intel_pm.c 137 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #define FORCEWAKE_ACK_TIMEOUT_MS 2
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static bool intel_crtc_active(struct drm_crtc *crtc)
  44. {
  45. /* Be paranoid as we can arrive here with only partial
  46. * state retrieved from the hardware during setup.
  47. */
  48. return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
  49. }
  50. static void i8xx_disable_fbc(struct drm_device *dev)
  51. {
  52. struct drm_i915_private *dev_priv = dev->dev_private;
  53. u32 fbc_ctl;
  54. /* Disable compression */
  55. fbc_ctl = I915_READ(FBC_CONTROL);
  56. if ((fbc_ctl & FBC_CTL_EN) == 0)
  57. return;
  58. fbc_ctl &= ~FBC_CTL_EN;
  59. I915_WRITE(FBC_CONTROL, fbc_ctl);
  60. /* Wait for compressing bit to clear */
  61. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  62. DRM_DEBUG_KMS("FBC idle timed out\n");
  63. return;
  64. }
  65. DRM_DEBUG_KMS("disabled FBC\n");
  66. }
  67. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68. {
  69. struct drm_device *dev = crtc->dev;
  70. struct drm_i915_private *dev_priv = dev->dev_private;
  71. struct drm_framebuffer *fb = crtc->fb;
  72. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73. struct drm_i915_gem_object *obj = intel_fb->obj;
  74. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75. int cfb_pitch;
  76. int plane, i;
  77. u32 fbc_ctl, fbc_ctl2;
  78. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  79. if (fb->pitches[0] < cfb_pitch)
  80. cfb_pitch = fb->pitches[0];
  81. /* FBC_CTL wants 64B units */
  82. cfb_pitch = (cfb_pitch / 64) - 1;
  83. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  84. /* Clear old tags */
  85. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  86. I915_WRITE(FBC_TAG + (i * 4), 0);
  87. /* Set it up... */
  88. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  89. fbc_ctl2 |= plane;
  90. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  91. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  92. /* enable it... */
  93. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  94. if (IS_I945GM(dev))
  95. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  96. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  97. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  98. fbc_ctl |= obj->fence_reg;
  99. I915_WRITE(FBC_CONTROL, fbc_ctl);
  100. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  101. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  102. }
  103. static bool i8xx_fbc_enabled(struct drm_device *dev)
  104. {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  107. }
  108. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  109. {
  110. struct drm_device *dev = crtc->dev;
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. struct drm_framebuffer *fb = crtc->fb;
  113. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  114. struct drm_i915_gem_object *obj = intel_fb->obj;
  115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  116. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  117. unsigned long stall_watermark = 200;
  118. u32 dpfc_ctl;
  119. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  120. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  121. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  122. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  123. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  124. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  125. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  126. /* enable it... */
  127. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  128. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  129. }
  130. static void g4x_disable_fbc(struct drm_device *dev)
  131. {
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. u32 dpfc_ctl;
  134. /* Disable compression */
  135. dpfc_ctl = I915_READ(DPFC_CONTROL);
  136. if (dpfc_ctl & DPFC_CTL_EN) {
  137. dpfc_ctl &= ~DPFC_CTL_EN;
  138. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  139. DRM_DEBUG_KMS("disabled FBC\n");
  140. }
  141. }
  142. static bool g4x_fbc_enabled(struct drm_device *dev)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  146. }
  147. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 blt_ecoskpd;
  151. /* Make sure blitter notifies FBC of writes */
  152. gen6_gt_force_wake_get(dev_priv);
  153. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  154. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  155. GEN6_BLITTER_LOCK_SHIFT;
  156. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  157. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  158. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  159. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  160. GEN6_BLITTER_LOCK_SHIFT);
  161. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  162. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  163. gen6_gt_force_wake_put(dev_priv);
  164. }
  165. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  166. {
  167. struct drm_device *dev = crtc->dev;
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. struct drm_framebuffer *fb = crtc->fb;
  170. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  171. struct drm_i915_gem_object *obj = intel_fb->obj;
  172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  173. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  174. unsigned long stall_watermark = 200;
  175. u32 dpfc_ctl;
  176. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  177. dpfc_ctl &= DPFC_RESERVED;
  178. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  179. /* Set persistent mode for front-buffer rendering, ala X. */
  180. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  181. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  182. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  183. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  184. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  185. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  186. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  187. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  188. /* enable it... */
  189. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  190. if (IS_GEN6(dev)) {
  191. I915_WRITE(SNB_DPFC_CTL_SA,
  192. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  193. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  194. sandybridge_blit_fbc_update(dev);
  195. }
  196. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  197. }
  198. static void ironlake_disable_fbc(struct drm_device *dev)
  199. {
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 dpfc_ctl;
  202. /* Disable compression */
  203. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  204. if (dpfc_ctl & DPFC_CTL_EN) {
  205. dpfc_ctl &= ~DPFC_CTL_EN;
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  207. DRM_DEBUG_KMS("disabled FBC\n");
  208. }
  209. }
  210. static bool ironlake_fbc_enabled(struct drm_device *dev)
  211. {
  212. struct drm_i915_private *dev_priv = dev->dev_private;
  213. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  214. }
  215. bool intel_fbc_enabled(struct drm_device *dev)
  216. {
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. if (!dev_priv->display.fbc_enabled)
  219. return false;
  220. return dev_priv->display.fbc_enabled(dev);
  221. }
  222. static void intel_fbc_work_fn(struct work_struct *__work)
  223. {
  224. struct intel_fbc_work *work =
  225. container_of(to_delayed_work(__work),
  226. struct intel_fbc_work, work);
  227. struct drm_device *dev = work->crtc->dev;
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. mutex_lock(&dev->struct_mutex);
  230. if (work == dev_priv->fbc_work) {
  231. /* Double check that we haven't switched fb without cancelling
  232. * the prior work.
  233. */
  234. if (work->crtc->fb == work->fb) {
  235. dev_priv->display.enable_fbc(work->crtc,
  236. work->interval);
  237. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  238. dev_priv->cfb_fb = work->crtc->fb->base.id;
  239. dev_priv->cfb_y = work->crtc->y;
  240. }
  241. dev_priv->fbc_work = NULL;
  242. }
  243. mutex_unlock(&dev->struct_mutex);
  244. kfree(work);
  245. }
  246. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  247. {
  248. if (dev_priv->fbc_work == NULL)
  249. return;
  250. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  251. /* Synchronisation is provided by struct_mutex and checking of
  252. * dev_priv->fbc_work, so we can perform the cancellation
  253. * entirely asynchronously.
  254. */
  255. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  256. /* tasklet was killed before being run, clean up */
  257. kfree(dev_priv->fbc_work);
  258. /* Mark the work as no longer wanted so that if it does
  259. * wake-up (because the work was already running and waiting
  260. * for our mutex), it will discover that is no longer
  261. * necessary to run.
  262. */
  263. dev_priv->fbc_work = NULL;
  264. }
  265. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  266. {
  267. struct intel_fbc_work *work;
  268. struct drm_device *dev = crtc->dev;
  269. struct drm_i915_private *dev_priv = dev->dev_private;
  270. if (!dev_priv->display.enable_fbc)
  271. return;
  272. intel_cancel_fbc_work(dev_priv);
  273. work = kzalloc(sizeof *work, GFP_KERNEL);
  274. if (work == NULL) {
  275. dev_priv->display.enable_fbc(crtc, interval);
  276. return;
  277. }
  278. work->crtc = crtc;
  279. work->fb = crtc->fb;
  280. work->interval = interval;
  281. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  282. dev_priv->fbc_work = work;
  283. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  284. /* Delay the actual enabling to let pageflipping cease and the
  285. * display to settle before starting the compression. Note that
  286. * this delay also serves a second purpose: it allows for a
  287. * vblank to pass after disabling the FBC before we attempt
  288. * to modify the control registers.
  289. *
  290. * A more complicated solution would involve tracking vblanks
  291. * following the termination of the page-flipping sequence
  292. * and indeed performing the enable as a co-routine and not
  293. * waiting synchronously upon the vblank.
  294. */
  295. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  296. }
  297. void intel_disable_fbc(struct drm_device *dev)
  298. {
  299. struct drm_i915_private *dev_priv = dev->dev_private;
  300. intel_cancel_fbc_work(dev_priv);
  301. if (!dev_priv->display.disable_fbc)
  302. return;
  303. dev_priv->display.disable_fbc(dev);
  304. dev_priv->cfb_plane = -1;
  305. }
  306. /**
  307. * intel_update_fbc - enable/disable FBC as needed
  308. * @dev: the drm_device
  309. *
  310. * Set up the framebuffer compression hardware at mode set time. We
  311. * enable it if possible:
  312. * - plane A only (on pre-965)
  313. * - no pixel mulitply/line duplication
  314. * - no alpha buffer discard
  315. * - no dual wide
  316. * - framebuffer <= 2048 in width, 1536 in height
  317. *
  318. * We can't assume that any compression will take place (worst case),
  319. * so the compressed buffer has to be the same size as the uncompressed
  320. * one. It also must reside (along with the line length buffer) in
  321. * stolen memory.
  322. *
  323. * We need to enable/disable FBC on a global basis.
  324. */
  325. void intel_update_fbc(struct drm_device *dev)
  326. {
  327. struct drm_i915_private *dev_priv = dev->dev_private;
  328. struct drm_crtc *crtc = NULL, *tmp_crtc;
  329. struct intel_crtc *intel_crtc;
  330. struct drm_framebuffer *fb;
  331. struct intel_framebuffer *intel_fb;
  332. struct drm_i915_gem_object *obj;
  333. int enable_fbc;
  334. if (!i915_powersave)
  335. return;
  336. if (!I915_HAS_FBC(dev))
  337. return;
  338. /*
  339. * If FBC is already on, we just have to verify that we can
  340. * keep it that way...
  341. * Need to disable if:
  342. * - more than one pipe is active
  343. * - changing FBC params (stride, fence, mode)
  344. * - new fb is too large to fit in compressed buffer
  345. * - going to an unsupported config (interlace, pixel multiply, etc.)
  346. */
  347. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  348. if (intel_crtc_active(tmp_crtc) &&
  349. !to_intel_crtc(tmp_crtc)->primary_disabled) {
  350. if (crtc) {
  351. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  352. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  353. goto out_disable;
  354. }
  355. crtc = tmp_crtc;
  356. }
  357. }
  358. if (!crtc || crtc->fb == NULL) {
  359. DRM_DEBUG_KMS("no output, disabling\n");
  360. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  361. goto out_disable;
  362. }
  363. intel_crtc = to_intel_crtc(crtc);
  364. fb = crtc->fb;
  365. intel_fb = to_intel_framebuffer(fb);
  366. obj = intel_fb->obj;
  367. enable_fbc = i915_enable_fbc;
  368. if (enable_fbc < 0) {
  369. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  370. enable_fbc = 1;
  371. if (INTEL_INFO(dev)->gen <= 6)
  372. enable_fbc = 0;
  373. }
  374. if (!enable_fbc) {
  375. DRM_DEBUG_KMS("fbc disabled per module param\n");
  376. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  377. goto out_disable;
  378. }
  379. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  380. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  381. DRM_DEBUG_KMS("mode incompatible with compression, "
  382. "disabling\n");
  383. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  384. goto out_disable;
  385. }
  386. if ((crtc->mode.hdisplay > 2048) ||
  387. (crtc->mode.vdisplay > 1536)) {
  388. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  389. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  390. goto out_disable;
  391. }
  392. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  393. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  394. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  395. goto out_disable;
  396. }
  397. /* The use of a CPU fence is mandatory in order to detect writes
  398. * by the CPU to the scanout and trigger updates to the FBC.
  399. */
  400. if (obj->tiling_mode != I915_TILING_X ||
  401. obj->fence_reg == I915_FENCE_REG_NONE) {
  402. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  403. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  404. goto out_disable;
  405. }
  406. /* If the kernel debugger is active, always disable compression */
  407. if (in_dbg_master())
  408. goto out_disable;
  409. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  410. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  411. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  412. goto out_disable;
  413. }
  414. /* If the scanout has not changed, don't modify the FBC settings.
  415. * Note that we make the fundamental assumption that the fb->obj
  416. * cannot be unpinned (and have its GTT offset and fence revoked)
  417. * without first being decoupled from the scanout and FBC disabled.
  418. */
  419. if (dev_priv->cfb_plane == intel_crtc->plane &&
  420. dev_priv->cfb_fb == fb->base.id &&
  421. dev_priv->cfb_y == crtc->y)
  422. return;
  423. if (intel_fbc_enabled(dev)) {
  424. /* We update FBC along two paths, after changing fb/crtc
  425. * configuration (modeswitching) and after page-flipping
  426. * finishes. For the latter, we know that not only did
  427. * we disable the FBC at the start of the page-flip
  428. * sequence, but also more than one vblank has passed.
  429. *
  430. * For the former case of modeswitching, it is possible
  431. * to switch between two FBC valid configurations
  432. * instantaneously so we do need to disable the FBC
  433. * before we can modify its control registers. We also
  434. * have to wait for the next vblank for that to take
  435. * effect. However, since we delay enabling FBC we can
  436. * assume that a vblank has passed since disabling and
  437. * that we can safely alter the registers in the deferred
  438. * callback.
  439. *
  440. * In the scenario that we go from a valid to invalid
  441. * and then back to valid FBC configuration we have
  442. * no strict enforcement that a vblank occurred since
  443. * disabling the FBC. However, along all current pipe
  444. * disabling paths we do need to wait for a vblank at
  445. * some point. And we wait before enabling FBC anyway.
  446. */
  447. DRM_DEBUG_KMS("disabling active FBC for update\n");
  448. intel_disable_fbc(dev);
  449. }
  450. intel_enable_fbc(crtc, 500);
  451. return;
  452. out_disable:
  453. /* Multiple disables should be harmless */
  454. if (intel_fbc_enabled(dev)) {
  455. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  456. intel_disable_fbc(dev);
  457. }
  458. i915_gem_stolen_cleanup_compression(dev);
  459. }
  460. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  461. {
  462. drm_i915_private_t *dev_priv = dev->dev_private;
  463. u32 tmp;
  464. tmp = I915_READ(CLKCFG);
  465. switch (tmp & CLKCFG_FSB_MASK) {
  466. case CLKCFG_FSB_533:
  467. dev_priv->fsb_freq = 533; /* 133*4 */
  468. break;
  469. case CLKCFG_FSB_800:
  470. dev_priv->fsb_freq = 800; /* 200*4 */
  471. break;
  472. case CLKCFG_FSB_667:
  473. dev_priv->fsb_freq = 667; /* 167*4 */
  474. break;
  475. case CLKCFG_FSB_400:
  476. dev_priv->fsb_freq = 400; /* 100*4 */
  477. break;
  478. }
  479. switch (tmp & CLKCFG_MEM_MASK) {
  480. case CLKCFG_MEM_533:
  481. dev_priv->mem_freq = 533;
  482. break;
  483. case CLKCFG_MEM_667:
  484. dev_priv->mem_freq = 667;
  485. break;
  486. case CLKCFG_MEM_800:
  487. dev_priv->mem_freq = 800;
  488. break;
  489. }
  490. /* detect pineview DDR3 setting */
  491. tmp = I915_READ(CSHRDDR3CTL);
  492. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  493. }
  494. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  495. {
  496. drm_i915_private_t *dev_priv = dev->dev_private;
  497. u16 ddrpll, csipll;
  498. ddrpll = I915_READ16(DDRMPLL1);
  499. csipll = I915_READ16(CSIPLL0);
  500. switch (ddrpll & 0xff) {
  501. case 0xc:
  502. dev_priv->mem_freq = 800;
  503. break;
  504. case 0x10:
  505. dev_priv->mem_freq = 1066;
  506. break;
  507. case 0x14:
  508. dev_priv->mem_freq = 1333;
  509. break;
  510. case 0x18:
  511. dev_priv->mem_freq = 1600;
  512. break;
  513. default:
  514. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  515. ddrpll & 0xff);
  516. dev_priv->mem_freq = 0;
  517. break;
  518. }
  519. dev_priv->ips.r_t = dev_priv->mem_freq;
  520. switch (csipll & 0x3ff) {
  521. case 0x00c:
  522. dev_priv->fsb_freq = 3200;
  523. break;
  524. case 0x00e:
  525. dev_priv->fsb_freq = 3733;
  526. break;
  527. case 0x010:
  528. dev_priv->fsb_freq = 4266;
  529. break;
  530. case 0x012:
  531. dev_priv->fsb_freq = 4800;
  532. break;
  533. case 0x014:
  534. dev_priv->fsb_freq = 5333;
  535. break;
  536. case 0x016:
  537. dev_priv->fsb_freq = 5866;
  538. break;
  539. case 0x018:
  540. dev_priv->fsb_freq = 6400;
  541. break;
  542. default:
  543. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  544. csipll & 0x3ff);
  545. dev_priv->fsb_freq = 0;
  546. break;
  547. }
  548. if (dev_priv->fsb_freq == 3200) {
  549. dev_priv->ips.c_m = 0;
  550. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  551. dev_priv->ips.c_m = 1;
  552. } else {
  553. dev_priv->ips.c_m = 2;
  554. }
  555. }
  556. static const struct cxsr_latency cxsr_latency_table[] = {
  557. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  558. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  559. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  560. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  561. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  562. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  563. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  564. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  565. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  566. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  567. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  568. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  569. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  570. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  571. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  572. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  573. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  574. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  575. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  576. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  577. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  578. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  579. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  580. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  581. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  582. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  583. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  584. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  585. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  586. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  587. };
  588. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  589. int is_ddr3,
  590. int fsb,
  591. int mem)
  592. {
  593. const struct cxsr_latency *latency;
  594. int i;
  595. if (fsb == 0 || mem == 0)
  596. return NULL;
  597. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  598. latency = &cxsr_latency_table[i];
  599. if (is_desktop == latency->is_desktop &&
  600. is_ddr3 == latency->is_ddr3 &&
  601. fsb == latency->fsb_freq && mem == latency->mem_freq)
  602. return latency;
  603. }
  604. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  605. return NULL;
  606. }
  607. static void pineview_disable_cxsr(struct drm_device *dev)
  608. {
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. /* deactivate cxsr */
  611. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  612. }
  613. /*
  614. * Latency for FIFO fetches is dependent on several factors:
  615. * - memory configuration (speed, channels)
  616. * - chipset
  617. * - current MCH state
  618. * It can be fairly high in some situations, so here we assume a fairly
  619. * pessimal value. It's a tradeoff between extra memory fetches (if we
  620. * set this value too high, the FIFO will fetch frequently to stay full)
  621. * and power consumption (set it too low to save power and we might see
  622. * FIFO underruns and display "flicker").
  623. *
  624. * A value of 5us seems to be a good balance; safe for very low end
  625. * platforms but not overly aggressive on lower latency configs.
