amd64_edac.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565
  1. #include "amd64_edac.h"
  2. static struct edac_pci_ctl_info *amd64_ctl_pci;
  3. static int report_gart_errors;
  4. module_param(report_gart_errors, int, 0644);
  5. /*
  6. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  7. * cleared to prevent re-enabling the hardware by this driver.
  8. */
  9. static int ecc_enable_override;
  10. module_param(ecc_enable_override, int, 0644);
  11. /* Lookup table for all possible MC control instances */
  12. struct amd64_pvt;
  13. static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
  14. static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
  15. /*
  16. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  17. * hardware and can involve L2 cache, dcache as well as the main memory. With
  18. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  19. * functionality.
  20. *
  21. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  22. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  23. * bytes/sec for the setting.
  24. *
  25. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  26. * other archs, we might not have access to the caches directly.
  27. */
  28. /*
  29. * scan the scrub rate mapping table for a close or matching bandwidth value to
  30. * issue. If requested is too big, then use last maximum value found.
  31. */
  32. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  33. u32 min_scrubrate)
  34. {
  35. u32 scrubval;
  36. int i;
  37. /*
  38. * map the configured rate (new_bw) to a value specific to the AMD64
  39. * memory controller and apply to register. Search for the first
  40. * bandwidth entry that is greater or equal than the setting requested
  41. * and program that. If at last entry, turn off DRAM scrubbing.
  42. */
  43. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  44. /*
  45. * skip scrub rates which aren't recommended
  46. * (see F10 BKDG, F3x58)
  47. */
  48. if (scrubrates[i].scrubval < min_scrubrate)
  49. continue;
  50. if (scrubrates[i].bandwidth <= new_bw)
  51. break;
  52. /*
  53. * if no suitable bandwidth found, turn off DRAM scrubbing
  54. * entirely by falling back to the last element in the
  55. * scrubrates array.
  56. */
  57. }
  58. scrubval = scrubrates[i].scrubval;
  59. if (scrubval)
  60. edac_printk(KERN_DEBUG, EDAC_MC,
  61. "Setting scrub rate bandwidth: %u\n",
  62. scrubrates[i].bandwidth);
  63. else
  64. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  65. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  66. return 0;
  67. }
  68. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  69. {
  70. struct amd64_pvt *pvt = mci->pvt_info;
  71. u32 min_scrubrate = 0x0;
  72. switch (boot_cpu_data.x86) {
  73. case 0xf:
  74. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  75. break;
  76. case 0x10:
  77. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  78. break;
  79. case 0x11:
  80. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  81. break;
  82. default:
  83. amd64_printk(KERN_ERR, "Unsupported family!\n");
  84. break;
  85. }
  86. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  87. min_scrubrate);
  88. }
  89. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  90. {
  91. struct amd64_pvt *pvt = mci->pvt_info;
  92. u32 scrubval = 0;
  93. int status = -1, i, ret = 0;
  94. ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  95. if (ret)
  96. debugf0("Reading K8_SCRCTRL failed\n");
  97. scrubval = scrubval & 0x001F;
  98. edac_printk(KERN_DEBUG, EDAC_MC,
  99. "pci-read, sdram scrub control value: %d \n", scrubval);
  100. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  101. if (scrubrates[i].scrubval == scrubval) {
  102. *bw = scrubrates[i].bandwidth;
  103. status = 0;
  104. break;
  105. }
  106. }
  107. return status;
  108. }
  109. /* Map from a CSROW entry to the mask entry that operates on it */
  110. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  111. {
  112. return csrow >> (pvt->num_dcsm >> 3);
  113. }
  114. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  115. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  116. {
  117. if (dct == 0)
  118. return pvt->dcsb0[csrow];
  119. else
  120. return pvt->dcsb1[csrow];
  121. }
  122. /*
  123. * Return the 'mask' address the i'th CS entry. This function is needed because
  124. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  125. * different.
  126. */
  127. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  128. {
  129. if (dct == 0)
  130. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  131. else
  132. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  133. }
  134. /*
  135. * In *base and *limit, pass back the full 40-bit base and limit physical
  136. * addresses for the node given by node_id. This information is obtained from
  137. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  138. * base and limit addresses are of type SysAddr, as defined at the start of
  139. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  140. * in the address range they represent.
  141. */
  142. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  143. u64 *base, u64 *limit)
  144. {
  145. *base = pvt->dram_base[node_id];
  146. *limit = pvt->dram_limit[node_id];
  147. }
  148. /*
  149. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  150. * with node_id
  151. */
  152. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  153. u64 sys_addr, int node_id)
  154. {
  155. u64 base, limit, addr;
  156. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  157. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  158. * all ones if the most significant implemented address bit is 1.
  159. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  160. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  161. * Application Programming.
  162. */
  163. addr = sys_addr & 0x000000ffffffffffull;
  164. return (addr >= base) && (addr <= limit);
  165. }
  166. /*
  167. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  168. * mem_ctl_info structure for the node that the SysAddr maps to.
  169. *
  170. * On failure, return NULL.
