sched.c 259 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS_PINNED, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. unsigned long rt_nr_total;
  416. int overloaded;
  417. struct plist_head pushable_tasks;
  418. #endif
  419. int rt_throttled;
  420. u64 rt_time;
  421. u64 rt_runtime;
  422. /* Nests inside the rq lock: */
  423. spinlock_t rt_runtime_lock;
  424. #ifdef CONFIG_RT_GROUP_SCHED
  425. unsigned long rt_nr_boosted;
  426. struct rq *rq;
  427. struct list_head leaf_rt_rq_list;
  428. struct task_group *tg;
  429. struct sched_rt_entity *rt_se;
  430. #endif
  431. };
  432. #ifdef CONFIG_SMP
  433. /*
  434. * We add the notion of a root-domain which will be used to define per-domain
  435. * variables. Each exclusive cpuset essentially defines an island domain by
  436. * fully partitioning the member cpus from any other cpuset. Whenever a new
  437. * exclusive cpuset is created, we also create and attach a new root-domain
  438. * object.
  439. *
  440. */
  441. struct root_domain {
  442. atomic_t refcount;
  443. cpumask_var_t span;
  444. cpumask_var_t online;
  445. /*
  446. * The "RT overload" flag: it gets set if a CPU has more than
  447. * one runnable RT task.
  448. */
  449. cpumask_var_t rto_mask;
  450. atomic_t rto_count;
  451. #ifdef CONFIG_SMP
  452. struct cpupri cpupri;
  453. #endif
  454. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  455. /*
  456. * Preferred wake up cpu nominated by sched_mc balance that will be
  457. * used when most cpus are idle in the system indicating overall very
  458. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  459. */
  460. unsigned int sched_mc_preferred_wakeup_cpu;
  461. #endif
  462. };
  463. /*
  464. * By default the system creates a single root-domain with all cpus as
  465. * members (mimicking the global state we have today).
  466. */
  467. static struct root_domain def_root_domain;
  468. #endif
  469. /*
  470. * This is the main, per-CPU runqueue data structure.
  471. *
  472. * Locking rule: those places that want to lock multiple runqueues
  473. * (such as the load balancing or the thread migration code), lock
  474. * acquire operations must be ordered by ascending &runqueue.
  475. */
  476. struct rq {
  477. /* runqueue lock: */
  478. spinlock_t lock;
  479. /*
  480. * nr_running and cpu_load should be in the same cacheline because
  481. * remote CPUs use both these fields when doing load calculation.
  482. */
  483. unsigned long nr_running;
  484. #define CPU_LOAD_IDX_MAX 5
  485. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  486. #ifdef CONFIG_NO_HZ
  487. unsigned long last_tick_seen;
  488. unsigned char in_nohz_recently;
  489. #endif
  490. /* capture load from *all* tasks on this cpu: */
  491. struct load_weight load;
  492. unsigned long nr_load_updates;
  493. u64 nr_switches;
  494. u64 nr_migrations_in;
  495. struct cfs_rq cfs;
  496. struct rt_rq rt;
  497. #ifdef CONFIG_FAIR_GROUP_SCHED
  498. /* list of leaf cfs_rq on this cpu: */
  499. struct list_head leaf_cfs_rq_list;
  500. #endif
  501. #ifdef CONFIG_RT_GROUP_SCHED
  502. struct list_head leaf_rt_rq_list;
  503. #endif
  504. /*
  505. * This is part of a global counter where only the total sum
  506. * over all CPUs matters. A task can increase this counter on
  507. * one CPU and if it got migrated afterwards it may decrease
  508. * it on another CPU. Always updated under the runqueue lock:
  509. */
  510. unsigned long nr_uninterruptible;
  511. struct task_struct *curr, *idle;
  512. unsigned long next_balance;
  513. struct mm_struct *prev_mm;
  514. u64 clock;
  515. atomic_t nr_iowait;
  516. #ifdef CONFIG_SMP
  517. struct root_domain *rd;
  518. struct sched_domain *sd;
  519. unsigned char idle_at_tick;
  520. /* For active balancing */
  521. int active_balance;
  522. int push_cpu;
  523. /* cpu of this runqueue: */
  524. int cpu;
  525. int online;
  526. unsigned long avg_load_per_task;
  527. struct task_struct *migration_thread;
  528. struct list_head migration_queue;
  529. #endif
  530. /* calc_load related fields */
  531. unsigned long calc_load_update;
  532. long calc_load_active;
  533. #ifdef CONFIG_SCHED_HRTICK
  534. #ifdef CONFIG_SMP
  535. int hrtick_csd_pending;
  536. struct call_single_data hrtick_csd;
  537. #endif
  538. struct hrtimer hrtick_timer;
  539. #endif
  540. #ifdef CONFIG_SCHEDSTATS
  541. /* latency stats */
  542. struct sched_info rq_sched_info;
  543. unsigned long long rq_cpu_time;
  544. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  545. /* sys_sched_yield() stats */
  546. unsigned int yld_count;
  547. /* schedule() stats */
  548. unsigned int sched_switch;
  549. unsigned int sched_count;
  550. unsigned int sched_goidle;
  551. /* try_to_wake_up() stats */
  552. unsigned int ttwu_count;
  553. unsigned int ttwu_local;
  554. /* BKL stats */
  555. unsigned int bkl_count;
  556. #endif
  557. };
  558. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  559. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  560. {
  561. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  562. }
  563. static inline int cpu_of(struct rq *rq)
  564. {
  565. #ifdef CONFIG_SMP
  566. return rq->cpu;
  567. #else
  568. return 0;
  569. #endif
  570. }
  571. /*
  572. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  573. * See detach_destroy_domains: synchronize_sched for details.
  574. *
  575. * The domain tree of any CPU may only be accessed from within
  576. * preempt-disabled sections.
  577. */
  578. #define for_each_domain(cpu, __sd) \
  579. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  580. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  581. #define this_rq() (&__get_cpu_var(runqueues))
  582. #define task_rq(p) cpu_rq(task_cpu(p))
  583. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  584. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  585. inline void update_rq_clock(struct rq *rq)
  586. {
  587. rq->clock = sched_clock_cpu(cpu_of(rq));
  588. }
  589. /*
  590. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  591. */
  592. #ifdef CONFIG_SCHED_DEBUG
  593. # define const_debug __read_mostly
  594. #else
  595. # define const_debug static const
  596. #endif
  597. /**
  598. * runqueue_is_locked
  599. *
  600. * Returns true if the current cpu runqueue is locked.
  601. * This interface allows printk to be called with the runqueue lock
  602. * held and know whether or not it is OK to wake up the klogd.
  603. */
  604. int runqueue_is_locked(void)
  605. {
  606. int cpu = get_cpu();
  607. struct rq *rq = cpu_rq(cpu);
  608. int ret;
  609. ret = spin_is_locked(&rq->lock);
  610. put_cpu();
  611. return ret;
  612. }
  613. /*
  614. * Debugging: various feature bits
  615. */
  616. #define SCHED_FEAT(name, enabled) \
  617. __SCHED_FEAT_##name ,
  618. enum {
  619. #include "sched_features.h"
  620. };
  621. #undef SCHED_FEAT
  622. #define SCHED_FEAT(name, enabled) \
  623. (1UL << __SCHED_FEAT_##name) * enabled |
  624. const_debug unsigned int sysctl_sched_features =
  625. #include "sched_features.h"
  626. 0;
  627. #undef SCHED_FEAT
  628. #ifdef CONFIG_SCHED_DEBUG
  629. #define SCHED_FEAT(name, enabled) \
  630. #name ,
  631. static __read_mostly char *sched_feat_names[] = {
  632. #include "sched_features.h"
  633. NULL
  634. };
  635. #undef SCHED_FEAT
  636. static int sched_feat_show(struct seq_file *m, void *v)
  637. {
  638. int i;
  639. for (i = 0; sched_feat_names[i]; i++) {
  640. if (!(sysctl_sched_features & (1UL << i)))
  641. seq_puts(m, "NO_");
  642. seq_printf(m, "%s ", sched_feat_names[i]);
  643. }
  644. seq_puts(m, "\n");
  645. return 0;
  646. }
  647. static ssize_t
  648. sched_feat_write(struct file *filp, const char __user *ubuf,
  649. size_t cnt, loff_t *ppos)
  650. {
  651. char buf[64];
  652. char *cmp = buf;
  653. int neg = 0;
  654. int i;
  655. if (cnt > 63)
  656. cnt = 63;
  657. if (copy_from_user(&buf, ubuf, cnt))
  658. return -EFAULT;
  659. buf[cnt] = 0;
  660. if (strncmp(buf, "NO_", 3) == 0) {
  661. neg = 1;
  662. cmp += 3;
  663. }
  664. for (i = 0; sched_feat_names[i]; i++) {
  665. int len = strlen(sched_feat_names[i]);
  666. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  667. if (neg)
  668. sysctl_sched_features &= ~(1UL << i);
  669. else
  670. sysctl_sched_features |= (1UL << i);
  671. break;
  672. }
  673. }
  674. if (!sched_feat_names[i])
  675. return -EINVAL;
  676. filp->f_pos += cnt;
  677. return cnt;
  678. }
  679. static int sched_feat_open(struct inode *inode, struct file *filp)
  680. {
  681. return single_open(filp, sched_feat_show, NULL);
  682. }
  683. static struct file_operations sched_feat_fops = {
  684. .open = sched_feat_open,
  685. .write = sched_feat_write,
  686. .read = seq_read,
  687. .llseek = seq_lseek,
  688. .release = single_release,
  689. };
  690. static __init int sched_init_debug(void)
  691. {
  692. debugfs_create_file("sched_features", 0644, NULL, NULL,
  693. &sched_feat_fops);
  694. return 0;
  695. }
  696. late_initcall(sched_init_debug);
  697. #endif
  698. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  699. /*
  700. * Number of tasks to iterate in a single balance run.
  701. * Limited because this is done with IRQs disabled.
  702. */
  703. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  704. /*
  705. * ratelimit for updating the group shares.
  706. * default: 0.25ms
  707. */
  708. unsigned int sysctl_sched_shares_ratelimit = 250000;
  709. /*
  710. * Inject some fuzzyness into changing the per-cpu group shares
  711. * this avoids remote rq-locks at the expense of fairness.
  712. * default: 4
  713. */
  714. unsigned int sysctl_sched_shares_thresh = 4;
  715. /*
  716. * period over which we measure -rt task cpu usage in us.
  717. * default: 1s
  718. */
  719. unsigned int sysctl_sched_rt_period = 1000000;
  720. static __read_mostly int scheduler_running;
  721. /*
  722. * part of the period that we allow rt tasks to run in us.
  723. * default: 0.95s
  724. */
  725. int sysctl_sched_rt_runtime = 950000;
  726. static inline u64 global_rt_period(void)
  727. {
  728. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  729. }
  730. static inline u64 global_rt_runtime(void)
  731. {
  732. if (sysctl_sched_rt_runtime < 0)
  733. return RUNTIME_INF;
  734. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  735. }
  736. #ifndef prepare_arch_switch
  737. # define prepare_arch_switch(next) do { } while (0)
  738. #endif
  739. #ifndef finish_arch_switch
  740. # define finish_arch_switch(prev) do { } while (0)
  741. #endif
  742. static inline int task_current(struct rq *rq, struct task_struct *p)
  743. {
  744. return rq->curr == p;
  745. }
  746. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  747. static inline int task_running(struct rq *rq, struct task_struct *p)
  748. {
  749. return task_current(rq, p);
  750. }
  751. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  752. {
  753. }
  754. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  755. {
  756. #ifdef CONFIG_DEBUG_SPINLOCK
  757. /* this is a valid case when another task releases the spinlock */
  758. rq->lock.owner = current;
  759. #endif
  760. /*
  761. * If we are tracking spinlock dependencies then we have to
  762. * fix up the runqueue lock - which gets 'carried over' from
  763. * prev into current:
  764. */
  765. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  766. spin_unlock_irq(&rq->lock);
  767. }
  768. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  769. static inline int task_running(struct rq *rq, struct task_struct *p)
  770. {
  771. #ifdef CONFIG_SMP
  772. return p->oncpu;
  773. #else
  774. return task_current(rq, p);
  775. #endif
  776. }
  777. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  778. {
  779. #ifdef CONFIG_SMP
  780. /*
  781. * We can optimise this out completely for !SMP, because the
  782. * SMP rebalancing from interrupt is the only thing that cares
  783. * here.
  784. */
  785. next->oncpu = 1;
  786. #endif
  787. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  788. spin_unlock_irq(&rq->lock);
  789. #else
  790. spin_unlock(&rq->lock);
  791. #endif
  792. }
  793. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  794. {
  795. #ifdef CONFIG_SMP
  796. /*
  797. * After ->oncpu is cleared, the task can be moved to a different CPU.
  798. * We must ensure this doesn't happen until the switch is completely
  799. * finished.
  800. */
  801. smp_wmb();
  802. prev->oncpu = 0;
  803. #endif
  804. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  805. local_irq_enable();
  806. #endif
  807. }
  808. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  809. /*
  810. * __task_rq_lock - lock the runqueue a given task resides on.
  811. * Must be called interrupts disabled.
  812. */
  813. static inline struct rq *__task_rq_lock(struct task_struct *p)
  814. __acquires(rq->lock)
  815. {
  816. for (;;) {
  817. struct rq *rq = task_rq(p);
  818. spin_lock(&rq->lock);
  819. if (likely(rq == task_rq(p)))
  820. return rq;
  821. spin_unlock(&rq->lock);
  822. }
  823. }
  824. /*
  825. * task_rq_lock - lock the runqueue a given task resides on and disable
  826. * interrupts. Note the ordering: we can safely lookup the task_rq without
  827. * explicitly disabling preemption.
  828. */
  829. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  830. __acquires(rq->lock)
  831. {
  832. struct rq *rq;
  833. for (;;) {
  834. local_irq_save(*flags);
  835. rq = task_rq(p);
  836. spin_lock(&rq->lock);
  837. if (likely(rq == task_rq(p)))
  838. return rq;
  839. spin_unlock_irqrestore(&rq->lock, *flags);
  840. }
  841. }
  842. void task_rq_unlock_wait(struct task_struct *p)
  843. {
  844. struct rq *rq = task_rq(p);
  845. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  846. spin_unlock_wait(&rq->lock);
  847. }
  848. static void __task_rq_unlock(struct rq *rq)
  849. __releases(rq->lock)
  850. {
  851. spin_unlock(&rq->lock);
  852. }
  853. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  854. __releases(rq->lock)
  855. {
  856. spin_unlock_irqrestore(&rq->lock, *flags);
  857. }
  858. /*
  859. * this_rq_lock - lock this runqueue and disable interrupts.
  860. */
  861. static struct rq *this_rq_lock(void)
  862. __acquires(rq->lock)
  863. {
  864. struct rq *rq;
  865. local_irq_disable();
  866. rq = this_rq();
  867. spin_lock(&rq->lock);
  868. return rq;
  869. }
  870. #ifdef CONFIG_SCHED_HRTICK
  871. /*
  872. * Use HR-timers to deliver accurate preemption points.
  873. *
  874. * Its all a bit involved since we cannot program an hrt while holding the
  875. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  876. * reschedule event.
  877. *
  878. * When we get rescheduled we reprogram the hrtick_timer outside of the
  879. * rq->lock.
  880. */
  881. /*
  882. * Use hrtick when:
  883. * - enabled by features
  884. * - hrtimer is actually high res
  885. */
  886. static inline int hrtick_enabled(struct rq *rq)
  887. {
  888. if (!sched_feat(HRTICK))
  889. return 0;
  890. if (!cpu_active(cpu_of(rq)))
  891. return 0;
  892. return hrtimer_is_hres_active(&rq->hrtick_timer);
  893. }
  894. static void hrtick_clear(struct rq *rq)
  895. {
  896. if (hrtimer_active(&rq->hrtick_timer))
  897. hrtimer_cancel(&rq->hrtick_timer);
  898. }
  899. /*
  900. * High-resolution timer tick.
  901. * Runs from hardirq context with interrupts disabled.
  902. */
  903. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  904. {
  905. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  906. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  907. spin_lock(&rq->lock);
  908. update_rq_clock(rq);
  909. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  910. spin_unlock(&rq->lock);
  911. return HRTIMER_NORESTART;
  912. }
  913. #ifdef CONFIG_SMP
  914. /*
  915. * called from hardirq (IPI) context
  916. */
  917. static void __hrtick_start(void *arg)
  918. {
  919. struct rq *rq = arg;
  920. spin_lock(&rq->lock);
  921. hrtimer_restart(&rq->hrtick_timer);
  922. rq->hrtick_csd_pending = 0;
  923. spin_unlock(&rq->lock);
  924. }
  925. /*
  926. * Called to set the hrtick timer state.
  927. *
  928. * called with rq->lock held and irqs disabled
  929. */
  930. static void hrtick_start(struct rq *rq, u64 delay)
  931. {
  932. struct hrtimer *timer = &rq->hrtick_timer;
  933. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  934. hrtimer_set_expires(timer, time);
  935. if (rq == this_rq()) {
  936. hrtimer_restart(timer);
  937. } else if (!rq->hrtick_csd_pending) {
  938. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  939. rq->hrtick_csd_pending = 1;
  940. }
  941. }
  942. static int
  943. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  944. {
  945. int cpu = (int)(long)hcpu;
  946. switch (action) {
  947. case CPU_UP_CANCELED:
  948. case CPU_UP_CANCELED_FROZEN:
  949. case CPU_DOWN_PREPARE:
  950. case CPU_DOWN_PREPARE_FROZEN:
  951. case CPU_DEAD:
  952. case CPU_DEAD_FROZEN:
  953. hrtick_clear(cpu_rq(cpu));
  954. return NOTIFY_OK;
  955. }
  956. return NOTIFY_DONE;
  957. }
  958. static __init void init_hrtick(void)
  959. {
  960. hotcpu_notifier(hotplug_hrtick, 0);
  961. }
  962. #else
  963. /*
  964. * Called to set the hrtick timer state.
  965. *
  966. * called with rq->lock held and irqs disabled
  967. */
  968. static void hrtick_start(struct rq *rq, u64 delay)
  969. {
  970. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  971. HRTIMER_MODE_REL_PINNED, 0);
  972. }
  973. static inline void init_hrtick(void)
  974. {
  975. }
  976. #endif /* CONFIG_SMP */
  977. static void init_rq_hrtick(struct rq *rq)
  978. {
  979. #ifdef CONFIG_SMP
  980. rq->hrtick_csd_pending = 0;
  981. rq->hrtick_csd.flags = 0;
  982. rq->hrtick_csd.func = __hrtick_start;
  983. rq->hrtick_csd.info = rq;
  984. #endif
  985. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  986. rq->hrtick_timer.function = hrtick;
  987. }
  988. #else /* CONFIG_SCHED_HRTICK */
  989. static inline void hrtick_clear(struct rq *rq)
  990. {
  991. }
  992. static inline void init_rq_hrtick(struct rq *rq)
  993. {
  994. }
  995. static inline void init_hrtick(void)
  996. {
  997. }
  998. #endif /* CONFIG_SCHED_HRTICK */
  999. /*
  1000. * resched_task - mark a task 'to be rescheduled now'.
  1001. *
  1002. * On UP this means the setting of the need_resched flag, on SMP it
  1003. * might also involve a cross-CPU call to trigger the scheduler on
  1004. * the target CPU.