  626. */
  627. static const int latency_ns = 5000;
  628. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  629. {
  630. struct drm_i915_private *dev_priv = dev->dev_private;
  631. uint32_t dsparb = I915_READ(DSPARB);
  632. int size;
  633. size = dsparb & 0x7f;
  634. if (plane)
  635. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  636. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  637. plane ? "B" : "A", size);
  638. return size;
  639. }
  640. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  641. {
  642. struct drm_i915_private *dev_priv = dev->dev_private;
  643. uint32_t dsparb = I915_READ(DSPARB);
  644. int size;
  645. size = dsparb & 0x1ff;
  646. if (plane)
  647. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  648. size >>= 1; /* Convert to cachelines */
  649. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  650. plane ? "B" : "A", size);
  651. return size;
  652. }
  653. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  654. {
  655. struct drm_i915_private *dev_priv = dev->dev_private;
  656. uint32_t dsparb = I915_READ(DSPARB);
  657. int size;
  658. size = dsparb & 0x7f;
  659. size >>= 2; /* Convert to cachelines */
  660. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  661. plane ? "B" : "A",
  662. size);
  663. return size;
  664. }
  665. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. uint32_t dsparb = I915_READ(DSPARB);
  669. int size;
  670. size = dsparb & 0x7f;
  671. size >>= 1; /* Convert to cachelines */
  672. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  673. plane ? "B" : "A", size);
  674. return size;
  675. }
  676. /* Pineview has different values for various configs */
  677. static const struct intel_watermark_params pineview_display_wm = {
  678. PINEVIEW_DISPLAY_FIFO,
  679. PINEVIEW_MAX_WM,
  680. PINEVIEW_DFT_WM,
  681. PINEVIEW_GUARD_WM,
  682. PINEVIEW_FIFO_LINE_SIZE
  683. };
  684. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  685. PINEVIEW_DISPLAY_FIFO,
  686. PINEVIEW_MAX_WM,
  687. PINEVIEW_DFT_HPLLOFF_WM,
  688. PINEVIEW_GUARD_WM,
  689. PINEVIEW_FIFO_LINE_SIZE
  690. };
  691. static const struct intel_watermark_params pineview_cursor_wm = {
  692. PINEVIEW_CURSOR_FIFO,
  693. PINEVIEW_CURSOR_MAX_WM,
  694. PINEVIEW_CURSOR_DFT_WM,
  695. PINEVIEW_CURSOR_GUARD_WM,
  696. PINEVIEW_FIFO_LINE_SIZE,
  697. };
  698. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  699. PINEVIEW_CURSOR_FIFO,
  700. PINEVIEW_CURSOR_MAX_WM,
  701. PINEVIEW_CURSOR_DFT_WM,
  702. PINEVIEW_CURSOR_GUARD_WM,
  703. PINEVIEW_FIFO_LINE_SIZE
  704. };
  705. static const struct intel_watermark_params g4x_wm_info = {
  706. G4X_FIFO_SIZE,
  707. G4X_MAX_WM,
  708. G4X_MAX_WM,
  709. 2,
  710. G4X_FIFO_LINE_SIZE,
  711. };
  712. static const struct intel_watermark_params g4x_cursor_wm_info = {
  713. I965_CURSOR_FIFO,
  714. I965_CURSOR_MAX_WM,
  715. I965_CURSOR_DFT_WM,
  716. 2,
  717. G4X_FIFO_LINE_SIZE,
  718. };
  719. static const struct intel_watermark_params valleyview_wm_info = {
  720. VALLEYVIEW_FIFO_SIZE,
  721. VALLEYVIEW_MAX_WM,
  722. VALLEYVIEW_MAX_WM,
  723. 2,
  724. G4X_FIFO_LINE_SIZE,
  725. };
  726. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  727. I965_CURSOR_FIFO,
  728. VALLEYVIEW_CURSOR_MAX_WM,
  729. I965_CURSOR_DFT_WM,
  730. 2,
  731. G4X_FIFO_LINE_SIZE,
  732. };
  733. static const struct intel_watermark_params i965_cursor_wm_info = {
  734. I965_CURSOR_FIFO,
  735. I965_CURSOR_MAX_WM,
  736. I965_CURSOR_DFT_WM,
  737. 2,
  738. I915_FIFO_LINE_SIZE,
  739. };
  740. static const struct intel_watermark_params i945_wm_info = {
  741. I945_FIFO_SIZE,
  742. I915_MAX_WM,
  743. 1,
  744. 2,
  745. I915_FIFO_LINE_SIZE
  746. };
  747. static const struct intel_watermark_params i915_wm_info = {
  748. I915_FIFO_SIZE,
  749. I915_MAX_WM,
  750. 1,
  751. 2,
  752. I915_FIFO_LINE_SIZE
  753. };
  754. static const struct intel_watermark_params i855_wm_info = {
  755. I855GM_FIFO_SIZE,
  756. I915_MAX_WM,
  757. 1,
  758. 2,
  759. I830_FIFO_LINE_SIZE
  760. };
  761. static const struct intel_watermark_params i830_wm_info = {
  762. I830_FIFO_SIZE,
  763. I915_MAX_WM,
  764. 1,
  765. 2,
  766. I830_FIFO_LINE_SIZE
  767. };
  768. static const struct intel_watermark_params ironlake_display_wm_info = {
  769. ILK_DISPLAY_FIFO,
  770. ILK_DISPLAY_MAXWM,
  771. ILK_DISPLAY_DFTWM,
  772. 2,
  773. ILK_FIFO_LINE_SIZE
  774. };
  775. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  776. ILK_CURSOR_FIFO,
  777. ILK_CURSOR_MAXWM,
  778. ILK_CURSOR_DFTWM,
  779. 2,
  780. ILK_FIFO_LINE_SIZE
  781. };
  782. static const struct intel_watermark_params ironlake_display_srwm_info = {
  783. ILK_DISPLAY_SR_FIFO,
  784. ILK_DISPLAY_MAX_SRWM,
  785. ILK_DISPLAY_DFT_SRWM,
  786. 2,
  787. ILK_FIFO_LINE_SIZE
  788. };
  789. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  790. ILK_CURSOR_SR_FIFO,
  791. ILK_CURSOR_MAX_SRWM,
  792. ILK_CURSOR_DFT_SRWM,
  793. 2,
  794. ILK_FIFO_LINE_SIZE
  795. };
  796. static const struct intel_watermark_params sandybridge_display_wm_info = {
  797. SNB_DISPLAY_FIFO,
  798. SNB_DISPLAY_MAXWM,
  799. SNB_DISPLAY_DFTWM,
  800. 2,
  801. SNB_FIFO_LINE_SIZE
  802. };
  803. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  804. SNB_CURSOR_FIFO,
  805. SNB_CURSOR_MAXWM,
  806. SNB_CURSOR_DFTWM,
  807. 2,
  808. SNB_FIFO_LINE_SIZE
  809. };
  810. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  811. SNB_DISPLAY_SR_FIFO,
  812. SNB_DISPLAY_MAX_SRWM,
  813. SNB_DISPLAY_DFT_SRWM,
  814. 2,
  815. SNB_FIFO_LINE_SIZE
  816. };
  817. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  818. SNB_CURSOR_SR_FIFO,
  819. SNB_CURSOR_MAX_SRWM,
  820. SNB_CURSOR_DFT_SRWM,
  821. 2,
  822. SNB_FIFO_LINE_SIZE
  823. };
  824. /**
  825. * intel_calculate_wm - calculate watermark level
  826. * @clock_in_khz: pixel clock
  827. * @wm: chip FIFO params
  828. * @pixel_size: display pixel size
  829. * @latency_ns: memory latency for the platform
  830. *
  831. * Calculate the watermark level (the level at which the display plane will
  832. * start fetching from memory again). Each chip has a different display
  833. * FIFO size and allocation, so the caller needs to figure that out and pass
  834. * in the correct intel_watermark_params structure.
  835. *
  836. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  837. * on the pixel size. When it reaches the watermark level, it'll start
  838. * fetching FIFO line sized based chunks from memory until the FIFO fills
  839. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  840. * will occur, and a display engine hang could result.
  841. */
  842. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  843. const struct intel_watermark_params *wm,
  844. int fifo_size,
  845. int pixel_size,
  846. unsigned long latency_ns)
  847. {
  848. long entries_required, wm_size;
  849. /*
  850. * Note: we need to make sure we don't overflow for various clock &
  851. * latency values.
  852. * clocks go from a few thousand to several hundred thousand.
  853. * latency is usually a few thousand
  854. */
  855. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  856. 1000;
  857. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  858. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  859. wm_size = fifo_size - (entries_required + wm->guard_size);
  860. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  861. /* Don't promote wm_size to unsigned... */
  862. if (wm_size > (long)wm->max_wm)
  863. wm_size = wm->max_wm;
  864. if (wm_size <= 0)
  865. wm_size = wm->default_wm;
  866. return wm_size;
  867. }
  868. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  869. {
  870. struct drm_crtc *crtc, *enabled = NULL;
  871. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  872. if (intel_crtc_active(crtc)) {
  873. if (enabled)
  874. return NULL;
  875. enabled = crtc;
  876. }
  877. }
  878. return enabled;
  879. }
  880. static void pineview_update_wm(struct drm_device *dev)
  881. {
  882. struct drm_i915_private *dev_priv = dev->dev_private;
  883. struct drm_crtc *crtc;
  884. const struct cxsr_latency *latency;
  885. u32 reg;
  886. unsigned long wm;
  887. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  888. dev_priv->fsb_freq, dev_priv->mem_freq);
  889. if (!latency) {
  890. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  891. pineview_disable_cxsr(dev);
  892. return;
  893. }
  894. crtc = single_enabled_crtc(dev);
  895. if (crtc) {
  896. int clock = crtc->mode.clock;
  897. int pixel_size = crtc->fb->bits_per_pixel / 8;
  898. /* Display SR */
  899. wm = intel_calculate_wm(clock, &pineview_display_wm,
  900. pineview_display_wm.fifo_size,
  901. pixel_size, latency->display_sr);
  902. reg = I915_READ(DSPFW1);
  903. reg &= ~DSPFW_SR_MASK;
  904. reg |= wm << DSPFW_SR_SHIFT;
  905. I915_WRITE(DSPFW1, reg);
  906. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  907. /* cursor SR */
  908. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  909. pineview_display_wm.fifo_size,
  910. pixel_size, latency->cursor_sr);
  911. reg = I915_READ(DSPFW3);
  912. reg &= ~DSPFW_CURSOR_SR_MASK;
  913. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  914. I915_WRITE(DSPFW3, reg);
  915. /* Display HPLL off SR */
  916. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  917. pineview_display_hplloff_wm.fifo_size,
  918. pixel_size, latency->display_hpll_disable);
  919. reg = I915_READ(DSPFW3);
  920. reg &= ~DSPFW_HPLL_SR_MASK;
  921. reg |= wm & DSPFW_HPLL_SR_MASK;
  922. I915_WRITE(DSPFW3, reg);
  923. /* cursor HPLL off SR */
  924. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  925. pineview_display_hplloff_wm.fifo_size,
  926. pixel_size, latency->cursor_hpll_disable);
  927. reg = I915_READ(DSPFW3);
  928. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  929. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  930. I915_WRITE(DSPFW3, reg);
  931. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  932. /* activate cxsr */
  933. I915_WRITE(DSPFW3,
  934. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  935. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  936. } else {
  937. pineview_disable_cxsr(dev);
  938. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  939. }
  940. }
  941. static bool g4x_compute_wm0(struct drm_device *dev,
  942. int plane,
  943. const struct intel_watermark_params *display,
  944. int display_latency_ns,
  945. const struct intel_watermark_params *cursor,
  946. int cursor_latency_ns,
  947. int *plane_wm,
  948. int *cursor_wm)
  949. {
  950. struct drm_crtc *crtc;
  951. int htotal, hdisplay, clock, pixel_size;
  952. int line_time_us, line_count;
  953. int entries, tlb_miss;
  954. crtc = intel_get_crtc_for_plane(dev, plane);
  955. if (!intel_crtc_active(crtc)) {
  956. *cursor_wm = cursor->guard_size;
  957. *plane_wm = display->guard_size;
  958. return false;
  959. }
  960. htotal = crtc->mode.htotal;
  961. hdisplay = crtc->mode.hdisplay;
  962. clock = crtc->mode.clock;
  963. pixel_size = crtc->fb->bits_per_pixel / 8;
  964. /* Use the small buffer method to calculate plane watermark */
  965. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  966. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  967. if (tlb_miss > 0)
  968. entries += tlb_miss;
  969. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  970. *plane_wm = entries + display->guard_size;
  971. if (*plane_wm > (int)display->max_wm)
  972. *plane_wm = display->max_wm;
  973. /* Use the large buffer method to calculate cursor watermark */
  974. line_time_us = ((htotal * 1000) / clock);
  975. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  976. entries = line_count * 64 * pixel_size;
  977. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  978. if (tlb_miss > 0)
  979. entries += tlb_miss;
  980. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  981. *cursor_wm = entries + cursor->guard_size;
  982. if (*cursor_wm > (int)cursor->max_wm)
  983. *cursor_wm = (int)cursor->max_wm;
  984. return true;
  985. }
  986. /*
  987. * Check the wm result.
  988. *
  989. * If any calculated watermark values is larger than the maximum value that
  990. * can be programmed into the associated watermark register, that watermark
  991. * must be disabled.
  992. */
  993. static bool g4x_check_srwm(struct drm_device *dev,
  994. int display_wm, int cursor_wm,
  995. const struct intel_watermark_params *display,
  996. const struct intel_watermark_params *cursor)
  997. {
  998. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  999. display_wm, cursor_wm);
  1000. if (display_wm > display->max_wm) {
  1001. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1002. display_wm, display->max_wm);
  1003. return false;
  1004. }
  1005. if (cursor_wm > cursor->max_wm) {
  1006. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1007. cursor_wm, cursor->max_wm);
  1008. return false;
  1009. }
  1010. if (!(display_wm || cursor_wm)) {
  1011. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1012. return false;
  1013. }
  1014. return true;
  1015. }
  1016. static bool g4x_compute_srwm(struct drm_device *dev,
  1017. int plane,
  1018. int latency_ns,
  1019. const struct intel_watermark_params *display,
  1020. const struct intel_watermark_params *cursor,
  1021. int *display_wm, int *cursor_wm)
  1022. {
  1023. struct drm_crtc *crtc;
  1024. int hdisplay, htotal, pixel_size, clock;
  1025. unsigned long line_time_us;
  1026. int line_count, line_size;
  1027. int small, large;
  1028. int entries;
  1029. if (!latency_ns) {
  1030. *display_wm = *cursor_wm = 0;
  1031. return false;
  1032. }
  1033. crtc = intel_get_crtc_for_plane(dev, plane);
  1034. hdisplay = crtc->mode.hdisplay;
  1035. htotal = crtc->mode.htotal;
  1036. clock = crtc->mode.clock;
  1037. pixel_size = crtc->fb->bits_per_pixel / 8;
  1038. line_time_us = (htotal * 1000) / clock;
  1039. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1040. line_size = hdisplay * pixel_size;
  1041. /* Use the minimum of the small and large buffer method for primary */
  1042. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1043. large = line_count * line_size;
  1044. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1045. *display_wm = entries + display->guard_size;
  1046. /* calculate the self-refresh watermark for display cursor */
  1047. entries = line_count * pixel_size * 64;
  1048. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1049. *cursor_wm = entries + cursor->guard_size;
  1050. return g4x_check_srwm(dev,
  1051. *display_wm, *cursor_wm,
  1052. display, cursor);
  1053. }
  1054. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1055. int plane,
  1056. int *plane_prec_mult,
  1057. int *plane_dl,
  1058. int *cursor_prec_mult,
  1059. int *cursor_dl)
  1060. {
  1061. struct drm_crtc *crtc;
  1062. int clock, pixel_size;
  1063. int entries;
  1064. crtc = intel_get_crtc_for_plane(dev, plane);
  1065. if (!intel_crtc_active(crtc))
  1066. return false;
  1067. clock = crtc->mode.clock; /* VESA DOT Clock */
  1068. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1069. entries = (clock / 1000) * pixel_size;
  1070. *plane_prec_mult = (entries > 256) ?
  1071. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1072. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1073. pixel_size);
  1074. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1075. *cursor_prec_mult = (entries > 256) ?
  1076. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1077. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1078. return true;
  1079. }
  1080. /*
  1081. * Update drain latency registers of memory arbiter
  1082. *
  1083. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1084. * to be programmed. Each plane has a drain latency multiplier and a drain
  1085. * latency value.