  171. */
  172. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  173. u64 sys_addr)
  174. {
  175. struct amd64_pvt *pvt;
  176. int node_id;
  177. u32 intlv_en, bits;
  178. /*
  179. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  180. * 3.4.4.2) registers to map the SysAddr to a node ID.
  181. */
  182. pvt = mci->pvt_info;
  183. /*
  184. * The value of this field should be the same for all DRAM Base
  185. * registers. Therefore we arbitrarily choose to read it from the
  186. * register for node 0.
  187. */
  188. intlv_en = pvt->dram_IntlvEn[0];
  189. if (intlv_en == 0) {
  190. for (node_id = 0; ; ) {
  191. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  192. break;
  193. if (++node_id >= DRAM_REG_COUNT)
  194. goto err_no_match;
  195. }
  196. goto found;
  197. }
  198. if (unlikely((intlv_en != (0x01 << 8)) &&
  199. (intlv_en != (0x03 << 8)) &&
  200. (intlv_en != (0x07 << 8)))) {
  201. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  202. "IntlvEn field of DRAM Base Register for node 0: "
  203. "This probably indicates a BIOS bug.\n", intlv_en);
  204. return NULL;
  205. }
  206. bits = (((u32) sys_addr) >> 12) & intlv_en;
  207. for (node_id = 0; ; ) {
  208. if ((pvt->dram_limit[node_id] & intlv_en) == bits)
  209. break; /* intlv_sel field matches */
  210. if (++node_id >= DRAM_REG_COUNT)
  211. goto err_no_match;
  212. }
  213. /* sanity test for sys_addr */
  214. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  215. amd64_printk(KERN_WARNING,
  216. "%s(): sys_addr 0x%lx falls outside base/limit "
  217. "address range for node %d with node interleaving "
  218. "enabled.\n", __func__, (unsigned long)sys_addr,
  219. node_id);
  220. return NULL;
  221. }
  222. found:
  223. return edac_mc_find(node_id);
  224. err_no_match:
  225. debugf2("sys_addr 0x%lx doesn't match any node\n",
  226. (unsigned long)sys_addr);
  227. return NULL;
  228. }
  229. /*
  230. * Extract the DRAM CS base address from selected csrow register.
  231. */
  232. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  233. {
  234. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  235. pvt->dcs_shift;
  236. }
  237. /*
  238. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  239. */
  240. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  241. {
  242. u64 dcsm_bits, other_bits;
  243. u64 mask;
  244. /* Extract bits from DRAM CS Mask. */
  245. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  246. other_bits = pvt->dcsm_mask;
  247. other_bits = ~(other_bits << pvt->dcs_shift);
  248. /*
  249. * The extracted bits from DCSM belong in the spaces represented by
  250. * the cleared bits in other_bits.
  251. */
  252. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  253. return mask;
  254. }
  255. /*
  256. * @input_addr is an InputAddr associated with the node given by mci. Return the
  257. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  258. */
  259. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  260. {
  261. struct amd64_pvt *pvt;
  262. int csrow;
  263. u64 base, mask;
  264. pvt = mci->pvt_info;
  265. /*
  266. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  267. * base/mask register pair, test the condition shown near the start of
  268. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  269. */
  270. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  271. /* This DRAM chip select is disabled on this node */
  272. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  273. continue;
  274. base = base_from_dct_base(pvt, csrow);
  275. mask = ~mask_from_dct_mask(pvt, csrow);
  276. if ((input_addr & mask) == (base & mask)) {
  277. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  278. (unsigned long)input_addr, csrow,
  279. pvt->mc_node_id);
  280. return csrow;
  281. }
  282. }
  283. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  284. (unsigned long)input_addr, pvt->mc_node_id);
  285. return -1;
  286. }
  287. /*
  288. * Return the base value defined by the DRAM Base register for the node
  289. * represented by mci. This function returns the full 40-bit value despite the
  290. * fact that the register only stores bits 39-24 of the value. See section
  291. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  292. */
  293. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  294. {
  295. struct amd64_pvt *pvt = mci->pvt_info;
  296. return pvt->dram_base[pvt->mc_node_id];
  297. }
  298. /*
  299. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  300. * for the node represented by mci. Info is passed back in *hole_base,
  301. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  302. * info is invalid. Info may be invalid for either of the following reasons:
  303. *
  304. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  305. * Address Register does not exist.
  306. *
  307. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  308. * indicating that its contents are not valid.
  309. *
  310. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  311. * complete 32-bit values despite the fact that the bitfields in the DHAR
  312. * only represent bits 31-24 of the base and offset values.
  313. */
  314. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  315. u64 *hole_offset, u64 *hole_size)
  316. {
  317. struct amd64_pvt *pvt = mci->pvt_info;
  318. u64 base;
  319. /* only revE and later have the DRAM Hole Address Register */
  320. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
  321. debugf1(" revision %d for node %d does not support DHAR\n",
  322. pvt->ext_model, pvt->mc_node_id);
  323. return 1;
  324. }
  325. /* only valid for Fam10h */
  326. if (boot_cpu_data.x86 == 0x10 &&
  327. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  328. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  329. return 1;
  330. }
  331. if ((pvt->dhar & DHAR_VALID) == 0) {
  332. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  333. pvt->mc_node_id);
  334. return 1;
  335. }
  336. /* This node has Memory Hoisting */
  337. /* +------------------+--------------------+--------------------+-----
  338. * | memory | DRAM hole | relocated |
  339. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  340. * | | | DRAM hole |
  341. * | | | [0x100000000, |
  342. * | | | (0x100000000+ |
  343. * | | | (0xffffffff-x))] |
  344. * +------------------+--------------------+--------------------+-----
  345. *
  346. * Above is a diagram of physical memory showing the DRAM hole and the
  347. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  348. * starts at address x (the base address) and extends through address
  349. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  350. * addresses in the hole so that they start at 0x100000000.