  1005. */
  1006. #ifdef CONFIG_SMP
  1007. #ifndef tsk_is_polling
  1008. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1009. #endif
  1010. static void resched_task(struct task_struct *p)
  1011. {
  1012. int cpu;
  1013. assert_spin_locked(&task_rq(p)->lock);
  1014. if (test_tsk_need_resched(p))
  1015. return;
  1016. set_tsk_need_resched(p);
  1017. cpu = task_cpu(p);
  1018. if (cpu == smp_processor_id())
  1019. return;
  1020. /* NEED_RESCHED must be visible before we test polling */
  1021. smp_mb();
  1022. if (!tsk_is_polling(p))
  1023. smp_send_reschedule(cpu);
  1024. }
  1025. static void resched_cpu(int cpu)
  1026. {
  1027. struct rq *rq = cpu_rq(cpu);
  1028. unsigned long flags;
  1029. if (!spin_trylock_irqsave(&rq->lock, flags))
  1030. return;
  1031. resched_task(cpu_curr(cpu));
  1032. spin_unlock_irqrestore(&rq->lock, flags);
  1033. }
  1034. #ifdef CONFIG_NO_HZ
  1035. /*
  1036. * When add_timer_on() enqueues a timer into the timer wheel of an
  1037. * idle CPU then this timer might expire before the next timer event
  1038. * which is scheduled to wake up that CPU. In case of a completely
  1039. * idle system the next event might even be infinite time into the
  1040. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1041. * leaves the inner idle loop so the newly added timer is taken into
  1042. * account when the CPU goes back to idle and evaluates the timer
  1043. * wheel for the next timer event.
  1044. */
  1045. void wake_up_idle_cpu(int cpu)
  1046. {
  1047. struct rq *rq = cpu_rq(cpu);
  1048. if (cpu == smp_processor_id())
  1049. return;
  1050. /*
  1051. * This is safe, as this function is called with the timer
  1052. * wheel base lock of (cpu) held. When the CPU is on the way
  1053. * to idle and has not yet set rq->curr to idle then it will
  1054. * be serialized on the timer wheel base lock and take the new
  1055. * timer into account automatically.
  1056. */
  1057. if (rq->curr != rq->idle)
  1058. return;
  1059. /*
  1060. * We can set TIF_RESCHED on the idle task of the other CPU
  1061. * lockless. The worst case is that the other CPU runs the
  1062. * idle task through an additional NOOP schedule()
  1063. */
  1064. set_tsk_need_resched(rq->idle);
  1065. /* NEED_RESCHED must be visible before we test polling */
  1066. smp_mb();
  1067. if (!tsk_is_polling(rq->idle))
  1068. smp_send_reschedule(cpu);
  1069. }
  1070. #endif /* CONFIG_NO_HZ */
  1071. #else /* !CONFIG_SMP */
  1072. static void resched_task(struct task_struct *p)
  1073. {
  1074. assert_spin_locked(&task_rq(p)->lock);
  1075. set_tsk_need_resched(p);
  1076. }
  1077. #endif /* CONFIG_SMP */
  1078. #if BITS_PER_LONG == 32
  1079. # define WMULT_CONST (~0UL)
  1080. #else
  1081. # define WMULT_CONST (1UL << 32)
  1082. #endif
  1083. #define WMULT_SHIFT 32
  1084. /*
  1085. * Shift right and round:
  1086. */
  1087. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1088. /*
  1089. * delta *= weight / lw
  1090. */
  1091. static unsigned long
  1092. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1093. struct load_weight *lw)
  1094. {
  1095. u64 tmp;
  1096. if (!lw->inv_weight) {
  1097. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1098. lw->inv_weight = 1;
  1099. else
  1100. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1101. / (lw->weight+1);
  1102. }
  1103. tmp = (u64)delta_exec * weight;
  1104. /*
  1105. * Check whether we'd overflow the 64-bit multiplication:
  1106. */
  1107. if (unlikely(tmp > WMULT_CONST))
  1108. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1109. WMULT_SHIFT/2);
  1110. else
  1111. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1112. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1113. }
  1114. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1115. {
  1116. lw->weight += inc;
  1117. lw->inv_weight = 0;
  1118. }
  1119. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1120. {
  1121. lw->weight -= dec;
  1122. lw->inv_weight = 0;
  1123. }
  1124. /*
  1125. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1126. * of tasks with abnormal "nice" values across CPUs the contribution that
  1127. * each task makes to its run queue's load is weighted according to its
  1128. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1129. * scaled version of the new time slice allocation that they receive on time
  1130. * slice expiry etc.
  1131. */
  1132. #define WEIGHT_IDLEPRIO 3
  1133. #define WMULT_IDLEPRIO 1431655765
  1134. /*
  1135. * Nice levels are multiplicative, with a gentle 10% change for every
  1136. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1137. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1138. * that remained on nice 0.
  1139. *
  1140. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1141. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1142. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1143. * If a task goes up by ~10% and another task goes down by ~10% then
  1144. * the relative distance between them is ~25%.)
  1145. */
  1146. static const int prio_to_weight[40] = {
  1147. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1148. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1149. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1150. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1151. /* 0 */ 1024, 820, 655, 526, 423,
  1152. /* 5 */ 335, 272, 215, 172, 137,
  1153. /* 10 */ 110, 87, 70, 56, 45,
  1154. /* 15 */ 36, 29, 23, 18, 15,
  1155. };
  1156. /*
  1157. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1158. *
  1159. * In cases where the weight does not change often, we can use the
  1160. * precalculated inverse to speed up arithmetics by turning divisions
  1161. * into multiplications:
  1162. */
  1163. static const u32 prio_to_wmult[40] = {
  1164. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1165. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1166. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1167. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1168. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1169. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1170. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1171. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1172. };
  1173. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1174. /*
  1175. * runqueue iterator, to support SMP load-balancing between different
  1176. * scheduling classes, without having to expose their internal data
  1177. * structures to the load-balancing proper:
  1178. */
  1179. struct rq_iterator {
  1180. void *arg;
  1181. struct task_struct *(*start)(void *);
  1182. struct task_struct *(*next)(void *);
  1183. };
  1184. #ifdef CONFIG_SMP
  1185. static unsigned long
  1186. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1187. unsigned long max_load_move, struct sched_domain *sd,
  1188. enum cpu_idle_type idle, int *all_pinned,
  1189. int *this_best_prio, struct rq_iterator *iterator);
  1190. static int
  1191. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1192. struct sched_domain *sd, enum cpu_idle_type idle,
  1193. struct rq_iterator *iterator);
  1194. #endif
  1195. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1196. enum cpuacct_stat_index {
  1197. CPUACCT_STAT_USER, /* ... user mode */
  1198. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1199. CPUACCT_STAT_NSTATS,
  1200. };
  1201. #ifdef CONFIG_CGROUP_CPUACCT
  1202. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1203. static void cpuacct_update_stats(struct task_struct *tsk,
  1204. enum cpuacct_stat_index idx, cputime_t val);
  1205. #else
  1206. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1207. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1208. enum cpuacct_stat_index idx, cputime_t val) {}
  1209. #endif
  1210. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1211. {
  1212. update_load_add(&rq->load, load);
  1213. }
  1214. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1215. {
  1216. update_load_sub(&rq->load, load);
  1217. }
  1218. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1219. typedef int (*tg_visitor)(struct task_group *, void *);
  1220. /*
  1221. * Iterate the full tree, calling @down when first entering a node and @up when
  1222. * leaving it for the final time.
  1223. */
  1224. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1225. {
  1226. struct task_group *parent, *child;
  1227. int ret;
  1228. rcu_read_lock();
  1229. parent = &root_task_group;
  1230. down:
  1231. ret = (*down)(parent, data);
  1232. if (ret)
  1233. goto out_unlock;
  1234. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1235. parent = child;
  1236. goto down;
  1237. up:
  1238. continue;
  1239. }
  1240. ret = (*up)(parent, data);
  1241. if (ret)
  1242. goto out_unlock;
  1243. child = parent;
  1244. parent = parent->parent;
  1245. if (parent)
  1246. goto up;
  1247. out_unlock:
  1248. rcu_read_unlock();
  1249. return ret;
  1250. }
  1251. static int tg_nop(struct task_group *tg, void *data)
  1252. {
  1253. return 0;
  1254. }
  1255. #endif
  1256. #ifdef CONFIG_SMP
  1257. static unsigned long source_load(int cpu, int type);
  1258. static unsigned long target_load(int cpu, int type);
  1259. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1260. static unsigned long cpu_avg_load_per_task(int cpu)
  1261. {
  1262. struct rq *rq = cpu_rq(cpu);
  1263. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1264. if (nr_running)
  1265. rq->avg_load_per_task = rq->load.weight / nr_running;
  1266. else
  1267. rq->avg_load_per_task = 0;
  1268. return rq->avg_load_per_task;
  1269. }
  1270. #ifdef CONFIG_FAIR_GROUP_SCHED
  1271. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1272. /*
  1273. * Calculate and set the cpu's group shares.
  1274. */
  1275. static void
  1276. update_group_shares_cpu(struct task_group *tg, int cpu,
  1277. unsigned long sd_shares, unsigned long sd_rq_weight)
  1278. {
  1279. unsigned long shares;
  1280. unsigned long rq_weight;
  1281. if (!tg->se[cpu])
  1282. return;
  1283. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1284. /*
  1285. * \Sum shares * rq_weight
  1286. * shares = -----------------------
  1287. * \Sum rq_weight
  1288. *
  1289. */
  1290. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1291. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1292. if (abs(shares - tg->se[cpu]->load.weight) >
  1293. sysctl_sched_shares_thresh) {
  1294. struct rq *rq = cpu_rq(cpu);
  1295. unsigned long flags;
  1296. spin_lock_irqsave(&rq->lock, flags);
  1297. tg->cfs_rq[cpu]->shares = shares;
  1298. __set_se_shares(tg->se[cpu], shares);
  1299. spin_unlock_irqrestore(&rq->lock, flags);
  1300. }
  1301. }
  1302. /*
  1303. * Re-compute the task group their per cpu shares over the given domain.
  1304. * This needs to be done in a bottom-up fashion because the rq weight of a
  1305. * parent group depends on the shares of its child groups.
  1306. */
  1307. static int tg_shares_up(struct task_group *tg, void *data)
  1308. {
  1309. unsigned long weight, rq_weight = 0;
  1310. unsigned long shares = 0;
  1311. struct sched_domain *sd = data;
  1312. int i;
  1313. for_each_cpu(i, sched_domain_span(sd)) {
  1314. /*
  1315. * If there are currently no tasks on the cpu pretend there
  1316. * is one of average load so that when a new task gets to
  1317. * run here it will not get delayed by group starvation.
  1318. */
  1319. weight = tg->cfs_rq[i]->load.weight;
  1320. if (!weight)
  1321. weight = NICE_0_LOAD;
  1322. tg->cfs_rq[i]->rq_weight = weight;
  1323. rq_weight += weight;
  1324. shares += tg->cfs_rq[i]->shares;
  1325. }
  1326. if ((!shares && rq_weight) || shares > tg->shares)
  1327. shares = tg->shares;
  1328. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1329. shares = tg->shares;
  1330. for_each_cpu(i, sched_domain_span(sd))
  1331. update_group_shares_cpu(tg, i, shares, rq_weight);
  1332. return 0;
  1333. }
  1334. /*
  1335. * Compute the cpu's hierarchical load factor for each task group.
  1336. * This needs to be done in a top-down fashion because the load of a child
  1337. * group is a fraction of its parents load.
  1338. */
  1339. static int tg_load_down(struct task_group *tg, void *data)
  1340. {
  1341. unsigned long load;
  1342. long cpu = (long)data;
  1343. if (!tg->parent) {
  1344. load = cpu_rq(cpu)->load.weight;
  1345. } else {
  1346. load = tg->parent->cfs_rq[cpu]->h_load;
  1347. load *= tg->cfs_rq[cpu]->shares;
  1348. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1349. }
  1350. tg->cfs_rq[cpu]->h_load = load;
  1351. return 0;
  1352. }
  1353. static void update_shares(struct sched_domain *sd)
  1354. {
  1355. u64 now = cpu_clock(raw_smp_processor_id());
  1356. s64 elapsed = now - sd->last_update;
  1357. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1358. sd->last_update = now;
  1359. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1360. }
  1361. }
  1362. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1363. {
  1364. spin_unlock(&rq->lock);
  1365. update_shares(sd);
  1366. spin_lock(&rq->lock);
  1367. }
  1368. static void update_h_load(long cpu)
  1369. {
  1370. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1371. }
  1372. #else
  1373. static inline void update_shares(struct sched_domain *sd)
  1374. {
  1375. }
  1376. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1377. {
  1378. }
  1379. #endif
  1380. #ifdef CONFIG_PREEMPT
  1381. /*
  1382. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1383. * way at the expense of forcing extra atomic operations in all
  1384. * invocations. This assures that the double_lock is acquired using the
  1385. * same underlying policy as the spinlock_t on this architecture, which
  1386. * reduces latency compared to the unfair variant below. However, it
  1387. * also adds more overhead and therefore may reduce throughput.
  1388. */
  1389. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1390. __releases(this_rq->lock)
  1391. __acquires(busiest->lock)
  1392. __acquires(this_rq->lock)
  1393. {
  1394. spin_unlock(&this_rq->lock);
  1395. double_rq_lock(this_rq, busiest);
  1396. return 1;
  1397. }
  1398. #else
  1399. /*
  1400. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1401. * latency by eliminating extra atomic operations when the locks are
  1402. * already in proper order on entry. This favors lower cpu-ids and will
  1403. * grant the double lock to lower cpus over higher ids under contention,
  1404. * regardless of entry order into the function.
  1405. */
  1406. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1407. __releases(this_rq->lock)
  1408. __acquires(busiest->lock)
  1409. __acquires(this_rq->lock)
  1410. {
  1411. int ret = 0;
  1412. if (unlikely(!spin_trylock(&busiest->lock))) {
  1413. if (busiest < this_rq) {
  1414. spin_unlock(&this_rq->lock);
  1415. spin_lock(&busiest->lock);
  1416. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1417. ret = 1;
  1418. } else
  1419. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1420. }
  1421. return ret;
  1422. }
  1423. #endif /* CONFIG_PREEMPT */
  1424. /*
  1425. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1426. */
  1427. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1428. {
  1429. if (unlikely(!irqs_disabled())) {
  1430. /* printk() doesn't work good under rq->lock */
  1431. spin_unlock(&this_rq->lock);
  1432. BUG_ON(1);
  1433. }
  1434. return _double_lock_balance(this_rq, busiest);
  1435. }
  1436. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1437. __releases(busiest->lock)
  1438. {
  1439. spin_unlock(&busiest->lock);
  1440. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1441. }
  1442. #endif
  1443. #ifdef CONFIG_FAIR_GROUP_SCHED
  1444. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1445. {
  1446. #ifdef CONFIG_SMP
  1447. cfs_rq->shares = shares;
  1448. #endif
  1449. }
  1450. #endif
  1451. static void calc_load_account_active(struct rq *this_rq);
  1452. #include "sched_stats.h"
  1453. #include "sched_idletask.c"
  1454. #include "sched_fair.c"
  1455. #include "sched_rt.c"
  1456. #ifdef CONFIG_SCHED_DEBUG
  1457. # include "sched_debug.c"
  1458. #endif
  1459. #define sched_class_highest (&rt_sched_class)
  1460. #define for_each_class(class) \
  1461. for (class = sched_class_highest; class; class = class->next)
  1462. static void inc_nr_running(struct rq *rq)
  1463. {
  1464. rq->nr_running++;
  1465. }
  1466. static void dec_nr_running(struct rq *rq)
  1467. {
  1468. rq->nr_running--;
  1469. }
  1470. static void set_load_weight(struct task_struct *p)
  1471. {
  1472. if (task_has_rt_policy(p)) {
  1473. p->se.load.weight = prio_to_weight[0] * 2;
  1474. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1475. return;
  1476. }
  1477. /*
  1478. * SCHED_IDLE tasks get minimal weight:
  1479. */
  1480. if (p->policy == SCHED_IDLE) {
  1481. p->se.load.weight = WEIGHT_IDLEPRIO;
  1482. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1483. return;
  1484. }
  1485. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1486. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1487. }
  1488. static void update_avg(u64 *avg, u64 sample)
  1489. {
  1490. s64 diff = sample - *avg;
  1491. *avg += diff >> 3;
  1492. }
  1493. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1494. {
  1495. if (wakeup)
  1496. p->se.start_runtime = p->se.sum_exec_runtime;
  1497. sched_info_queued(p);
  1498. p->sched_class->enqueue_task(rq, p, wakeup);
  1499. p->se.on_rq = 1;
  1500. }
  1501. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1502. {
  1503. if (sleep) {
  1504. if (p->se.last_wakeup) {
  1505. update_avg(&p->se.avg_overlap,
  1506. p->se.sum_exec_runtime - p->se.last_wakeup);
  1507. p->se.last_wakeup = 0;
  1508. } else {
  1509. update_avg(&p->se.avg_wakeup,
  1510. sysctl_sched_wakeup_granularity);
  1511. }
  1512. }
  1513. sched_info_dequeued(p);
  1514. p->sched_class->dequeue_task(rq, p, sleep);
  1515. p->se.on_rq = 0;
  1516. }
  1517. /*
  1518. * __normal_prio - return the priority that is based on the static prio
  1519. */
  1520. static inline int __normal_prio(struct task_struct *p)
  1521. {
  1522. return p->static_prio;
  1523. }
  1524. /*
  1525. * Calculate the expected normal priority: i.e. priority
  1526. * without taking RT-inheritance into account. Might be
  1527. * boosted by interactivity modifiers. Changes upon fork,
  1528. * setprio syscalls, and whenever the interactivity
  1529. * estimator recalculates.
  1530. */
  1531. static inline int normal_prio(struct task_struct *p)
  1532. {
  1533. int prio;
  1534. if (task_has_rt_policy(p))
  1535. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1536. else
  1537. prio = __normal_prio(p);
  1538. return prio;
  1539. }
  1540. /*
  1541. * Calculate the current priority, i.e. the priority
  1542. * taken into account by the scheduler. This value might
  1543. * be boosted by RT tasks, or might be boosted by
  1544. * interactivity modifiers. Will be RT if the task got
  1545. * RT-boosted. If not then it returns p->normal_prio.
  1546. */
  1547. static int effective_prio(struct task_struct *p)
  1548. {
  1549. p->normal_prio = normal_prio(p);
  1550. /*
  1551. * If we are RT tasks or we were boosted to RT priority,
  1552. * keep the priority unchanged. Otherwise, update priority
  1553. * to the normal priority:
  1554. */
  1555. if (!rt_prio(p->prio))
  1556. return p->normal_prio;
  1557. return p->prio;
  1558. }
  1559. /*
  1560. * activate_task - move a task to the runqueue.
  1561. */
  1562. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1563. {
  1564. if (task_contributes_to_load(p))
  1565. rq->nr_uninterruptible--;
  1566. enqueue_task(rq, p, wakeup);
  1567. inc_nr_running(rq);
  1568. }
  1569. /*
  1570. * deactivate_task - remove a task from the runqueue.
  1571. */
  1572. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1573. {
  1574. if (task_contributes_to_load(p))
  1575. rq->nr_uninterruptible++;
  1576. dequeue_task(rq, p, sleep);
  1577. dec_nr_running(rq);
  1578. }
  1579. /**
  1580. * task_curr - is this task currently executing on a CPU?
  1581. * @p: the task in question.
  1582. */
  1583. inline int task_curr(const struct task_struct *p)
  1584. {
  1585. return cpu_curr(task_cpu(p)) == p;
  1586. }
  1587. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1588. {
  1589. set_task_rq(p, cpu);
  1590. #ifdef CONFIG_SMP
  1591. /*
  1592. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1593. * successfuly executed on another CPU. We must ensure that updates of
  1594. * per-task data have been completed by this moment.