  1086. */
  1087. static void vlv_update_drain_latency(struct drm_device *dev)
  1088. {
  1089. struct drm_i915_private *dev_priv = dev->dev_private;
  1090. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1091. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1092. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1093. either 16 or 32 */
  1094. /* For plane A, Cursor A */
  1095. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1096. &cursor_prec_mult, &cursora_dl)) {
  1097. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1098. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1099. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1100. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1101. I915_WRITE(VLV_DDL1, cursora_prec |
  1102. (cursora_dl << DDL_CURSORA_SHIFT) |
  1103. planea_prec | planea_dl);
  1104. }
  1105. /* For plane B, Cursor B */
  1106. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1107. &cursor_prec_mult, &cursorb_dl)) {
  1108. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1109. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1110. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1111. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1112. I915_WRITE(VLV_DDL2, cursorb_prec |
  1113. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1114. planeb_prec | planeb_dl);
  1115. }
  1116. }
  1117. #define single_plane_enabled(mask) is_power_of_2(mask)
  1118. static void valleyview_update_wm(struct drm_device *dev)
  1119. {
  1120. static const int sr_latency_ns = 12000;
  1121. struct drm_i915_private *dev_priv = dev->dev_private;
  1122. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1123. int plane_sr, cursor_sr;
  1124. int ignore_plane_sr, ignore_cursor_sr;
  1125. unsigned int enabled = 0;
  1126. vlv_update_drain_latency(dev);
  1127. if (g4x_compute_wm0(dev, 0,
  1128. &valleyview_wm_info, latency_ns,
  1129. &valleyview_cursor_wm_info, latency_ns,
  1130. &planea_wm, &cursora_wm))
  1131. enabled |= 1;
  1132. if (g4x_compute_wm0(dev, 1,
  1133. &valleyview_wm_info, latency_ns,
  1134. &valleyview_cursor_wm_info, latency_ns,
  1135. &planeb_wm, &cursorb_wm))
  1136. enabled |= 2;
  1137. if (single_plane_enabled(enabled) &&
  1138. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1139. sr_latency_ns,
  1140. &valleyview_wm_info,
  1141. &valleyview_cursor_wm_info,
  1142. &plane_sr, &ignore_cursor_sr) &&
  1143. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1144. 2*sr_latency_ns,
  1145. &valleyview_wm_info,
  1146. &valleyview_cursor_wm_info,
  1147. &ignore_plane_sr, &cursor_sr)) {
  1148. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1149. } else {
  1150. I915_WRITE(FW_BLC_SELF_VLV,
  1151. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1152. plane_sr = cursor_sr = 0;
  1153. }
  1154. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1155. planea_wm, cursora_wm,
  1156. planeb_wm, cursorb_wm,
  1157. plane_sr, cursor_sr);
  1158. I915_WRITE(DSPFW1,
  1159. (plane_sr << DSPFW_SR_SHIFT) |
  1160. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1161. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1162. planea_wm);
  1163. I915_WRITE(DSPFW2,
  1164. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1165. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1166. I915_WRITE(DSPFW3,
  1167. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1168. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1169. }
  1170. static void g4x_update_wm(struct drm_device *dev)
  1171. {
  1172. static const int sr_latency_ns = 12000;
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1175. int plane_sr, cursor_sr;
  1176. unsigned int enabled = 0;
  1177. if (g4x_compute_wm0(dev, 0,
  1178. &g4x_wm_info, latency_ns,
  1179. &g4x_cursor_wm_info, latency_ns,
  1180. &planea_wm, &cursora_wm))
  1181. enabled |= 1;
  1182. if (g4x_compute_wm0(dev, 1,
  1183. &g4x_wm_info, latency_ns,
  1184. &g4x_cursor_wm_info, latency_ns,
  1185. &planeb_wm, &cursorb_wm))
  1186. enabled |= 2;
  1187. if (single_plane_enabled(enabled) &&
  1188. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1189. sr_latency_ns,
  1190. &g4x_wm_info,
  1191. &g4x_cursor_wm_info,
  1192. &plane_sr, &cursor_sr)) {
  1193. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1194. } else {
  1195. I915_WRITE(FW_BLC_SELF,
  1196. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1197. plane_sr = cursor_sr = 0;
  1198. }
  1199. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1200. planea_wm, cursora_wm,
  1201. planeb_wm, cursorb_wm,
  1202. plane_sr, cursor_sr);
  1203. I915_WRITE(DSPFW1,
  1204. (plane_sr << DSPFW_SR_SHIFT) |
  1205. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1206. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1207. planea_wm);
  1208. I915_WRITE(DSPFW2,
  1209. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1210. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1211. /* HPLL off in SR has some issues on G4x... disable it */
  1212. I915_WRITE(DSPFW3,
  1213. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1214. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1215. }
  1216. static void i965_update_wm(struct drm_device *dev)
  1217. {
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. struct drm_crtc *crtc;
  1220. int srwm = 1;
  1221. int cursor_sr = 16;
  1222. /* Calc sr entries for one plane configs */
  1223. crtc = single_enabled_crtc(dev);
  1224. if (crtc) {
  1225. /* self-refresh has much higher latency */
  1226. static const int sr_latency_ns = 12000;
  1227. int clock = crtc->mode.clock;
  1228. int htotal = crtc->mode.htotal;
  1229. int hdisplay = crtc->mode.hdisplay;
  1230. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1231. unsigned long line_time_us;
  1232. int entries;
  1233. line_time_us = ((htotal * 1000) / clock);
  1234. /* Use ns/us then divide to preserve precision */
  1235. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1236. pixel_size * hdisplay;
  1237. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1238. srwm = I965_FIFO_SIZE - entries;
  1239. if (srwm < 0)
  1240. srwm = 1;
  1241. srwm &= 0x1ff;
  1242. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1243. entries, srwm);
  1244. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1245. pixel_size * 64;
  1246. entries = DIV_ROUND_UP(entries,
  1247. i965_cursor_wm_info.cacheline_size);
  1248. cursor_sr = i965_cursor_wm_info.fifo_size -
  1249. (entries + i965_cursor_wm_info.guard_size);
  1250. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1251. cursor_sr = i965_cursor_wm_info.max_wm;
  1252. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1253. "cursor %d\n", srwm, cursor_sr);
  1254. if (IS_CRESTLINE(dev))
  1255. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1256. } else {
  1257. /* Turn off self refresh if both pipes are enabled */
  1258. if (IS_CRESTLINE(dev))
  1259. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1260. & ~FW_BLC_SELF_EN);
  1261. }
  1262. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1263. srwm);
  1264. /* 965 has limitations... */
  1265. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1266. (8 << 16) | (8 << 8) | (8 << 0));
  1267. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1268. /* update cursor SR watermark */
  1269. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1270. }
  1271. static void i9xx_update_wm(struct drm_device *dev)
  1272. {
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. const struct intel_watermark_params *wm_info;
  1275. uint32_t fwater_lo;
  1276. uint32_t fwater_hi;
  1277. int cwm, srwm = 1;
  1278. int fifo_size;
  1279. int planea_wm, planeb_wm;
  1280. struct drm_crtc *crtc, *enabled = NULL;
  1281. if (IS_I945GM(dev))
  1282. wm_info = &i945_wm_info;
  1283. else if (!IS_GEN2(dev))
  1284. wm_info = &i915_wm_info;
  1285. else
  1286. wm_info = &i855_wm_info;
  1287. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1288. crtc = intel_get_crtc_for_plane(dev, 0);
  1289. if (intel_crtc_active(crtc)) {
  1290. int cpp = crtc->fb->bits_per_pixel / 8;
  1291. if (IS_GEN2(dev))
  1292. cpp = 4;
  1293. planea_wm = intel_calculate_wm(crtc->mode.clock,
  1294. wm_info, fifo_size, cpp,
  1295. latency_ns);
  1296. enabled = crtc;
  1297. } else
  1298. planea_wm = fifo_size - wm_info->guard_size;
  1299. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1300. crtc = intel_get_crtc_for_plane(dev, 1);
  1301. if (intel_crtc_active(crtc)) {
  1302. int cpp = crtc->fb->bits_per_pixel / 8;
  1303. if (IS_GEN2(dev))
  1304. cpp = 4;
  1305. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  1306. wm_info, fifo_size, cpp,
  1307. latency_ns);
  1308. if (enabled == NULL)
  1309. enabled = crtc;
  1310. else
  1311. enabled = NULL;
  1312. } else
  1313. planeb_wm = fifo_size - wm_info->guard_size;
  1314. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1315. /*
  1316. * Overlay gets an aggressive default since video jitter is bad.
  1317. */
  1318. cwm = 2;
  1319. /* Play safe and disable self-refresh before adjusting watermarks. */
  1320. if (IS_I945G(dev) || IS_I945GM(dev))
  1321. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1322. else if (IS_I915GM(dev))
  1323. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1324. /* Calc sr entries for one plane configs */
  1325. if (HAS_FW_BLC(dev) && enabled) {
  1326. /* self-refresh has much higher latency */
  1327. static const int sr_latency_ns = 6000;
  1328. int clock = enabled->mode.clock;
  1329. int htotal = enabled->mode.htotal;
  1330. int hdisplay = enabled->mode.hdisplay;
  1331. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1332. unsigned long line_time_us;
  1333. int entries;
  1334. line_time_us = (htotal * 1000) / clock;
  1335. /* Use ns/us then divide to preserve precision */
  1336. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1337. pixel_size * hdisplay;
  1338. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1339. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1340. srwm = wm_info->fifo_size - entries;
  1341. if (srwm < 0)
  1342. srwm = 1;
  1343. if (IS_I945G(dev) || IS_I945GM(dev))
  1344. I915_WRITE(FW_BLC_SELF,
  1345. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1346. else if (IS_I915GM(dev))
  1347. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1348. }
  1349. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1350. planea_wm, planeb_wm, cwm, srwm);
  1351. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1352. fwater_hi = (cwm & 0x1f);
  1353. /* Set request length to 8 cachelines per fetch */
  1354. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1355. fwater_hi = fwater_hi | (1 << 8);
  1356. I915_WRITE(FW_BLC, fwater_lo);
  1357. I915_WRITE(FW_BLC2, fwater_hi);
  1358. if (HAS_FW_BLC(dev)) {
  1359. if (enabled) {
  1360. if (IS_I945G(dev) || IS_I945GM(dev))
  1361. I915_WRITE(FW_BLC_SELF,
  1362. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1363. else if (IS_I915GM(dev))
  1364. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1365. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1366. } else
  1367. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1368. }
  1369. }
  1370. static void i830_update_wm(struct drm_device *dev)
  1371. {
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. struct drm_crtc *crtc;
  1374. uint32_t fwater_lo;
  1375. int planea_wm;
  1376. crtc = single_enabled_crtc(dev);
  1377. if (crtc == NULL)
  1378. return;
  1379. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  1380. dev_priv->display.get_fifo_size(dev, 0),
  1381. 4, latency_ns);
  1382. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1383. fwater_lo |= (3<<8) | planea_wm;
  1384. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1385. I915_WRITE(FW_BLC, fwater_lo);
  1386. }
  1387. #define ILK_LP0_PLANE_LATENCY 700
  1388. #define ILK_LP0_CURSOR_LATENCY 1300
  1389. /*
  1390. * Check the wm result.
  1391. *
  1392. * If any calculated watermark values is larger than the maximum value that
  1393. * can be programmed into the associated watermark register, that watermark
  1394. * must be disabled.
  1395. */
  1396. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1397. int fbc_wm, int display_wm, int cursor_wm,
  1398. const struct intel_watermark_params *display,
  1399. const struct intel_watermark_params *cursor)
  1400. {
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1403. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1404. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1405. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1406. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1407. /* fbc has it's own way to disable FBC WM */
  1408. I915_WRITE(DISP_ARB_CTL,
  1409. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1410. return false;
  1411. } else if (INTEL_INFO(dev)->gen >= 6) {
  1412. /* enable FBC WM (except on ILK, where it must remain off) */
  1413. I915_WRITE(DISP_ARB_CTL,
  1414. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1415. }
  1416. if (display_wm > display->max_wm) {
  1417. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1418. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1419. return false;
  1420. }
  1421. if (cursor_wm > cursor->max_wm) {
  1422. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1423. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1424. return false;
  1425. }
  1426. if (!(fbc_wm || display_wm || cursor_wm)) {
  1427. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1428. return false;
  1429. }
  1430. return true;
  1431. }
  1432. /*
  1433. * Compute watermark values of WM[1-3],
  1434. */
  1435. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1436. int latency_ns,
  1437. const struct intel_watermark_params *display,
  1438. const struct intel_watermark_params *cursor,
  1439. int *fbc_wm, int *display_wm, int *cursor_wm)
  1440. {
  1441. struct drm_crtc *crtc;
  1442. unsigned long line_time_us;
  1443. int hdisplay, htotal, pixel_size, clock;
  1444. int line_count, line_size;
  1445. int small, large;
  1446. int entries;
  1447. if (!latency_ns) {
  1448. *fbc_wm = *display_wm = *cursor_wm = 0;
  1449. return false;
  1450. }
  1451. crtc = intel_get_crtc_for_plane(dev, plane);
  1452. hdisplay = crtc->mode.hdisplay;
  1453. htotal = crtc->mode.htotal;
  1454. clock = crtc->mode.clock;
  1455. pixel_size = crtc->fb->bits_per_pixel / 8;
  1456. line_time_us = (htotal * 1000) / clock;
  1457. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1458. line_size = hdisplay * pixel_size;
  1459. /* Use the minimum of the small and large buffer method for primary */
  1460. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1461. large = line_count * line_size;
  1462. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1463. *display_wm = entries + display->guard_size;
  1464. /*
  1465. * Spec says:
  1466. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1467. */
  1468. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1469. /* calculate the self-refresh watermark for display cursor */
  1470. entries = line_count * pixel_size * 64;
  1471. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1472. *cursor_wm = entries + cursor->guard_size;
  1473. return ironlake_check_srwm(dev, level,
  1474. *fbc_wm, *display_wm, *cursor_wm,
  1475. display, cursor);
  1476. }
  1477. static void ironlake_update_wm(struct drm_device *dev)
  1478. {
  1479. struct drm_i915_private *dev_priv = dev->dev_private;
  1480. int fbc_wm, plane_wm, cursor_wm;
  1481. unsigned int enabled;
  1482. enabled = 0;
  1483. if (g4x_compute_wm0(dev, 0,
  1484. &ironlake_display_wm_info,
  1485. ILK_LP0_PLANE_LATENCY,
  1486. &ironlake_cursor_wm_info,
  1487. ILK_LP0_CURSOR_LATENCY,
  1488. &plane_wm, &cursor_wm)) {
  1489. I915_WRITE(WM0_PIPEA_ILK,
  1490. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1491. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1492. " plane %d, " "cursor: %d\n",
  1493. plane_wm, cursor_wm);
  1494. enabled |= 1;
  1495. }
  1496. if (g4x_compute_wm0(dev, 1,
  1497. &ironlake_display_wm_info,
  1498. ILK_LP0_PLANE_LATENCY,
  1499. &ironlake_cursor_wm_info,
  1500. ILK_LP0_CURSOR_LATENCY,
  1501. &plane_wm, &cursor_wm)) {
  1502. I915_WRITE(WM0_PIPEB_ILK,
  1503. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1504. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1505. " plane %d, cursor: %d\n",
  1506. plane_wm, cursor_wm);
  1507. enabled |= 2;
  1508. }
  1509. /*
  1510. * Calculate and update the self-refresh watermark only when one
  1511. * display plane is used.
  1512. */
  1513. I915_WRITE(WM3_LP_ILK, 0);
  1514. I915_WRITE(WM2_LP_ILK, 0);
  1515. I915_WRITE(WM1_LP_ILK, 0);
  1516. if (!single_plane_enabled(enabled))
  1517. return;
  1518. enabled = ffs(enabled) - 1;
  1519. /* WM1 */
  1520. if (!ironlake_compute_srwm(dev, 1, enabled,
  1521. ILK_READ_WM1_LATENCY() * 500,
  1522. &ironlake_display_srwm_info,
  1523. &ironlake_cursor_srwm_info,
  1524. &fbc_wm, &plane_wm, &cursor_wm))
  1525. return;
  1526. I915_WRITE(WM1_LP_ILK,
  1527. WM1_LP_SR_EN |
  1528. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1529. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1530. (plane_wm << WM1_LP_SR_SHIFT) |
  1531. cursor_wm);
  1532. /* WM2 */
  1533. if (!ironlake_compute_srwm(dev, 2, enabled,
  1534. ILK_READ_WM2_LATENCY() * 500,
  1535. &ironlake_display_srwm_info,
  1536. &ironlake_cursor_srwm_info,
  1537. &fbc_wm, &plane_wm, &cursor_wm))
  1538. return;
  1539. I915_WRITE(WM2_LP_ILK,
  1540. WM2_LP_EN |
  1541. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1542. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1543. (plane_wm << WM1_LP_SR_SHIFT) |
  1544. cursor_wm);
  1545. /*
  1546. * WM3 is unsupported on ILK, probably because we don't have latency
  1547. * data for that power state
  1548. */
  1549. }
  1550. static void sandybridge_update_wm(struct drm_device *dev)
  1551. {
  1552. struct drm_i915_private *dev_priv = dev->dev_private;
  1553. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1554. u32 val;
  1555. int fbc_wm, plane_wm, cursor_wm;
  1556. unsigned int enabled;
  1557. enabled = 0;
  1558. if (g4x_compute_wm0(dev, 0,
  1559. &sandybridge_display_wm_info, latency,
  1560. &sandybridge_cursor_wm_info, latency,
  1561. &plane_wm, &cursor_wm)) {
  1562. val = I915_READ(WM0_PIPEA_ILK);
  1563. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1564. I915_WRITE(WM0_PIPEA_ILK, val |
  1565. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1566. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1567. " plane %d, " "cursor: %d\n",
  1568. plane_wm, cursor_wm);
  1569. enabled |= 1;
  1570. }
  1571. if (g4x_compute_wm0(dev, 1,
  1572. &sandybridge_display_wm_info, latency,
  1573. &sandybridge_cursor_wm_info, latency,
  1574. &plane_wm, &cursor_wm)) {
  1575. val = I915_READ(WM0_PIPEB_ILK);
  1576. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1577. I915_WRITE(WM0_PIPEB_ILK, val |
  1578. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1579. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1580. " plane %d, cursor: %d\n",
  1581. plane_wm, cursor_wm);
  1582. enabled |= 2;
  1583. }
  1584. /*
  1585. * Calculate and update the self-refresh watermark only when one
  1586. * display plane is used.
  1587. *
  1588. * SNB support 3 levels of watermark.
  1589. *
  1590. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1591. * and disabled in the descending order
  1592. *
  1593. */
  1594. I915_WRITE(WM3_LP_ILK, 0);
  1595. I915_WRITE(WM2_LP_ILK, 0);
  1596. I915_WRITE(WM1_LP_ILK, 0);
  1597. if (!single_plane_enabled(enabled) ||
  1598. dev_priv->sprite_scaling_enabled)
  1599. return;
  1600. enabled = ffs(enabled) - 1;
  1601. /* WM1 */
  1602. if (!ironlake_compute_srwm(dev, 1, enabled,
  1603. SNB_READ_WM1_LATENCY() * 500,
  1604. &sandybridge_display_srwm_info,
  1605. &sandybridge_cursor_srwm_info,
  1606. &fbc_wm, &plane_wm, &cursor_wm))
  1607. return;
  1608. I915_WRITE(WM1_LP_ILK,
  1609. WM1_LP_SR_EN |
  1610. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1611. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1612. (plane_wm << WM1_LP_SR_SHIFT) |
  1613. cursor_wm);
  1614. /* WM2 */
  1615. if (!ironlake_compute_srwm(dev, 2, enabled,
  1616. SNB_READ_WM2_LATENCY() * 500,
  1617. &sandybridge_display_srwm_info,
  1618. &sandybridge_cursor_srwm_info,
  1619. &fbc_wm, &plane_wm, &cursor_wm))
  1620. return;
  1621. I915_WRITE(WM2_LP_ILK,
  1622. WM2_LP_EN |
  1623. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1624. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1625. (plane_wm << WM1_LP_SR_SHIFT) |
  1626. cursor_wm);
  1627. /* WM3 */
  1628. if (!ironlake_compute_srwm(dev, 3, enabled,
  1629. SNB_READ_WM3_LATENCY() * 500,
  1630. &sandybridge_display_srwm_info,
  1631. &sandybridge_cursor_srwm_info,
  1632. &fbc_wm, &plane_wm, &cursor_wm))
  1633. return;
  1634. I915_WRITE(WM3_LP_ILK,
  1635. WM3_LP_EN |
  1636. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1637. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1638. (plane_wm << WM1_LP_SR_SHIFT) |
  1639. cursor_wm);
  1640. }
  1641. static void ivybridge_update_wm(struct drm_device *dev)
  1642. {
  1643. struct drm_i915_private *dev_priv = dev->dev_private;
  1644. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1645. u32 val;
  1646. int fbc_wm, plane_wm, cursor_wm;
  1647. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1648. unsigned int enabled;
  1649. enabled = 0;
  1650. if (g4x_compute_wm0(dev, 0,
  1651. &sandybridge_display_wm_info, latency,
  1652. &sandybridge_cursor_wm_info, latency,
  1653. &plane_wm, &cursor_wm)) {
  1654. val = I915_READ(WM0_PIPEA_ILK);
  1655. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1656. I915_WRITE(WM0_PIPEA_ILK, val |
  1657. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1658. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1659. " plane %d, " "cursor: %d\n",
  1660. plane_wm, cursor_wm);
  1661. enabled |= 1;
  1662. }
  1663. if (g4x_compute_wm0(dev, 1,
  1664. &sandybridge_display_wm_info, latency,
  1665. &sandybridge_cursor_wm_info, latency,
  1666. &plane_wm, &cursor_wm)) {
  1667. val = I915_READ(WM0_PIPEB_ILK);
  1668. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1669. I915_WRITE(WM0_PIPEB_ILK, val |
  1670. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1671. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1672. " plane %d, cursor: %d\n",
  1673. plane_wm, cursor_wm);
  1674. enabled |= 2;
  1675. }
  1676. if (g4x_compute_wm0(dev, 2,
  1677. &sandybridge_display_wm_info, latency,
  1678. &sandybridge_cursor_wm_info, latency,
  1679. &plane_wm, &cursor_wm)) {
  1680. val = I915_READ(WM0_PIPEC_IVB);
  1681. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1682. I915_WRITE(WM0_PIPEC_IVB, val |
  1683. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1684. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1685. " plane %d, cursor: %d\n",
  1686. plane_wm, cursor_wm);
  1687. enabled |= 3;
  1688. }
  1689. /*
  1690. * Calculate and update the self-refresh watermark only when one
  1691. * display plane is used.