  351. */
  352. base = dhar_base(pvt->dhar);
  353. *hole_base = base;
  354. *hole_size = (0x1ull << 32) - base;
  355. if (boot_cpu_data.x86 > 0xf)
  356. *hole_offset = f10_dhar_offset(pvt->dhar);
  357. else
  358. *hole_offset = k8_dhar_offset(pvt->dhar);
  359. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  360. pvt->mc_node_id, (unsigned long)*hole_base,
  361. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  362. return 0;
  363. }
  364. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  365. /*
  366. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  367. * assumed that sys_addr maps to the node given by mci.
  368. *
  369. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  370. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  371. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  372. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  373. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  374. * These parts of the documentation are unclear. I interpret them as follows:
  375. *
  376. * When node n receives a SysAddr, it processes the SysAddr as follows:
  377. *
  378. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  379. * Limit registers for node n. If the SysAddr is not within the range
  380. * specified by the base and limit values, then node n ignores the Sysaddr
  381. * (since it does not map to node n). Otherwise continue to step 2 below.
  382. *
  383. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  384. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  385. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  386. * hole. If not, skip to step 3 below. Else get the value of the
  387. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  388. * offset defined by this value from the SysAddr.
  389. *
  390. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  391. * Base register for node n. To obtain the DramAddr, subtract the base
  392. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  393. */
  394. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  395. {
  396. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  397. int ret = 0;
  398. dram_base = get_dram_base(mci);
  399. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  400. &hole_size);
  401. if (!ret) {
  402. if ((sys_addr >= (1ull << 32)) &&
  403. (sys_addr < ((1ull << 32) + hole_size))) {
  404. /* use DHAR to translate SysAddr to DramAddr */
  405. dram_addr = sys_addr - hole_offset;
  406. debugf2("using DHAR to translate SysAddr 0x%lx to "
  407. "DramAddr 0x%lx\n",
  408. (unsigned long)sys_addr,
  409. (unsigned long)dram_addr);
  410. return dram_addr;
  411. }
  412. }
  413. /*
  414. * Translate the SysAddr to a DramAddr as shown near the start of
  415. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  416. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  417. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  418. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  419. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  420. * Programmer's Manual Volume 1 Application Programming.
  421. */
  422. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  423. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  424. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  425. (unsigned long)dram_addr);
  426. return dram_addr;
  427. }
  428. /*
  429. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  430. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  431. * for node interleaving.
  432. */
  433. static int num_node_interleave_bits(unsigned intlv_en)
  434. {
  435. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  436. int n;
  437. BUG_ON(intlv_en > 7);
  438. n = intlv_shift_table[intlv_en];
  439. return n;
  440. }
  441. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  442. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  443. {
  444. struct amd64_pvt *pvt;
  445. int intlv_shift;
  446. u64 input_addr;
  447. pvt = mci->pvt_info;
  448. /*
  449. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  450. * concerning translating a DramAddr to an InputAddr.
  451. */
  452. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  453. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  454. (dram_addr & 0xfff);
  455. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  456. intlv_shift, (unsigned long)dram_addr,
  457. (unsigned long)input_addr);
  458. return input_addr;
  459. }
  460. /*
  461. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  462. * assumed that @sys_addr maps to the node given by mci.
  463. */
  464. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  465. {
  466. u64 input_addr;
  467. input_addr =
  468. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  469. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  470. (unsigned long)sys_addr, (unsigned long)input_addr);
  471. return input_addr;
  472. }
  473. /*
  474. * @input_addr is an InputAddr associated with the node represented by mci.
  475. * Translate @input_addr to a DramAddr and return the result.
  476. */
  477. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  478. {
  479. struct amd64_pvt *pvt;
  480. int node_id, intlv_shift;
  481. u64 bits, dram_addr;
  482. u32 intlv_sel;
  483. /*
  484. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  485. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  486. * this procedure. When translating from a DramAddr to an InputAddr, the
  487. * bits used for node interleaving are discarded. Here we recover these
  488. * bits from the IntlvSel field of the DRAM Limit register (section
  489. * 3.4.4.2) for the node that input_addr is associated with.
  490. */
  491. pvt = mci->pvt_info;
  492. node_id = pvt->mc_node_id;
  493. BUG_ON((node_id < 0) || (node_id > 7));
  494. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  495. if (intlv_shift == 0) {
  496. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  497. "same value\n", (unsigned long)input_addr);
  498. return input_addr;
  499. }
  500. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  501. (input_addr & 0xfff);
  502. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  503. dram_addr = bits + (intlv_sel << 12);
  504. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  505. "(%d node interleave bits)\n", (unsigned long)input_addr,
  506. (unsigned long)dram_addr, intlv_shift);
  507. return dram_addr;
  508. }
  509. /*
  510. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  511. * @dram_addr to a SysAddr.