  1595. */
  1596. smp_wmb();
  1597. task_thread_info(p)->cpu = cpu;
  1598. #endif
  1599. }
  1600. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1601. const struct sched_class *prev_class,
  1602. int oldprio, int running)
  1603. {
  1604. if (prev_class != p->sched_class) {
  1605. if (prev_class->switched_from)
  1606. prev_class->switched_from(rq, p, running);
  1607. p->sched_class->switched_to(rq, p, running);
  1608. } else
  1609. p->sched_class->prio_changed(rq, p, oldprio, running);
  1610. }
  1611. #ifdef CONFIG_SMP
  1612. /* Used instead of source_load when we know the type == 0 */
  1613. static unsigned long weighted_cpuload(const int cpu)
  1614. {
  1615. return cpu_rq(cpu)->load.weight;
  1616. }
  1617. /*
  1618. * Is this task likely cache-hot:
  1619. */
  1620. static int
  1621. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1622. {
  1623. s64 delta;
  1624. /*
  1625. * Buddy candidates are cache hot:
  1626. */
  1627. if (sched_feat(CACHE_HOT_BUDDY) &&
  1628. (&p->se == cfs_rq_of(&p->se)->next ||
  1629. &p->se == cfs_rq_of(&p->se)->last))
  1630. return 1;
  1631. if (p->sched_class != &fair_sched_class)
  1632. return 0;
  1633. if (sysctl_sched_migration_cost == -1)
  1634. return 1;
  1635. if (sysctl_sched_migration_cost == 0)
  1636. return 0;
  1637. delta = now - p->se.exec_start;
  1638. return delta < (s64)sysctl_sched_migration_cost;
  1639. }
  1640. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1641. {
  1642. int old_cpu = task_cpu(p);
  1643. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1644. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1645. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1646. u64 clock_offset;
  1647. clock_offset = old_rq->clock - new_rq->clock;
  1648. trace_sched_migrate_task(p, new_cpu);
  1649. #ifdef CONFIG_SCHEDSTATS
  1650. if (p->se.wait_start)
  1651. p->se.wait_start -= clock_offset;
  1652. if (p->se.sleep_start)
  1653. p->se.sleep_start -= clock_offset;
  1654. if (p->se.block_start)
  1655. p->se.block_start -= clock_offset;
  1656. #endif
  1657. if (old_cpu != new_cpu) {
  1658. p->se.nr_migrations++;
  1659. new_rq->nr_migrations_in++;
  1660. #ifdef CONFIG_SCHEDSTATS
  1661. if (task_hot(p, old_rq->clock, NULL))
  1662. schedstat_inc(p, se.nr_forced2_migrations);
  1663. #endif
  1664. perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1665. 1, 1, NULL, 0);
  1666. }
  1667. p->se.vruntime -= old_cfsrq->min_vruntime -
  1668. new_cfsrq->min_vruntime;
  1669. __set_task_cpu(p, new_cpu);
  1670. }
  1671. struct migration_req {
  1672. struct list_head list;
  1673. struct task_struct *task;
  1674. int dest_cpu;
  1675. struct completion done;
  1676. };
  1677. /*
  1678. * The task's runqueue lock must be held.
  1679. * Returns true if you have to wait for migration thread.
  1680. */
  1681. static int
  1682. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1683. {
  1684. struct rq *rq = task_rq(p);
  1685. /*
  1686. * If the task is not on a runqueue (and not running), then
  1687. * it is sufficient to simply update the task's cpu field.
  1688. */
  1689. if (!p->se.on_rq && !task_running(rq, p)) {
  1690. set_task_cpu(p, dest_cpu);
  1691. return 0;
  1692. }
  1693. init_completion(&req->done);
  1694. req->task = p;
  1695. req->dest_cpu = dest_cpu;
  1696. list_add(&req->list, &rq->migration_queue);
  1697. return 1;
  1698. }
  1699. /*
  1700. * wait_task_context_switch - wait for a thread to complete at least one
  1701. * context switch.
  1702. *
  1703. * @p must not be current.
  1704. */
  1705. void wait_task_context_switch(struct task_struct *p)
  1706. {
  1707. unsigned long nvcsw, nivcsw, flags;
  1708. int running;
  1709. struct rq *rq;
  1710. nvcsw = p->nvcsw;
  1711. nivcsw = p->nivcsw;
  1712. for (;;) {
  1713. /*
  1714. * The runqueue is assigned before the actual context
  1715. * switch. We need to take the runqueue lock.
  1716. *
  1717. * We could check initially without the lock but it is
  1718. * very likely that we need to take the lock in every
  1719. * iteration.
  1720. */
  1721. rq = task_rq_lock(p, &flags);
  1722. running = task_running(rq, p);
  1723. task_rq_unlock(rq, &flags);
  1724. if (likely(!running))
  1725. break;
  1726. /*
  1727. * The switch count is incremented before the actual
  1728. * context switch. We thus wait for two switches to be
  1729. * sure at least one completed.
  1730. */
  1731. if ((p->nvcsw - nvcsw) > 1)
  1732. break;
  1733. if ((p->nivcsw - nivcsw) > 1)
  1734. break;
  1735. cpu_relax();
  1736. }
  1737. }
  1738. /*
  1739. * wait_task_inactive - wait for a thread to unschedule.
  1740. *
  1741. * If @match_state is nonzero, it's the @p->state value just checked and
  1742. * not expected to change. If it changes, i.e. @p might have woken up,
  1743. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1744. * we return a positive number (its total switch count). If a second call
  1745. * a short while later returns the same number, the caller can be sure that
  1746. * @p has remained unscheduled the whole time.
  1747. *
  1748. * The caller must ensure that the task *will* unschedule sometime soon,
  1749. * else this function might spin for a *long* time. This function can't
  1750. * be called with interrupts off, or it may introduce deadlock with
  1751. * smp_call_function() if an IPI is sent by the same process we are
  1752. * waiting to become inactive.
  1753. */
  1754. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1755. {
  1756. unsigned long flags;
  1757. int running, on_rq;
  1758. unsigned long ncsw;
  1759. struct rq *rq;
  1760. for (;;) {
  1761. /*
  1762. * We do the initial early heuristics without holding
  1763. * any task-queue locks at all. We'll only try to get
  1764. * the runqueue lock when things look like they will
  1765. * work out!
  1766. */
  1767. rq = task_rq(p);
  1768. /*
  1769. * If the task is actively running on another CPU
  1770. * still, just relax and busy-wait without holding
  1771. * any locks.
  1772. *
  1773. * NOTE! Since we don't hold any locks, it's not
  1774. * even sure that "rq" stays as the right runqueue!
  1775. * But we don't care, since "task_running()" will
  1776. * return false if the runqueue has changed and p
  1777. * is actually now running somewhere else!
  1778. */
  1779. while (task_running(rq, p)) {
  1780. if (match_state && unlikely(p->state != match_state))
  1781. return 0;
  1782. cpu_relax();
  1783. }
  1784. /*
  1785. * Ok, time to look more closely! We need the rq
  1786. * lock now, to be *sure*. If we're wrong, we'll
  1787. * just go back and repeat.
  1788. */
  1789. rq = task_rq_lock(p, &flags);
  1790. trace_sched_wait_task(rq, p);
  1791. running = task_running(rq, p);
  1792. on_rq = p->se.on_rq;
  1793. ncsw = 0;
  1794. if (!match_state || p->state == match_state)
  1795. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1796. task_rq_unlock(rq, &flags);
  1797. /*
  1798. * If it changed from the expected state, bail out now.
  1799. */
  1800. if (unlikely(!ncsw))
  1801. break;
  1802. /*
  1803. * Was it really running after all now that we
  1804. * checked with the proper locks actually held?
  1805. *
  1806. * Oops. Go back and try again..
  1807. */
  1808. if (unlikely(running)) {
  1809. cpu_relax();
  1810. continue;
  1811. }
  1812. /*
  1813. * It's not enough that it's not actively running,
  1814. * it must be off the runqueue _entirely_, and not
  1815. * preempted!
  1816. *
  1817. * So if it was still runnable (but just not actively
  1818. * running right now), it's preempted, and we should
  1819. * yield - it could be a while.
  1820. */
  1821. if (unlikely(on_rq)) {
  1822. schedule_timeout_uninterruptible(1);
  1823. continue;
  1824. }
  1825. /*
  1826. * Ahh, all good. It wasn't running, and it wasn't
  1827. * runnable, which means that it will never become
  1828. * running in the future either. We're all done!
  1829. */
  1830. break;
  1831. }
  1832. return ncsw;
  1833. }
  1834. /***
  1835. * kick_process - kick a running thread to enter/exit the kernel
  1836. * @p: the to-be-kicked thread
  1837. *
  1838. * Cause a process which is running on another CPU to enter
  1839. * kernel-mode, without any delay. (to get signals handled.)
  1840. *
  1841. * NOTE: this function doesnt have to take the runqueue lock,
  1842. * because all it wants to ensure is that the remote task enters
  1843. * the kernel. If the IPI races and the task has been migrated
  1844. * to another CPU then no harm is done and the purpose has been
  1845. * achieved as well.
  1846. */
  1847. void kick_process(struct task_struct *p)
  1848. {
  1849. int cpu;
  1850. preempt_disable();
  1851. cpu = task_cpu(p);
  1852. if ((cpu != smp_processor_id()) && task_curr(p))
  1853. smp_send_reschedule(cpu);
  1854. preempt_enable();
  1855. }
  1856. EXPORT_SYMBOL_GPL(kick_process);
  1857. /*
  1858. * Return a low guess at the load of a migration-source cpu weighted
  1859. * according to the scheduling class and "nice" value.
  1860. *
  1861. * We want to under-estimate the load of migration sources, to
  1862. * balance conservatively.
  1863. */
  1864. static unsigned long source_load(int cpu, int type)
  1865. {
  1866. struct rq *rq = cpu_rq(cpu);
  1867. unsigned long total = weighted_cpuload(cpu);
  1868. if (type == 0 || !sched_feat(LB_BIAS))
  1869. return total;
  1870. return min(rq->cpu_load[type-1], total);
  1871. }
  1872. /*
  1873. * Return a high guess at the load of a migration-target cpu weighted
  1874. * according to the scheduling class and "nice" value.
  1875. */
  1876. static unsigned long target_load(int cpu, int type)
  1877. {
  1878. struct rq *rq = cpu_rq(cpu);
  1879. unsigned long total = weighted_cpuload(cpu);
  1880. if (type == 0 || !sched_feat(LB_BIAS))
  1881. return total;
  1882. return max(rq->cpu_load[type-1], total);
  1883. }
  1884. /*
  1885. * find_idlest_group finds and returns the least busy CPU group within the
  1886. * domain.
  1887. */
  1888. static struct sched_group *
  1889. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1890. {
  1891. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1892. unsigned long min_load = ULONG_MAX, this_load = 0;
  1893. int load_idx = sd->forkexec_idx;
  1894. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1895. do {
  1896. unsigned long load, avg_load;
  1897. int local_group;
  1898. int i;
  1899. /* Skip over this group if it has no CPUs allowed */
  1900. if (!cpumask_intersects(sched_group_cpus(group),
  1901. &p->cpus_allowed))
  1902. continue;
  1903. local_group = cpumask_test_cpu(this_cpu,
  1904. sched_group_cpus(group));
  1905. /* Tally up the load of all CPUs in the group */
  1906. avg_load = 0;
  1907. for_each_cpu(i, sched_group_cpus(group)) {
  1908. /* Bias balancing toward cpus of our domain */
  1909. if (local_group)
  1910. load = source_load(i, load_idx);
  1911. else
  1912. load = target_load(i, load_idx);
  1913. avg_load += load;
  1914. }
  1915. /* Adjust by relative CPU power of the group */
  1916. avg_load = sg_div_cpu_power(group,
  1917. avg_load * SCHED_LOAD_SCALE);
  1918. if (local_group) {
  1919. this_load = avg_load;
  1920. this = group;
  1921. } else if (avg_load < min_load) {
  1922. min_load = avg_load;
  1923. idlest = group;
  1924. }
  1925. } while (group = group->next, group != sd->groups);
  1926. if (!idlest || 100*this_load < imbalance*min_load)
  1927. return NULL;
  1928. return idlest;
  1929. }
  1930. /*
  1931. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1932. */
  1933. static int
  1934. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1935. {
  1936. unsigned long load, min_load = ULONG_MAX;
  1937. int idlest = -1;
  1938. int i;
  1939. /* Traverse only the allowed CPUs */
  1940. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1941. load = weighted_cpuload(i);
  1942. if (load < min_load || (load == min_load && i == this_cpu)) {
  1943. min_load = load;
  1944. idlest = i;
  1945. }
  1946. }
  1947. return idlest;
  1948. }
  1949. /*
  1950. * sched_balance_self: balance the current task (running on cpu) in domains
  1951. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1952. * SD_BALANCE_EXEC.
  1953. *
  1954. * Balance, ie. select the least loaded group.
  1955. *
  1956. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1957. *
  1958. * preempt must be disabled.
  1959. */
  1960. static int sched_balance_self(int cpu, int flag)
  1961. {
  1962. struct task_struct *t = current;
  1963. struct sched_domain *tmp, *sd = NULL;
  1964. for_each_domain(cpu, tmp) {
  1965. /*
  1966. * If power savings logic is enabled for a domain, stop there.
  1967. */
  1968. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1969. break;
  1970. if (tmp->flags & flag)
  1971. sd = tmp;
  1972. }
  1973. if (sd)
  1974. update_shares(sd);
  1975. while (sd) {
  1976. struct sched_group *group;
  1977. int new_cpu, weight;
  1978. if (!(sd->flags & flag)) {
  1979. sd = sd->child;
  1980. continue;
  1981. }
  1982. group = find_idlest_group(sd, t, cpu);
  1983. if (!group) {
  1984. sd = sd->child;
  1985. continue;
  1986. }
  1987. new_cpu = find_idlest_cpu(group, t, cpu);
  1988. if (new_cpu == -1 || new_cpu == cpu) {
  1989. /* Now try balancing at a lower domain level of cpu */
  1990. sd = sd->child;
  1991. continue;
  1992. }
  1993. /* Now try balancing at a lower domain level of new_cpu */
  1994. cpu = new_cpu;
  1995. weight = cpumask_weight(sched_domain_span(sd));
  1996. sd = NULL;
  1997. for_each_domain(cpu, tmp) {
  1998. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1999. break;
  2000. if (tmp->flags & flag)
  2001. sd = tmp;
  2002. }
  2003. /* while loop will break here if sd == NULL */
  2004. }
  2005. return cpu;
  2006. }
  2007. #endif /* CONFIG_SMP */
  2008. /**
  2009. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2010. * @p: the task to evaluate
  2011. * @func: the function to be called
  2012. * @info: the function call argument
  2013. *
  2014. * Calls the function @func when the task is currently running. This might
  2015. * be on the current CPU, which just calls the function directly
  2016. */
  2017. void task_oncpu_function_call(struct task_struct *p,
  2018. void (*func) (void *info), void *info)
  2019. {
  2020. int cpu;
  2021. preempt_disable();
  2022. cpu = task_cpu(p);
  2023. if (task_curr(p))
  2024. smp_call_function_single(cpu, func, info, 1);
  2025. preempt_enable();
  2026. }
  2027. /***
  2028. * try_to_wake_up - wake up a thread
  2029. * @p: the to-be-woken-up thread
  2030. * @state: the mask of task states that can be woken
  2031. * @sync: do a synchronous wakeup?
  2032. *
  2033. * Put it on the run-queue if it's not already there. The "current"
  2034. * thread is always on the run-queue (except when the actual
  2035. * re-schedule is in progress), and as such you're allowed to do
  2036. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2037. * runnable without the overhead of this.
  2038. *
  2039. * returns failure only if the task is already active.
  2040. */
  2041. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2042. {
  2043. int cpu, orig_cpu, this_cpu, success = 0;
  2044. unsigned long flags;
  2045. long old_state;
  2046. struct rq *rq;
  2047. if (!sched_feat(SYNC_WAKEUPS))
  2048. sync = 0;
  2049. #ifdef CONFIG_SMP
  2050. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2051. struct sched_domain *sd;
  2052. this_cpu = raw_smp_processor_id();
  2053. cpu = task_cpu(p);
  2054. for_each_domain(this_cpu, sd) {
  2055. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2056. update_shares(sd);
  2057. break;
  2058. }
  2059. }
  2060. }
  2061. #endif
  2062. smp_wmb();
  2063. rq = task_rq_lock(p, &flags);
  2064. update_rq_clock(rq);
  2065. old_state = p->state;
  2066. if (!(old_state & state))
  2067. goto out;
  2068. if (p->se.on_rq)
  2069. goto out_running;
  2070. cpu = task_cpu(p);
  2071. orig_cpu = cpu;
  2072. this_cpu = smp_processor_id();
  2073. #ifdef CONFIG_SMP
  2074. if (unlikely(task_running(rq, p)))
  2075. goto out_activate;
  2076. cpu = p->sched_class->select_task_rq(p, sync);
  2077. if (cpu != orig_cpu) {
  2078. set_task_cpu(p, cpu);
  2079. task_rq_unlock(rq, &flags);
  2080. /* might preempt at this point */
  2081. rq = task_rq_lock(p, &flags);
  2082. old_state = p->state;
  2083. if (!(old_state & state))
  2084. goto out;
  2085. if (p->se.on_rq)
  2086. goto out_running;
  2087. this_cpu = smp_processor_id();
  2088. cpu = task_cpu(p);
  2089. }
  2090. #ifdef CONFIG_SCHEDSTATS
  2091. schedstat_inc(rq, ttwu_count);
  2092. if (cpu == this_cpu)
  2093. schedstat_inc(rq, ttwu_local);
  2094. else {
  2095. struct sched_domain *sd;
  2096. for_each_domain(this_cpu, sd) {
  2097. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2098. schedstat_inc(sd, ttwu_wake_remote);
  2099. break;
  2100. }
  2101. }
  2102. }
  2103. #endif /* CONFIG_SCHEDSTATS */
  2104. out_activate:
  2105. #endif /* CONFIG_SMP */
  2106. schedstat_inc(p, se.nr_wakeups);
  2107. if (sync)
  2108. schedstat_inc(p, se.nr_wakeups_sync);
  2109. if (orig_cpu != cpu)
  2110. schedstat_inc(p, se.nr_wakeups_migrate);
  2111. if (cpu == this_cpu)
  2112. schedstat_inc(p, se.nr_wakeups_local);
  2113. else
  2114. schedstat_inc(p, se.nr_wakeups_remote);
  2115. activate_task(rq, p, 1);
  2116. success = 1;
  2117. /*
  2118. * Only attribute actual wakeups done by this task.
  2119. */
  2120. if (!in_interrupt()) {
  2121. struct sched_entity *se = &current->se;
  2122. u64 sample = se->sum_exec_runtime;
  2123. if (se->last_wakeup)
  2124. sample -= se->last_wakeup;
  2125. else
  2126. sample -= se->start_runtime;
  2127. update_avg(&se->avg_wakeup, sample);
  2128. se->last_wakeup = se->sum_exec_runtime;
  2129. }
  2130. out_running:
  2131. trace_sched_wakeup(rq, p, success);
  2132. check_preempt_curr(rq, p, sync);
  2133. p->state = TASK_RUNNING;
  2134. #ifdef CONFIG_SMP
  2135. if (p->sched_class->task_wake_up)
  2136. p->sched_class->task_wake_up(rq, p);
  2137. #endif
  2138. out:
  2139. task_rq_unlock(rq, &flags);
  2140. return success;
  2141. }
  2142. /**
  2143. * wake_up_process - Wake up a specific process
  2144. * @p: The process to be woken up.