  1692. *
  1693. * SNB support 3 levels of watermark.
  1694. *
  1695. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1696. * and disabled in the descending order
  1697. *
  1698. */
  1699. I915_WRITE(WM3_LP_ILK, 0);
  1700. I915_WRITE(WM2_LP_ILK, 0);
  1701. I915_WRITE(WM1_LP_ILK, 0);
  1702. if (!single_plane_enabled(enabled) ||
  1703. dev_priv->sprite_scaling_enabled)
  1704. return;
  1705. enabled = ffs(enabled) - 1;
  1706. /* WM1 */
  1707. if (!ironlake_compute_srwm(dev, 1, enabled,
  1708. SNB_READ_WM1_LATENCY() * 500,
  1709. &sandybridge_display_srwm_info,
  1710. &sandybridge_cursor_srwm_info,
  1711. &fbc_wm, &plane_wm, &cursor_wm))
  1712. return;
  1713. I915_WRITE(WM1_LP_ILK,
  1714. WM1_LP_SR_EN |
  1715. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1716. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1717. (plane_wm << WM1_LP_SR_SHIFT) |
  1718. cursor_wm);
  1719. /* WM2 */
  1720. if (!ironlake_compute_srwm(dev, 2, enabled,
  1721. SNB_READ_WM2_LATENCY() * 500,
  1722. &sandybridge_display_srwm_info,
  1723. &sandybridge_cursor_srwm_info,
  1724. &fbc_wm, &plane_wm, &cursor_wm))
  1725. return;
  1726. I915_WRITE(WM2_LP_ILK,
  1727. WM2_LP_EN |
  1728. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1729. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1730. (plane_wm << WM1_LP_SR_SHIFT) |
  1731. cursor_wm);
  1732. /* WM3, note we have to correct the cursor latency */
  1733. if (!ironlake_compute_srwm(dev, 3, enabled,
  1734. SNB_READ_WM3_LATENCY() * 500,
  1735. &sandybridge_display_srwm_info,
  1736. &sandybridge_cursor_srwm_info,
  1737. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1738. !ironlake_compute_srwm(dev, 3, enabled,
  1739. 2 * SNB_READ_WM3_LATENCY() * 500,
  1740. &sandybridge_display_srwm_info,
  1741. &sandybridge_cursor_srwm_info,
  1742. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1743. return;
  1744. I915_WRITE(WM3_LP_ILK,
  1745. WM3_LP_EN |
  1746. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1747. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1748. (plane_wm << WM1_LP_SR_SHIFT) |
  1749. cursor_wm);
  1750. }
  1751. static void
  1752. haswell_update_linetime_wm(struct drm_device *dev, int pipe,
  1753. struct drm_display_mode *mode)
  1754. {
  1755. struct drm_i915_private *dev_priv = dev->dev_private;
  1756. u32 temp;
  1757. temp = I915_READ(PIPE_WM_LINETIME(pipe));
  1758. temp &= ~PIPE_WM_LINETIME_MASK;
  1759. /* The WM are computed with base on how long it takes to fill a single
  1760. * row at the given clock rate, multiplied by 8.
  1761. * */
  1762. temp |= PIPE_WM_LINETIME_TIME(
  1763. ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
  1764. /* IPS watermarks are only used by pipe A, and are ignored by
  1765. * pipes B and C. They are calculated similarly to the common
  1766. * linetime values, except that we are using CD clock frequency
  1767. * in MHz instead of pixel rate for the division.
  1768. *
  1769. * This is a placeholder for the IPS watermark calculation code.
  1770. */
  1771. I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
  1772. }
  1773. static bool
  1774. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  1775. uint32_t sprite_width, int pixel_size,
  1776. const struct intel_watermark_params *display,
  1777. int display_latency_ns, int *sprite_wm)
  1778. {
  1779. struct drm_crtc *crtc;
  1780. int clock;
  1781. int entries, tlb_miss;
  1782. crtc = intel_get_crtc_for_plane(dev, plane);
  1783. if (!intel_crtc_active(crtc)) {
  1784. *sprite_wm = display->guard_size;
  1785. return false;
  1786. }
  1787. clock = crtc->mode.clock;
  1788. /* Use the small buffer method to calculate the sprite watermark */
  1789. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1790. tlb_miss = display->fifo_size*display->cacheline_size -
  1791. sprite_width * 8;
  1792. if (tlb_miss > 0)
  1793. entries += tlb_miss;
  1794. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1795. *sprite_wm = entries + display->guard_size;
  1796. if (*sprite_wm > (int)display->max_wm)
  1797. *sprite_wm = display->max_wm;
  1798. return true;
  1799. }
  1800. static bool
  1801. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  1802. uint32_t sprite_width, int pixel_size,
  1803. const struct intel_watermark_params *display,
  1804. int latency_ns, int *sprite_wm)
  1805. {
  1806. struct drm_crtc *crtc;
  1807. unsigned long line_time_us;
  1808. int clock;
  1809. int line_count, line_size;
  1810. int small, large;
  1811. int entries;
  1812. if (!latency_ns) {
  1813. *sprite_wm = 0;
  1814. return false;
  1815. }
  1816. crtc = intel_get_crtc_for_plane(dev, plane);
  1817. clock = crtc->mode.clock;
  1818. if (!clock) {
  1819. *sprite_wm = 0;
  1820. return false;
  1821. }
  1822. line_time_us = (sprite_width * 1000) / clock;
  1823. if (!line_time_us) {
  1824. *sprite_wm = 0;
  1825. return false;
  1826. }
  1827. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1828. line_size = sprite_width * pixel_size;
  1829. /* Use the minimum of the small and large buffer method for primary */
  1830. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1831. large = line_count * line_size;
  1832. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1833. *sprite_wm = entries + display->guard_size;
  1834. return *sprite_wm > 0x3ff ? false : true;
  1835. }
  1836. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  1837. uint32_t sprite_width, int pixel_size)
  1838. {
  1839. struct drm_i915_private *dev_priv = dev->dev_private;
  1840. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1841. u32 val;
  1842. int sprite_wm, reg;
  1843. int ret;
  1844. switch (pipe) {
  1845. case 0:
  1846. reg = WM0_PIPEA_ILK;
  1847. break;
  1848. case 1:
  1849. reg = WM0_PIPEB_ILK;
  1850. break;
  1851. case 2:
  1852. reg = WM0_PIPEC_IVB;
  1853. break;
  1854. default:
  1855. return; /* bad pipe */
  1856. }
  1857. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  1858. &sandybridge_display_wm_info,
  1859. latency, &sprite_wm);
  1860. if (!ret) {
  1861. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  1862. pipe_name(pipe));
  1863. return;
  1864. }
  1865. val = I915_READ(reg);
  1866. val &= ~WM0_PIPE_SPRITE_MASK;
  1867. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  1868. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  1869. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1870. pixel_size,
  1871. &sandybridge_display_srwm_info,
  1872. SNB_READ_WM1_LATENCY() * 500,
  1873. &sprite_wm);
  1874. if (!ret) {
  1875. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  1876. pipe_name(pipe));
  1877. return;
  1878. }
  1879. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  1880. /* Only IVB has two more LP watermarks for sprite */
  1881. if (!IS_IVYBRIDGE(dev))
  1882. return;
  1883. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1884. pixel_size,
  1885. &sandybridge_display_srwm_info,
  1886. SNB_READ_WM2_LATENCY() * 500,
  1887. &sprite_wm);
  1888. if (!ret) {
  1889. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  1890. pipe_name(pipe));
  1891. return;
  1892. }
  1893. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  1894. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1895. pixel_size,
  1896. &sandybridge_display_srwm_info,
  1897. SNB_READ_WM3_LATENCY() * 500,
  1898. &sprite_wm);
  1899. if (!ret) {
  1900. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  1901. pipe_name(pipe));
  1902. return;
  1903. }
  1904. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  1905. }
  1906. /**
  1907. * intel_update_watermarks - update FIFO watermark values based on current modes
  1908. *
  1909. * Calculate watermark values for the various WM regs based on current mode
  1910. * and plane configuration.
  1911. *
  1912. * There are several cases to deal with here:
  1913. * - normal (i.e. non-self-refresh)
  1914. * - self-refresh (SR) mode
  1915. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1916. * - lines are small relative to FIFO size (buffer can hold more than 2
  1917. * lines), so need to account for TLB latency
  1918. *
  1919. * The normal calculation is:
  1920. * watermark = dotclock * bytes per pixel * latency
  1921. * where latency is platform & configuration dependent (we assume pessimal
  1922. * values here).
  1923. *
  1924. * The SR calculation is:
  1925. * watermark = (trunc(latency/line time)+1) * surface width *
  1926. * bytes per pixel
  1927. * where
  1928. * line time = htotal / dotclock
  1929. * surface width = hdisplay for normal plane and 64 for cursor
  1930. * and latency is assumed to be high, as above.
  1931. *
  1932. * The final value programmed to the register should always be rounded up,
  1933. * and include an extra 2 entries to account for clock crossings.
  1934. *
  1935. * We don't use the sprite, so we can ignore that. And on Crestline we have
  1936. * to set the non-SR watermarks to 8.
  1937. */
  1938. void intel_update_watermarks(struct drm_device *dev)
  1939. {
  1940. struct drm_i915_private *dev_priv = dev->dev_private;
  1941. if (dev_priv->display.update_wm)
  1942. dev_priv->display.update_wm(dev);
  1943. }
  1944. void intel_update_linetime_watermarks(struct drm_device *dev,
  1945. int pipe, struct drm_display_mode *mode)
  1946. {
  1947. struct drm_i915_private *dev_priv = dev->dev_private;
  1948. if (dev_priv->display.update_linetime_wm)
  1949. dev_priv->display.update_linetime_wm(dev, pipe, mode);
  1950. }
  1951. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  1952. uint32_t sprite_width, int pixel_size)
  1953. {
  1954. struct drm_i915_private *dev_priv = dev->dev_private;
  1955. if (dev_priv->display.update_sprite_wm)
  1956. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  1957. pixel_size);
  1958. }
  1959. static struct drm_i915_gem_object *
  1960. intel_alloc_context_page(struct drm_device *dev)
  1961. {
  1962. struct drm_i915_gem_object *ctx;
  1963. int ret;
  1964. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  1965. ctx = i915_gem_alloc_object(dev, 4096);
  1966. if (!ctx) {
  1967. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  1968. return NULL;
  1969. }
  1970. ret = i915_gem_object_pin(ctx, 4096, true, false);
  1971. if (ret) {
  1972. DRM_ERROR("failed to pin power context: %d\n", ret);
  1973. goto err_unref;
  1974. }
  1975. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  1976. if (ret) {
  1977. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  1978. goto err_unpin;
  1979. }
  1980. return ctx;
  1981. err_unpin:
  1982. i915_gem_object_unpin(ctx);
  1983. err_unref:
  1984. drm_gem_object_unreference(&ctx->base);
  1985. return NULL;
  1986. }
  1987. /**
  1988. * Lock protecting IPS related data structures
  1989. */
  1990. DEFINE_SPINLOCK(mchdev_lock);
  1991. /* Global for IPS driver to get at the current i915 device. Protected by
  1992. * mchdev_lock. */
  1993. static struct drm_i915_private *i915_mch_dev;
  1994. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  1995. {
  1996. struct drm_i915_private *dev_priv = dev->dev_private;
  1997. u16 rgvswctl;
  1998. assert_spin_locked(&mchdev_lock);
  1999. rgvswctl = I915_READ16(MEMSWCTL);
  2000. if (rgvswctl & MEMCTL_CMD_STS) {
  2001. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2002. return false; /* still busy with another command */
  2003. }
  2004. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2005. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2006. I915_WRITE16(MEMSWCTL, rgvswctl);
  2007. POSTING_READ16(MEMSWCTL);
  2008. rgvswctl |= MEMCTL_CMD_STS;
  2009. I915_WRITE16(MEMSWCTL, rgvswctl);
  2010. return true;
  2011. }
  2012. static void ironlake_enable_drps(struct drm_device *dev)
  2013. {
  2014. struct drm_i915_private *dev_priv = dev->dev_private;
  2015. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2016. u8 fmax, fmin, fstart, vstart;
  2017. spin_lock_irq(&mchdev_lock);
  2018. /* Enable temp reporting */
  2019. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2020. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2021. /* 100ms RC evaluation intervals */
  2022. I915_WRITE(RCUPEI, 100000);
  2023. I915_WRITE(RCDNEI, 100000);
  2024. /* Set max/min thresholds to 90ms and 80ms respectively */
  2025. I915_WRITE(RCBMAXAVG, 90000);
  2026. I915_WRITE(RCBMINAVG, 80000);
  2027. I915_WRITE(MEMIHYST, 1);
  2028. /* Set up min, max, and cur for interrupt handling */
  2029. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2030. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2031. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2032. MEMMODE_FSTART_SHIFT;
  2033. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2034. PXVFREQ_PX_SHIFT;
  2035. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2036. dev_priv->ips.fstart = fstart;
  2037. dev_priv->ips.max_delay = fstart;
  2038. dev_priv->ips.min_delay = fmin;
  2039. dev_priv->ips.cur_delay = fstart;
  2040. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2041. fmax, fmin, fstart);
  2042. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2043. /*
  2044. * Interrupts will be enabled in ironlake_irq_postinstall
  2045. */
  2046. I915_WRITE(VIDSTART, vstart);
  2047. POSTING_READ(VIDSTART);
  2048. rgvmodectl |= MEMMODE_SWMODE_EN;
  2049. I915_WRITE(MEMMODECTL, rgvmodectl);
  2050. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2051. DRM_ERROR("stuck trying to change perf mode\n");
  2052. mdelay(1);
  2053. ironlake_set_drps(dev, fstart);
  2054. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2055. I915_READ(0x112e0);
  2056. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2057. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2058. getrawmonotonic(&dev_priv->ips.last_time2);
  2059. spin_unlock_irq(&mchdev_lock);
  2060. }
  2061. static void ironlake_disable_drps(struct drm_device *dev)
  2062. {
  2063. struct drm_i915_private *dev_priv = dev->dev_private;
  2064. u16 rgvswctl;
  2065. spin_lock_irq(&mchdev_lock);
  2066. rgvswctl = I915_READ16(MEMSWCTL);
  2067. /* Ack interrupts, disable EFC interrupt */
  2068. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2069. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2070. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2071. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2072. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2073. /* Go back to the starting frequency */
  2074. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2075. mdelay(1);
  2076. rgvswctl |= MEMCTL_CMD_STS;
  2077. I915_WRITE(MEMSWCTL, rgvswctl);
  2078. mdelay(1);
  2079. spin_unlock_irq(&mchdev_lock);
  2080. }
  2081. /* There's a funny hw issue where the hw returns all 0 when reading from
  2082. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2083. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2084. * all limits and the gpu stuck at whatever frequency it is at atm).
  2085. */
  2086. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2087. {
  2088. u32 limits;
  2089. limits = 0;
  2090. if (*val >= dev_priv->rps.max_delay)
  2091. *val = dev_priv->rps.max_delay;
  2092. limits |= dev_priv->rps.max_delay << 24;
  2093. /* Only set the down limit when we've reached the lowest level to avoid
  2094. * getting more interrupts, otherwise leave this clear. This prevents a
  2095. * race in the hw when coming out of rc6: There's a tiny window where
  2096. * the hw runs at the minimal clock before selecting the desired
  2097. * frequency, if the down threshold expires in that window we will not
  2098. * receive a down interrupt. */
  2099. if (*val <= dev_priv->rps.min_delay) {
  2100. *val = dev_priv->rps.min_delay;
  2101. limits |= dev_priv->rps.min_delay << 16;
  2102. }
  2103. return limits;
  2104. }
  2105. void gen6_set_rps(struct drm_device *dev, u8 val)
  2106. {
  2107. struct drm_i915_private *dev_priv = dev->dev_private;
  2108. u32 limits = gen6_rps_limits(dev_priv, &val);
  2109. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2110. WARN_ON(val > dev_priv->rps.max_delay);
  2111. WARN_ON(val < dev_priv->rps.min_delay);
  2112. if (val == dev_priv->rps.cur_delay)
  2113. return;
  2114. if (IS_HASWELL(dev))
  2115. I915_WRITE(GEN6_RPNSWREQ,
  2116. HSW_FREQUENCY(val));
  2117. else
  2118. I915_WRITE(GEN6_RPNSWREQ,
  2119. GEN6_FREQUENCY(val) |
  2120. GEN6_OFFSET(0) |
  2121. GEN6_AGGRESSIVE_TURBO);
  2122. /* Make sure we continue to get interrupts
  2123. * until we hit the minimum or maximum frequencies.