  512. */
  513. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  514. {
  515. struct amd64_pvt *pvt = mci->pvt_info;
  516. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  517. int ret = 0;
  518. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  519. &hole_size);
  520. if (!ret) {
  521. if ((dram_addr >= hole_base) &&
  522. (dram_addr < (hole_base + hole_size))) {
  523. sys_addr = dram_addr + hole_offset;
  524. debugf1("using DHAR to translate DramAddr 0x%lx to "
  525. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  526. (unsigned long)sys_addr);
  527. return sys_addr;
  528. }
  529. }
  530. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  531. sys_addr = dram_addr + base;
  532. /*
  533. * The sys_addr we have computed up to this point is a 40-bit value
  534. * because the k8 deals with 40-bit values. However, the value we are
  535. * supposed to return is a full 64-bit physical address. The AMD
  536. * x86-64 architecture specifies that the most significant implemented
  537. * address bit through bit 63 of a physical address must be either all
  538. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  539. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  540. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  541. * Programming.
  542. */
  543. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  544. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  545. pvt->mc_node_id, (unsigned long)dram_addr,
  546. (unsigned long)sys_addr);
  547. return sys_addr;
  548. }
  549. /*
  550. * @input_addr is an InputAddr associated with the node given by mci. Translate
  551. * @input_addr to a SysAddr.
  552. */
  553. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  554. u64 input_addr)
  555. {
  556. return dram_addr_to_sys_addr(mci,
  557. input_addr_to_dram_addr(mci, input_addr));
  558. }
  559. /*
  560. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  561. * Pass back these values in *input_addr_min and *input_addr_max.
  562. */
  563. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  564. u64 *input_addr_min, u64 *input_addr_max)
  565. {
  566. struct amd64_pvt *pvt;
  567. u64 base, mask;
  568. pvt = mci->pvt_info;
  569. BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
  570. base = base_from_dct_base(pvt, csrow);
  571. mask = mask_from_dct_mask(pvt, csrow);
  572. *input_addr_min = base & ~mask;
  573. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  574. }
  575. /*
  576. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  577. * Address High (section 3.6.4.6) register values and return the result. Address
  578. * is located in the info structure (nbeah and nbeal), the encoding is device
  579. * specific.
  580. */
  581. static u64 extract_error_address(struct mem_ctl_info *mci,
  582. struct amd64_error_info_regs *info)
  583. {
  584. struct amd64_pvt *pvt = mci->pvt_info;
  585. return pvt->ops->get_error_address(mci, info);
  586. }
  587. /* Map the Error address to a PAGE and PAGE OFFSET. */
  588. static inline void error_address_to_page_and_offset(u64 error_address,
  589. u32 *page, u32 *offset)
  590. {
  591. *page = (u32) (error_address >> PAGE_SHIFT);
  592. *offset = ((u32) error_address) & ~PAGE_MASK;
  593. }
  594. /*
  595. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  596. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  597. * of a node that detected an ECC memory error. mci represents the node that
  598. * the error address maps to (possibly different from the node that detected
  599. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  600. * error.
  601. */
  602. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  603. {
  604. int csrow;
  605. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  606. if (csrow == -1)
  607. amd64_mc_printk(mci, KERN_ERR,
  608. "Failed to translate InputAddr to csrow for "
  609. "address 0x%lx\n", (unsigned long)sys_addr);
  610. return csrow;
  611. }
  612. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  613. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  614. {
  615. if (boot_cpu_data.x86 == 0x11)
  616. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  617. else if (boot_cpu_data.x86 == 0x10)
  618. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  619. else if (boot_cpu_data.x86 == 0xf)
  620. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  621. (pvt->ext_model >= OPTERON_CPU_REV_F) ?
  622. "Rev F or later" : "Rev E or earlier");
  623. else
  624. /* we'll hardly ever ever get here */
  625. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  626. }
  627. /*
  628. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  629. * are ECC capable.
  630. */
  631. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  632. {
  633. int bit;
  634. enum dev_type edac_cap = EDAC_NONE;
  635. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
  636. ? 19
  637. : 17;
  638. if (pvt->dclr0 >> BIT(bit))
  639. edac_cap = EDAC_FLAG_SECDED;
  640. return edac_cap;
  641. }
  642. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  643. int ganged);
  644. /* Display and decode various NB registers for debug purposes. */
  645. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  646. {
  647. int ganged;
  648. debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
  649. pvt->nbcap,
  650. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
  651. (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
  652. (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
  653. debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
  654. (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
  655. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
  656. debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
  657. pvt->dclr0,
  658. (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
  659. (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
  660. (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
  661. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
  662. (pvt->dclr0 & BIT(12)) ? "Y" : "N",
  663. (pvt->dclr0 & BIT(13)) ? "Y" : "N",
  664. (pvt->dclr0 & BIT(14)) ? "Y" : "N",
  665. (pvt->dclr0 & BIT(15)) ? "Y" : "N",
  666. (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
  667. debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
  668. if (boot_cpu_data.x86 == 0xf) {
  669. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  670. pvt->dhar, dhar_base(pvt->dhar),
  671. k8_dhar_offset(pvt->dhar));
  672. debugf1(" DramHoleValid=%s\n",
  673. (pvt->dhar & DHAR_VALID) ? "True" : "False");
  674. debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
  675. /* everything below this point is Fam10h and above */
  676. return;
  677. } else {
  678. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  679. pvt->dhar, dhar_base(pvt->dhar),
  680. f10_dhar_offset(pvt->dhar));
  681. debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
  682. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
  683. "True" : "False",
  684. (pvt->dhar & DHAR_VALID) ?
