cpumask_next(cpu, cpu_online_mask);
  1478. }
  1479. q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
  1480. NVME_Q_DEPTH);
  1481. for (i = 0; i < nr_io_queues; i++) {
  1482. dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
  1483. if (IS_ERR(dev->queues[i + 1]))
  1484. return PTR_ERR(dev->queues[i + 1]);
  1485. dev->queue_count++;
  1486. }
  1487. for (; i < num_possible_cpus(); i++) {
  1488. int target = i % rounddown_pow_of_two(dev->queue_count - 1);
  1489. dev->queues[i + 1] = dev->queues[target + 1];
  1490. }
  1491. return 0;
  1492. }
  1493. static void nvme_free_queues(struct nvme_dev *dev)
  1494. {
  1495. int i;
  1496. for (i = dev->queue_count - 1; i >= 0; i--)
  1497. nvme_free_queue(dev, i);
  1498. }
  1499. /*
  1500. * Return: error value if an error occurred setting up the queues or calling
  1501. * Identify Device. 0 if these succeeded, even if adding some of the
  1502. * namespaces failed. At the moment, these failures are silent. TBD which
  1503. * failures should be reported.
  1504. */
  1505. static int nvme_dev_add(struct nvme_dev *dev)
  1506. {
  1507. int res, nn, i;
  1508. struct nvme_ns *ns;
  1509. struct nvme_id_ctrl *ctrl;
  1510. struct nvme_id_ns *id_ns;
  1511. void *mem;
  1512. dma_addr_t dma_addr;
  1513. int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
  1514. res = nvme_setup_io_queues(dev);
  1515. if (res)
  1516. return res;
  1517. mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
  1518. GFP_KERNEL);
  1519. if (!mem)
  1520. return -ENOMEM;
  1521. res = nvme_identify(dev, 0, 1, dma_addr);
  1522. if (res) {
  1523. res = -EIO;
  1524. goto out;
  1525. }
  1526. ctrl = mem;
  1527. nn = le32_to_cpup(&ctrl->nn);
  1528. dev->oncs = le16_to_cpup(&ctrl->oncs);
  1529. memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
  1530. memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
  1531. memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
  1532. if (ctrl->mdts)
  1533. dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
  1534. if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
  1535. (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
  1536. dev->stripe_size = 1 << (ctrl->vs[3] + shift);
  1537. id_ns = mem;
  1538. for (i = 1; i <= nn; i++) {
  1539. res = nvme_identify(dev, i, 0, dma_addr);
  1540. if (res)
  1541. continue;
  1542. if (id_ns->ncap == 0)
  1543. continue;
  1544. res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
  1545. dma_addr + 4096, NULL);
  1546. if (res)
  1547. memset(mem + 4096, 0, 4096);
  1548. ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
  1549. if (ns)
  1550. list_add_tail(&ns->list, &dev->namespaces);
  1551. }
  1552. list_for_each_entry(ns, &dev->namespaces, list)
  1553. add_disk(ns->disk);
  1554. res = 0;
  1555. out:
  1556. dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
  1557. return res;
  1558. }
  1559. static int nvme_dev_remove(struct nvme_dev *dev)
  1560. {
  1561. struct nvme_ns *ns, *next;
  1562. spin_lock(&dev_list_lock);
  1563. list_del(&dev->node);
  1564. spin_unlock(&dev_list_lock);
  1565. list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
  1566. list_del(&ns->list);
  1567. del_gendisk(ns->disk);
  1568. nvme_ns_free(ns);
  1569. }
  1570. nvme_free_queues(dev);
  1571. return 0;
  1572. }
  1573. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1574. {
  1575. struct device *dmadev = &dev->pci_dev->dev;
  1576. dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
  1577. PAGE_SIZE, PAGE_SIZE, 0);
  1578. if (!dev->prp_page_pool)
  1579. return -ENOMEM;
  1580. /* Optimisation for I/Os between 4k and 128k */
  1581. dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
  1582. 256, 256, 0);
  1583. if (!dev->prp_small_pool) {
  1584. dma_pool_destroy(dev->prp_page_pool);
  1585. return -ENOMEM;
  1586. }
  1587. return 0;
  1588. }