  2124. */
  2125. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2126. POSTING_READ(GEN6_RPNSWREQ);
  2127. dev_priv->rps.cur_delay = val;
  2128. trace_intel_gpu_freq_change(val * 50);
  2129. }
  2130. void valleyview_set_rps(struct drm_device *dev, u8 val)
  2131. {
  2132. struct drm_i915_private *dev_priv = dev->dev_private;
  2133. unsigned long timeout = jiffies + msecs_to_jiffies(10);
  2134. u32 limits = gen6_rps_limits(dev_priv, &val);
  2135. u32 pval;
  2136. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2137. WARN_ON(val > dev_priv->rps.max_delay);
  2138. WARN_ON(val < dev_priv->rps.min_delay);
  2139. DRM_DEBUG_DRIVER("gpu freq request from %d to %d\n",
  2140. vlv_gpu_freq(dev_priv->mem_freq,
  2141. dev_priv->rps.cur_delay),
  2142. vlv_gpu_freq(dev_priv->mem_freq, val));
  2143. if (val == dev_priv->rps.cur_delay)
  2144. return;
  2145. valleyview_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  2146. do {
  2147. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
  2148. if (time_after(jiffies, timeout)) {
  2149. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  2150. break;
  2151. }
  2152. udelay(10);
  2153. } while (pval & 1);
  2154. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &pval);
  2155. if ((pval >> 8) != val)
  2156. DRM_DEBUG_DRIVER("punit overrode freq: %d requested, but got %d\n",
  2157. val, pval >> 8);
  2158. /* Make sure we continue to get interrupts
  2159. * until we hit the minimum or maximum frequencies.
  2160. */
  2161. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2162. dev_priv->rps.cur_delay = pval >> 8;
  2163. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  2164. }
  2165. static void gen6_disable_rps(struct drm_device *dev)
  2166. {
  2167. struct drm_i915_private *dev_priv = dev->dev_private;
  2168. I915_WRITE(GEN6_RC_CONTROL, 0);
  2169. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2170. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2171. I915_WRITE(GEN6_PMIER, 0);
  2172. /* Complete PM interrupt masking here doesn't race with the rps work
  2173. * item again unmasking PM interrupts because that is using a different
  2174. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2175. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2176. spin_lock_irq(&dev_priv->rps.lock);
  2177. dev_priv->rps.pm_iir = 0;
  2178. spin_unlock_irq(&dev_priv->rps.lock);
  2179. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2180. }
  2181. static void valleyview_disable_rps(struct drm_device *dev)
  2182. {
  2183. struct drm_i915_private *dev_priv = dev->dev_private;
  2184. I915_WRITE(GEN6_RC_CONTROL, 0);
  2185. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2186. I915_WRITE(GEN6_PMIER, 0);
  2187. /* Complete PM interrupt masking here doesn't race with the rps work
  2188. * item again unmasking PM interrupts because that is using a different
  2189. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2190. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2191. spin_lock_irq(&dev_priv->rps.lock);
  2192. dev_priv->rps.pm_iir = 0;
  2193. spin_unlock_irq(&dev_priv->rps.lock);
  2194. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2195. }
  2196. int intel_enable_rc6(const struct drm_device *dev)
  2197. {
  2198. /* Respect the kernel parameter if it is set */
  2199. if (i915_enable_rc6 >= 0)
  2200. return i915_enable_rc6;
  2201. /* Disable RC6 on Ironlake */
  2202. if (INTEL_INFO(dev)->gen == 5)
  2203. return 0;
  2204. if (IS_HASWELL(dev)) {
  2205. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2206. return INTEL_RC6_ENABLE;
  2207. }
  2208. /* snb/ivb have more than one rc6 state. */
  2209. if (INTEL_INFO(dev)->gen == 6) {
  2210. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2211. return INTEL_RC6_ENABLE;
  2212. }
  2213. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  2214. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2215. }
  2216. static void gen6_enable_rps(struct drm_device *dev)
  2217. {
  2218. struct drm_i915_private *dev_priv = dev->dev_private;
  2219. struct intel_ring_buffer *ring;
  2220. u32 rp_state_cap;
  2221. u32 gt_perf_status;
  2222. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2223. u32 gtfifodbg;
  2224. int rc6_mode;
  2225. int i, ret;
  2226. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2227. /* Here begins a magic sequence of register writes to enable
  2228. * auto-downclocking.
  2229. *
  2230. * Perhaps there might be some value in exposing these to
  2231. * userspace...
  2232. */
  2233. I915_WRITE(GEN6_RC_STATE, 0);
  2234. /* Clear the DBG now so we don't confuse earlier errors */
  2235. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2236. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2237. I915_WRITE(GTFIFODBG, gtfifodbg);
  2238. }
  2239. gen6_gt_force_wake_get(dev_priv);
  2240. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2241. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2242. /* In units of 50MHz */
  2243. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2244. dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
  2245. dev_priv->rps.cur_delay = 0;
  2246. /* disable the counters and set deterministic thresholds */
  2247. I915_WRITE(GEN6_RC_CONTROL, 0);
  2248. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2249. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2250. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2251. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2252. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2253. for_each_ring(ring, dev_priv, i)
  2254. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2255. I915_WRITE(GEN6_RC_SLEEP, 0);
  2256. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2257. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2258. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  2259. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2260. /* Check if we are enabling RC6 */
  2261. rc6_mode = intel_enable_rc6(dev_priv->dev);
  2262. if (rc6_mode & INTEL_RC6_ENABLE)
  2263. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  2264. /* We don't use those on Haswell */
  2265. if (!IS_HASWELL(dev)) {
  2266. if (rc6_mode & INTEL_RC6p_ENABLE)
  2267. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  2268. if (rc6_mode & INTEL_RC6pp_ENABLE)
  2269. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  2270. }
  2271. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2272. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2273. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2274. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2275. I915_WRITE(GEN6_RC_CONTROL,
  2276. rc6_mask |
  2277. GEN6_RC_CTL_EI_MODE(1) |
  2278. GEN6_RC_CTL_HW_ENABLE);
  2279. if (IS_HASWELL(dev)) {
  2280. I915_WRITE(GEN6_RPNSWREQ,
  2281. HSW_FREQUENCY(10));
  2282. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2283. HSW_FREQUENCY(12));
  2284. } else {
  2285. I915_WRITE(GEN6_RPNSWREQ,
  2286. GEN6_FREQUENCY(10) |
  2287. GEN6_OFFSET(0) |
  2288. GEN6_AGGRESSIVE_TURBO);
  2289. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2290. GEN6_FREQUENCY(12));
  2291. }
  2292. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  2293. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2294. dev_priv->rps.max_delay << 24 |
  2295. dev_priv->rps.min_delay << 16);
  2296. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2297. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2298. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2299. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2300. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2301. I915_WRITE(GEN6_RP_CONTROL,
  2302. GEN6_RP_MEDIA_TURBO |
  2303. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2304. GEN6_RP_MEDIA_IS_GFX |
  2305. GEN6_RP_ENABLE |
  2306. GEN6_RP_UP_BUSY_AVG |
  2307. (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
  2308. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  2309. if (!ret && (IS_GEN6(dev) || IS_IVYBRIDGE(dev))) {
  2310. pcu_mbox = 0;
  2311. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  2312. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  2313. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  2314. (dev_priv->rps.max_delay & 0xff) * 50,
  2315. (pcu_mbox & 0xff) * 50);
  2316. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  2317. }
  2318. } else {
  2319. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  2320. }
  2321. gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
  2322. /* requires MSI enabled */
  2323. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2324. spin_lock_irq(&dev_priv->rps.lock);
  2325. WARN_ON(dev_priv->rps.pm_iir != 0);
  2326. I915_WRITE(GEN6_PMIMR, 0);
  2327. spin_unlock_irq(&dev_priv->rps.lock);
  2328. /* enable all PM interrupts */
  2329. I915_WRITE(GEN6_PMINTRMSK, 0);
  2330. rc6vids = 0;
  2331. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  2332. if (IS_GEN6(dev) && ret) {
  2333. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  2334. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  2335. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  2336. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  2337. rc6vids &= 0xffff00;
  2338. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  2339. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  2340. if (ret)
  2341. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  2342. }
  2343. gen6_gt_force_wake_put(dev_priv);
  2344. }
  2345. static void gen6_update_ring_freq(struct drm_device *dev)
  2346. {
  2347. struct drm_i915_private *dev_priv = dev->dev_private;
  2348. int min_freq = 15;
  2349. unsigned int gpu_freq;
  2350. unsigned int max_ia_freq, min_ring_freq;
  2351. int scaling_factor = 180;
  2352. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2353. max_ia_freq = cpufreq_quick_get_max(0);
  2354. /*
  2355. * Default to measured freq if none found, PCU will ensure we don't go
  2356. * over
  2357. */
  2358. if (!max_ia_freq)
  2359. max_ia_freq = tsc_khz;
  2360. /* Convert from kHz to MHz */
  2361. max_ia_freq /= 1000;
  2362. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
  2363. /* convert DDR frequency from units of 133.3MHz to bandwidth */
  2364. min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
  2365. /*
  2366. * For each potential GPU frequency, load a ring frequency we'd like
  2367. * to use for memory access. We do this by specifying the IA frequency
  2368. * the PCU should use as a reference to determine the ring frequency.
  2369. */
  2370. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  2371. gpu_freq--) {
  2372. int diff = dev_priv->rps.max_delay - gpu_freq;
  2373. unsigned int ia_freq = 0, ring_freq = 0;
  2374. if (IS_HASWELL(dev)) {
  2375. ring_freq = (gpu_freq * 5 + 3) / 4;
  2376. ring_freq = max(min_ring_freq, ring_freq);
  2377. /* leave ia_freq as the default, chosen by cpufreq */
  2378. } else {
  2379. /* On older processors, there is no separate ring
  2380. * clock domain, so in order to boost the bandwidth
  2381. * of the ring, we need to upclock the CPU (ia_freq).
  2382. *
  2383. * For GPU frequencies less than 750MHz,
  2384. * just use the lowest ring freq.
  2385. */
  2386. if (gpu_freq < min_freq)
  2387. ia_freq = 800;
  2388. else
  2389. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  2390. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  2391. }
  2392. sandybridge_pcode_write(dev_priv,
  2393. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  2394. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  2395. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  2396. gpu_freq);
  2397. }
  2398. }
  2399. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  2400. {
  2401. u32 val, rp0;
  2402. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE, &val);
  2403. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  2404. /* Clamp to max */
  2405. rp0 = min_t(u32, rp0, 0xea);
  2406. return rp0;
  2407. }
  2408. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  2409. {
  2410. u32 val, rpe;
  2411. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO, &val);
  2412. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  2413. valleyview_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI, &val);
  2414. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  2415. return rpe;
  2416. }
  2417. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  2418. {
  2419. u32 val;
  2420. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val);
  2421. return val & 0xff;
  2422. }
  2423. static void vlv_rps_timer_work(struct work_struct *work)
  2424. {
  2425. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  2426. rps.vlv_work.work);
  2427. /*
  2428. * Timer fired, we must be idle. Drop to min voltage state.
  2429. * Note: we use RPe here since it should match the
  2430. * Vmin we were shooting for. That should give us better
  2431. * perf when we come back out of RC6 than if we used the
  2432. * min freq available.
  2433. */
  2434. mutex_lock(&dev_priv->rps.hw_lock);
  2435. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  2436. mutex_unlock(&dev_priv->rps.hw_lock);
  2437. }
  2438. static void valleyview_enable_rps(struct drm_device *dev)
  2439. {
  2440. struct drm_i915_private *dev_priv = dev->dev_private;
  2441. struct intel_ring_buffer *ring;
  2442. u32 gtfifodbg, val, rpe;
  2443. int i;
  2444. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2445. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2446. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2447. I915_WRITE(GTFIFODBG, gtfifodbg);
  2448. }
  2449. gen6_gt_force_wake_get(dev_priv);
  2450. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2451. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2452. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2453. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2454. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2455. I915_WRITE(GEN6_RP_CONTROL,
  2456. GEN6_RP_MEDIA_TURBO |
  2457. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2458. GEN6_RP_MEDIA_IS_GFX |
  2459. GEN6_RP_ENABLE |
  2460. GEN6_RP_UP_BUSY_AVG |
  2461. GEN6_RP_DOWN_IDLE_CONT);
  2462. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  2463. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2464. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2465. for_each_ring(ring, dev_priv, i)
  2466. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2467. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  2468. /* allows RC6 residency counter to work */
  2469. I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
  2470. I915_WRITE(GEN6_RC_CONTROL,
  2471. GEN7_RC_CTL_TO_MODE);
  2472. valleyview_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &val);
  2473. switch ((val >> 6) & 3) {
  2474. case 0:
  2475. case 1:
  2476. dev_priv->mem_freq = 800;
  2477. break;
  2478. case 2:
  2479. dev_priv->mem_freq = 1066;
  2480. break;
  2481. case 3:
  2482. dev_priv->mem_freq = 1333;
  2483. break;
  2484. }
  2485. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  2486. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  2487. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  2488. DRM_DEBUG_DRIVER("current GPU freq: %d\n",
  2489. vlv_gpu_freq(dev_priv->mem_freq, (val >> 8) & 0xff));
  2490. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  2491. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  2492. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  2493. DRM_DEBUG_DRIVER("max GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
  2494. dev_priv->rps.max_delay));
  2495. rpe = valleyview_rps_rpe_freq(dev_priv);
  2496. DRM_DEBUG_DRIVER("RPe GPU freq: %d\n",
  2497. vlv_gpu_freq(dev_priv->mem_freq, rpe));
  2498. dev_priv->rps.rpe_delay = rpe;
  2499. val = valleyview_rps_min_freq(dev_priv);
  2500. DRM_DEBUG_DRIVER("min GPU freq: %d\n", vlv_gpu_freq(dev_priv->mem_freq,
  2501. val));
  2502. dev_priv->rps.min_delay = val;
  2503. DRM_DEBUG_DRIVER("setting GPU freq to %d\n",
  2504. vlv_gpu_freq(dev_priv->mem_freq, rpe));
  2505. INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
  2506. valleyview_set_rps(dev_priv->dev, rpe);
  2507. /* requires MSI enabled */
  2508. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2509. spin_lock_irq(&dev_priv->rps.lock);
  2510. WARN_ON(dev_priv->rps.pm_iir != 0);
  2511. I915_WRITE(GEN6_PMIMR, 0);
  2512. spin_unlock_irq(&dev_priv->rps.lock);
  2513. /* enable all PM interrupts */
  2514. I915_WRITE(GEN6_PMINTRMSK, 0);
  2515. gen6_gt_force_wake_put(dev_priv);
  2516. }
  2517. void ironlake_teardown_rc6(struct drm_device *dev)
  2518. {
  2519. struct drm_i915_private *dev_priv = dev->dev_private;
  2520. if (dev_priv->ips.renderctx) {
  2521. i915_gem_object_unpin(dev_priv->ips.renderctx);
  2522. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  2523. dev_priv->ips.renderctx = NULL;
  2524. }
  2525. if (dev_priv->ips.pwrctx) {
  2526. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  2527. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  2528. dev_priv->ips.pwrctx = NULL;
  2529. }
  2530. }
  2531. static void ironlake_disable_rc6(struct drm_device *dev)
  2532. {
  2533. struct drm_i915_private *dev_priv = dev->dev_private;
  2534. if (I915_READ(PWRCTXA)) {
  2535. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  2536. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  2537. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  2538. 50);
  2539. I915_WRITE(PWRCTXA, 0);
  2540. POSTING_READ(PWRCTXA);
  2541. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2542. POSTING_READ(RSTDBYCTL);
  2543. }
  2544. }
  2545. static int ironlake_setup_rc6(struct drm_device *dev)
  2546. {
  2547. struct drm_i915_private *dev_priv = dev->dev_private;
  2548. if (dev_priv->ips.renderctx == NULL)
  2549. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  2550. if (!dev_priv->ips.renderctx)
  2551. return -ENOMEM;
  2552. if (dev_priv->ips.pwrctx == NULL)
  2553. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  2554. if (!dev_priv->ips.pwrctx) {
  2555. ironlake_teardown_rc6(dev);
  2556. return -ENOMEM;
  2557. }
  2558. return 0;
  2559. }
  2560. static void ironlake_enable_rc6(struct drm_device *dev)
  2561. {
  2562. struct drm_i915_private *dev_priv = dev->dev_private;
  2563. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  2564. bool was_interruptible;
  2565. int ret;
  2566. /* rc6 disabled by default due to repeated reports of hanging during
  2567. * boot and resume.
  2568. */
  2569. if (!intel_enable_rc6(dev))
  2570. return;
  2571. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2572. ret = ironlake_setup_rc6(dev);
  2573. if (ret)
  2574. return;
  2575. was_interruptible = dev_priv->mm.interruptible;
  2576. dev_priv->mm.interruptible = false;
  2577. /*
  2578. * GPU can automatically power down the render unit if given a page
  2579. * to save state.
  2580. */
  2581. ret = intel_ring_begin(ring, 6);
  2582. if (ret) {
  2583. ironlake_teardown_rc6(dev);
  2584. dev_priv->mm.interruptible = was_interruptible;
  2585. return;
  2586. }
  2587. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  2588. intel_ring_emit(ring, MI_SET_CONTEXT);
  2589. intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
  2590. MI_MM_SPACE_GTT |
  2591. MI_SAVE_EXT_STATE_EN |
  2592. MI_RESTORE_EXT_STATE_EN |
  2593. MI_RESTORE_INHIBIT);
  2594. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  2595. intel_ring_emit(ring, MI_NOOP);
  2596. intel_ring_emit(ring, MI_FLUSH);
  2597. intel_ring_advance(ring);
  2598. /*
  2599. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  2600. * does an implicit flush, combined with MI_FLUSH above, it should be
  2601. * safe to assume that renderctx is valid
  2602. */
  2603. ret = intel_ring_idle(ring);
  2604. dev_priv->mm.interruptible = was_interruptible;
  2605. if (ret) {
  2606. DRM_ERROR("failed to enable ironlake power savings\n");
  2607. ironlake_teardown_rc6(dev);
  2608. return;
  2609. }
  2610. I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
  2611. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2612. }
  2613. static unsigned long intel_pxfreq(u32 vidfreq)
  2614. {
  2615. unsigned long freq;
  2616. int div = (vidfreq & 0x3f0000) >> 16;
  2617. int post = (vidfreq & 0x3000) >> 12;
  2618. int pre = (vidfreq & 0x7);
  2619. if (!pre)
  2620. return 0;
  2621. freq = ((div * 133333) / ((1<<post) * pre));
  2622. return freq;
  2623. }
  2624. static const struct cparams {
  2625. u16 i;
  2626. u16 t;
  2627. u16 m;
  2628. u16 c;
  2629. } cparams[] = {
  2630. { 1, 1333, 301, 28664 },
  2631. { 1, 1066, 294, 24460 },
  2632. { 1, 800, 294, 25192 },
  2633. { 0, 1333, 276, 27605 },
  2634. { 0, 1066, 276, 27605 },
  2635. { 0, 800, 231, 23784 },
  2636. };
  2637. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  2638. {
  2639. u64 total_count, diff, ret;
  2640. u32 count1, count2, count3, m = 0, c = 0;
  2641. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  2642. int i;
  2643. assert_spin_locked(&mchdev_lock);
  2644. diff1 = now - dev_priv->ips.last_time1;
  2645. /* Prevent division-by-zero if we are asking too fast.
  2646. * Also, we don't get interesting results if we are polling
  2647. * faster than once in 10ms, so just return the saved value
  2648. * in such cases.