  685. "True" : "False");
  686. }
  687. /* Only if NOT ganged does dcl1 have valid info */
  688. if (!dct_ganging_enabled(pvt)) {
  689. debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
  690. "Width=%s\n", pvt->dclr1,
  691. (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
  692. (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
  693. (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
  694. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
  695. "DIMM Type=%s\n",
  696. (pvt->dclr1 & BIT(12)) ? "Y" : "N",
  697. (pvt->dclr1 & BIT(13)) ? "Y" : "N",
  698. (pvt->dclr1 & BIT(14)) ? "Y" : "N",
  699. (pvt->dclr1 & BIT(15)) ? "Y" : "N",
  700. (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
  701. }
  702. /*
  703. * Determine if ganged and then dump memory sizes for first controller,
  704. * and if NOT ganged dump info for 2nd controller.
  705. */
  706. ganged = dct_ganging_enabled(pvt);
  707. f10_debug_display_dimm_sizes(0, pvt, ganged);
  708. if (!ganged)
  709. f10_debug_display_dimm_sizes(1, pvt, ganged);
  710. }
  711. /* Read in both of DBAM registers */
  712. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  713. {
  714. int err = 0;
  715. unsigned int reg;
  716. reg = DBAM0;
  717. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
  718. if (err)
  719. goto err_reg;
  720. if (boot_cpu_data.x86 >= 0x10) {
  721. reg = DBAM1;
  722. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
  723. if (err)
  724. goto err_reg;
  725. }
  726. err_reg:
  727. debugf0("Error reading F2x%03x.\n", reg);
  728. }
  729. /*
  730. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  731. *
  732. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  733. * set the shift factor for the DCSB and DCSM values.
  734. *
  735. * ->dcs_mask_notused, RevE:
  736. *
  737. * To find the max InputAddr for the csrow, start with the base address and set
  738. * all bits that are "don't care" bits in the test at the start of section
  739. * 3.5.4 (p. 84).
  740. *
  741. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  742. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  743. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  744. * gaps.
  745. *
  746. * ->dcs_mask_notused, RevF and later:
  747. *
  748. * To find the max InputAddr for the csrow, start with the base address and set
  749. * all bits that are "don't care" bits in the test at the start of NPT section
  750. * 4.5.4 (p. 87).
  751. *
  752. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  753. * between bit ranges [36:27] and [21:13].
  754. *
  755. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  756. * which are all bits in the above-mentioned gaps.
  757. */
  758. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  759. {
  760. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  761. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  762. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  763. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  764. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  765. switch (boot_cpu_data.x86) {
  766. case 0xf:
  767. pvt->num_dcsm = REV_F_DCSM_COUNT;
  768. break;
  769. case 0x10:
  770. pvt->num_dcsm = F10_DCSM_COUNT;
  771. break;
  772. case 0x11:
  773. pvt->num_dcsm = F11_DCSM_COUNT;
  774. break;
  775. default:
  776. amd64_printk(KERN_ERR, "Unsupported family!\n");
  777. break;
  778. }
  779. } else {
  780. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  781. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  782. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  783. pvt->dcs_shift = REV_E_DCS_SHIFT;
  784. pvt->num_dcsm = REV_E_DCSM_COUNT;
  785. }
  786. }
  787. /*
  788. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  789. */
  790. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  791. {
  792. int cs, reg, err = 0;
  793. amd64_set_dct_base_and_mask(pvt);
  794. for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
  795. reg = K8_DCSB0 + (cs * 4);
  796. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  797. &pvt->dcsb0[cs]);
  798. if (unlikely(err))
  799. debugf0("Reading K8_DCSB0[%d] failed\n", cs);
  800. else
  801. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  802. cs, pvt->dcsb0[cs], reg);
  803. /* If DCT are NOT ganged, then read in DCT1's base */
  804. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  805. reg = F10_DCSB1 + (cs * 4);
  806. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  807. &pvt->dcsb1[cs]);
  808. if (unlikely(err))
  809. debugf0("Reading F10_DCSB1[%d] failed\n", cs);
  810. else
  811. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  812. cs, pvt->dcsb1[cs], reg);
  813. } else {
  814. pvt->dcsb1[cs] = 0;
  815. }
  816. }
  817. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  818. reg = K8_DCSB0 + (cs * 4);
  819. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  820. &pvt->dcsm0[cs]);
  821. if (unlikely(err))
  822. debugf0("Reading K8_DCSM0 failed\n");
  823. else
  824. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  825. cs, pvt->dcsm0[cs], reg);
  826. /* If DCT are NOT ganged, then read in DCT1's mask */
  827. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  828. reg = F10_DCSM1 + (cs * 4);
  829. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  830. &pvt->dcsm1[cs]);
  831. if (unlikely(err))