  2145. *
  2146. * Attempt to wake up the nominated process and move it to the set of runnable
  2147. * processes. Returns 1 if the process was woken up, 0 if it was already
  2148. * running.
  2149. *
  2150. * It may be assumed that this function implies a write memory barrier before
  2151. * changing the task state if and only if any tasks are woken up.
  2152. */
  2153. int wake_up_process(struct task_struct *p)
  2154. {
  2155. return try_to_wake_up(p, TASK_ALL, 0);
  2156. }
  2157. EXPORT_SYMBOL(wake_up_process);
  2158. int wake_up_state(struct task_struct *p, unsigned int state)
  2159. {
  2160. return try_to_wake_up(p, state, 0);
  2161. }
  2162. /*
  2163. * Perform scheduler related setup for a newly forked process p.
  2164. * p is forked by current.
  2165. *
  2166. * __sched_fork() is basic setup used by init_idle() too:
  2167. */
  2168. static void __sched_fork(struct task_struct *p)
  2169. {
  2170. p->se.exec_start = 0;
  2171. p->se.sum_exec_runtime = 0;
  2172. p->se.prev_sum_exec_runtime = 0;
  2173. p->se.nr_migrations = 0;
  2174. p->se.last_wakeup = 0;
  2175. p->se.avg_overlap = 0;
  2176. p->se.start_runtime = 0;
  2177. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2178. #ifdef CONFIG_SCHEDSTATS
  2179. p->se.wait_start = 0;
  2180. p->se.wait_max = 0;
  2181. p->se.wait_count = 0;
  2182. p->se.wait_sum = 0;
  2183. p->se.sleep_start = 0;
  2184. p->se.sleep_max = 0;
  2185. p->se.sum_sleep_runtime = 0;
  2186. p->se.block_start = 0;
  2187. p->se.block_max = 0;
  2188. p->se.exec_max = 0;
  2189. p->se.slice_max = 0;
  2190. p->se.nr_migrations_cold = 0;
  2191. p->se.nr_failed_migrations_affine = 0;
  2192. p->se.nr_failed_migrations_running = 0;
  2193. p->se.nr_failed_migrations_hot = 0;
  2194. p->se.nr_forced_migrations = 0;
  2195. p->se.nr_forced2_migrations = 0;
  2196. p->se.nr_wakeups = 0;
  2197. p->se.nr_wakeups_sync = 0;
  2198. p->se.nr_wakeups_migrate = 0;
  2199. p->se.nr_wakeups_local = 0;
  2200. p->se.nr_wakeups_remote = 0;
  2201. p->se.nr_wakeups_affine = 0;
  2202. p->se.nr_wakeups_affine_attempts = 0;
  2203. p->se.nr_wakeups_passive = 0;
  2204. p->se.nr_wakeups_idle = 0;
  2205. #endif
  2206. INIT_LIST_HEAD(&p->rt.run_list);
  2207. p->se.on_rq = 0;
  2208. INIT_LIST_HEAD(&p->se.group_node);
  2209. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2210. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2211. #endif
  2212. /*
  2213. * We mark the process as running here, but have not actually
  2214. * inserted it onto the runqueue yet. This guarantees that
  2215. * nobody will actually run it, and a signal or other external
  2216. * event cannot wake it up and insert it on the runqueue either.
  2217. */
  2218. p->state = TASK_RUNNING;
  2219. }
  2220. /*
  2221. * fork()/clone()-time setup:
  2222. */
  2223. void sched_fork(struct task_struct *p, int clone_flags)
  2224. {
  2225. int cpu = get_cpu();
  2226. __sched_fork(p);
  2227. #ifdef CONFIG_SMP
  2228. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2229. #endif
  2230. set_task_cpu(p, cpu);
  2231. /*
  2232. * Make sure we do not leak PI boosting priority to the child.
  2233. */
  2234. p->prio = current->normal_prio;
  2235. /*
  2236. * Revert to default priority/policy on fork if requested.
  2237. */
  2238. if (unlikely(p->sched_reset_on_fork)) {
  2239. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2240. p->policy = SCHED_NORMAL;
  2241. if (p->normal_prio < DEFAULT_PRIO)
  2242. p->prio = DEFAULT_PRIO;
  2243. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2244. p->static_prio = NICE_TO_PRIO(0);
  2245. set_load_weight(p);
  2246. }
  2247. /*
  2248. * We don't need the reset flag anymore after the fork. It has
  2249. * fulfilled its duty:
  2250. */
  2251. p->sched_reset_on_fork = 0;
  2252. }
  2253. if (!rt_prio(p->prio))
  2254. p->sched_class = &fair_sched_class;
  2255. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2256. if (likely(sched_info_on()))
  2257. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2258. #endif
  2259. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2260. p->oncpu = 0;
  2261. #endif
  2262. #ifdef CONFIG_PREEMPT
  2263. /* Want to start with kernel preemption disabled. */
  2264. task_thread_info(p)->preempt_count = 1;
  2265. #endif
  2266. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2267. put_cpu();
  2268. }
  2269. /*
  2270. * wake_up_new_task - wake up a newly created task for the first time.
  2271. *
  2272. * This function will do some initial scheduler statistics housekeeping
  2273. * that must be done for every newly created context, then puts the task
  2274. * on the runqueue and wakes it.
  2275. */
  2276. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2277. {
  2278. unsigned long flags;
  2279. struct rq *rq;
  2280. rq = task_rq_lock(p, &flags);
  2281. BUG_ON(p->state != TASK_RUNNING);
  2282. update_rq_clock(rq);
  2283. p->prio = effective_prio(p);
  2284. if (!p->sched_class->task_new || !current->se.on_rq) {
  2285. activate_task(rq, p, 0);
  2286. } else {
  2287. /*
  2288. * Let the scheduling class do new task startup
  2289. * management (if any):
  2290. */
  2291. p->sched_class->task_new(rq, p);
  2292. inc_nr_running(rq);
  2293. }
  2294. trace_sched_wakeup_new(rq, p, 1);
  2295. check_preempt_curr(rq, p, 0);
  2296. #ifdef CONFIG_SMP
  2297. if (p->sched_class->task_wake_up)
  2298. p->sched_class->task_wake_up(rq, p);
  2299. #endif
  2300. task_rq_unlock(rq, &flags);
  2301. }
  2302. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2303. /**
  2304. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2305. * @notifier: notifier struct to register
  2306. */
  2307. void preempt_notifier_register(struct preempt_notifier *notifier)
  2308. {
  2309. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2310. }
  2311. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2312. /**
  2313. * preempt_notifier_unregister - no longer interested in preemption notifications
  2314. * @notifier: notifier struct to unregister
  2315. *
  2316. * This is safe to call from within a preemption notifier.
  2317. */
  2318. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2319. {
  2320. hlist_del(&notifier->link);
  2321. }
  2322. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2323. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2324. {
  2325. struct preempt_notifier *notifier;
  2326. struct hlist_node *node;
  2327. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2328. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2329. }
  2330. static void
  2331. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2332. struct task_struct *next)
  2333. {
  2334. struct preempt_notifier *notifier;
  2335. struct hlist_node *node;
  2336. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2337. notifier->ops->sched_out(notifier, next);
  2338. }
  2339. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2340. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2341. {
  2342. }
  2343. static void
  2344. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2345. struct task_struct *next)
  2346. {
  2347. }
  2348. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2349. /**
  2350. * prepare_task_switch - prepare to switch tasks
  2351. * @rq: the runqueue preparing to switch
  2352. * @prev: the current task that is being switched out
  2353. * @next: the task we are going to switch to.
  2354. *
  2355. * This is called with the rq lock held and interrupts off. It must
  2356. * be paired with a subsequent finish_task_switch after the context
  2357. * switch.
  2358. *
  2359. * prepare_task_switch sets up locking and calls architecture specific
  2360. * hooks.
  2361. */
  2362. static inline void
  2363. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2364. struct task_struct *next)
  2365. {
  2366. fire_sched_out_preempt_notifiers(prev, next);
  2367. prepare_lock_switch(rq, next);
  2368. prepare_arch_switch(next);
  2369. }
  2370. /**
  2371. * finish_task_switch - clean up after a task-switch
  2372. * @rq: runqueue associated with task-switch
  2373. * @prev: the thread we just switched away from.
  2374. *
  2375. * finish_task_switch must be called after the context switch, paired
  2376. * with a prepare_task_switch call before the context switch.
  2377. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2378. * and do any other architecture-specific cleanup actions.
  2379. *
  2380. * Note that we may have delayed dropping an mm in context_switch(). If
  2381. * so, we finish that here outside of the runqueue lock. (Doing it
  2382. * with the lock held can cause deadlocks; see schedule() for
  2383. * details.)
  2384. */
  2385. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2386. __releases(rq->lock)
  2387. {
  2388. struct mm_struct *mm = rq->prev_mm;
  2389. long prev_state;
  2390. #ifdef CONFIG_SMP
  2391. int post_schedule = 0;
  2392. if (current->sched_class->needs_post_schedule)
  2393. post_schedule = current->sched_class->needs_post_schedule(rq);
  2394. #endif
  2395. rq->prev_mm = NULL;
  2396. /*
  2397. * A task struct has one reference for the use as "current".
  2398. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2399. * schedule one last time. The schedule call will never return, and
  2400. * the scheduled task must drop that reference.
  2401. * The test for TASK_DEAD must occur while the runqueue locks are
  2402. * still held, otherwise prev could be scheduled on another cpu, die
  2403. * there before we look at prev->state, and then the reference would
  2404. * be dropped twice.
  2405. * Manfred Spraul <manfred@colorfullife.com>
  2406. */
  2407. prev_state = prev->state;
  2408. finish_arch_switch(prev);
  2409. perf_counter_task_sched_in(current, cpu_of(rq));
  2410. finish_lock_switch(rq, prev);
  2411. #ifdef CONFIG_SMP
  2412. if (post_schedule)
  2413. current->sched_class->post_schedule(rq);
  2414. #endif
  2415. fire_sched_in_preempt_notifiers(current);
  2416. if (mm)
  2417. mmdrop(mm);
  2418. if (unlikely(prev_state == TASK_DEAD)) {
  2419. /*
  2420. * Remove function-return probe instances associated with this
  2421. * task and put them back on the free list.
  2422. */
  2423. kprobe_flush_task(prev);
  2424. put_task_struct(prev);
  2425. }
  2426. }
  2427. /**
  2428. * schedule_tail - first thing a freshly forked thread must call.
  2429. * @prev: the thread we just switched away from.
  2430. */
  2431. asmlinkage void schedule_tail(struct task_struct *prev)
  2432. __releases(rq->lock)
  2433. {
  2434. struct rq *rq = this_rq();
  2435. finish_task_switch(rq, prev);
  2436. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2437. /* In this case, finish_task_switch does not reenable preemption */
  2438. preempt_enable();
  2439. #endif
  2440. if (current->set_child_tid)
  2441. put_user(task_pid_vnr(current), current->set_child_tid);
  2442. }
  2443. /*
  2444. * context_switch - switch to the new MM and the new
  2445. * thread's register state.
  2446. */
  2447. static inline void
  2448. context_switch(struct rq *rq, struct task_struct *prev,
  2449. struct task_struct *next)
  2450. {
  2451. struct mm_struct *mm, *oldmm;
  2452. prepare_task_switch(rq, prev, next);
  2453. trace_sched_switch(rq, prev, next);
  2454. mm = next->mm;
  2455. oldmm = prev->active_mm;
  2456. /*
  2457. * For paravirt, this is coupled with an exit in switch_to to
  2458. * combine the page table reload and the switch backend into
  2459. * one hypercall.
  2460. */
  2461. arch_start_context_switch(prev);
  2462. if (unlikely(!mm)) {
  2463. next->active_mm = oldmm;
  2464. atomic_inc(&oldmm->mm_count);
  2465. enter_lazy_tlb(oldmm, next);
  2466. } else
  2467. switch_mm(oldmm, mm, next);
  2468. if (unlikely(!prev->mm)) {
  2469. prev->active_mm = NULL;
  2470. rq->prev_mm = oldmm;
  2471. }
  2472. /*
  2473. * Since the runqueue lock will be released by the next
  2474. * task (which is an invalid locking op but in the case
  2475. * of the scheduler it's an obvious special-case), so we
  2476. * do an early lockdep release here:
  2477. */
  2478. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2479. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2480. #endif
  2481. /* Here we just switch the register state and the stack. */
  2482. switch_to(prev, next, prev);
  2483. barrier();
  2484. /*
  2485. * this_rq must be evaluated again because prev may have moved
  2486. * CPUs since it called schedule(), thus the 'rq' on its stack
  2487. * frame will be invalid.
  2488. */
  2489. finish_task_switch(this_rq(), prev);
  2490. }
  2491. /*
  2492. * nr_running, nr_uninterruptible and nr_context_switches:
  2493. *
  2494. * externally visible scheduler statistics: current number of runnable
  2495. * threads, current number of uninterruptible-sleeping threads, total
  2496. * number of context switches performed since bootup.
  2497. */
  2498. unsigned long nr_running(void)
  2499. {
  2500. unsigned long i, sum = 0;
  2501. for_each_online_cpu(i)
  2502. sum += cpu_rq(i)->nr_running;
  2503. return sum;
  2504. }
  2505. unsigned long nr_uninterruptible(void)
  2506. {
  2507. unsigned long i, sum = 0;
  2508. for_each_possible_cpu(i)
  2509. sum += cpu_rq(i)->nr_uninterruptible;
  2510. /*
  2511. * Since we read the counters lockless, it might be slightly
  2512. * inaccurate. Do not allow it to go below zero though:
  2513. */
  2514. if (unlikely((long)sum < 0))
  2515. sum = 0;
  2516. return sum;
  2517. }
  2518. unsigned long long nr_context_switches(void)
  2519. {
  2520. int i;
  2521. unsigned long long sum = 0;
  2522. for_each_possible_cpu(i)
  2523. sum += cpu_rq(i)->nr_switches;
  2524. return sum;
  2525. }
  2526. unsigned long nr_iowait(void)
  2527. {
  2528. unsigned long i, sum = 0;
  2529. for_each_possible_cpu(i)
  2530. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2531. return sum;
  2532. }
  2533. /* Variables and functions for calc_load */
  2534. static atomic_long_t calc_load_tasks;
  2535. static unsigned long calc_load_update;
  2536. unsigned long avenrun[3];
  2537. EXPORT_SYMBOL(avenrun);
  2538. /**
  2539. * get_avenrun - get the load average array
  2540. * @loads: pointer to dest load array
  2541. * @offset: offset to add
  2542. * @shift: shift count to shift the result left
  2543. *
  2544. * These values are estimates at best, so no need for locking.
  2545. */
  2546. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2547. {
  2548. loads[0] = (avenrun[0] + offset) << shift;
  2549. loads[1] = (avenrun[1] + offset) << shift;
  2550. loads[2] = (avenrun[2] + offset) << shift;
  2551. }
  2552. static unsigned long
  2553. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2554. {
  2555. load *= exp;
  2556. load += active * (FIXED_1 - exp);
  2557. return load >> FSHIFT;
  2558. }
  2559. /*
  2560. * calc_load - update the avenrun load estimates 10 ticks after the
  2561. * CPUs have updated calc_load_tasks.
  2562. */
  2563. void calc_global_load(void)
  2564. {
  2565. unsigned long upd = calc_load_update + 10;
  2566. long active;
  2567. if (time_before(jiffies, upd))
  2568. return;
  2569. active = atomic_long_read(&calc_load_tasks);
  2570. active = active > 0 ? active * FIXED_1 : 0;
  2571. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2572. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2573. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2574. calc_load_update += LOAD_FREQ;
  2575. }
  2576. /*
  2577. * Either called from update_cpu_load() or from a cpu going idle
  2578. */
  2579. static void calc_load_account_active(struct rq *this_rq)
  2580. {
  2581. long nr_active, delta;
  2582. nr_active = this_rq->nr_running;
  2583. nr_active += (long) this_rq->nr_uninterruptible;
  2584. if (nr_active != this_rq->calc_load_active) {
  2585. delta = nr_active - this_rq->calc_load_active;
  2586. this_rq->calc_load_active = nr_active;
  2587. atomic_long_add(delta, &calc_load_tasks);
  2588. }
  2589. }
  2590. /*
  2591. * Externally visible per-cpu scheduler statistics:
  2592. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2593. */
  2594. u64 cpu_nr_migrations(int cpu)
  2595. {
  2596. return cpu_rq(cpu)->nr_migrations_in;
  2597. }
  2598. /*
  2599. * Update rq->cpu_load[] statistics. This function is usually called every
  2600. * scheduler tick (TICK_NSEC).
  2601. */
  2602. static void update_cpu_load(struct rq *this_rq)
  2603. {
  2604. unsigned long this_load = this_rq->load.weight;
  2605. int i, scale;
  2606. this_rq->nr_load_updates++;
  2607. /* Update our load: */
  2608. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2609. unsigned long old_load, new_load;
  2610. /* scale is effectively 1 << i now, and >> i divides by scale */
  2611. old_load = this_rq->cpu_load[i];
  2612. new_load = this_load;
  2613. /*
  2614. * Round up the averaging division if load is increasing. This
  2615. * prevents us from getting stuck on 9 if the load is 10, for
  2616. * example.
  2617. */
  2618. if (new_load > old_load)
  2619. new_load += scale-1;
  2620. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2621. }
  2622. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2623. this_rq->calc_load_update += LOAD_FREQ;
  2624. calc_load_account_active(this_rq);
  2625. }
  2626. }
  2627. #ifdef CONFIG_SMP
  2628. /*
  2629. * double_rq_lock - safely lock two runqueues
  2630. *
  2631. * Note this does not disable interrupts like task_rq_lock,
  2632. * you need to do so manually before calling.
  2633. */
  2634. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2635. __acquires(rq1->lock)
  2636. __acquires(rq2->lock)
  2637. {
  2638. BUG_ON(!irqs_disabled());
  2639. if (rq1 == rq2) {
  2640. spin_lock(&rq1->lock);
  2641. __acquire(rq2->lock); /* Fake it out ;) */
  2642. } else {
  2643. if (rq1 < rq2) {
  2644. spin_lock(&rq1->lock);
  2645. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2646. } else {
  2647. spin_lock(&rq2->lock);
  2648. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2649. }
  2650. }
  2651. update_rq_clock(rq1);
  2652. update_rq_clock(rq2);
  2653. }
  2654. /*
  2655. * double_rq_unlock - safely unlock two runqueues
  2656. *
  2657. * Note this does not restore interrupts like task_rq_unlock,
  2658. * you need to do so manually after calling.
  2659. */
  2660. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2661. __releases(rq1->lock)
  2662. __releases(rq2->lock)
  2663. {
  2664. spin_unlock(&rq1->lock);
  2665. if (rq1 != rq2)
  2666. spin_unlock(&rq2->lock);
  2667. else
  2668. __release(rq2->lock);
  2669. }
  2670. /*
  2671. * If dest_cpu is allowed for this process, migrate the task to it.
  2672. * This is accomplished by forcing the cpu_allowed mask to only
  2673. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2674. * the cpu_allowed mask is restored.