  2649. */
  2650. if (diff1 <= 10)
  2651. return dev_priv->ips.chipset_power;
  2652. count1 = I915_READ(DMIEC);
  2653. count2 = I915_READ(DDREC);
  2654. count3 = I915_READ(CSIEC);
  2655. total_count = count1 + count2 + count3;
  2656. /* FIXME: handle per-counter overflow */
  2657. if (total_count < dev_priv->ips.last_count1) {
  2658. diff = ~0UL - dev_priv->ips.last_count1;
  2659. diff += total_count;
  2660. } else {
  2661. diff = total_count - dev_priv->ips.last_count1;
  2662. }
  2663. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  2664. if (cparams[i].i == dev_priv->ips.c_m &&
  2665. cparams[i].t == dev_priv->ips.r_t) {
  2666. m = cparams[i].m;
  2667. c = cparams[i].c;
  2668. break;
  2669. }
  2670. }
  2671. diff = div_u64(diff, diff1);
  2672. ret = ((m * diff) + c);
  2673. ret = div_u64(ret, 10);
  2674. dev_priv->ips.last_count1 = total_count;
  2675. dev_priv->ips.last_time1 = now;
  2676. dev_priv->ips.chipset_power = ret;
  2677. return ret;
  2678. }
  2679. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  2680. {
  2681. unsigned long val;
  2682. if (dev_priv->info->gen != 5)
  2683. return 0;
  2684. spin_lock_irq(&mchdev_lock);
  2685. val = __i915_chipset_val(dev_priv);
  2686. spin_unlock_irq(&mchdev_lock);
  2687. return val;
  2688. }
  2689. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  2690. {
  2691. unsigned long m, x, b;
  2692. u32 tsfs;
  2693. tsfs = I915_READ(TSFS);
  2694. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  2695. x = I915_READ8(TR1);
  2696. b = tsfs & TSFS_INTR_MASK;
  2697. return ((m * x) / 127) - b;
  2698. }
  2699. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  2700. {
  2701. static const struct v_table {
  2702. u16 vd; /* in .1 mil */
  2703. u16 vm; /* in .1 mil */
  2704. } v_table[] = {
  2705. { 0, 0, },
  2706. { 375, 0, },
  2707. { 500, 0, },
  2708. { 625, 0, },
  2709. { 750, 0, },
  2710. { 875, 0, },
  2711. { 1000, 0, },
  2712. { 1125, 0, },
  2713. { 4125, 3000, },
  2714. { 4125, 3000, },
  2715. { 4125, 3000, },
  2716. { 4125, 3000, },
  2717. { 4125, 3000, },
  2718. { 4125, 3000, },
  2719. { 4125, 3000, },
  2720. { 4125, 3000, },
  2721. { 4125, 3000, },
  2722. { 4125, 3000, },
  2723. { 4125, 3000, },
  2724. { 4125, 3000, },
  2725. { 4125, 3000, },
  2726. { 4125, 3000, },
  2727. { 4125, 3000, },
  2728. { 4125, 3000, },
  2729. { 4125, 3000, },
  2730. { 4125, 3000, },
  2731. { 4125, 3000, },
  2732. { 4125, 3000, },
  2733. { 4125, 3000, },
  2734. { 4125, 3000, },
  2735. { 4125, 3000, },
  2736. { 4125, 3000, },
  2737. { 4250, 3125, },
  2738. { 4375, 3250, },
  2739. { 4500, 3375, },
  2740. { 4625, 3500, },
  2741. { 4750, 3625, },
  2742. { 4875, 3750, },
  2743. { 5000, 3875, },
  2744. { 5125, 4000, },
  2745. { 5250, 4125, },
  2746. { 5375, 4250, },
  2747. { 5500, 4375, },
  2748. { 5625, 4500, },
  2749. { 5750, 4625, },
  2750. { 5875, 4750, },
  2751. { 6000, 4875, },
  2752. { 6125, 5000, },
  2753. { 6250, 5125, },
  2754. { 6375, 5250, },
  2755. { 6500, 5375, },
  2756. { 6625, 5500, },
  2757. { 6750, 5625, },
  2758. { 6875, 5750, },
  2759. { 7000, 5875, },
  2760. { 7125, 6000, },
  2761. { 7250, 6125, },
  2762. { 7375, 6250, },
  2763. { 7500, 6375, },
  2764. { 7625, 6500, },
  2765. { 7750, 6625, },
  2766. { 7875, 6750, },
  2767. { 8000, 6875, },
  2768. { 8125, 7000, },
  2769. { 8250, 7125, },
  2770. { 8375, 7250, },
  2771. { 8500, 7375, },
  2772. { 8625, 7500, },
  2773. { 8750, 7625, },
  2774. { 8875, 7750, },
  2775. { 9000, 7875, },
  2776. { 9125, 8000, },
  2777. { 9250, 8125, },
  2778. { 9375, 8250, },
  2779. { 9500, 8375, },
  2780. { 9625, 8500, },
  2781. { 9750, 8625, },
  2782. { 9875, 8750, },
  2783. { 10000, 8875, },
  2784. { 10125, 9000, },
  2785. { 10250, 9125, },
  2786. { 10375, 9250, },
  2787. { 10500, 9375, },
  2788. { 10625, 9500, },
  2789. { 10750, 9625, },
  2790. { 10875, 9750, },
  2791. { 11000, 9875, },
  2792. { 11125, 10000, },
  2793. { 11250, 10125, },
  2794. { 11375, 10250, },
  2795. { 11500, 10375, },
  2796. { 11625, 10500, },
  2797. { 11750, 10625, },
  2798. { 11875, 10750, },
  2799. { 12000, 10875, },
  2800. { 12125, 11000, },
  2801. { 12250, 11125, },
  2802. { 12375, 11250, },
  2803. { 12500, 11375, },
  2804. { 12625, 11500, },
  2805. { 12750, 11625, },
  2806. { 12875, 11750, },
  2807. { 13000, 11875, },
  2808. { 13125, 12000, },
  2809. { 13250, 12125, },
  2810. { 13375, 12250, },
  2811. { 13500, 12375, },
  2812. { 13625, 12500, },
  2813. { 13750, 12625, },
  2814. { 13875, 12750, },
  2815. { 14000, 12875, },
  2816. { 14125, 13000, },
  2817. { 14250, 13125, },
  2818. { 14375, 13250, },
  2819. { 14500, 13375, },
  2820. { 14625, 13500, },
  2821. { 14750, 13625, },
  2822. { 14875, 13750, },
  2823. { 15000, 13875, },
  2824. { 15125, 14000, },
  2825. { 15250, 14125, },
  2826. { 15375, 14250, },
  2827. { 15500, 14375, },
  2828. { 15625, 14500, },
  2829. { 15750, 14625, },
  2830. { 15875, 14750, },
  2831. { 16000, 14875, },
  2832. { 16125, 15000, },
  2833. };
  2834. if (dev_priv->info->is_mobile)
  2835. return v_table[pxvid].vm;
  2836. else
  2837. return v_table[pxvid].vd;
  2838. }
  2839. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2840. {
  2841. struct timespec now, diff1;
  2842. u64 diff;
  2843. unsigned long diffms;
  2844. u32 count;
  2845. assert_spin_locked(&mchdev_lock);
  2846. getrawmonotonic(&now);
  2847. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  2848. /* Don't divide by 0 */
  2849. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  2850. if (!diffms)
  2851. return;
  2852. count = I915_READ(GFXEC);
  2853. if (count < dev_priv->ips.last_count2) {
  2854. diff = ~0UL - dev_priv->ips.last_count2;
  2855. diff += count;
  2856. } else {
  2857. diff = count - dev_priv->ips.last_count2;
  2858. }
  2859. dev_priv->ips.last_count2 = count;
  2860. dev_priv->ips.last_time2 = now;
  2861. /* More magic constants... */
  2862. diff = diff * 1181;
  2863. diff = div_u64(diff, diffms * 10);
  2864. dev_priv->ips.gfx_power = diff;
  2865. }
  2866. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2867. {
  2868. if (dev_priv->info->gen != 5)
  2869. return;
  2870. spin_lock_irq(&mchdev_lock);
  2871. __i915_update_gfx_val(dev_priv);
  2872. spin_unlock_irq(&mchdev_lock);
  2873. }
  2874. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  2875. {
  2876. unsigned long t, corr, state1, corr2, state2;
  2877. u32 pxvid, ext_v;
  2878. assert_spin_locked(&mchdev_lock);
  2879. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  2880. pxvid = (pxvid >> 24) & 0x7f;
  2881. ext_v = pvid_to_extvid(dev_priv, pxvid);
  2882. state1 = ext_v;
  2883. t = i915_mch_val(dev_priv);
  2884. /* Revel in the empirically derived constants */
  2885. /* Correction factor in 1/100000 units */
  2886. if (t > 80)
  2887. corr = ((t * 2349) + 135940);
  2888. else if (t >= 50)
  2889. corr = ((t * 964) + 29317);
  2890. else /* < 50 */
  2891. corr = ((t * 301) + 1004);
  2892. corr = corr * ((150142 * state1) / 10000 - 78642);
  2893. corr /= 100000;
  2894. corr2 = (corr * dev_priv->ips.corr);
  2895. state2 = (corr2 * state1) / 10000;
  2896. state2 /= 100; /* convert to mW */
  2897. __i915_update_gfx_val(dev_priv);
  2898. return dev_priv->ips.gfx_power + state2;
  2899. }
  2900. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  2901. {
  2902. unsigned long val;
  2903. if (dev_priv->info->gen != 5)
  2904. return 0;
  2905. spin_lock_irq(&mchdev_lock);
  2906. val = __i915_gfx_val(dev_priv);
  2907. spin_unlock_irq(&mchdev_lock);
  2908. return val;
  2909. }
  2910. /**
  2911. * i915_read_mch_val - return value for IPS use
  2912. *
  2913. * Calculate and return a value for the IPS driver to use when deciding whether
  2914. * we have thermal and power headroom to increase CPU or GPU power budget.
  2915. */
  2916. unsigned long i915_read_mch_val(void)
  2917. {
  2918. struct drm_i915_private *dev_priv;
  2919. unsigned long chipset_val, graphics_val, ret = 0;
  2920. spin_lock_irq(&mchdev_lock);
  2921. if (!i915_mch_dev)
  2922. goto out_unlock;
  2923. dev_priv = i915_mch_dev;
  2924. chipset_val = __i915_chipset_val(dev_priv);
  2925. graphics_val = __i915_gfx_val(dev_priv);
  2926. ret = chipset_val + graphics_val;
  2927. out_unlock:
  2928. spin_unlock_irq(&mchdev_lock);
  2929. return ret;
  2930. }
  2931. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  2932. /**
  2933. * i915_gpu_raise - raise GPU frequency limit
  2934. *
  2935. * Raise the limit; IPS indicates we have thermal headroom.
  2936. */
  2937. bool i915_gpu_raise(void)
  2938. {
  2939. struct drm_i915_private *dev_priv;
  2940. bool ret = true;
  2941. spin_lock_irq(&mchdev_lock);
  2942. if (!i915_mch_dev) {
  2943. ret = false;
  2944. goto out_unlock;
  2945. }
  2946. dev_priv = i915_mch_dev;
  2947. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  2948. dev_priv->ips.max_delay--;
  2949. out_unlock:
  2950. spin_unlock_irq(&mchdev_lock);
  2951. return ret;
  2952. }
  2953. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  2954. /**
  2955. * i915_gpu_lower - lower GPU frequency limit
  2956. *
  2957. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  2958. * frequency maximum.
  2959. */
  2960. bool i915_gpu_lower(void)
  2961. {
  2962. struct drm_i915_private *dev_priv;
  2963. bool ret = true;
  2964. spin_lock_irq(&mchdev_lock);
  2965. if (!i915_mch_dev) {
  2966. ret = false;
  2967. goto out_unlock;
  2968. }
  2969. dev_priv = i915_mch_dev;
  2970. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  2971. dev_priv->ips.max_delay++;
  2972. out_unlock:
  2973. spin_unlock_irq(&mchdev_lock);
  2974. return ret;
  2975. }
  2976. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  2977. /**
  2978. * i915_gpu_busy - indicate GPU business to IPS
  2979. *
  2980. * Tell the IPS driver whether or not the GPU is busy.
  2981. */
  2982. bool i915_gpu_busy(void)
  2983. {
  2984. struct drm_i915_private *dev_priv;
  2985. struct intel_ring_buffer *ring;
  2986. bool ret = false;
  2987. int i;
  2988. spin_lock_irq(&mchdev_lock);
  2989. if (!i915_mch_dev)
  2990. goto out_unlock;
  2991. dev_priv = i915_mch_dev;
  2992. for_each_ring(ring, dev_priv, i)
  2993. ret |= !list_empty(&ring->request_list);
  2994. out_unlock:
  2995. spin_unlock_irq(&mchdev_lock);
  2996. return ret;
  2997. }
  2998. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  2999. /**
  3000. * i915_gpu_turbo_disable - disable graphics turbo
  3001. *
  3002. * Disable graphics turbo by resetting the max frequency and setting the
  3003. * current frequency to the default.
  3004. */
  3005. bool i915_gpu_turbo_disable(void)
  3006. {
  3007. struct drm_i915_private *dev_priv;
  3008. bool ret = true;
  3009. spin_lock_irq(&mchdev_lock);
  3010. if (!i915_mch_dev) {
  3011. ret = false;
  3012. goto out_unlock;
  3013. }
  3014. dev_priv = i915_mch_dev;
  3015. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3016. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3017. ret = false;
  3018. out_unlock:
  3019. spin_unlock_irq(&mchdev_lock);
  3020. return ret;
  3021. }
  3022. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3023. /**
  3024. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3025. * IPS got loaded first.
  3026. *
  3027. * This awkward dance is so that neither module has to depend on the
  3028. * other in order for IPS to do the appropriate communication of
  3029. * GPU turbo limits to i915.
  3030. */
  3031. static void
  3032. ips_ping_for_i915_load(void)
  3033. {
  3034. void (*link)(void);
  3035. link = symbol_get(ips_link_to_i915_driver);
  3036. if (link) {
  3037. link();
  3038. symbol_put(ips_link_to_i915_driver);
  3039. }
  3040. }
  3041. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3042. {
  3043. /* We only register the i915 ips part with intel-ips once everything is
  3044. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3045. spin_lock_irq(&mchdev_lock);
  3046. i915_mch_dev = dev_priv;
  3047. spin_unlock_irq(&mchdev_lock);
  3048. ips_ping_for_i915_load();
  3049. }
  3050. void intel_gpu_ips_teardown(void)
  3051. {
  3052. spin_lock_irq(&mchdev_lock);
  3053. i915_mch_dev = NULL;
  3054. spin_unlock_irq(&mchdev_lock);
  3055. }
  3056. static void intel_init_emon(struct drm_device *dev)
  3057. {
  3058. struct drm_i915_private *dev_priv = dev->dev_private;
  3059. u32 lcfuse;
  3060. u8 pxw[16];
  3061. int i;
  3062. /* Disable to program */
  3063. I915_WRITE(ECR, 0);
  3064. POSTING_READ(ECR);
  3065. /* Program energy weights for various events */
  3066. I915_WRITE(SDEW, 0x15040d00);
  3067. I915_WRITE(CSIEW0, 0x007f0000);
  3068. I915_WRITE(CSIEW1, 0x1e220004);
  3069. I915_WRITE(CSIEW2, 0x04000004);
  3070. for (i = 0; i < 5; i++)
  3071. I915_WRITE(PEW + (i * 4), 0);
  3072. for (i = 0; i < 3; i++)
  3073. I915_WRITE(DEW + (i * 4), 0);
  3074. /* Program P-state weights to account for frequency power adjustment */
  3075. for (i = 0; i < 16; i++) {
  3076. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3077. unsigned long freq = intel_pxfreq(pxvidfreq);
  3078. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3079. PXVFREQ_PX_SHIFT;
  3080. unsigned long val;
  3081. val = vid * vid;
  3082. val *= (freq / 1000);
  3083. val *= 255;
  3084. val /= (127*127*900);
  3085. if (val > 0xff)
  3086. DRM_ERROR("bad pxval: %ld\n", val);
  3087. pxw[i] = val;
  3088. }
  3089. /* Render standby states get 0 weight */
  3090. pxw[14] = 0;
  3091. pxw[15] = 0;
  3092. for (i = 0; i < 4; i++) {
  3093. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3094. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3095. I915_WRITE(PXW + (i * 4), val);
  3096. }
  3097. /* Adjust magic regs to magic values (more experimental results) */
  3098. I915_WRITE(OGW0, 0);
  3099. I915_WRITE(OGW1, 0);
  3100. I915_WRITE(EG0, 0x00007f00);
  3101. I915_WRITE(EG1, 0x0000000e);
  3102. I915_WRITE(EG2, 0x000e0000);
  3103. I915_WRITE(EG3, 0x68000300);
  3104. I915_WRITE(EG4, 0x42000000);
  3105. I915_WRITE(EG5, 0x00140031);
  3106. I915_WRITE(EG6, 0);
  3107. I915_WRITE(EG7, 0);
  3108. for (i = 0; i < 8; i++)
  3109. I915_WRITE(PXWL + (i * 4), 0);
  3110. /* Enable PMON + select events */
  3111. I915_WRITE(ECR, 0x80000019);
  3112. lcfuse = I915_READ(LCFUSE02);
  3113. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  3114. }
  3115. void intel_disable_gt_powersave(struct drm_device *dev)
  3116. {
  3117. struct drm_i915_private *dev_priv = dev->dev_private;
  3118. /* Interrupts should be disabled already to avoid re-arming. */
  3119. WARN_ON(dev->irq_enabled);
  3120. if (IS_IRONLAKE_M(dev)) {
  3121. ironlake_disable_drps(dev);
  3122. ironlake_disable_rc6(dev);
  3123. } else if (INTEL_INFO(dev)->gen >= 6) {
  3124. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  3125. cancel_work_sync(&dev_priv->rps.work);
  3126. if (IS_VALLEYVIEW(dev))
  3127. cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
  3128. mutex_lock(&dev_priv->rps.hw_lock);
  3129. if (IS_VALLEYVIEW(dev))
  3130. valleyview_disable_rps(dev);
  3131. else
  3132. gen6_disable_rps(dev);
  3133. mutex_unlock(&dev_priv->rps.hw_lock);
  3134. }
  3135. }
  3136. static void intel_gen6_powersave_work(struct work_struct *work)
  3137. {
  3138. struct drm_i915_private *dev_priv =
  3139. container_of(work, struct drm_i915_private,
  3140. rps.delayed_resume_work.work);
  3141. struct drm_device *dev = dev_priv->dev;
  3142. mutex_lock(&dev_priv->rps.hw_lock);
  3143. if (IS_VALLEYVIEW(dev)) {
  3144. valleyview_enable_rps(dev);
  3145. } else {
  3146. gen6_enable_rps(dev);
  3147. gen6_update_ring_freq(dev);
  3148. }
  3149. mutex_unlock(&dev_priv->rps.hw_lock);
  3150. }
  3151. void intel_enable_gt_powersave(struct drm_device *dev)
  3152. {
  3153. struct drm_i915_private *dev_priv = dev->dev_private;
  3154. if (IS_IRONLAKE_M(dev)) {
  3155. ironlake_enable_drps(dev);
  3156. ironlake_enable_rc6(dev);
  3157. intel_init_emon(dev);
  3158. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  3159. /*
  3160. * PCU communication is slow and this doesn't need to be
  3161. * done at any specific time, so do this out of our fast path
  3162. * to make resume and init faster.