  832. debugf0("Reading F10_DCSM1[%d] failed\n", cs);
  833. else
  834. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  835. cs, pvt->dcsm1[cs], reg);
  836. } else
  837. pvt->dcsm1[cs] = 0;
  838. }
  839. }
  840. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  841. {
  842. enum mem_type type;
  843. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
  844. /* Rev F and later */
  845. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  846. } else {
  847. /* Rev E and earlier */
  848. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  849. }
  850. debugf1(" Memory type is: %s\n",
  851. (type == MEM_DDR2) ? "MEM_DDR2" :
  852. (type == MEM_RDDR2) ? "MEM_RDDR2" :
  853. (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
  854. return type;
  855. }
  856. /*
  857. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  858. * and the later RevF memory controllers (DDR vs DDR2)
  859. *
  860. * Return:
  861. * number of memory channels in operation
  862. * Pass back:
  863. * contents of the DCL0_LOW register
  864. */
  865. static int k8_early_channel_count(struct amd64_pvt *pvt)
  866. {
  867. int flag, err = 0;
  868. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  869. if (err)
  870. return err;
  871. if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
  872. /* RevF (NPT) and later */
  873. flag = pvt->dclr0 & F10_WIDTH_128;
  874. } else {
  875. /* RevE and earlier */
  876. flag = pvt->dclr0 & REVE_WIDTH_128;
  877. }
  878. /* not used */
  879. pvt->dclr1 = 0;
  880. return (flag) ? 2 : 1;
  881. }
  882. /* extract the ERROR ADDRESS for the K8 CPUs */
  883. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  884. struct amd64_error_info_regs *info)
  885. {
  886. return (((u64) (info->nbeah & 0xff)) << 32) +
  887. (info->nbeal & ~0x03);
  888. }
  889. /*
  890. * Read the Base and Limit registers for K8 based Memory controllers; extract
  891. * fields from the 'raw' reg into separate data fields
  892. *
  893. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  894. */
  895. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  896. {
  897. u32 low;
  898. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  899. int err;
  900. err = pci_read_config_dword(pvt->addr_f1_ctl,
  901. K8_DRAM_BASE_LOW + off, &low);
  902. if (err)
  903. debugf0("Reading K8_DRAM_BASE_LOW failed\n");
  904. /* Extract parts into separate data entries */
  905. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  906. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  907. pvt->dram_rw_en[dram] = (low & 0x3);
  908. err = pci_read_config_dword(pvt->addr_f1_ctl,
  909. K8_DRAM_LIMIT_LOW + off, &low);
  910. if (err)
  911. debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
  912. /*
  913. * Extract parts into separate data entries. Limit is the HIGHEST memory
  914. * location of the region, so lower 24 bits need to be all ones
  915. */
  916. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  917. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  918. pvt->dram_DstNode[dram] = (low & 0x7);
  919. }
  920. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  921. struct amd64_error_info_regs *info,
  922. u64 SystemAddress)
  923. {
  924. struct mem_ctl_info *src_mci;
  925. unsigned short syndrome;
  926. int channel, csrow;
  927. u32 page, offset;
  928. /* Extract the syndrome parts and form a 16-bit syndrome */
  929. syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
  930. syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
  931. /* CHIPKILL enabled */
  932. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  933. channel = get_channel_from_ecc_syndrome(syndrome);
  934. if (channel < 0) {
  935. /*
  936. * Syndrome didn't map, so we don't know which of the
  937. * 2 DIMMs is in error. So we need to ID 'both' of them
  938. * as suspect.
  939. */
  940. amd64_mc_printk(mci, KERN_WARNING,
  941. "unknown syndrome 0x%x - possible error "
  942. "reporting race\n", syndrome);
  943. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  944. return;
  945. }
  946. } else {
  947. /*
  948. * non-chipkill ecc mode
  949. *
  950. * The k8 documentation is unclear about how to determine the
  951. * channel number when using non-chipkill memory. This method
  952. * was obtained from email communication with someone at AMD.
  953. * (Wish the email was placed in this comment - norsk)
  954. */
  955. channel = ((SystemAddress & BIT(3)) != 0);
  956. }
  957. /*
  958. * Find out which node the error address belongs to. This may be
  959. * different from the node that detected the error.
  960. */
  961. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  962. if (src_mci) {
  963. amd64_mc_printk(mci, KERN_ERR,
  964. "failed to map error address 0x%lx to a node\n",
  965. (unsigned long)SystemAddress);
  966. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  967. return;
  968. }
  969. /* Now map the SystemAddress to a CSROW */
  970. csrow = sys_addr_to_csrow(src_mci, SystemAddress);
  971. if (csrow < 0) {
  972. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  973. } else {
  974. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  975. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  976. channel, EDAC_MOD_STR);
  977. }
  978. }
  979. /*
  980. * determrine the number of PAGES in for this DIMM's size based on its DRAM
  981. * Address Mapping.