  2675. */
  2676. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2677. {
  2678. struct migration_req req;
  2679. unsigned long flags;
  2680. struct rq *rq;
  2681. rq = task_rq_lock(p, &flags);
  2682. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2683. || unlikely(!cpu_active(dest_cpu)))
  2684. goto out;
  2685. /* force the process onto the specified CPU */
  2686. if (migrate_task(p, dest_cpu, &req)) {
  2687. /* Need to wait for migration thread (might exit: take ref). */
  2688. struct task_struct *mt = rq->migration_thread;
  2689. get_task_struct(mt);
  2690. task_rq_unlock(rq, &flags);
  2691. wake_up_process(mt);
  2692. put_task_struct(mt);
  2693. wait_for_completion(&req.done);
  2694. return;
  2695. }
  2696. out:
  2697. task_rq_unlock(rq, &flags);
  2698. }
  2699. /*
  2700. * sched_exec - execve() is a valuable balancing opportunity, because at
  2701. * this point the task has the smallest effective memory and cache footprint.
  2702. */
  2703. void sched_exec(void)
  2704. {
  2705. int new_cpu, this_cpu = get_cpu();
  2706. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2707. put_cpu();
  2708. if (new_cpu != this_cpu)
  2709. sched_migrate_task(current, new_cpu);
  2710. }
  2711. /*
  2712. * pull_task - move a task from a remote runqueue to the local runqueue.
  2713. * Both runqueues must be locked.
  2714. */
  2715. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2716. struct rq *this_rq, int this_cpu)
  2717. {
  2718. deactivate_task(src_rq, p, 0);
  2719. set_task_cpu(p, this_cpu);
  2720. activate_task(this_rq, p, 0);
  2721. /*
  2722. * Note that idle threads have a prio of MAX_PRIO, for this test
  2723. * to be always true for them.
  2724. */
  2725. check_preempt_curr(this_rq, p, 0);
  2726. }
  2727. /*
  2728. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2729. */
  2730. static
  2731. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2732. struct sched_domain *sd, enum cpu_idle_type idle,
  2733. int *all_pinned)
  2734. {
  2735. int tsk_cache_hot = 0;
  2736. /*
  2737. * We do not migrate tasks that are:
  2738. * 1) running (obviously), or
  2739. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2740. * 3) are cache-hot on their current CPU.
  2741. */
  2742. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2743. schedstat_inc(p, se.nr_failed_migrations_affine);
  2744. return 0;
  2745. }
  2746. *all_pinned = 0;
  2747. if (task_running(rq, p)) {
  2748. schedstat_inc(p, se.nr_failed_migrations_running);
  2749. return 0;
  2750. }
  2751. /*
  2752. * Aggressive migration if:
  2753. * 1) task is cache cold, or
  2754. * 2) too many balance attempts have failed.
  2755. */
  2756. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2757. if (!tsk_cache_hot ||
  2758. sd->nr_balance_failed > sd->cache_nice_tries) {
  2759. #ifdef CONFIG_SCHEDSTATS
  2760. if (tsk_cache_hot) {
  2761. schedstat_inc(sd, lb_hot_gained[idle]);
  2762. schedstat_inc(p, se.nr_forced_migrations);
  2763. }
  2764. #endif
  2765. return 1;
  2766. }
  2767. if (tsk_cache_hot) {
  2768. schedstat_inc(p, se.nr_failed_migrations_hot);
  2769. return 0;
  2770. }
  2771. return 1;
  2772. }
  2773. static unsigned long
  2774. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2775. unsigned long max_load_move, struct sched_domain *sd,
  2776. enum cpu_idle_type idle, int *all_pinned,
  2777. int *this_best_prio, struct rq_iterator *iterator)
  2778. {
  2779. int loops = 0, pulled = 0, pinned = 0;
  2780. struct task_struct *p;
  2781. long rem_load_move = max_load_move;
  2782. if (max_load_move == 0)
  2783. goto out;
  2784. pinned = 1;
  2785. /*
  2786. * Start the load-balancing iterator:
  2787. */
  2788. p = iterator->start(iterator->arg);
  2789. next:
  2790. if (!p || loops++ > sysctl_sched_nr_migrate)
  2791. goto out;
  2792. if ((p->se.load.weight >> 1) > rem_load_move ||
  2793. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2794. p = iterator->next(iterator->arg);
  2795. goto next;
  2796. }
  2797. pull_task(busiest, p, this_rq, this_cpu);
  2798. pulled++;
  2799. rem_load_move -= p->se.load.weight;
  2800. #ifdef CONFIG_PREEMPT
  2801. /*
  2802. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2803. * will stop after the first task is pulled to minimize the critical
  2804. * section.
  2805. */
  2806. if (idle == CPU_NEWLY_IDLE)
  2807. goto out;
  2808. #endif
  2809. /*
  2810. * We only want to steal up to the prescribed amount of weighted load.
  2811. */
  2812. if (rem_load_move > 0) {
  2813. if (p->prio < *this_best_prio)
  2814. *this_best_prio = p->prio;
  2815. p = iterator->next(iterator->arg);
  2816. goto next;
  2817. }
  2818. out:
  2819. /*
  2820. * Right now, this is one of only two places pull_task() is called,
  2821. * so we can safely collect pull_task() stats here rather than
  2822. * inside pull_task().
  2823. */
  2824. schedstat_add(sd, lb_gained[idle], pulled);
  2825. if (all_pinned)
  2826. *all_pinned = pinned;
  2827. return max_load_move - rem_load_move;
  2828. }
  2829. /*
  2830. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2831. * this_rq, as part of a balancing operation within domain "sd".
  2832. * Returns 1 if successful and 0 otherwise.
  2833. *
  2834. * Called with both runqueues locked.
  2835. */
  2836. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2837. unsigned long max_load_move,
  2838. struct sched_domain *sd, enum cpu_idle_type idle,
  2839. int *all_pinned)
  2840. {
  2841. const struct sched_class *class = sched_class_highest;
  2842. unsigned long total_load_moved = 0;
  2843. int this_best_prio = this_rq->curr->prio;
  2844. do {
  2845. total_load_moved +=
  2846. class->load_balance(this_rq, this_cpu, busiest,
  2847. max_load_move - total_load_moved,
  2848. sd, idle, all_pinned, &this_best_prio);
  2849. class = class->next;
  2850. #ifdef CONFIG_PREEMPT
  2851. /*
  2852. * NEWIDLE balancing is a source of latency, so preemptible
  2853. * kernels will stop after the first task is pulled to minimize
  2854. * the critical section.
  2855. */
  2856. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2857. break;
  2858. #endif
  2859. } while (class && max_load_move > total_load_moved);
  2860. return total_load_moved > 0;
  2861. }
  2862. static int
  2863. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2864. struct sched_domain *sd, enum cpu_idle_type idle,
  2865. struct rq_iterator *iterator)
  2866. {
  2867. struct task_struct *p = iterator->start(iterator->arg);
  2868. int pinned = 0;
  2869. while (p) {
  2870. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2871. pull_task(busiest, p, this_rq, this_cpu);
  2872. /*
  2873. * Right now, this is only the second place pull_task()
  2874. * is called, so we can safely collect pull_task()
  2875. * stats here rather than inside pull_task().
  2876. */
  2877. schedstat_inc(sd, lb_gained[idle]);
  2878. return 1;
  2879. }
  2880. p = iterator->next(iterator->arg);
  2881. }
  2882. return 0;
  2883. }
  2884. /*
  2885. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2886. * part of active balancing operations within "domain".
  2887. * Returns 1 if successful and 0 otherwise.
  2888. *
  2889. * Called with both runqueues locked.
  2890. */
  2891. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2892. struct sched_domain *sd, enum cpu_idle_type idle)
  2893. {
  2894. const struct sched_class *class;
  2895. for (class = sched_class_highest; class; class = class->next)
  2896. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2897. return 1;
  2898. return 0;
  2899. }
  2900. /********** Helpers for find_busiest_group ************************/
  2901. /*
  2902. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2903. * during load balancing.
  2904. */
  2905. struct sd_lb_stats {
  2906. struct sched_group *busiest; /* Busiest group in this sd */
  2907. struct sched_group *this; /* Local group in this sd */
  2908. unsigned long total_load; /* Total load of all groups in sd */
  2909. unsigned long total_pwr; /* Total power of all groups in sd */
  2910. unsigned long avg_load; /* Average load across all groups in sd */
  2911. /** Statistics of this group */
  2912. unsigned long this_load;
  2913. unsigned long this_load_per_task;
  2914. unsigned long this_nr_running;
  2915. /* Statistics of the busiest group */
  2916. unsigned long max_load;
  2917. unsigned long busiest_load_per_task;
  2918. unsigned long busiest_nr_running;
  2919. int group_imb; /* Is there imbalance in this sd */
  2920. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2921. int power_savings_balance; /* Is powersave balance needed for this sd */
  2922. struct sched_group *group_min; /* Least loaded group in sd */
  2923. struct sched_group *group_leader; /* Group which relieves group_min */
  2924. unsigned long min_load_per_task; /* load_per_task in group_min */
  2925. unsigned long leader_nr_running; /* Nr running of group_leader */
  2926. unsigned long min_nr_running; /* Nr running of group_min */
  2927. #endif
  2928. };
  2929. /*
  2930. * sg_lb_stats - stats of a sched_group required for load_balancing
  2931. */
  2932. struct sg_lb_stats {
  2933. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2934. unsigned long group_load; /* Total load over the CPUs of the group */
  2935. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2936. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2937. unsigned long group_capacity;
  2938. int group_imb; /* Is there an imbalance in the group ? */
  2939. };
  2940. /**
  2941. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2942. * @group: The group whose first cpu is to be returned.
  2943. */
  2944. static inline unsigned int group_first_cpu(struct sched_group *group)
  2945. {
  2946. return cpumask_first(sched_group_cpus(group));
  2947. }
  2948. /**
  2949. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2950. * @sd: The sched_domain whose load_idx is to be obtained.
  2951. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2952. */
  2953. static inline int get_sd_load_idx(struct sched_domain *sd,
  2954. enum cpu_idle_type idle)
  2955. {
  2956. int load_idx;
  2957. switch (idle) {
  2958. case CPU_NOT_IDLE:
  2959. load_idx = sd->busy_idx;
  2960. break;
  2961. case CPU_NEWLY_IDLE:
  2962. load_idx = sd->newidle_idx;
  2963. break;
  2964. default:
  2965. load_idx = sd->idle_idx;
  2966. break;
  2967. }
  2968. return load_idx;
  2969. }
  2970. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2971. /**
  2972. * init_sd_power_savings_stats - Initialize power savings statistics for
  2973. * the given sched_domain, during load balancing.
  2974. *
  2975. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2976. * @sds: Variable containing the statistics for sd.
  2977. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2978. */
  2979. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2980. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2981. {
  2982. /*
  2983. * Busy processors will not participate in power savings
  2984. * balance.
  2985. */
  2986. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2987. sds->power_savings_balance = 0;
  2988. else {
  2989. sds->power_savings_balance = 1;
  2990. sds->min_nr_running = ULONG_MAX;
  2991. sds->leader_nr_running = 0;
  2992. }
  2993. }
  2994. /**
  2995. * update_sd_power_savings_stats - Update the power saving stats for a
  2996. * sched_domain while performing load balancing.
  2997. *
  2998. * @group: sched_group belonging to the sched_domain under consideration.
  2999. * @sds: Variable containing the statistics of the sched_domain
  3000. * @local_group: Does group contain the CPU for which we're performing
  3001. * load balancing ?
  3002. * @sgs: Variable containing the statistics of the group.
  3003. */
  3004. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3005. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3006. {
  3007. if (!sds->power_savings_balance)
  3008. return;
  3009. /*
  3010. * If the local group is idle or completely loaded
  3011. * no need to do power savings balance at this domain
  3012. */
  3013. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3014. !sds->this_nr_running))
  3015. sds->power_savings_balance = 0;
  3016. /*
  3017. * If a group is already running at full capacity or idle,
  3018. * don't include that group in power savings calculations
  3019. */
  3020. if (!sds->power_savings_balance ||
  3021. sgs->sum_nr_running >= sgs->group_capacity ||
  3022. !sgs->sum_nr_running)
  3023. return;
  3024. /*
  3025. * Calculate the group which has the least non-idle load.
  3026. * This is the group from where we need to pick up the load
  3027. * for saving power
  3028. */
  3029. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3030. (sgs->sum_nr_running == sds->min_nr_running &&
  3031. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3032. sds->group_min = group;
  3033. sds->min_nr_running = sgs->sum_nr_running;
  3034. sds->min_load_per_task = sgs->sum_weighted_load /
  3035. sgs->sum_nr_running;
  3036. }
  3037. /*
  3038. * Calculate the group which is almost near its
  3039. * capacity but still has some space to pick up some load
  3040. * from other group and save more power
  3041. */
  3042. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  3043. return;
  3044. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3045. (sgs->sum_nr_running == sds->leader_nr_running &&
  3046. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3047. sds->group_leader = group;
  3048. sds->leader_nr_running = sgs->sum_nr_running;
  3049. }
  3050. }
  3051. /**
  3052. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3053. * @sds: Variable containing the statistics of the sched_domain
  3054. * under consideration.
  3055. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3056. * @imbalance: Variable to store the imbalance.
  3057. *
  3058. * Description:
  3059. * Check if we have potential to perform some power-savings balance.
  3060. * If yes, set the busiest group to be the least loaded group in the
  3061. * sched_domain, so that it's CPUs can be put to idle.
  3062. *
  3063. * Returns 1 if there is potential to perform power-savings balance.
  3064. * Else returns 0.
  3065. */
  3066. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3067. int this_cpu, unsigned long *imbalance)
  3068. {
  3069. if (!sds->power_savings_balance)
  3070. return 0;
  3071. if (sds->this != sds->group_leader ||
  3072. sds->group_leader == sds->group_min)
  3073. return 0;
  3074. *imbalance = sds->min_load_per_task;
  3075. sds->busiest = sds->group_min;
  3076. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3077. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3078. group_first_cpu(sds->group_leader);
  3079. }
  3080. return 1;
  3081. }
  3082. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3083. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3084. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3085. {
  3086. return;
  3087. }
  3088. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3089. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3090. {
  3091. return;
  3092. }
  3093. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3094. int this_cpu, unsigned long *imbalance)
  3095. {
  3096. return 0;
  3097. }
  3098. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3099. /**
  3100. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3101. * @group: sched_group whose statistics are to be updated.
  3102. * @this_cpu: Cpu for which load balance is currently performed.
  3103. * @idle: Idle status of this_cpu
  3104. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3105. * @sd_idle: Idle status of the sched_domain containing group.
  3106. * @local_group: Does group contain this_cpu.
  3107. * @cpus: Set of cpus considered for load balancing.
  3108. * @balance: Should we balance.
  3109. * @sgs: variable to hold the statistics for this group.
  3110. */
  3111. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3112. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3113. int local_group, const struct cpumask *cpus,
  3114. int *balance, struct sg_lb_stats *sgs)
  3115. {
  3116. unsigned long load, max_cpu_load, min_cpu_load;
  3117. int i;
  3118. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3119. unsigned long sum_avg_load_per_task;
  3120. unsigned long avg_load_per_task;
  3121. if (local_group)
  3122. balance_cpu = group_first_cpu(group);
  3123. /* Tally up the load of all CPUs in the group */
  3124. sum_avg_load_per_task = avg_load_per_task = 0;
  3125. max_cpu_load = 0;
  3126. min_cpu_load = ~0UL;
  3127. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3128. struct rq *rq = cpu_rq(i);
  3129. if (*sd_idle && rq->nr_running)
  3130. *sd_idle = 0;
  3131. /* Bias balancing toward cpus of our domain */
  3132. if (local_group) {
  3133. if (idle_cpu(i) && !first_idle_cpu) {
  3134. first_idle_cpu = 1;
  3135. balance_cpu = i;
  3136. }
  3137. load = target_load(i, load_idx);
  3138. } else {
  3139. load = source_load(i, load_idx);
  3140. if (load > max_cpu_load)
  3141. max_cpu_load = load;
  3142. if (min_cpu_load > load)
  3143. min_cpu_load = load;
  3144. }
  3145. sgs->group_load += load;
  3146. sgs->sum_nr_running += rq->nr_running;
  3147. sgs->sum_weighted_load += weighted_cpuload(i);
  3148. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3149. }
  3150. /*
  3151. * First idle cpu or the first cpu(busiest) in this sched group
  3152. * is eligible for doing load balancing at this and above
  3153. * domains. In the newly idle case, we will allow all the cpu's
  3154. * to do the newly idle load balance.
  3155. */
  3156. if (idle != CPU_NEWLY_IDLE && local_group &&
  3157. balance_cpu != this_cpu && balance) {
  3158. *balance = 0;
  3159. return;
  3160. }
  3161. /* Adjust by relative CPU power of the group */
  3162. sgs->avg_load = sg_div_cpu_power(group,
  3163. sgs->group_load * SCHED_LOAD_SCALE);
  3164. /*
  3165. * Consider the group unbalanced when the imbalance is larger
  3166. * than the average weight of two tasks.
  3167. *
  3168. * APZ: with cgroup the avg task weight can vary wildly and
  3169. * might not be a suitable number - should we keep a
  3170. * normalized nr_running number somewhere that negates
  3171. * the hierarchy?
  3172. */
  3173. avg_load_per_task = sg_div_cpu_power(group,
  3174. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3175. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3176. sgs->group_imb = 1;
  3177. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3178. }
  3179. /**
  3180. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3181. * @sd: sched_domain whose statistics are to be updated.
  3182. * @this_cpu: Cpu for which load balance is currently performed.
  3183. * @idle: Idle status of this_cpu
  3184. * @sd_idle: Idle status of the sched_domain containing group.
  3185. * @cpus: Set of cpus considered for load balancing.
  3186. * @balance: Should we balance.
  3187. * @sds: variable to hold the statistics for this sched_domain.
  3188. */
  3189. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3190. enum cpu_idle_type idle, int *sd_idle,
  3191. const struct cpumask *cpus, int *balance,
  3192. struct sd_lb_stats *sds)
  3193. {
  3194. struct sched_group *group = sd->groups;
  3195. struct sg_lb_stats sgs;
  3196. int load_idx;
  3197. init_sd_power_savings_stats(sd, sds, idle);
  3198. load_idx = get_sd_load_idx(sd, idle);
  3199. do {
  3200. int local_group;
  3201. local_group = cpumask_test_cpu(this_cpu,
  3202. sched_group_cpus(group));
  3203. memset(&sgs, 0, sizeof(sgs));
  3204. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3205. local_group, cpus, balance, &sgs);
  3206. if (local_group && balance && !(*balance))
  3207. return;
  3208. sds->total_load += sgs.group_load;
  3209. sds->total_pwr += group->__cpu_power;
  3210. if (local_group) {
  3211. sds->this_load = sgs.avg_load;
  3212. sds->this = group;
  3213. sds->this_nr_running = sgs.sum_nr_running;
  3214. sds->this_load_per_task = sgs.sum_weighted_load;
  3215. } else if (sgs.avg_load > sds->max_load &&
  3216. (sgs.sum_nr_running > sgs.group_capacity ||
  3217. sgs.group_imb)) {
  3218. sds->max_load = sgs.avg_load;
  3219. sds->busiest = group;
  3220. sds->busiest_nr_running = sgs.sum_nr_running;
  3221. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3222. sds->group_imb = sgs.group_imb;
  3223. }
  3224. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3225. group = group->next;
  3226. } while (group != sd->groups);
  3227. }
  3228. /**
  3229. * fix_small_imbalance - Calculate the minor imbalance that exists
  3230. * amongst the groups of a sched_domain, during
  3231. * load balancing.
  3232. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3233. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3234. * @imbalance: Variable to store the imbalance.