  3163. */
  3164. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  3165. round_jiffies_up_relative(HZ));
  3166. }
  3167. }
  3168. static void ibx_init_clock_gating(struct drm_device *dev)
  3169. {
  3170. struct drm_i915_private *dev_priv = dev->dev_private;
  3171. /*
  3172. * On Ibex Peak and Cougar Point, we need to disable clock
  3173. * gating for the panel power sequencer or it will fail to
  3174. * start up when no ports are active.
  3175. */
  3176. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3177. }
  3178. static void ironlake_init_clock_gating(struct drm_device *dev)
  3179. {
  3180. struct drm_i915_private *dev_priv = dev->dev_private;
  3181. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3182. /* Required for FBC */
  3183. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  3184. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  3185. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  3186. I915_WRITE(PCH_3DCGDIS0,
  3187. MARIUNIT_CLOCK_GATE_DISABLE |
  3188. SVSMUNIT_CLOCK_GATE_DISABLE);
  3189. I915_WRITE(PCH_3DCGDIS1,
  3190. VFMUNIT_CLOCK_GATE_DISABLE);
  3191. /*
  3192. * According to the spec the following bits should be set in
  3193. * order to enable memory self-refresh
  3194. * The bit 22/21 of 0x42004
  3195. * The bit 5 of 0x42020
  3196. * The bit 15 of 0x45000
  3197. */
  3198. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3199. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  3200. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  3201. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  3202. I915_WRITE(DISP_ARB_CTL,
  3203. (I915_READ(DISP_ARB_CTL) |
  3204. DISP_FBC_WM_DIS));
  3205. I915_WRITE(WM3_LP_ILK, 0);
  3206. I915_WRITE(WM2_LP_ILK, 0);
  3207. I915_WRITE(WM1_LP_ILK, 0);
  3208. /*
  3209. * Based on the document from hardware guys the following bits
  3210. * should be set unconditionally in order to enable FBC.
  3211. * The bit 22 of 0x42000
  3212. * The bit 22 of 0x42004
  3213. * The bit 7,8,9 of 0x42020.
  3214. */
  3215. if (IS_IRONLAKE_M(dev)) {
  3216. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3217. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3218. ILK_FBCQ_DIS);
  3219. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3220. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3221. ILK_DPARB_GATE);
  3222. }
  3223. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3224. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3225. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3226. ILK_ELPIN_409_SELECT);
  3227. I915_WRITE(_3D_CHICKEN2,
  3228. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  3229. _3D_CHICKEN2_WM_READ_PIPELINED);
  3230. /* WaDisableRenderCachePipelinedFlush:ilk */
  3231. I915_WRITE(CACHE_MODE_0,
  3232. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3233. ibx_init_clock_gating(dev);
  3234. }
  3235. static void cpt_init_clock_gating(struct drm_device *dev)
  3236. {
  3237. struct drm_i915_private *dev_priv = dev->dev_private;
  3238. int pipe;
  3239. uint32_t val;
  3240. /*
  3241. * On Ibex Peak and Cougar Point, we need to disable clock
  3242. * gating for the panel power sequencer or it will fail to
  3243. * start up when no ports are active.
  3244. */
  3245. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3246. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  3247. DPLS_EDP_PPS_FIX_DIS);
  3248. /* The below fixes the weird display corruption, a few pixels shifted
  3249. * downward, on (only) LVDS of some HP laptops with IVY.
  3250. */
  3251. for_each_pipe(pipe) {
  3252. val = I915_READ(TRANS_CHICKEN2(pipe));
  3253. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  3254. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3255. if (dev_priv->fdi_rx_polarity_inverted)
  3256. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  3257. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  3258. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  3259. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  3260. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  3261. }
  3262. /* WADP0ClockGatingDisable */
  3263. for_each_pipe(pipe) {
  3264. I915_WRITE(TRANS_CHICKEN1(pipe),
  3265. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  3266. }
  3267. }
  3268. static void gen6_check_mch_setup(struct drm_device *dev)
  3269. {
  3270. struct drm_i915_private *dev_priv = dev->dev_private;
  3271. uint32_t tmp;
  3272. tmp = I915_READ(MCH_SSKPD);
  3273. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  3274. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  3275. DRM_INFO("This can cause pipe underruns and display issues.\n");
  3276. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  3277. }
  3278. }
  3279. static void gen6_init_clock_gating(struct drm_device *dev)
  3280. {
  3281. struct drm_i915_private *dev_priv = dev->dev_private;
  3282. int pipe;
  3283. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3284. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3285. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3286. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3287. ILK_ELPIN_409_SELECT);
  3288. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  3289. I915_WRITE(_3D_CHICKEN,
  3290. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  3291. /* WaSetupGtModeTdRowDispatch:snb */
  3292. if (IS_SNB_GT1(dev))
  3293. I915_WRITE(GEN6_GT_MODE,
  3294. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  3295. I915_WRITE(WM3_LP_ILK, 0);
  3296. I915_WRITE(WM2_LP_ILK, 0);
  3297. I915_WRITE(WM1_LP_ILK, 0);
  3298. I915_WRITE(CACHE_MODE_0,
  3299. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  3300. I915_WRITE(GEN6_UCGCTL1,
  3301. I915_READ(GEN6_UCGCTL1) |
  3302. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  3303. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  3304. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3305. * gating disable must be set. Failure to set it results in
  3306. * flickering pixels due to Z write ordering failures after
  3307. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3308. * Sanctuary and Tropics, and apparently anything else with
  3309. * alpha test or pixel discard.
  3310. *
  3311. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3312. * but we didn't debug actual testcases to find it out.
  3313. *
  3314. * Also apply WaDisableVDSUnitClockGating:snb and
  3315. * WaDisableRCPBUnitClockGating:snb.
  3316. */
  3317. I915_WRITE(GEN6_UCGCTL2,
  3318. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3319. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3320. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3321. /* Bspec says we need to always set all mask bits. */
  3322. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  3323. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  3324. /*
  3325. * According to the spec the following bits should be
  3326. * set in order to enable memory self-refresh and fbc:
  3327. * The bit21 and bit22 of 0x42000
  3328. * The bit21 and bit22 of 0x42004
  3329. * The bit5 and bit7 of 0x42020
  3330. * The bit14 of 0x70180
  3331. * The bit14 of 0x71180
  3332. */
  3333. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3334. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3335. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  3336. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3337. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3338. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  3339. I915_WRITE(ILK_DSPCLK_GATE_D,
  3340. I915_READ(ILK_DSPCLK_GATE_D) |
  3341. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  3342. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  3343. /* WaMbcDriverBootEnable:snb */
  3344. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3345. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3346. for_each_pipe(pipe) {
  3347. I915_WRITE(DSPCNTR(pipe),
  3348. I915_READ(DSPCNTR(pipe)) |
  3349. DISPPLANE_TRICKLE_FEED_DISABLE);
  3350. intel_flush_display_plane(dev_priv, pipe);
  3351. }
  3352. /* The default value should be 0x200 according to docs, but the two
  3353. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  3354. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  3355. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  3356. cpt_init_clock_gating(dev);
  3357. gen6_check_mch_setup(dev);
  3358. }
  3359. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  3360. {
  3361. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  3362. reg &= ~GEN7_FF_SCHED_MASK;
  3363. reg |= GEN7_FF_TS_SCHED_HW;
  3364. reg |= GEN7_FF_VS_SCHED_HW;
  3365. reg |= GEN7_FF_DS_SCHED_HW;
  3366. if (IS_HASWELL(dev_priv->dev))
  3367. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  3368. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  3369. }
  3370. static void lpt_init_clock_gating(struct drm_device *dev)
  3371. {
  3372. struct drm_i915_private *dev_priv = dev->dev_private;
  3373. /*
  3374. * TODO: this bit should only be enabled when really needed, then
  3375. * disabled when not needed anymore in order to save power.
  3376. */
  3377. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  3378. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  3379. I915_READ(SOUTH_DSPCLK_GATE_D) |
  3380. PCH_LP_PARTITION_LEVEL_DISABLE);
  3381. }
  3382. static void lpt_suspend_hw(struct drm_device *dev)
  3383. {
  3384. struct drm_i915_private *dev_priv = dev->dev_private;
  3385. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  3386. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  3387. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  3388. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  3389. }
  3390. }
  3391. static void haswell_init_clock_gating(struct drm_device *dev)
  3392. {
  3393. struct drm_i915_private *dev_priv = dev->dev_private;
  3394. int pipe;
  3395. I915_WRITE(WM3_LP_ILK, 0);
  3396. I915_WRITE(WM2_LP_ILK, 0);
  3397. I915_WRITE(WM1_LP_ILK, 0);
  3398. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3399. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  3400. */
  3401. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  3402. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  3403. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3404. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3405. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  3406. I915_WRITE(GEN7_L3CNTLREG1,
  3407. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3408. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3409. GEN7_WA_L3_CHICKEN_MODE);
  3410. /* This is required by WaCatErrorRejectionIssue:hsw */
  3411. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3412. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3413. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3414. for_each_pipe(pipe) {
  3415. I915_WRITE(DSPCNTR(pipe),
  3416. I915_READ(DSPCNTR(pipe)) |
  3417. DISPPLANE_TRICKLE_FEED_DISABLE);
  3418. intel_flush_display_plane(dev_priv, pipe);
  3419. }
  3420. /* WaVSRefCountFullforceMissDisable:hsw */
  3421. gen7_setup_fixed_func_scheduler(dev_priv);
  3422. /* WaDisable4x2SubspanOptimization:hsw */
  3423. I915_WRITE(CACHE_MODE_1,
  3424. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3425. /* WaMbcDriverBootEnable:hsw */
  3426. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3427. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3428. /* WaSwitchSolVfFArbitrationPriority:hsw */
  3429. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  3430. /* XXX: This is a workaround for early silicon revisions and should be
  3431. * removed later.
  3432. */
  3433. I915_WRITE(WM_DBG,
  3434. I915_READ(WM_DBG) |
  3435. WM_DBG_DISALLOW_MULTIPLE_LP |
  3436. WM_DBG_DISALLOW_SPRITE |
  3437. WM_DBG_DISALLOW_MAXFIFO);
  3438. lpt_init_clock_gating(dev);
  3439. }
  3440. static void ivybridge_init_clock_gating(struct drm_device *dev)
  3441. {
  3442. struct drm_i915_private *dev_priv = dev->dev_private;
  3443. int pipe;
  3444. uint32_t snpcr;
  3445. I915_WRITE(WM3_LP_ILK, 0);
  3446. I915_WRITE(WM2_LP_ILK, 0);
  3447. I915_WRITE(WM1_LP_ILK, 0);
  3448. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3449. /* WaDisableEarlyCull:ivb */
  3450. I915_WRITE(_3D_CHICKEN3,
  3451. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3452. /* WaDisableBackToBackFlipFix:ivb */
  3453. I915_WRITE(IVB_CHICKEN3,
  3454. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3455. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3456. /* WaDisablePSDDualDispatchEnable:ivb */
  3457. if (IS_IVB_GT1(dev))
  3458. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3459. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3460. else
  3461. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  3462. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3463. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  3464. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3465. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3466. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  3467. I915_WRITE(GEN7_L3CNTLREG1,
  3468. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3469. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3470. GEN7_WA_L3_CHICKEN_MODE);
  3471. if (IS_IVB_GT1(dev))
  3472. I915_WRITE(GEN7_ROW_CHICKEN2,
  3473. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3474. else
  3475. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  3476. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3477. /* WaForceL3Serialization:ivb */
  3478. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3479. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3480. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3481. * gating disable must be set. Failure to set it results in
  3482. * flickering pixels due to Z write ordering failures after
  3483. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3484. * Sanctuary and Tropics, and apparently anything else with
  3485. * alpha test or pixel discard.
  3486. *
  3487. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3488. * but we didn't debug actual testcases to find it out.
  3489. *
  3490. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3491. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  3492. */
  3493. I915_WRITE(GEN6_UCGCTL2,
  3494. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3495. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3496. /* This is required by WaCatErrorRejectionIssue:ivb */
  3497. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3498. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3499. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3500. for_each_pipe(pipe) {
  3501. I915_WRITE(DSPCNTR(pipe),
  3502. I915_READ(DSPCNTR(pipe)) |
  3503. DISPPLANE_TRICKLE_FEED_DISABLE);
  3504. intel_flush_display_plane(dev_priv, pipe);
  3505. }
  3506. /* WaMbcDriverBootEnable:ivb */
  3507. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3508. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3509. /* WaVSRefCountFullforceMissDisable:ivb */
  3510. gen7_setup_fixed_func_scheduler(dev_priv);
  3511. /* WaDisable4x2SubspanOptimization:ivb */
  3512. I915_WRITE(CACHE_MODE_1,
  3513. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3514. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3515. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3516. snpcr |= GEN6_MBC_SNPCR_MED;
  3517. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3518. if (!HAS_PCH_NOP(dev))
  3519. cpt_init_clock_gating(dev);
  3520. gen6_check_mch_setup(dev);
  3521. }
  3522. static void valleyview_init_clock_gating(struct drm_device *dev)
  3523. {
  3524. struct drm_i915_private *dev_priv = dev->dev_private;
  3525. int pipe;
  3526. I915_WRITE(WM3_LP_ILK, 0);
  3527. I915_WRITE(WM2_LP_ILK, 0);
  3528. I915_WRITE(WM1_LP_ILK, 0);
  3529. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3530. /* WaDisableEarlyCull:vlv */
  3531. I915_WRITE(_3D_CHICKEN3,
  3532. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3533. /* WaDisableBackToBackFlipFix:vlv */
  3534. I915_WRITE(IVB_CHICKEN3,
  3535. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3536. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3537. /* WaDisablePSDDualDispatchEnable:vlv */
  3538. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3539. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  3540. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3541. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  3542. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3543. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3544. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  3545. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  3546. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  3547. /* WaForceL3Serialization:vlv */
  3548. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3549. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3550. /* WaDisableDopClockGating:vlv */
  3551. I915_WRITE(GEN7_ROW_CHICKEN2,
  3552. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3553. /* WaForceL3Serialization:vlv */
  3554. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3555. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3556. /* This is required by WaCatErrorRejectionIssue:vlv */
  3557. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3558. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3559. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3560. /* WaMbcDriverBootEnable:vlv */
  3561. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3562. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3563. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3564. * gating disable must be set. Failure to set it results in
  3565. * flickering pixels due to Z write ordering failures after
  3566. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3567. * Sanctuary and Tropics, and apparently anything else with
  3568. * alpha test or pixel discard.
  3569. *
  3570. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3571. * but we didn't debug actual testcases to find it out.
  3572. *
  3573. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3574. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  3575. *
  3576. * Also apply WaDisableVDSUnitClockGating:vlv and
  3577. * WaDisableRCPBUnitClockGating:vlv.
  3578. */
  3579. I915_WRITE(GEN6_UCGCTL2,
  3580. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3581. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  3582. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3583. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3584. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3585. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  3586. for_each_pipe(pipe) {
  3587. I915_WRITE(DSPCNTR(pipe),
  3588. I915_READ(DSPCNTR(pipe)) |
  3589. DISPPLANE_TRICKLE_FEED_DISABLE);
  3590. intel_flush_display_plane(dev_priv, pipe);
  3591. }
  3592. I915_WRITE(CACHE_MODE_1,
  3593. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3594. /*
  3595. * WaDisableVLVClockGating_VBIIssue:vlv
  3596. * Disable clock gating on th GCFG unit to prevent a delay
  3597. * in the reporting of vblank events.
  3598. */
  3599. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  3600. /* Conservative clock gating settings for now */
  3601. I915_WRITE(0x9400, 0xffffffff);
  3602. I915_WRITE(0x9404, 0xffffffff);
  3603. I915_WRITE(0x9408, 0xffffffff);
  3604. I915_WRITE(0x940c, 0xffffffff);
  3605. I915_WRITE(0x9410, 0xffffffff);
  3606. I915_WRITE(0x9414, 0xffffffff);
  3607. I915_WRITE(0x9418, 0xffffffff);
  3608. }
  3609. static void g4x_init_clock_gating(struct drm_device *dev)
  3610. {
  3611. struct drm_i915_private *dev_priv = dev->dev_private;
  3612. uint32_t dspclk_gate;
  3613. I915_WRITE(RENCLK_GATE_D1, 0);
  3614. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  3615. GS_UNIT_CLOCK_GATE_DISABLE |
  3616. CL_UNIT_CLOCK_GATE_DISABLE);
  3617. I915_WRITE(RAMCLK_GATE_D, 0);
  3618. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  3619. OVRUNIT_CLOCK_GATE_DISABLE |
  3620. OVCUNIT_CLOCK_GATE_DISABLE;
  3621. if (IS_GM45(dev))
  3622. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  3623. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  3624. /* WaDisableRenderCachePipelinedFlush */
  3625. I915_WRITE(CACHE_MODE_0,
  3626. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3627. }
  3628. static void crestline_init_clock_gating(struct drm_device *dev)
  3629. {
  3630. struct drm_i915_private *dev_priv = dev->dev_private;
  3631. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  3632. I915_WRITE(RENCLK_GATE_D2, 0);
  3633. I915_WRITE(DSPCLK_GATE_D, 0);
  3634. I915_WRITE(RAMCLK_GATE_D, 0);
  3635. I915_WRITE16(DEUC, 0);
  3636. }
  3637. static void broadwater_init_clock_gating(struct drm_device *dev)
  3638. {
  3639. struct drm_i915_private *dev_priv = dev->dev_private;
  3640. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  3641. I965_RCC_CLOCK_GATE_DISABLE |
  3642. I965_RCPB_CLOCK_GATE_DISABLE |
  3643. I965_ISC_CLOCK_GATE_DISABLE |
  3644. I965_FBC_CLOCK_GATE_DISABLE);
  3645. I915_WRITE(RENCLK_GATE_D2, 0);
  3646. }
  3647. static void gen3_init_clock_gating(struct drm_device *dev)
  3648. {
  3649. struct drm_i915_private *dev_priv = dev->dev_private;
  3650. u32 dstate = I915_READ(D_STATE);
  3651. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  3652. DSTATE_DOT_CLOCK_GATING;
  3653. I915_WRITE(D_STATE, dstate);
  3654. if (IS_PINEVIEW(dev))
  3655. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  3656. /* IIR "flip pending" means done if this bit is set */
  3657. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  3658. }
  3659. static void i85x_init_clock_gating(struct drm_device *dev)
  3660. {
  3661. struct drm_i915_private *dev_priv = dev->dev_private;
  3662. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  3663. }
  3664. static void i830_init_clock_gating(struct drm_device *dev)
  3665. {
  3666. struct drm_i915_private *dev_priv = dev->dev_private;
  3667. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3668. }
  3669. void intel_init_clock_gating(struct drm_device *dev)
  3670. {
  3671. struct drm_i915_private *dev_priv = dev->dev_private;
  3672. dev_priv->display.init_clock_gating(dev);
  3673. }
  3674. void intel_suspend_hw(struct drm_device *dev)
  3675. {
  3676. if (HAS_PCH_LPT(dev))
  3677. lpt_suspend_hw(dev);
  3678. }
  3679. /**
  3680. * We should only use the power well if we explicitly asked the hardware to
  3681. * enable it, so check if it's enabled and also check if we've requested it to
  3682. * be enabled.