  982. *
  983. * First step is to calc the number of bits to shift a value of 1 left to
  984. * indicate show many pages. Start with the DBAM value as the starting bits,
  985. * then proceed to adjust those shift bits, based on CPU rev and the table.
  986. * See BKDG on the DBAM
  987. */
  988. static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  989. {
  990. int nr_pages;
  991. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  992. nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  993. } else {
  994. /*
  995. * RevE and less section; this line is tricky. It collapses the
  996. * table used by RevD and later to one that matches revisions CG
  997. * and earlier.
  998. */
  999. dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
  1000. (dram_map > 8 ? 4 : (dram_map > 5 ?
  1001. 3 : (dram_map > 2 ? 1 : 0))) : 0;
  1002. /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
  1003. nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
  1004. }
  1005. return nr_pages;
  1006. }
  1007. /*
  1008. * Get the number of DCT channels in use.
  1009. *
  1010. * Return:
  1011. * number of Memory Channels in operation
  1012. * Pass back:
  1013. * contents of the DCL0_LOW register
  1014. */
  1015. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1016. {
  1017. int err = 0, channels = 0;
  1018. u32 dbam;
  1019. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  1020. if (err)
  1021. goto err_reg;
  1022. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  1023. if (err)
  1024. goto err_reg;
  1025. /* If we are in 128 bit mode, then we are using 2 channels */
  1026. if (pvt->dclr0 & F10_WIDTH_128) {
  1027. debugf0("Data WIDTH is 128 bits - 2 channels\n");
  1028. channels = 2;
  1029. return channels;
  1030. }
  1031. /*
  1032. * Need to check if in UN-ganged mode: In such, there are 2 channels,
  1033. * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
  1034. * will be OFF.
  1035. *
  1036. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1037. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1038. */
  1039. debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
  1040. /*
  1041. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1042. * is more than just one DIMM present in unganged mode. Need to check
  1043. * both controllers since DIMMs can be placed in either one.
  1044. */
  1045. channels = 0;
  1046. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
  1047. if (err)
  1048. goto err_reg;
  1049. if (DBAM_DIMM(0, dbam) > 0)
  1050. channels++;
  1051. if (DBAM_DIMM(1, dbam) > 0)
  1052. channels++;
  1053. if (DBAM_DIMM(2, dbam) > 0)
  1054. channels++;
  1055. if (DBAM_DIMM(3, dbam) > 0)
  1056. channels++;
  1057. /* If more than 2 DIMMs are present, then we have 2 channels */
  1058. if (channels > 2)
  1059. channels = 2;
  1060. else if (channels == 0) {
  1061. /* No DIMMs on DCT0, so look at DCT1 */
  1062. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
  1063. if (err)
  1064. goto err_reg;
  1065. if (DBAM_DIMM(0, dbam) > 0)
  1066. channels++;
  1067. if (DBAM_DIMM(1, dbam) > 0)
  1068. channels++;
  1069. if (DBAM_DIMM(2, dbam) > 0)
  1070. channels++;
  1071. if (DBAM_DIMM(3, dbam) > 0)
  1072. channels++;
  1073. if (channels > 2)
  1074. channels = 2;
  1075. }
  1076. /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
  1077. if (channels == 0)
  1078. channels = 1;
  1079. debugf0("DIMM count= %d\n", channels);
  1080. return channels;
  1081. err_reg:
  1082. return -1;
  1083. }
  1084. static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1085. {
  1086. return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1087. }
  1088. /* Enable extended configuration access via 0xCF8 feature */
  1089. static void amd64_setup(struct amd64_pvt *pvt)
  1090. {
  1091. u32 reg;
  1092. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1093. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1094. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1095. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1096. }
  1097. /* Restore the extended configuration access via 0xCF8 feature */
  1098. static void amd64_teardown(struct amd64_pvt *pvt)
  1099. {
  1100. u32 reg;
  1101. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1102. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1103. if (pvt->flags.cf8_extcfg)
  1104. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1105. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1106. }
  1107. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1108. struct amd64_error_info_regs *info)
  1109. {
  1110. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1111. (info->nbeal & ~0x01);
  1112. }
  1113. /*
  1114. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1115. * fields from the 'raw' reg into separate data fields.
  1116. *
  1117. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1118. */
  1119. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1120. {
  1121. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1122. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1123. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1124. /* read the 'raw' DRAM BASE Address register */
  1125. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
  1126. /* Read from the ECS data register */
  1127. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
  1128. /* Extract parts into separate data entries */
  1129. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1130. if (pvt->dram_rw_en[dram] == 0)
  1131. return;
  1132. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1133. pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
  1134. ((u64) low_base & 0xFFFF0000))) << 8;
  1135. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1136. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1137. /* read the 'raw' LIMIT registers */
  1138. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
  1139. /* Read from the ECS data register for the HIGH portion */
  1140. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
  1141. debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
  1142. high_base, low_base, high_limit, low_limit);
  1143. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1144. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1145. /*
  1146. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1147. * memory location of the region, so low 24 bits need to be all ones.