  3235. */
  3236. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3237. int this_cpu, unsigned long *imbalance)
  3238. {
  3239. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3240. unsigned int imbn = 2;
  3241. if (sds->this_nr_running) {
  3242. sds->this_load_per_task /= sds->this_nr_running;
  3243. if (sds->busiest_load_per_task >
  3244. sds->this_load_per_task)
  3245. imbn = 1;
  3246. } else
  3247. sds->this_load_per_task =
  3248. cpu_avg_load_per_task(this_cpu);
  3249. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3250. sds->busiest_load_per_task * imbn) {
  3251. *imbalance = sds->busiest_load_per_task;
  3252. return;
  3253. }
  3254. /*
  3255. * OK, we don't have enough imbalance to justify moving tasks,
  3256. * however we may be able to increase total CPU power used by
  3257. * moving them.
  3258. */
  3259. pwr_now += sds->busiest->__cpu_power *
  3260. min(sds->busiest_load_per_task, sds->max_load);
  3261. pwr_now += sds->this->__cpu_power *
  3262. min(sds->this_load_per_task, sds->this_load);
  3263. pwr_now /= SCHED_LOAD_SCALE;
  3264. /* Amount of load we'd subtract */
  3265. tmp = sg_div_cpu_power(sds->busiest,
  3266. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3267. if (sds->max_load > tmp)
  3268. pwr_move += sds->busiest->__cpu_power *
  3269. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3270. /* Amount of load we'd add */
  3271. if (sds->max_load * sds->busiest->__cpu_power <
  3272. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3273. tmp = sg_div_cpu_power(sds->this,
  3274. sds->max_load * sds->busiest->__cpu_power);
  3275. else
  3276. tmp = sg_div_cpu_power(sds->this,
  3277. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3278. pwr_move += sds->this->__cpu_power *
  3279. min(sds->this_load_per_task, sds->this_load + tmp);
  3280. pwr_move /= SCHED_LOAD_SCALE;
  3281. /* Move if we gain throughput */
  3282. if (pwr_move > pwr_now)
  3283. *imbalance = sds->busiest_load_per_task;
  3284. }
  3285. /**
  3286. * calculate_imbalance - Calculate the amount of imbalance present within the
  3287. * groups of a given sched_domain during load balance.
  3288. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3289. * @this_cpu: Cpu for which currently load balance is being performed.
  3290. * @imbalance: The variable to store the imbalance.
  3291. */
  3292. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3293. unsigned long *imbalance)
  3294. {
  3295. unsigned long max_pull;
  3296. /*
  3297. * In the presence of smp nice balancing, certain scenarios can have
  3298. * max load less than avg load(as we skip the groups at or below
  3299. * its cpu_power, while calculating max_load..)
  3300. */
  3301. if (sds->max_load < sds->avg_load) {
  3302. *imbalance = 0;
  3303. return fix_small_imbalance(sds, this_cpu, imbalance);
  3304. }
  3305. /* Don't want to pull so many tasks that a group would go idle */
  3306. max_pull = min(sds->max_load - sds->avg_load,
  3307. sds->max_load - sds->busiest_load_per_task);
  3308. /* How much load to actually move to equalise the imbalance */
  3309. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3310. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3311. / SCHED_LOAD_SCALE;
  3312. /*
  3313. * if *imbalance is less than the average load per runnable task
  3314. * there is no gaurantee that any tasks will be moved so we'll have
  3315. * a think about bumping its value to force at least one task to be
  3316. * moved
  3317. */
  3318. if (*imbalance < sds->busiest_load_per_task)
  3319. return fix_small_imbalance(sds, this_cpu, imbalance);
  3320. }
  3321. /******* find_busiest_group() helpers end here *********************/
  3322. /**
  3323. * find_busiest_group - Returns the busiest group within the sched_domain
  3324. * if there is an imbalance. If there isn't an imbalance, and
  3325. * the user has opted for power-savings, it returns a group whose
  3326. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3327. * such a group exists.
  3328. *
  3329. * Also calculates the amount of weighted load which should be moved
  3330. * to restore balance.
  3331. *
  3332. * @sd: The sched_domain whose busiest group is to be returned.
  3333. * @this_cpu: The cpu for which load balancing is currently being performed.
  3334. * @imbalance: Variable which stores amount of weighted load which should
  3335. * be moved to restore balance/put a group to idle.
  3336. * @idle: The idle status of this_cpu.
  3337. * @sd_idle: The idleness of sd
  3338. * @cpus: The set of CPUs under consideration for load-balancing.
  3339. * @balance: Pointer to a variable indicating if this_cpu
  3340. * is the appropriate cpu to perform load balancing at this_level.
  3341. *
  3342. * Returns: - the busiest group if imbalance exists.
  3343. * - If no imbalance and user has opted for power-savings balance,
  3344. * return the least loaded group whose CPUs can be
  3345. * put to idle by rebalancing its tasks onto our group.
  3346. */
  3347. static struct sched_group *
  3348. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3349. unsigned long *imbalance, enum cpu_idle_type idle,
  3350. int *sd_idle, const struct cpumask *cpus, int *balance)
  3351. {
  3352. struct sd_lb_stats sds;
  3353. memset(&sds, 0, sizeof(sds));
  3354. /*
  3355. * Compute the various statistics relavent for load balancing at
  3356. * this level.
  3357. */
  3358. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3359. balance, &sds);
  3360. /* Cases where imbalance does not exist from POV of this_cpu */
  3361. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3362. * at this level.
  3363. * 2) There is no busy sibling group to pull from.
  3364. * 3) This group is the busiest group.
  3365. * 4) This group is more busy than the avg busieness at this
  3366. * sched_domain.
  3367. * 5) The imbalance is within the specified limit.
  3368. * 6) Any rebalance would lead to ping-pong
  3369. */
  3370. if (balance && !(*balance))
  3371. goto ret;
  3372. if (!sds.busiest || sds.busiest_nr_running == 0)
  3373. goto out_balanced;
  3374. if (sds.this_load >= sds.max_load)
  3375. goto out_balanced;
  3376. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3377. if (sds.this_load >= sds.avg_load)
  3378. goto out_balanced;
  3379. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3380. goto out_balanced;
  3381. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3382. if (sds.group_imb)
  3383. sds.busiest_load_per_task =
  3384. min(sds.busiest_load_per_task, sds.avg_load);
  3385. /*
  3386. * We're trying to get all the cpus to the average_load, so we don't
  3387. * want to push ourselves above the average load, nor do we wish to
  3388. * reduce the max loaded cpu below the average load, as either of these
  3389. * actions would just result in more rebalancing later, and ping-pong
  3390. * tasks around. Thus we look for the minimum possible imbalance.
  3391. * Negative imbalances (*we* are more loaded than anyone else) will
  3392. * be counted as no imbalance for these purposes -- we can't fix that
  3393. * by pulling tasks to us. Be careful of negative numbers as they'll
  3394. * appear as very large values with unsigned longs.
  3395. */
  3396. if (sds.max_load <= sds.busiest_load_per_task)
  3397. goto out_balanced;
  3398. /* Looks like there is an imbalance. Compute it */
  3399. calculate_imbalance(&sds, this_cpu, imbalance);
  3400. return sds.busiest;
  3401. out_balanced:
  3402. /*
  3403. * There is no obvious imbalance. But check if we can do some balancing
  3404. * to save power.
  3405. */
  3406. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3407. return sds.busiest;
  3408. ret:
  3409. *imbalance = 0;
  3410. return NULL;
  3411. }
  3412. /*
  3413. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3414. */
  3415. static struct rq *
  3416. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3417. unsigned long imbalance, const struct cpumask *cpus)
  3418. {
  3419. struct rq *busiest = NULL, *rq;
  3420. unsigned long max_load = 0;
  3421. int i;
  3422. for_each_cpu(i, sched_group_cpus(group)) {
  3423. unsigned long wl;
  3424. if (!cpumask_test_cpu(i, cpus))
  3425. continue;
  3426. rq = cpu_rq(i);
  3427. wl = weighted_cpuload(i);
  3428. if (rq->nr_running == 1 && wl > imbalance)
  3429. continue;
  3430. if (wl > max_load) {
  3431. max_load = wl;
  3432. busiest = rq;
  3433. }
  3434. }
  3435. return busiest;
  3436. }
  3437. /*
  3438. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3439. * so long as it is large enough.
  3440. */
  3441. #define MAX_PINNED_INTERVAL 512
  3442. /* Working cpumask for load_balance and load_balance_newidle. */
  3443. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3444. /*
  3445. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3446. * tasks if there is an imbalance.
  3447. */
  3448. static int load_balance(int this_cpu, struct rq *this_rq,
  3449. struct sched_domain *sd, enum cpu_idle_type idle,
  3450. int *balance)
  3451. {
  3452. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3453. struct sched_group *group;
  3454. unsigned long imbalance;
  3455. struct rq *busiest;
  3456. unsigned long flags;
  3457. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3458. cpumask_setall(cpus);
  3459. /*
  3460. * When power savings policy is enabled for the parent domain, idle
  3461. * sibling can pick up load irrespective of busy siblings. In this case,
  3462. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3463. * portraying it as CPU_NOT_IDLE.
  3464. */
  3465. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3466. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3467. sd_idle = 1;
  3468. schedstat_inc(sd, lb_count[idle]);
  3469. redo:
  3470. update_shares(sd);
  3471. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3472. cpus, balance);
  3473. if (*balance == 0)
  3474. goto out_balanced;
  3475. if (!group) {
  3476. schedstat_inc(sd, lb_nobusyg[idle]);
  3477. goto out_balanced;
  3478. }
  3479. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3480. if (!busiest) {
  3481. schedstat_inc(sd, lb_nobusyq[idle]);
  3482. goto out_balanced;
  3483. }
  3484. BUG_ON(busiest == this_rq);
  3485. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3486. ld_moved = 0;
  3487. if (busiest->nr_running > 1) {
  3488. /*
  3489. * Attempt to move tasks. If find_busiest_group has found
  3490. * an imbalance but busiest->nr_running <= 1, the group is
  3491. * still unbalanced. ld_moved simply stays zero, so it is
  3492. * correctly treated as an imbalance.
  3493. */
  3494. local_irq_save(flags);
  3495. double_rq_lock(this_rq, busiest);
  3496. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3497. imbalance, sd, idle, &all_pinned);
  3498. double_rq_unlock(this_rq, busiest);
  3499. local_irq_restore(flags);
  3500. /*
  3501. * some other cpu did the load balance for us.
  3502. */
  3503. if (ld_moved && this_cpu != smp_processor_id())
  3504. resched_cpu(this_cpu);
  3505. /* All tasks on this runqueue were pinned by CPU affinity */
  3506. if (unlikely(all_pinned)) {
  3507. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3508. if (!cpumask_empty(cpus))
  3509. goto redo;
  3510. goto out_balanced;
  3511. }
  3512. }
  3513. if (!ld_moved) {
  3514. schedstat_inc(sd, lb_failed[idle]);
  3515. sd->nr_balance_failed++;
  3516. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3517. spin_lock_irqsave(&busiest->lock, flags);
  3518. /* don't kick the migration_thread, if the curr
  3519. * task on busiest cpu can't be moved to this_cpu
  3520. */
  3521. if (!cpumask_test_cpu(this_cpu,
  3522. &busiest->curr->cpus_allowed)) {
  3523. spin_unlock_irqrestore(&busiest->lock, flags);
  3524. all_pinned = 1;
  3525. goto out_one_pinned;
  3526. }
  3527. if (!busiest->active_balance) {
  3528. busiest->active_balance = 1;
  3529. busiest->push_cpu = this_cpu;
  3530. active_balance = 1;
  3531. }
  3532. spin_unlock_irqrestore(&busiest->lock, flags);
  3533. if (active_balance)
  3534. wake_up_process(busiest->migration_thread);
  3535. /*
  3536. * We've kicked active balancing, reset the failure
  3537. * counter.
  3538. */
  3539. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3540. }
  3541. } else
  3542. sd->nr_balance_failed = 0;
  3543. if (likely(!active_balance)) {
  3544. /* We were unbalanced, so reset the balancing interval */
  3545. sd->balance_interval = sd->min_interval;
  3546. } else {
  3547. /*
  3548. * If we've begun active balancing, start to back off. This
  3549. * case may not be covered by the all_pinned logic if there
  3550. * is only 1 task on the busy runqueue (because we don't call
  3551. * move_tasks).
  3552. */
  3553. if (sd->balance_interval < sd->max_interval)
  3554. sd->balance_interval *= 2;
  3555. }
  3556. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3557. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3558. ld_moved = -1;
  3559. goto out;
  3560. out_balanced:
  3561. schedstat_inc(sd, lb_balanced[idle]);
  3562. sd->nr_balance_failed = 0;
  3563. out_one_pinned:
  3564. /* tune up the balancing interval */
  3565. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3566. (sd->balance_interval < sd->max_interval))
  3567. sd->balance_interval *= 2;
  3568. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3569. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3570. ld_moved = -1;
  3571. else
  3572. ld_moved = 0;
  3573. out:
  3574. if (ld_moved)
  3575. update_shares(sd);
  3576. return ld_moved;
  3577. }
  3578. /*
  3579. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3580. * tasks if there is an imbalance.
  3581. *
  3582. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3583. * this_rq is locked.
  3584. */
  3585. static int
  3586. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3587. {
  3588. struct sched_group *group;
  3589. struct rq *busiest = NULL;
  3590. unsigned long imbalance;
  3591. int ld_moved = 0;
  3592. int sd_idle = 0;
  3593. int all_pinned = 0;
  3594. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3595. cpumask_setall(cpus);
  3596. /*
  3597. * When power savings policy is enabled for the parent domain, idle
  3598. * sibling can pick up load irrespective of busy siblings. In this case,
  3599. * let the state of idle sibling percolate up as IDLE, instead of
  3600. * portraying it as CPU_NOT_IDLE.
  3601. */
  3602. if (sd->flags & SD_SHARE_CPUPOWER &&
  3603. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3604. sd_idle = 1;
  3605. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3606. redo:
  3607. update_shares_locked(this_rq, sd);
  3608. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3609. &sd_idle, cpus, NULL);
  3610. if (!group) {
  3611. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3612. goto out_balanced;
  3613. }
  3614. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3615. if (!busiest) {
  3616. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3617. goto out_balanced;
  3618. }
  3619. BUG_ON(busiest == this_rq);
  3620. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3621. ld_moved = 0;
  3622. if (busiest->nr_running > 1) {
  3623. /* Attempt to move tasks */
  3624. double_lock_balance(this_rq, busiest);
  3625. /* this_rq->clock is already updated */
  3626. update_rq_clock(busiest);
  3627. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3628. imbalance, sd, CPU_NEWLY_IDLE,
  3629. &all_pinned);
  3630. double_unlock_balance(this_rq, busiest);
  3631. if (unlikely(all_pinned)) {
  3632. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3633. if (!cpumask_empty(cpus))
  3634. goto redo;
  3635. }
  3636. }
  3637. if (!ld_moved) {
  3638. int active_balance = 0;
  3639. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3640. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3641. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3642. return -1;
  3643. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3644. return -1;
  3645. if (sd->nr_balance_failed++ < 2)
  3646. return -1;
  3647. /*
  3648. * The only task running in a non-idle cpu can be moved to this
  3649. * cpu in an attempt to completely freeup the other CPU
  3650. * package. The same method used to move task in load_balance()
  3651. * have been extended for load_balance_newidle() to speedup
  3652. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3653. *
  3654. * The package power saving logic comes from
  3655. * find_busiest_group(). If there are no imbalance, then
  3656. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3657. * f_b_g() will select a group from which a running task may be
  3658. * pulled to this cpu in order to make the other package idle.
  3659. * If there is no opportunity to make a package idle and if
  3660. * there are no imbalance, then f_b_g() will return NULL and no
  3661. * action will be taken in load_balance_newidle().
  3662. *
  3663. * Under normal task pull operation due to imbalance, there
  3664. * will be more than one task in the source run queue and
  3665. * move_tasks() will succeed. ld_moved will be true and this
  3666. * active balance code will not be triggered.
  3667. */
  3668. /* Lock busiest in correct order while this_rq is held */
  3669. double_lock_balance(this_rq, busiest);
  3670. /*
  3671. * don't kick the migration_thread, if the curr
  3672. * task on busiest cpu can't be moved to this_cpu
  3673. */
  3674. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3675. double_unlock_balance(this_rq, busiest);
  3676. all_pinned = 1;
  3677. return ld_moved;
  3678. }
  3679. if (!busiest->active_balance) {
  3680. busiest->active_balance = 1;
  3681. busiest->push_cpu = this_cpu;
  3682. active_balance = 1;
  3683. }
  3684. double_unlock_balance(this_rq, busiest);
  3685. /*
  3686. * Should not call ttwu while holding a rq->lock
  3687. */
  3688. spin_unlock(&this_rq->lock);
  3689. if (active_balance)
  3690. wake_up_process(busiest->migration_thread);
  3691. spin_lock(&this_rq->lock);
  3692. } else
  3693. sd->nr_balance_failed = 0;
  3694. update_shares_locked(this_rq, sd);
  3695. return ld_moved;
  3696. out_balanced:
  3697. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3698. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3699. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3700. return -1;
  3701. sd->nr_balance_failed = 0;
  3702. return 0;
  3703. }
  3704. /*
  3705. * idle_balance is called by schedule() if this_cpu is about to become
  3706. * idle. Attempts to pull tasks from other CPUs.
  3707. */
  3708. static void idle_balance(int this_cpu, struct rq *this_rq)
  3709. {
  3710. struct sched_domain *sd;
  3711. int pulled_task = 0;
  3712. unsigned long next_balance = jiffies + HZ;
  3713. for_each_domain(this_cpu, sd) {
  3714. unsigned long interval;
  3715. if (!(sd->flags & SD_LOAD_BALANCE))
  3716. continue;
  3717. if (sd->flags & SD_BALANCE_NEWIDLE)
  3718. /* If we've pulled tasks over stop searching: */
  3719. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3720. sd);
  3721. interval = msecs_to_jiffies(sd->balance_interval);
  3722. if (time_after(next_balance, sd->last_balance + interval))
  3723. next_balance = sd->last_balance + interval;
  3724. if (pulled_task)
  3725. break;
  3726. }
  3727. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3728. /*
  3729. * We are going idle. next_balance may be set based on
  3730. * a busy processor. So reset next_balance.
  3731. */
  3732. this_rq->next_balance = next_balance;
  3733. }
  3734. }
  3735. /*
  3736. * active_load_balance is run by migration threads. It pushes running tasks
  3737. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3738. * running on each physical CPU where possible, and avoids physical /
  3739. * logical imbalances.
  3740. *
  3741. * Called with busiest_rq locked.
  3742. */
  3743. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3744. {
  3745. int target_cpu = busiest_rq->push_cpu;
  3746. struct sched_domain *sd;
  3747. struct rq *target_rq;
  3748. /* Is there any task to move? */
  3749. if (busiest_rq->nr_running <= 1)
  3750. return;
  3751. target_rq = cpu_rq(target_cpu);
  3752. /*
  3753. * This condition is "impossible", if it occurs
  3754. * we need to fix it. Originally reported by
  3755. * Bjorn Helgaas on a 128-cpu setup.