  3683. */
  3684. bool intel_display_power_enabled(struct drm_device *dev,
  3685. enum intel_display_power_domain domain)
  3686. {
  3687. struct drm_i915_private *dev_priv = dev->dev_private;
  3688. if (!HAS_POWER_WELL(dev))
  3689. return true;
  3690. switch (domain) {
  3691. case POWER_DOMAIN_PIPE_A:
  3692. case POWER_DOMAIN_TRANSCODER_EDP:
  3693. return true;
  3694. case POWER_DOMAIN_PIPE_B:
  3695. case POWER_DOMAIN_PIPE_C:
  3696. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  3697. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  3698. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  3699. case POWER_DOMAIN_TRANSCODER_A:
  3700. case POWER_DOMAIN_TRANSCODER_B:
  3701. case POWER_DOMAIN_TRANSCODER_C:
  3702. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  3703. (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
  3704. default:
  3705. BUG();
  3706. }
  3707. }
  3708. void intel_set_power_well(struct drm_device *dev, bool enable)
  3709. {
  3710. struct drm_i915_private *dev_priv = dev->dev_private;
  3711. bool is_enabled, enable_requested;
  3712. uint32_t tmp;
  3713. if (!HAS_POWER_WELL(dev))
  3714. return;
  3715. if (!i915_disable_power_well && !enable)
  3716. return;
  3717. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  3718. is_enabled = tmp & HSW_PWR_WELL_STATE;
  3719. enable_requested = tmp & HSW_PWR_WELL_ENABLE;
  3720. if (enable) {
  3721. if (!enable_requested)
  3722. I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
  3723. if (!is_enabled) {
  3724. DRM_DEBUG_KMS("Enabling power well\n");
  3725. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  3726. HSW_PWR_WELL_STATE), 20))
  3727. DRM_ERROR("Timeout enabling power well\n");
  3728. }
  3729. } else {
  3730. if (enable_requested) {
  3731. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  3732. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  3733. }
  3734. }
  3735. }
  3736. /*
  3737. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  3738. * when not needed anymore. We have 4 registers that can request the power well
  3739. * to be enabled, and it will only be disabled if none of the registers is
  3740. * requesting it to be enabled.
  3741. */
  3742. void intel_init_power_well(struct drm_device *dev)
  3743. {
  3744. struct drm_i915_private *dev_priv = dev->dev_private;
  3745. if (!HAS_POWER_WELL(dev))
  3746. return;
  3747. /* For now, we need the power well to be always enabled. */
  3748. intel_set_power_well(dev, true);
  3749. /* We're taking over the BIOS, so clear any requests made by it since
  3750. * the driver is in charge now. */
  3751. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
  3752. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  3753. }
  3754. /* Set up chip specific power management-related functions */
  3755. void intel_init_pm(struct drm_device *dev)
  3756. {
  3757. struct drm_i915_private *dev_priv = dev->dev_private;
  3758. if (I915_HAS_FBC(dev)) {
  3759. if (HAS_PCH_SPLIT(dev)) {
  3760. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  3761. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  3762. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  3763. } else if (IS_GM45(dev)) {
  3764. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  3765. dev_priv->display.enable_fbc = g4x_enable_fbc;
  3766. dev_priv->display.disable_fbc = g4x_disable_fbc;
  3767. } else if (IS_CRESTLINE(dev)) {
  3768. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  3769. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  3770. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  3771. }
  3772. /* 855GM needs testing */
  3773. }
  3774. /* For cxsr */
  3775. if (IS_PINEVIEW(dev))
  3776. i915_pineview_get_mem_freq(dev);
  3777. else if (IS_GEN5(dev))
  3778. i915_ironlake_get_mem_freq(dev);
  3779. /* For FIFO watermark updates */
  3780. if (HAS_PCH_SPLIT(dev)) {
  3781. if (IS_GEN5(dev)) {
  3782. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  3783. dev_priv->display.update_wm = ironlake_update_wm;
  3784. else {
  3785. DRM_DEBUG_KMS("Failed to get proper latency. "
  3786. "Disable CxSR\n");
  3787. dev_priv->display.update_wm = NULL;
  3788. }
  3789. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  3790. } else if (IS_GEN6(dev)) {
  3791. if (SNB_READ_WM0_LATENCY()) {
  3792. dev_priv->display.update_wm = sandybridge_update_wm;
  3793. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3794. } else {
  3795. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3796. "Disable CxSR\n");
  3797. dev_priv->display.update_wm = NULL;
  3798. }
  3799. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  3800. } else if (IS_IVYBRIDGE(dev)) {
  3801. if (SNB_READ_WM0_LATENCY()) {
  3802. dev_priv->display.update_wm = ivybridge_update_wm;
  3803. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3804. } else {
  3805. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3806. "Disable CxSR\n");
  3807. dev_priv->display.update_wm = NULL;
  3808. }
  3809. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  3810. } else if (IS_HASWELL(dev)) {
  3811. if (SNB_READ_WM0_LATENCY()) {
  3812. dev_priv->display.update_wm = sandybridge_update_wm;
  3813. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3814. dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
  3815. } else {
  3816. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3817. "Disable CxSR\n");
  3818. dev_priv->display.update_wm = NULL;
  3819. }
  3820. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  3821. } else
  3822. dev_priv->display.update_wm = NULL;
  3823. } else if (IS_VALLEYVIEW(dev)) {
  3824. dev_priv->display.update_wm = valleyview_update_wm;
  3825. dev_priv->display.init_clock_gating =
  3826. valleyview_init_clock_gating;
  3827. } else if (IS_PINEVIEW(dev)) {
  3828. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  3829. dev_priv->is_ddr3,
  3830. dev_priv->fsb_freq,
  3831. dev_priv->mem_freq)) {
  3832. DRM_INFO("failed to find known CxSR latency "
  3833. "(found ddr%s fsb freq %d, mem freq %d), "
  3834. "disabling CxSR\n",
  3835. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  3836. dev_priv->fsb_freq, dev_priv->mem_freq);
  3837. /* Disable CxSR and never update its watermark again */
  3838. pineview_disable_cxsr(dev);
  3839. dev_priv->display.update_wm = NULL;
  3840. } else
  3841. dev_priv->display.update_wm = pineview_update_wm;
  3842. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3843. } else if (IS_G4X(dev)) {
  3844. dev_priv->display.update_wm = g4x_update_wm;
  3845. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  3846. } else if (IS_GEN4(dev)) {
  3847. dev_priv->display.update_wm = i965_update_wm;
  3848. if (IS_CRESTLINE(dev))
  3849. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  3850. else if (IS_BROADWATER(dev))
  3851. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  3852. } else if (IS_GEN3(dev)) {
  3853. dev_priv->display.update_wm = i9xx_update_wm;
  3854. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  3855. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3856. } else if (IS_I865G(dev)) {
  3857. dev_priv->display.update_wm = i830_update_wm;
  3858. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3859. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3860. } else if (IS_I85X(dev)) {
  3861. dev_priv->display.update_wm = i9xx_update_wm;
  3862. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  3863. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3864. } else {
  3865. dev_priv->display.update_wm = i830_update_wm;
  3866. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  3867. if (IS_845G(dev))
  3868. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  3869. else
  3870. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3871. }
  3872. }
  3873. static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
  3874. {
  3875. u32 gt_thread_status_mask;
  3876. if (IS_HASWELL(dev_priv->dev))
  3877. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
  3878. else
  3879. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
  3880. /* w/a for a sporadic read returning 0 by waiting for the GT
  3881. * thread to wake up.
  3882. */
  3883. if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
  3884. DRM_ERROR("GT thread status wait timed out\n");
  3885. }
  3886. static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
  3887. {
  3888. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3889. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3890. }
  3891. static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3892. {
  3893. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
  3894. FORCEWAKE_ACK_TIMEOUT_MS))
  3895. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3896. I915_WRITE_NOTRACE(FORCEWAKE, 1);
  3897. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3898. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
  3899. FORCEWAKE_ACK_TIMEOUT_MS))
  3900. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3901. /* WaRsForcewakeWaitTC0:snb */
  3902. __gen6_gt_wait_for_thread_c0(dev_priv);
  3903. }
  3904. static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
  3905. {
  3906. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
  3907. /* something from same cacheline, but !FORCEWAKE_MT */
  3908. POSTING_READ(ECOBUS);
  3909. }
  3910. static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
  3911. {
  3912. u32 forcewake_ack;
  3913. if (IS_HASWELL(dev_priv->dev))
  3914. forcewake_ack = FORCEWAKE_ACK_HSW;
  3915. else
  3916. forcewake_ack = FORCEWAKE_MT_ACK;
  3917. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
  3918. FORCEWAKE_ACK_TIMEOUT_MS))
  3919. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3920. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3921. /* something from same cacheline, but !FORCEWAKE_MT */
  3922. POSTING_READ(ECOBUS);
  3923. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
  3924. FORCEWAKE_ACK_TIMEOUT_MS))
  3925. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3926. /* WaRsForcewakeWaitTC0:ivb,hsw */
  3927. __gen6_gt_wait_for_thread_c0(dev_priv);
  3928. }
  3929. /*
  3930. * Generally this is called implicitly by the register read function. However,
  3931. * if some sequence requires the GT to not power down then this function should
  3932. * be called at the beginning of the sequence followed by a call to
  3933. * gen6_gt_force_wake_put() at the end of the sequence.
  3934. */
  3935. void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3936. {
  3937. unsigned long irqflags;
  3938. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3939. if (dev_priv->forcewake_count++ == 0)
  3940. dev_priv->gt.force_wake_get(dev_priv);
  3941. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3942. }
  3943. void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
  3944. {
  3945. u32 gtfifodbg;
  3946. gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
  3947. if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
  3948. "MMIO read or write has been dropped %x\n", gtfifodbg))
  3949. I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
  3950. }
  3951. static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3952. {
  3953. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3954. /* something from same cacheline, but !FORCEWAKE */
  3955. POSTING_READ(ECOBUS);
  3956. gen6_gt_check_fifodbg(dev_priv);
  3957. }
  3958. static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
  3959. {
  3960. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  3961. /* something from same cacheline, but !FORCEWAKE_MT */
  3962. POSTING_READ(ECOBUS);
  3963. gen6_gt_check_fifodbg(dev_priv);
  3964. }
  3965. /*
  3966. * see gen6_gt_force_wake_get()
  3967. */
  3968. void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3969. {
  3970. unsigned long irqflags;
  3971. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3972. if (--dev_priv->forcewake_count == 0)
  3973. dev_priv->gt.force_wake_put(dev_priv);
  3974. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3975. }
  3976. int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
  3977. {
  3978. int ret = 0;
  3979. if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
  3980. int loop = 500;
  3981. u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3982. while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
  3983. udelay(10);
  3984. fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3985. }
  3986. if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
  3987. ++ret;
  3988. dev_priv->gt_fifo_count = fifo;
  3989. }
  3990. dev_priv->gt_fifo_count--;
  3991. return ret;
  3992. }
  3993. static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
  3994. {
  3995. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
  3996. /* something from same cacheline, but !FORCEWAKE_VLV */
  3997. POSTING_READ(FORCEWAKE_ACK_VLV);
  3998. }
  3999. static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
  4000. {
  4001. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
  4002. FORCEWAKE_ACK_TIMEOUT_MS))
  4003. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  4004. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  4005. I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
  4006. _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  4007. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
  4008. FORCEWAKE_ACK_TIMEOUT_MS))
  4009. DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
  4010. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
  4011. FORCEWAKE_KERNEL),
  4012. FORCEWAKE_ACK_TIMEOUT_MS))
  4013. DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
  4014. /* WaRsForcewakeWaitTC0:vlv */
  4015. __gen6_gt_wait_for_thread_c0(dev_priv);
  4016. }
  4017. static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
  4018. {
  4019. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  4020. I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
  4021. _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  4022. /* The below doubles as a POSTING_READ */
  4023. gen6_gt_check_fifodbg(dev_priv);
  4024. }
  4025. void intel_gt_reset(struct drm_device *dev)
  4026. {
  4027. struct drm_i915_private *dev_priv = dev->dev_private;
  4028. if (IS_VALLEYVIEW(dev)) {
  4029. vlv_force_wake_reset(dev_priv);
  4030. } else if (INTEL_INFO(dev)->gen >= 6) {
  4031. __gen6_gt_force_wake_reset(dev_priv);
  4032. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4033. __gen6_gt_force_wake_mt_reset(dev_priv);
  4034. }
  4035. }
  4036. void intel_gt_init(struct drm_device *dev)
  4037. {
  4038. struct drm_i915_private *dev_priv = dev->dev_private;
  4039. spin_lock_init(&dev_priv->gt_lock);
  4040. intel_gt_reset(dev);
  4041. if (IS_VALLEYVIEW(dev)) {
  4042. dev_priv->gt.force_wake_get = vlv_force_wake_get;
  4043. dev_priv->gt.force_wake_put = vlv_force_wake_put;
  4044. } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4045. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
  4046. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
  4047. } else if (IS_GEN6(dev)) {
  4048. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
  4049. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
  4050. }
  4051. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4052. intel_gen6_powersave_work);
  4053. }
  4054. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4055. {
  4056. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4057. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4058. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4059. return -EAGAIN;
  4060. }
  4061. I915_WRITE(GEN6_PCODE_DATA, *val);
  4062. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4063. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4064. 500)) {
  4065. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4066. return -ETIMEDOUT;
  4067. }
  4068. *val = I915_READ(GEN6_PCODE_DATA);
  4069. I915_WRITE(GEN6_PCODE_DATA, 0);
  4070. return 0;
  4071. }
  4072. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4073. {
  4074. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4075. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4076. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4077. return -EAGAIN;
  4078. }
  4079. I915_WRITE(GEN6_PCODE_DATA, val);
  4080. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4081. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4082. 500)) {
  4083. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4084. return -ETIMEDOUT;
  4085. }
  4086. I915_WRITE(GEN6_PCODE_DATA, 0);
  4087. return 0;
  4088. }
  4089. static int vlv_punit_rw(struct drm_i915_private *dev_priv, u32 port, u8 opcode,
  4090. u8 addr, u32 *val)
  4091. {
  4092. u32 cmd, devfn, be, bar;
  4093. bar = 0;
  4094. be = 0xf;
  4095. devfn = PCI_DEVFN(2, 0);
  4096. cmd = (devfn << IOSF_DEVFN_SHIFT) | (opcode << IOSF_OPCODE_SHIFT) |
  4097. (port << IOSF_PORT_SHIFT) | (be << IOSF_BYTE_ENABLES_SHIFT) |
  4098. (bar << IOSF_BAR_SHIFT);
  4099. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4100. if (I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) {
  4101. DRM_DEBUG_DRIVER("warning: pcode (%s) mailbox access failed\n",
  4102. opcode == PUNIT_OPCODE_REG_READ ?
  4103. "read" : "write");
  4104. return -EAGAIN;
  4105. }
  4106. I915_WRITE(VLV_IOSF_ADDR, addr);
  4107. if (opcode == PUNIT_OPCODE_REG_WRITE)
  4108. I915_WRITE(VLV_IOSF_DATA, *val);
  4109. I915_WRITE(VLV_IOSF_DOORBELL_REQ, cmd);
  4110. if (wait_for((I915_READ(VLV_IOSF_DOORBELL_REQ) & IOSF_SB_BUSY) == 0,
  4111. 5)) {
  4112. DRM_ERROR("timeout waiting for pcode %s (%d) to finish\n",
  4113. opcode == PUNIT_OPCODE_REG_READ ? "read" : "write",
  4114. addr);
  4115. return -ETIMEDOUT;
  4116. }
  4117. if (opcode == PUNIT_OPCODE_REG_READ)
  4118. *val = I915_READ(VLV_IOSF_DATA);
  4119. I915_WRITE(VLV_IOSF_DATA, 0);
  4120. return 0;
  4121. }
  4122. int valleyview_punit_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
  4123. {
  4124. return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_READ,
  4125. addr, val);
  4126. }
  4127. int valleyview_punit_write(struct drm_i915_private *dev_priv, u8 addr, u32 val)
  4128. {
  4129. return vlv_punit_rw(dev_priv, IOSF_PORT_PUNIT, PUNIT_OPCODE_REG_WRITE,
  4130. addr, &val);
  4131. }
  4132. int valleyview_nc_read(struct drm_i915_private *dev_priv, u8 addr, u32 *val)
  4133. {
  4134. return vlv_punit_rw(dev_priv, IOSF_PORT_NC, PUNIT_OPCODE_REG_READ,
  4135. addr, val);
  4136. }
  4137. int vlv_gpu_freq(int ddr_freq, int val)
  4138. {
  4139. int mult, base;
  4140. switch (ddr_freq) {
  4141. case 800:
  4142. mult = 20;
  4143. base = 120;
  4144. break;
  4145. case 1066:
  4146. mult = 22;
  4147. base = 133;
  4148. break;
  4149. case 1333:
  4150. mult = 21;
  4151. base = 125;
  4152. break;
  4153. default:
  4154. return -1;
  4155. }
  4156. return ((val - 0xbd) * mult) + base;
  4157. }
  4158. int vlv_freq_opcode(int ddr_freq, int val)
  4159. {
  4160. int mult, base;
  4161. switch (ddr_freq) {
  4162. case 800:
  4163. mult = 20;
  4164. base = 120;
  4165. break;
  4166. case 1066:
  4167. mult = 22;
  4168. base = 133;
  4169. break;
  4170. case 1333:
  4171. mult = 21;
  4172. base = 125;
  4173. break;
  4174. default:
  4175. return -1;
  4176. }
  4177. val /= mult;
  4178. val -= base / mult;
  4179. val += 0xbd;
  4180. if (val > 0xea)
  4181. val = 0xea;
  4182. return val;
  4183. }