  1148. */
  1149. low_limit |= 0x0000FFFF;
  1150. pvt->dram_limit[dram] =
  1151. ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
  1152. }
  1153. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1154. {
  1155. int err = 0;
  1156. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1157. &pvt->dram_ctl_select_low);
  1158. if (err) {
  1159. debugf0("Reading F10_DCTL_SEL_LOW failed\n");
  1160. } else {
  1161. debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
  1162. pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
  1163. debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
  1164. "sel-hi-range=%s\n",
  1165. (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
  1166. (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
  1167. (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
  1168. debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
  1169. (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
  1170. (dct_memory_cleared(pvt) ? "True " : "False "),
  1171. dct_sel_interleave_addr(pvt));
  1172. }
  1173. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1174. &pvt->dram_ctl_select_high);
  1175. if (err)
  1176. debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
  1177. }
  1178. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1179. int hi_range_sel, u32 intlv_en)
  1180. {
  1181. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1182. if (dct_ganging_enabled(pvt))
  1183. cs = 0;
  1184. else if (hi_range_sel)
  1185. cs = dct_sel_high;
  1186. else if (dct_interleave_enabled(pvt)) {
  1187. if (dct_sel_interleave_addr(pvt) == 0)
  1188. cs = sys_addr >> 6 & 1;
  1189. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1190. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1191. if (dct_sel_interleave_addr(pvt) & 1)
  1192. cs = (sys_addr >> 9 & 1) ^ temp;
  1193. else
  1194. cs = (sys_addr >> 6 & 1) ^ temp;
  1195. } else if (intlv_en & 4)
  1196. cs = sys_addr >> 15 & 1;
  1197. else if (intlv_en & 2)
  1198. cs = sys_addr >> 14 & 1;
  1199. else if (intlv_en & 1)
  1200. cs = sys_addr >> 13 & 1;
  1201. else
  1202. cs = sys_addr >> 12 & 1;
  1203. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1204. cs = ~dct_sel_high & 1;
  1205. else
  1206. cs = 0;
  1207. return cs;
  1208. }
  1209. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1210. {
  1211. if (intlv_en == 1)
  1212. return 1;
  1213. else if (intlv_en == 3)
  1214. return 2;
  1215. else if (intlv_en == 7)
  1216. return 3;
  1217. return 0;
  1218. }
  1219. static inline u64 f10_determine_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1220. u32 dct_sel_base_addr,
  1221. u64 dct_sel_base_off,
  1222. u32 hole_en, u32 hole_off,
  1223. u64 dram_base)
  1224. {
  1225. u64 chan_off;
  1226. if (hi_range_sel) {
  1227. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1228. (hole_en & 1) && (sys_addr >= 0x100000000ULL))
  1229. chan_off = hole_off << 16;
  1230. else
  1231. chan_off = dct_sel_base_off;
  1232. } else {
  1233. if ((hole_en & 1) && (sys_addr >= 0x100000000ULL))
  1234. chan_off = hole_off << 16;
  1235. else
  1236. chan_off = dram_base & 0xFFFFF8000000ULL;
  1237. }
  1238. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1239. (chan_off & 0x0000FFFFFF800000ULL);
  1240. }
  1241. /* Hack for the time being - Can we get this from BIOS?? */
  1242. #define CH0SPARE_RANK 0
  1243. #define CH1SPARE_RANK 1
  1244. /*
  1245. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1246. * spare row
  1247. */
  1248. static inline int f10_process_possible_spare(int csrow,
  1249. u32 cs, struct amd64_pvt *pvt)
  1250. {
  1251. u32 swap_done;
  1252. u32 bad_dram_cs;
  1253. /* Depending on channel, isolate respective SPARING info */
  1254. if (cs) {
  1255. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1256. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1257. if (swap_done && (csrow == bad_dram_cs))
  1258. csrow = CH1SPARE_RANK;
  1259. } else {
  1260. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1261. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1262. if (swap_done && (csrow == bad_dram_cs))
  1263. csrow = CH0SPARE_RANK;
  1264. }
  1265. return csrow;
  1266. }
  1267. /*
  1268. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1269. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1270. *
  1271. * Return:
  1272. * -EINVAL: NOT FOUND
  1273. * 0..csrow = Chip-Select Row
  1274. */
  1275. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1276. {
  1277. struct mem_ctl_info *mci;
  1278. struct amd64_pvt *pvt;
  1279. u32 cs_base, cs_mask;
  1280. int cs_found = -EINVAL;
  1281. int csrow;
  1282. mci = mci_lookup[nid];
  1283. if (!mci)
  1284. return cs_found;
  1285. pvt = mci->pvt_info;
  1286. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1287. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  1288. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1289. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1290. continue;
  1291. /*
  1292. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1293. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1294. * of the actual address.
  1295. */
  1296. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1297. /*
  1298. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1299. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1300. */
  1301. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1302. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1303. csrow, cs_base, cs_mask);
  1304. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1305. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1306. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1307. "(CSBase & ~CSMask)=0x%x\n",
  1308. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1309. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1310. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1311. debugf1(" MATCH csrow=%d\n", cs_found);
  1312. break;
  1313. }
  1314. }
  1315. return cs_found;
  1316. }