  1589. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1590. {
  1591. dma_pool_destroy(dev->prp_page_pool);
  1592. dma_pool_destroy(dev->prp_small_pool);
  1593. }
  1594. static DEFINE_IDA(nvme_instance_ida);
  1595. static int nvme_set_instance(struct nvme_dev *dev)
  1596. {
  1597. int instance, error;
  1598. do {
  1599. if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
  1600. return -ENODEV;
  1601. spin_lock(&dev_list_lock);
  1602. error = ida_get_new(&nvme_instance_ida, &instance);
  1603. spin_unlock(&dev_list_lock);
  1604. } while (error == -EAGAIN);
  1605. if (error)
  1606. return -ENODEV;
  1607. dev->instance = instance;
  1608. return 0;
  1609. }
  1610. static void nvme_release_instance(struct nvme_dev *dev)
  1611. {
  1612. spin_lock(&dev_list_lock);
  1613. ida_remove(&nvme_instance_ida, dev->instance);
  1614. spin_unlock(&dev_list_lock);
  1615. }
  1616. static void nvme_free_dev(struct kref *kref)
  1617. {
  1618. struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
  1619. nvme_dev_remove(dev);
  1620. if (dev->pci_dev->msi_enabled)
  1621. pci_disable_msi(dev->pci_dev);
  1622. else if (dev->pci_dev->msix_enabled)
  1623. pci_disable_msix(dev->pci_dev);
  1624. iounmap(dev->bar);
  1625. nvme_release_instance(dev);
  1626. nvme_release_prp_pools(dev);
  1627. pci_disable_device(dev->pci_dev);
  1628. pci_release_regions(dev->pci_dev);
  1629. kfree(dev->queues);
  1630. kfree(dev->entry);
  1631. kfree(dev);
  1632. }
  1633. static int nvme_dev_open(struct inode *inode, struct file *f)
  1634. {
  1635. struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
  1636. miscdev);
  1637. kref_get(&dev->kref);
  1638. f->private_data = dev;
  1639. return 0;
  1640. }
  1641. static int nvme_dev_release(struct inode *inode, struct file *f)
  1642. {
  1643. struct nvme_dev *dev = f->private_data;
  1644. kref_put(&dev->kref, nvme_free_dev);
  1645. return 0;
  1646. }
  1647. static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1648. {
  1649. struct nvme_dev *dev = f->private_data;
  1650. switch (cmd) {
  1651. case NVME_IOCTL_ADMIN_CMD:
  1652. return nvme_user_admin_cmd(dev, (void __user *)arg);
  1653. default:
  1654. return -ENOTTY;
  1655. }
  1656. }
  1657. static const struct file_operations nvme_dev_fops = {
  1658. .owner = THIS_MODULE,
  1659. .open = nvme_dev_open,
  1660. .release = nvme_dev_release,
  1661. .unlocked_ioctl = nvme_dev_ioctl,
  1662. .compat_ioctl = nvme_dev_ioctl,
  1663. };
  1664. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1665. {
  1666. int bars, result = -ENOMEM;
  1667. struct nvme_dev *dev;
  1668. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  1669. if (!dev)
  1670. return -ENOMEM;
  1671. dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
  1672. GFP_KERNEL);
  1673. if (!dev->entry)
  1674. goto free;
  1675. dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
  1676. GFP_KERNEL);
  1677. if (!dev->queues)
  1678. goto free;
  1679. if (pci_enable_device_mem(pdev))
  1680. goto free;
  1681. pci_set_master(pdev);
  1682. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1683. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1684. goto disable;
  1685. INIT_LIST_HEAD(&dev->namespaces);
  1686. dev->pci_dev = pdev;
  1687. pci_set_drvdata(pdev, dev);
  1688. if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
  1689. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
  1690. else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
  1691. dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
  1692. else
  1693. goto disable;
  1694. result = nvme_set_instance(dev);
  1695. if (result)
  1696. goto disable;
  1697. dev->entry[0].vector = pdev->irq;
  1698. result = nvme_setup_prp_pools(dev);
  1699. if (result)
  1700. goto disable_msix;
  1701. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1702. if (!dev->bar) {