  3756. */
  3757. BUG_ON(busiest_rq == target_rq);
  3758. /* move a task from busiest_rq to target_rq */
  3759. double_lock_balance(busiest_rq, target_rq);
  3760. update_rq_clock(busiest_rq);
  3761. update_rq_clock(target_rq);
  3762. /* Search for an sd spanning us and the target CPU. */
  3763. for_each_domain(target_cpu, sd) {
  3764. if ((sd->flags & SD_LOAD_BALANCE) &&
  3765. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3766. break;
  3767. }
  3768. if (likely(sd)) {
  3769. schedstat_inc(sd, alb_count);
  3770. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3771. sd, CPU_IDLE))
  3772. schedstat_inc(sd, alb_pushed);
  3773. else
  3774. schedstat_inc(sd, alb_failed);
  3775. }
  3776. double_unlock_balance(busiest_rq, target_rq);
  3777. }
  3778. #ifdef CONFIG_NO_HZ
  3779. static struct {
  3780. atomic_t load_balancer;
  3781. cpumask_var_t cpu_mask;
  3782. cpumask_var_t ilb_grp_nohz_mask;
  3783. } nohz ____cacheline_aligned = {
  3784. .load_balancer = ATOMIC_INIT(-1),
  3785. };
  3786. int get_nohz_load_balancer(void)
  3787. {
  3788. return atomic_read(&nohz.load_balancer);
  3789. }
  3790. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3791. /**
  3792. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3793. * @cpu: The cpu whose lowest level of sched domain is to
  3794. * be returned.
  3795. * @flag: The flag to check for the lowest sched_domain
  3796. * for the given cpu.
  3797. *
  3798. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3799. */
  3800. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3801. {
  3802. struct sched_domain *sd;
  3803. for_each_domain(cpu, sd)
  3804. if (sd && (sd->flags & flag))
  3805. break;
  3806. return sd;
  3807. }
  3808. /**
  3809. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3810. * @cpu: The cpu whose domains we're iterating over.
  3811. * @sd: variable holding the value of the power_savings_sd
  3812. * for cpu.
  3813. * @flag: The flag to filter the sched_domains to be iterated.
  3814. *
  3815. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3816. * set, starting from the lowest sched_domain to the highest.
  3817. */
  3818. #define for_each_flag_domain(cpu, sd, flag) \
  3819. for (sd = lowest_flag_domain(cpu, flag); \
  3820. (sd && (sd->flags & flag)); sd = sd->parent)
  3821. /**
  3822. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3823. * @ilb_group: group to be checked for semi-idleness
  3824. *
  3825. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3826. *
  3827. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3828. * and atleast one non-idle CPU. This helper function checks if the given
  3829. * sched_group is semi-idle or not.
  3830. */
  3831. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3832. {
  3833. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3834. sched_group_cpus(ilb_group));
  3835. /*
  3836. * A sched_group is semi-idle when it has atleast one busy cpu
  3837. * and atleast one idle cpu.
  3838. */
  3839. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3840. return 0;
  3841. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3842. return 0;
  3843. return 1;
  3844. }
  3845. /**
  3846. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3847. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3848. *
  3849. * Returns: Returns the id of the idle load balancer if it exists,
  3850. * Else, returns >= nr_cpu_ids.
  3851. *
  3852. * This algorithm picks the idle load balancer such that it belongs to a
  3853. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3854. * completely idle packages/cores just for the purpose of idle load balancing
  3855. * when there are other idle cpu's which are better suited for that job.
  3856. */
  3857. static int find_new_ilb(int cpu)
  3858. {
  3859. struct sched_domain *sd;
  3860. struct sched_group *ilb_group;
  3861. /*
  3862. * Have idle load balancer selection from semi-idle packages only
  3863. * when power-aware load balancing is enabled
  3864. */
  3865. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3866. goto out_done;
  3867. /*
  3868. * Optimize for the case when we have no idle CPUs or only one
  3869. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3870. */
  3871. if (cpumask_weight(nohz.cpu_mask) < 2)
  3872. goto out_done;
  3873. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3874. ilb_group = sd->groups;
  3875. do {
  3876. if (is_semi_idle_group(ilb_group))
  3877. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3878. ilb_group = ilb_group->next;
  3879. } while (ilb_group != sd->groups);
  3880. }
  3881. out_done:
  3882. return cpumask_first(nohz.cpu_mask);
  3883. }
  3884. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3885. static inline int find_new_ilb(int call_cpu)
  3886. {
  3887. return cpumask_first(nohz.cpu_mask);
  3888. }
  3889. #endif
  3890. /*
  3891. * This routine will try to nominate the ilb (idle load balancing)
  3892. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3893. * load balancing on behalf of all those cpus. If all the cpus in the system
  3894. * go into this tickless mode, then there will be no ilb owner (as there is
  3895. * no need for one) and all the cpus will sleep till the next wakeup event
  3896. * arrives...
  3897. *
  3898. * For the ilb owner, tick is not stopped. And this tick will be used
  3899. * for idle load balancing. ilb owner will still be part of
  3900. * nohz.cpu_mask..
  3901. *
  3902. * While stopping the tick, this cpu will become the ilb owner if there
  3903. * is no other owner. And will be the owner till that cpu becomes busy
  3904. * or if all cpus in the system stop their ticks at which point
  3905. * there is no need for ilb owner.
  3906. *
  3907. * When the ilb owner becomes busy, it nominates another owner, during the
  3908. * next busy scheduler_tick()
  3909. */
  3910. int select_nohz_load_balancer(int stop_tick)
  3911. {
  3912. int cpu = smp_processor_id();
  3913. if (stop_tick) {
  3914. cpu_rq(cpu)->in_nohz_recently = 1;
  3915. if (!cpu_active(cpu)) {
  3916. if (atomic_read(&nohz.load_balancer) != cpu)
  3917. return 0;
  3918. /*
  3919. * If we are going offline and still the leader,
  3920. * give up!
  3921. */
  3922. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3923. BUG();
  3924. return 0;
  3925. }
  3926. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3927. /* time for ilb owner also to sleep */
  3928. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3929. if (atomic_read(&nohz.load_balancer) == cpu)
  3930. atomic_set(&nohz.load_balancer, -1);
  3931. return 0;
  3932. }
  3933. if (atomic_read(&nohz.load_balancer) == -1) {
  3934. /* make me the ilb owner */
  3935. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3936. return 1;
  3937. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3938. int new_ilb;
  3939. if (!(sched_smt_power_savings ||
  3940. sched_mc_power_savings))
  3941. return 1;
  3942. /*
  3943. * Check to see if there is a more power-efficient
  3944. * ilb.
  3945. */
  3946. new_ilb = find_new_ilb(cpu);
  3947. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3948. atomic_set(&nohz.load_balancer, -1);
  3949. resched_cpu(new_ilb);
  3950. return 0;
  3951. }
  3952. return 1;
  3953. }
  3954. } else {
  3955. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3956. return 0;
  3957. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3958. if (atomic_read(&nohz.load_balancer) == cpu)
  3959. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3960. BUG();
  3961. }
  3962. return 0;
  3963. }
  3964. #endif
  3965. static DEFINE_SPINLOCK(balancing);
  3966. /*
  3967. * It checks each scheduling domain to see if it is due to be balanced,
  3968. * and initiates a balancing operation if so.
  3969. *
  3970. * Balancing parameters are set up in arch_init_sched_domains.
  3971. */
  3972. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3973. {
  3974. int balance = 1;
  3975. struct rq *rq = cpu_rq(cpu);
  3976. unsigned long interval;
  3977. struct sched_domain *sd;
  3978. /* Earliest time when we have to do rebalance again */
  3979. unsigned long next_balance = jiffies + 60*HZ;
  3980. int update_next_balance = 0;
  3981. int need_serialize;
  3982. for_each_domain(cpu, sd) {
  3983. if (!(sd->flags & SD_LOAD_BALANCE))
  3984. continue;
  3985. interval = sd->balance_interval;
  3986. if (idle != CPU_IDLE)
  3987. interval *= sd->busy_factor;
  3988. /* scale ms to jiffies */
  3989. interval = msecs_to_jiffies(interval);
  3990. if (unlikely(!interval))
  3991. interval = 1;
  3992. if (interval > HZ*NR_CPUS/10)
  3993. interval = HZ*NR_CPUS/10;
  3994. need_serialize = sd->flags & SD_SERIALIZE;
  3995. if (need_serialize) {
  3996. if (!spin_trylock(&balancing))
  3997. goto out;
  3998. }
  3999. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4000. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4001. /*
  4002. * We've pulled tasks over so either we're no
  4003. * longer idle, or one of our SMT siblings is
  4004. * not idle.
  4005. */
  4006. idle = CPU_NOT_IDLE;
  4007. }
  4008. sd->last_balance = jiffies;
  4009. }
  4010. if (need_serialize)
  4011. spin_unlock(&balancing);
  4012. out:
  4013. if (time_after(next_balance, sd->last_balance + interval)) {
  4014. next_balance = sd->last_balance + interval;
  4015. update_next_balance = 1;
  4016. }
  4017. /*
  4018. * Stop the load balance at this level. There is another
  4019. * CPU in our sched group which is doing load balancing more
  4020. * actively.
  4021. */
  4022. if (!balance)
  4023. break;
  4024. }
  4025. /*
  4026. * next_balance will be updated only when there is a need.
  4027. * When the cpu is attached to null domain for ex, it will not be
  4028. * updated.
  4029. */
  4030. if (likely(update_next_balance))
  4031. rq->next_balance = next_balance;
  4032. }
  4033. /*
  4034. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4035. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4036. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4037. */
  4038. static void run_rebalance_domains(struct softirq_action *h)
  4039. {
  4040. int this_cpu = smp_processor_id();
  4041. struct rq *this_rq = cpu_rq(this_cpu);
  4042. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4043. CPU_IDLE : CPU_NOT_IDLE;
  4044. rebalance_domains(this_cpu, idle);
  4045. #ifdef CONFIG_NO_HZ
  4046. /*
  4047. * If this cpu is the owner for idle load balancing, then do the
  4048. * balancing on behalf of the other idle cpus whose ticks are
  4049. * stopped.
  4050. */
  4051. if (this_rq->idle_at_tick &&
  4052. atomic_read(&nohz.load_balancer) == this_cpu) {
  4053. struct rq *rq;
  4054. int balance_cpu;
  4055. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4056. if (balance_cpu == this_cpu)
  4057. continue;
  4058. /*
  4059. * If this cpu gets work to do, stop the load balancing
  4060. * work being done for other cpus. Next load
  4061. * balancing owner will pick it up.
  4062. */
  4063. if (need_resched())
  4064. break;
  4065. rebalance_domains(balance_cpu, CPU_IDLE);
  4066. rq = cpu_rq(balance_cpu);
  4067. if (time_after(this_rq->next_balance, rq->next_balance))
  4068. this_rq->next_balance = rq->next_balance;
  4069. }
  4070. }
  4071. #endif
  4072. }
  4073. static inline int on_null_domain(int cpu)
  4074. {
  4075. return !rcu_dereference(cpu_rq(cpu)->sd);
  4076. }
  4077. /*
  4078. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4079. *
  4080. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4081. * idle load balancing owner or decide to stop the periodic load balancing,
  4082. * if the whole system is idle.
  4083. */
  4084. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4085. {
  4086. #ifdef CONFIG_NO_HZ
  4087. /*
  4088. * If we were in the nohz mode recently and busy at the current
  4089. * scheduler tick, then check if we need to nominate new idle
  4090. * load balancer.
  4091. */
  4092. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4093. rq->in_nohz_recently = 0;
  4094. if (atomic_read(&nohz.load_balancer) == cpu) {
  4095. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4096. atomic_set(&nohz.load_balancer, -1);
  4097. }
  4098. if (atomic_read(&nohz.load_balancer) == -1) {
  4099. int ilb = find_new_ilb(cpu);
  4100. if (ilb < nr_cpu_ids)
  4101. resched_cpu(ilb);
  4102. }
  4103. }
  4104. /*
  4105. * If this cpu is idle and doing idle load balancing for all the
  4106. * cpus with ticks stopped, is it time for that to stop?
  4107. */
  4108. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4109. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4110. resched_cpu(cpu);
  4111. return;
  4112. }
  4113. /*
  4114. * If this cpu is idle and the idle load balancing is done by
  4115. * someone else, then no need raise the SCHED_SOFTIRQ
  4116. */
  4117. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4118. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4119. return;
  4120. #endif
  4121. /* Don't need to rebalance while attached to NULL domain */
  4122. if (time_after_eq(jiffies, rq->next_balance) &&
  4123. likely(!on_null_domain(cpu)))
  4124. raise_softirq(SCHED_SOFTIRQ);
  4125. }
  4126. #else /* CONFIG_SMP */
  4127. /*
  4128. * on UP we do not need to balance between CPUs:
  4129. */
  4130. static inline void idle_balance(int cpu, struct rq *rq)
  4131. {
  4132. }
  4133. #endif
  4134. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4135. EXPORT_PER_CPU_SYMBOL(kstat);
  4136. /*
  4137. * Return any ns on the sched_clock that have not yet been accounted in
  4138. * @p in case that task is currently running.
  4139. *
  4140. * Called with task_rq_lock() held on @rq.
  4141. */
  4142. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4143. {
  4144. u64 ns = 0;
  4145. if (task_current(rq, p)) {
  4146. update_rq_clock(rq);
  4147. ns = rq->clock - p->se.exec_start;
  4148. if ((s64)ns < 0)
  4149. ns = 0;
  4150. }
  4151. return ns;
  4152. }
  4153. unsigned long long task_delta_exec(struct task_struct *p)
  4154. {
  4155. unsigned long flags;
  4156. struct rq *rq;
  4157. u64 ns = 0;
  4158. rq = task_rq_lock(p, &flags);
  4159. ns = do_task_delta_exec(p, rq);
  4160. task_rq_unlock(rq, &flags);
  4161. return ns;
  4162. }
  4163. /*
  4164. * Return accounted runtime for the task.
  4165. * In case the task is currently running, return the runtime plus current's
  4166. * pending runtime that have not been accounted yet.
  4167. */
  4168. unsigned long long task_sched_runtime(struct task_struct *p)
  4169. {
  4170. unsigned long flags;
  4171. struct rq *rq;
  4172. u64 ns = 0;
  4173. rq = task_rq_lock(p, &flags);
  4174. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4175. task_rq_unlock(rq, &flags);
  4176. return ns;
  4177. }
  4178. /*
  4179. * Return sum_exec_runtime for the thread group.
  4180. * In case the task is currently running, return the sum plus current's
  4181. * pending runtime that have not been accounted yet.
  4182. *
  4183. * Note that the thread group might have other running tasks as well,
  4184. * so the return value not includes other pending runtime that other
  4185. * running tasks might have.
  4186. */
  4187. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4188. {
  4189. struct task_cputime totals;
  4190. unsigned long flags;
  4191. struct rq *rq;
  4192. u64 ns;
  4193. rq = task_rq_lock(p, &flags);
  4194. thread_group_cputime(p, &totals);
  4195. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4196. task_rq_unlock(rq, &flags);
  4197. return ns;
  4198. }
  4199. /*
  4200. * Account user cpu time to a process.
  4201. * @p: the process that the cpu time gets accounted to
  4202. * @cputime: the cpu time spent in user space since the last update
  4203. * @cputime_scaled: cputime scaled by cpu frequency
  4204. */
  4205. void account_user_time(struct task_struct *p, cputime_t cputime,
  4206. cputime_t cputime_scaled)
  4207. {
  4208. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4209. cputime64_t tmp;
  4210. /* Add user time to process. */
  4211. p->utime = cputime_add(p->utime, cputime);
  4212. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4213. account_group_user_time(p, cputime);
  4214. /* Add user time to cpustat. */
  4215. tmp = cputime_to_cputime64(cputime);
  4216. if (TASK_NICE(p) > 0)
  4217. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4218. else
  4219. cpustat->user = cputime64_add(cpustat->user, tmp);
  4220. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4221. /* Account for user time used */
  4222. acct_update_integrals(p);
  4223. }
  4224. /*
  4225. * Account guest cpu time to a process.
  4226. * @p: the process that the cpu time gets accounted to
  4227. * @cputime: the cpu time spent in virtual machine since the last update
  4228. * @cputime_scaled: cputime scaled by cpu frequency
  4229. */
  4230. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4231. cputime_t cputime_scaled)
  4232. {
  4233. cputime64_t tmp;
  4234. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4235. tmp = cputime_to_cputime64(cputime);
  4236. /* Add guest time to process. */
  4237. p->utime = cputime_add(p->utime, cputime);
  4238. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4239. account_group_user_time(p, cputime);
  4240. p->gtime = cputime_add(p->gtime, cputime);
  4241. /* Add guest time to cpustat. */
  4242. cpustat->user = cputime64_add(cpustat->user, tmp);
  4243. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4244. }
  4245. /*
  4246. * Account system cpu time to a process.
  4247. * @p: the process that the cpu time gets accounted to
  4248. * @hardirq_offset: the offset to subtract from hardirq_count()
  4249. * @cputime: the cpu time spent in kernel space since the last update
  4250. * @cputime_scaled: cputime scaled by cpu frequency
  4251. */
  4252. void account_system_time(struct task_struct *p, int hardirq_offset,
  4253. cputime_t cputime, cputime_t cputime_scaled)
  4254. {
  4255. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4256. cputime64_t tmp;
  4257. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4258. account_guest_time(p, cputime, cputime_scaled);
  4259. return;
  4260. }
  4261. /* Add system time to process. */
  4262. p->stime = cputime_add(p->stime, cputime);
  4263. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4264. account_group_system_time(p, cputime);
  4265. /* Add system time to cpustat. */
  4266. tmp = cputime_to_cputime64(cputime);
  4267. if (hardirq_count() - hardirq_offset)
  4268. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4269. else if (softirq_count())
  4270. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4271. else
  4272. cpustat->system = cputime64_add(cpustat->system, tmp);
  4273. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4274. /* Account for system time used */
  4275. acct_update_integrals(p);
  4276. }
  4277. /*
  4278. * Account for involuntary wait time.
  4279. * @steal: the cpu time spent in involuntary wait
  4280. */
  4281. void account_steal_time(cputime_t cputime)
  4282. {
  4283. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4284. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4285. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4286. }
  4287. /*
  4288. * Account for idle time.
  4289. * @cputime: the cpu time spent in idle wait
  4290. */
  4291. void account_idle_time(cputime_t cputime)
  4292. {
  4293. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4294. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4295. struct rq *rq = this_rq();
  4296. if (atomic_read(&rq->nr_iowait) > 0)
  4297. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4298. else
  4299. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4300. }
  4301. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4302. /*
  4303. * Account a single tick of cpu time.
  4304. * @p: the process that the cpu time gets accounted to
  4305. * @user_tick: indicates if the tick is a user or a system tick
  4306. */
  4307. void account_process_tick(struct task_struct *p, int user_tick)
  4308. {
  4309. cputime_t one_jiffy = jiffies_to_cputime(1);
  4310. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4311. struct rq *rq = this_rq();
  4312. if (user_tick)
  4313. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4314. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4315. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4316. one_jiffy_scaled);
  4317. else
  4318. account_idle_time(one_jiffy);
  4319. }
  4320. /*
  4321. * Account multiple ticks of steal time.
  4322. * @p: the process from which the cpu time has been stolen
  4323. * @ticks: number of stolen ticks
  4324. */
  4325. void account_steal_ticks(unsigned long ticks)
  4326. {
  4327. account_steal_time(jiffies_to_cputime(ticks));
  4328. }
  4329. /*
  4330. * Account multiple ticks of idle time.