  1703. result = -ENOMEM;
  1704. goto disable_msix;
  1705. }
  1706. result = nvme_configure_admin_queue(dev);
  1707. if (result)
  1708. goto unmap;
  1709. dev->queue_count++;
  1710. spin_lock(&dev_list_lock);
  1711. list_add(&dev->node, &dev_list);
  1712. spin_unlock(&dev_list_lock);
  1713. result = nvme_dev_add(dev);
  1714. if (result)
  1715. goto delete;
  1716. scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
  1717. dev->miscdev.minor = MISC_DYNAMIC_MINOR;
  1718. dev->miscdev.parent = &pdev->dev;
  1719. dev->miscdev.name = dev->name;
  1720. dev->miscdev.fops = &nvme_dev_fops;
  1721. result = misc_register(&dev->miscdev);
  1722. if (result)
  1723. goto remove;
  1724. kref_init(&dev->kref);
  1725. return 0;
  1726. remove:
  1727. nvme_dev_remove(dev);
  1728. delete:
  1729. spin_lock(&dev_list_lock);
  1730. list_del(&dev->node);
  1731. spin_unlock(&dev_list_lock);
  1732. nvme_free_queues(dev);
  1733. unmap:
  1734. iounmap(dev->bar);
  1735. disable_msix:
  1736. if (dev->pci_dev->msi_enabled)
  1737. pci_disable_msi(dev->pci_dev);
  1738. else if (dev->pci_dev->msix_enabled)
  1739. pci_disable_msix(dev->pci_dev);
  1740. nvme_release_instance(dev);
  1741. nvme_release_prp_pools(dev);
  1742. disable:
  1743. pci_disable_device(pdev);
  1744. pci_release_regions(pdev);
  1745. free:
  1746. kfree(dev->queues);
  1747. kfree(dev->entry);
  1748. kfree(dev);
  1749. return result;
  1750. }
  1751. static void nvme_remove(struct pci_dev *pdev)
  1752. {
  1753. struct nvme_dev *dev = pci_get_drvdata(pdev);
  1754. misc_deregister(&dev->miscdev);
  1755. kref_put(&dev->kref, nvme_free_dev);
  1756. }
  1757. /* These functions are yet to be implemented */
  1758. #define nvme_error_detected NULL
  1759. #define nvme_dump_registers NULL
  1760. #define nvme_link_reset NULL
  1761. #define nvme_slot_reset NULL
  1762. #define nvme_error_resume NULL
  1763. #define nvme_suspend NULL
  1764. #define nvme_resume NULL
  1765. static const struct pci_error_handlers nvme_err_handler = {
  1766. .error_detected = nvme_error_detected,
  1767. .mmio_enabled = nvme_dump_registers,
  1768. .link_reset = nvme_link_reset,
  1769. .slot_reset = nvme_slot_reset,
  1770. .resume = nvme_error_resume,
  1771. };
  1772. /* Move to pci_ids.h later */
  1773. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  1774. static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
  1775. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  1776. { 0, }
  1777. };
  1778. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  1779. static struct pci_driver nvme_driver = {
  1780. .name = "nvme",
  1781. .id_table = nvme_id_table,
  1782. .probe = nvme_probe,
  1783. .remove = nvme_remove,
  1784. .suspend = nvme_suspend,
  1785. .resume = nvme_resume,
  1786. .err_handler = &nvme_err_handler,
  1787. };
  1788. static int __init nvme_init(void)
  1789. {
  1790. int result;
  1791. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  1792. if (IS_ERR(nvme_thread))
  1793. return PTR_ERR(nvme_thread);
  1794. result = register_blkdev(nvme_major, "nvme");
  1795. if (result < 0)
  1796. goto kill_kthread;
  1797. else if (result > 0)
  1798. nvme_major = result;
  1799. result = pci_register_driver(&nvme_driver);
  1800. if (result)
  1801. goto unregister_blkdev;
  1802. return 0;
  1803. unregister_blkdev:
  1804. unregister_blkdev(nvme_major, "nvme");
  1805. kill_kthread:
  1806. kthread_stop(nvme_thread);
  1807. return result;
  1808. }
  1809. static void __exit nvme_exit(void)
  1810. {
  1811. pci_unregister_driver(&nvme_driver);
  1812. unregister_blkdev(nvme_major, "nvme");
  1813. kthread_stop(nvme_thread);
  1814. }
  1815. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  1816. MODULE_LICENSE("GPL");
  1817. MODULE_VERSION("0.8");
  1818. module_init(nvme_init);
  1819. module_exit(nvme_exit);