  4331. * @ticks: number of stolen ticks
  4332. */
  4333. void account_idle_ticks(unsigned long ticks)
  4334. {
  4335. account_idle_time(jiffies_to_cputime(ticks));
  4336. }
  4337. #endif
  4338. /*
  4339. * Use precise platform statistics if available:
  4340. */
  4341. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4342. cputime_t task_utime(struct task_struct *p)
  4343. {
  4344. return p->utime;
  4345. }
  4346. cputime_t task_stime(struct task_struct *p)
  4347. {
  4348. return p->stime;
  4349. }
  4350. #else
  4351. cputime_t task_utime(struct task_struct *p)
  4352. {
  4353. clock_t utime = cputime_to_clock_t(p->utime),
  4354. total = utime + cputime_to_clock_t(p->stime);
  4355. u64 temp;
  4356. /*
  4357. * Use CFS's precise accounting:
  4358. */
  4359. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4360. if (total) {
  4361. temp *= utime;
  4362. do_div(temp, total);
  4363. }
  4364. utime = (clock_t)temp;
  4365. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4366. return p->prev_utime;
  4367. }
  4368. cputime_t task_stime(struct task_struct *p)
  4369. {
  4370. clock_t stime;
  4371. /*
  4372. * Use CFS's precise accounting. (we subtract utime from
  4373. * the total, to make sure the total observed by userspace
  4374. * grows monotonically - apps rely on that):
  4375. */
  4376. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4377. cputime_to_clock_t(task_utime(p));
  4378. if (stime >= 0)
  4379. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4380. return p->prev_stime;
  4381. }
  4382. #endif
  4383. inline cputime_t task_gtime(struct task_struct *p)
  4384. {
  4385. return p->gtime;
  4386. }
  4387. /*
  4388. * This function gets called by the timer code, with HZ frequency.
  4389. * We call it with interrupts disabled.
  4390. *
  4391. * It also gets called by the fork code, when changing the parent's
  4392. * timeslices.
  4393. */
  4394. void scheduler_tick(void)
  4395. {
  4396. int cpu = smp_processor_id();
  4397. struct rq *rq = cpu_rq(cpu);
  4398. struct task_struct *curr = rq->curr;
  4399. sched_clock_tick();
  4400. spin_lock(&rq->lock);
  4401. update_rq_clock(rq);
  4402. update_cpu_load(rq);
  4403. curr->sched_class->task_tick(rq, curr, 0);
  4404. spin_unlock(&rq->lock);
  4405. perf_counter_task_tick(curr, cpu);
  4406. #ifdef CONFIG_SMP
  4407. rq->idle_at_tick = idle_cpu(cpu);
  4408. trigger_load_balance(rq, cpu);
  4409. #endif
  4410. }
  4411. notrace unsigned long get_parent_ip(unsigned long addr)
  4412. {
  4413. if (in_lock_functions(addr)) {
  4414. addr = CALLER_ADDR2;
  4415. if (in_lock_functions(addr))
  4416. addr = CALLER_ADDR3;
  4417. }
  4418. return addr;
  4419. }
  4420. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4421. defined(CONFIG_PREEMPT_TRACER))
  4422. void __kprobes add_preempt_count(int val)
  4423. {
  4424. #ifdef CONFIG_DEBUG_PREEMPT
  4425. /*
  4426. * Underflow?
  4427. */
  4428. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4429. return;
  4430. #endif
  4431. preempt_count() += val;
  4432. #ifdef CONFIG_DEBUG_PREEMPT
  4433. /*
  4434. * Spinlock count overflowing soon?
  4435. */
  4436. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4437. PREEMPT_MASK - 10);
  4438. #endif
  4439. if (preempt_count() == val)
  4440. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4441. }
  4442. EXPORT_SYMBOL(add_preempt_count);
  4443. void __kprobes sub_preempt_count(int val)
  4444. {
  4445. #ifdef CONFIG_DEBUG_PREEMPT
  4446. /*
  4447. * Underflow?
  4448. */
  4449. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4450. return;
  4451. /*
  4452. * Is the spinlock portion underflowing?
  4453. */
  4454. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4455. !(preempt_count() & PREEMPT_MASK)))
  4456. return;
  4457. #endif
  4458. if (preempt_count() == val)
  4459. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4460. preempt_count() -= val;
  4461. }
  4462. EXPORT_SYMBOL(sub_preempt_count);
  4463. #endif
  4464. /*
  4465. * Print scheduling while atomic bug:
  4466. */
  4467. static noinline void __schedule_bug(struct task_struct *prev)
  4468. {
  4469. struct pt_regs *regs = get_irq_regs();
  4470. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4471. prev->comm, prev->pid, preempt_count());
  4472. debug_show_held_locks(prev);
  4473. print_modules();
  4474. if (irqs_disabled())
  4475. print_irqtrace_events(prev);
  4476. if (regs)
  4477. show_regs(regs);
  4478. else
  4479. dump_stack();
  4480. }
  4481. /*
  4482. * Various schedule()-time debugging checks and statistics:
  4483. */
  4484. static inline void schedule_debug(struct task_struct *prev)
  4485. {
  4486. /*
  4487. * Test if we are atomic. Since do_exit() needs to call into
  4488. * schedule() atomically, we ignore that path for now.
  4489. * Otherwise, whine if we are scheduling when we should not be.
  4490. */
  4491. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4492. __schedule_bug(prev);
  4493. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4494. schedstat_inc(this_rq(), sched_count);
  4495. #ifdef CONFIG_SCHEDSTATS
  4496. if (unlikely(prev->lock_depth >= 0)) {
  4497. schedstat_inc(this_rq(), bkl_count);
  4498. schedstat_inc(prev, sched_info.bkl_count);
  4499. }
  4500. #endif
  4501. }
  4502. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4503. {
  4504. if (prev->state == TASK_RUNNING) {
  4505. u64 runtime = prev->se.sum_exec_runtime;
  4506. runtime -= prev->se.prev_sum_exec_runtime;
  4507. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4508. /*
  4509. * In order to avoid avg_overlap growing stale when we are
  4510. * indeed overlapping and hence not getting put to sleep, grow
  4511. * the avg_overlap on preemption.
  4512. *
  4513. * We use the average preemption runtime because that
  4514. * correlates to the amount of cache footprint a task can
  4515. * build up.
  4516. */
  4517. update_avg(&prev->se.avg_overlap, runtime);
  4518. }
  4519. prev->sched_class->put_prev_task(rq, prev);
  4520. }
  4521. /*
  4522. * Pick up the highest-prio task:
  4523. */
  4524. static inline struct task_struct *
  4525. pick_next_task(struct rq *rq)
  4526. {
  4527. const struct sched_class *class;
  4528. struct task_struct *p;
  4529. /*
  4530. * Optimization: we know that if all tasks are in
  4531. * the fair class we can call that function directly:
  4532. */
  4533. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4534. p = fair_sched_class.pick_next_task(rq);
  4535. if (likely(p))
  4536. return p;
  4537. }
  4538. class = sched_class_highest;
  4539. for ( ; ; ) {
  4540. p = class->pick_next_task(rq);
  4541. if (p)
  4542. return p;
  4543. /*
  4544. * Will never be NULL as the idle class always
  4545. * returns a non-NULL p:
  4546. */
  4547. class = class->next;
  4548. }
  4549. }
  4550. /*
  4551. * schedule() is the main scheduler function.
  4552. */
  4553. asmlinkage void __sched schedule(void)
  4554. {
  4555. struct task_struct *prev, *next;
  4556. unsigned long *switch_count;
  4557. struct rq *rq;
  4558. int cpu;
  4559. need_resched:
  4560. preempt_disable();
  4561. cpu = smp_processor_id();
  4562. rq = cpu_rq(cpu);
  4563. rcu_qsctr_inc(cpu);
  4564. prev = rq->curr;
  4565. switch_count = &prev->nivcsw;
  4566. release_kernel_lock(prev);
  4567. need_resched_nonpreemptible:
  4568. schedule_debug(prev);
  4569. if (sched_feat(HRTICK))
  4570. hrtick_clear(rq);
  4571. spin_lock_irq(&rq->lock);
  4572. update_rq_clock(rq);
  4573. clear_tsk_need_resched(prev);
  4574. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4575. if (unlikely(signal_pending_state(prev->state, prev)))
  4576. prev->state = TASK_RUNNING;
  4577. else
  4578. deactivate_task(rq, prev, 1);
  4579. switch_count = &prev->nvcsw;
  4580. }
  4581. #ifdef CONFIG_SMP
  4582. if (prev->sched_class->pre_schedule)
  4583. prev->sched_class->pre_schedule(rq, prev);
  4584. #endif
  4585. if (unlikely(!rq->nr_running))
  4586. idle_balance(cpu, rq);
  4587. put_prev_task(rq, prev);
  4588. next = pick_next_task(rq);
  4589. if (likely(prev != next)) {
  4590. sched_info_switch(prev, next);
  4591. perf_counter_task_sched_out(prev, next, cpu);
  4592. rq->nr_switches++;
  4593. rq->curr = next;
  4594. ++*switch_count;
  4595. context_switch(rq, prev, next); /* unlocks the rq */
  4596. /*
  4597. * the context switch might have flipped the stack from under
  4598. * us, hence refresh the local variables.
  4599. */
  4600. cpu = smp_processor_id();
  4601. rq = cpu_rq(cpu);
  4602. } else
  4603. spin_unlock_irq(&rq->lock);
  4604. if (unlikely(reacquire_kernel_lock(current) < 0))
  4605. goto need_resched_nonpreemptible;
  4606. preempt_enable_no_resched();
  4607. if (need_resched())
  4608. goto need_resched;
  4609. }
  4610. EXPORT_SYMBOL(schedule);
  4611. #ifdef CONFIG_SMP
  4612. /*
  4613. * Look out! "owner" is an entirely speculative pointer
  4614. * access and not reliable.
  4615. */
  4616. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4617. {
  4618. unsigned int cpu;
  4619. struct rq *rq;
  4620. if (!sched_feat(OWNER_SPIN))
  4621. return 0;
  4622. #ifdef CONFIG_DEBUG_PAGEALLOC
  4623. /*
  4624. * Need to access the cpu field knowing that
  4625. * DEBUG_PAGEALLOC could have unmapped it if
  4626. * the mutex owner just released it and exited.
  4627. */
  4628. if (probe_kernel_address(&owner->cpu, cpu))
  4629. goto out;
  4630. #else
  4631. cpu = owner->cpu;
  4632. #endif
  4633. /*
  4634. * Even if the access succeeded (likely case),
  4635. * the cpu field may no longer be valid.
  4636. */
  4637. if (cpu >= nr_cpumask_bits)
  4638. goto out;
  4639. /*
  4640. * We need to validate that we can do a
  4641. * get_cpu() and that we have the percpu area.
  4642. */
  4643. if (!cpu_online(cpu))
  4644. goto out;
  4645. rq = cpu_rq(cpu);
  4646. for (;;) {
  4647. /*
  4648. * Owner changed, break to re-assess state.
  4649. */
  4650. if (lock->owner != owner)
  4651. break;
  4652. /*
  4653. * Is that owner really running on that cpu?
  4654. */
  4655. if (task_thread_info(rq->curr) != owner || need_resched())
  4656. return 0;
  4657. cpu_relax();
  4658. }
  4659. out:
  4660. return 1;
  4661. }
  4662. #endif
  4663. #ifdef CONFIG_PREEMPT
  4664. /*
  4665. * this is the entry point to schedule() from in-kernel preemption
  4666. * off of preempt_enable. Kernel preemptions off return from interrupt
  4667. * occur there and call schedule directly.
  4668. */
  4669. asmlinkage void __sched preempt_schedule(void)
  4670. {
  4671. struct thread_info *ti = current_thread_info();
  4672. /*
  4673. * If there is a non-zero preempt_count or interrupts are disabled,
  4674. * we do not want to preempt the current task. Just return..
  4675. */
  4676. if (likely(ti->preempt_count || irqs_disabled()))
  4677. return;
  4678. do {
  4679. add_preempt_count(PREEMPT_ACTIVE);
  4680. schedule();
  4681. sub_preempt_count(PREEMPT_ACTIVE);
  4682. /*
  4683. * Check again in case we missed a preemption opportunity
  4684. * between schedule and now.
  4685. */
  4686. barrier();
  4687. } while (need_resched());
  4688. }
  4689. EXPORT_SYMBOL(preempt_schedule);
  4690. /*
  4691. * this is the entry point to schedule() from kernel preemption
  4692. * off of irq context.
  4693. * Note, that this is called and return with irqs disabled. This will
  4694. * protect us against recursive calling from irq.
  4695. */
  4696. asmlinkage void __sched preempt_schedule_irq(void)
  4697. {
  4698. struct thread_info *ti = current_thread_info();
  4699. /* Catch callers which need to be fixed */
  4700. BUG_ON(ti->preempt_count || !irqs_disabled());
  4701. do {
  4702. add_preempt_count(PREEMPT_ACTIVE);
  4703. local_irq_enable();
  4704. schedule();
  4705. local_irq_disable();
  4706. sub_preempt_count(PREEMPT_ACTIVE);
  4707. /*
  4708. * Check again in case we missed a preemption opportunity
  4709. * between schedule and now.
  4710. */
  4711. barrier();
  4712. } while (need_resched());
  4713. }
  4714. #endif /* CONFIG_PREEMPT */
  4715. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4716. void *key)
  4717. {
  4718. return try_to_wake_up(curr->private, mode, sync);
  4719. }
  4720. EXPORT_SYMBOL(default_wake_function);
  4721. /*
  4722. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4723. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4724. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4725. *
  4726. * There are circumstances in which we can try to wake a task which has already
  4727. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4728. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4729. */
  4730. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4731. int nr_exclusive, int sync, void *key)
  4732. {
  4733. wait_queue_t *curr, *next;
  4734. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4735. unsigned flags = curr->flags;
  4736. if (curr->func(curr, mode, sync, key) &&
  4737. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4738. break;
  4739. }
  4740. }
  4741. /**
  4742. * __wake_up - wake up threads blocked on a waitqueue.
  4743. * @q: the waitqueue
  4744. * @mode: which threads
  4745. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4746. * @key: is directly passed to the wakeup function
  4747. *
  4748. * It may be assumed that this function implies a write memory barrier before
  4749. * changing the task state if and only if any tasks are woken up.
  4750. */
  4751. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4752. int nr_exclusive, void *key)
  4753. {
  4754. unsigned long flags;
  4755. spin_lock_irqsave(&q->lock, flags);
  4756. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4757. spin_unlock_irqrestore(&q->lock, flags);
  4758. }
  4759. EXPORT_SYMBOL(__wake_up);
  4760. /*
  4761. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4762. */
  4763. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4764. {
  4765. __wake_up_common(q, mode, 1, 0, NULL);
  4766. }
  4767. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4768. {
  4769. __wake_up_common(q, mode, 1, 0, key);
  4770. }
  4771. /**
  4772. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4773. * @q: the waitqueue
  4774. * @mode: which threads
  4775. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4776. * @key: opaque value to be passed to wakeup targets
  4777. *
  4778. * The sync wakeup differs that the waker knows that it will schedule
  4779. * away soon, so while the target thread will be woken up, it will not
  4780. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4781. * with each other. This can prevent needless bouncing between CPUs.
  4782. *
  4783. * On UP it can prevent extra preemption.
  4784. *
  4785. * It may be assumed that this function implies a write memory barrier before
  4786. * changing the task state if and only if any tasks are woken up.
  4787. */
  4788. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4789. int nr_exclusive, void *key)
  4790. {
  4791. unsigned long flags;
  4792. int sync = 1;
  4793. if (unlikely(!q))
  4794. return;
  4795. if (unlikely(!nr_exclusive))
  4796. sync = 0;
  4797. spin_lock_irqsave(&q->lock, flags);
  4798. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4799. spin_unlock_irqrestore(&q->lock, flags);
  4800. }
  4801. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4802. /*
  4803. * __wake_up_sync - see __wake_up_sync_key()
  4804. */
  4805. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4806. {
  4807. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4808. }
  4809. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4810. /**
  4811. * complete: - signals a single thread waiting on this completion
  4812. * @x: holds the state of this particular completion
  4813. *
  4814. * This will wake up a single thread waiting on this completion. Threads will be
  4815. * awakened in the same order in which they were queued.
  4816. *
  4817. * See also complete_all(), wait_for_completion() and related routines.
  4818. *
  4819. * It may be assumed that this function implies a write memory barrier before
  4820. * changing the task state if and only if any tasks are woken up.
  4821. */
  4822. void complete(struct completion *x)
  4823. {
  4824. unsigned long flags;
  4825. spin_lock_irqsave(&x->wait.lock, flags);
  4826. x->done++;
  4827. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4828. spin_unlock_irqrestore(&x->wait.lock, flags);
  4829. }
  4830. EXPORT_SYMBOL(complete);
  4831. /**
  4832. * complete_all: - signals all threads waiting on this completion
  4833. * @x: holds the state of this particular completion
  4834. *
  4835. * This will wake up all threads waiting on this particular completion event.
  4836. *
  4837. * It may be assumed that this function implies a write memory barrier before
  4838. * changing the task state if and only if any tasks are woken up.
  4839. */
  4840. void complete_all(struct completion *x)
  4841. {
  4842. unsigned long flags;
  4843. spin_lock_irqsave(&x->wait.lock, flags);
  4844. x->done += UINT_MAX/2;
  4845. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4846. spin_unlock_irqrestore(&x->wait.lock, flags);
  4847. }
  4848. EXPORT_SYMBOL(complete_all);
  4849. static inline long __sched
  4850. do_wait_for_common(struct completion *x, long timeout, int state)
  4851. {
  4852. if (!x->done) {
  4853. DECLARE_WAITQUEUE(wait, current);
  4854. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4855. __add_wait_queue_tail(&x->wait, &wait);
  4856. do {
  4857. if (signal_pending_state(state, current)) {
  4858. timeout = -ERESTARTSYS;
  4859. break;
  4860. }
  4861. __set_current_state(state);
  4862. spin_unlock_irq(&x->wait.lock);
  4863. timeout = schedule_timeout(timeout);
  4864. spin_lock_irq(&x->wait.lock);
  4865. } while (!x->done && timeout);
  4866. __remove_wait_queue(&x->wait, &wait);
  4867. if (!x->done)
  4868. return timeout;
  4869. }
  4870. x->done--;
  4871. return timeout ?: 1;
  4872. }
  4873. static long __sched
  4874. wait_for_common(struct completion *x, long timeout, int state)
  4875. {
  4876. might_sleep();
  4877. spin_lock_irq(&x->wait.lock);
  4878. timeout = do_wait_for_common(x, timeout, state);
  4879. spin_unlock_irq(&x->wait.lock);
  4880. return timeout;
  4881. }
  4882. /**
  4883. * wait_for_completion: - waits for completion of a task
  4884. * @x: holds the state of this particular completion
  4885. *
  4886. * This waits to be signaled for completion of a specific task. It is NOT
  4887. * interruptible and there is no timeout.
  4888. *
  4889. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4890. * and interrupt capability. Also see complete().
  4891. */
  4892. void __sched wait_for_completion(struct completion *x)
  4893. {
  4894. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4895. }
  4896. EXPORT_SYMBOL(wait_for_completion);
  4897. /**
  4898. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4899. * @x: holds the state of this particular completion
  4900. * @timeout: timeout value in jiffies
  4901. *
  4902. * This waits for either a completion of a specific task to be signaled or for a
  4903. * specified timeout to expire. The timeout is in jiffies. It is not
  4904. * interruptible.
  4905. */
  4906. unsigned long __sched
  4907. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4908. {
  4909. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4910. }
  4911. EXPORT_SYMBOL(wait_for_completion_timeout);
  4912. /**
  4913. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4914. * @x: holds the state of this particular completion
  4915. *
  4916. * This waits for completion of a specific task to be signaled. It is
  4917. * interruptible.
  4918. */
  4919. int __sched wait_for_completion_interruptible(struct completion *x)
  4920. {
  4921. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4922. if (t == -ERESTARTSYS)
  4923. return t;
  4924. return 0;
  4925. }
  4926. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4927. /**
  4928. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4929. * @x: holds the state of this particular completion
  4930. * @timeout: timeout value in jiffies
  4931. *
  4932. * This waits for either a completion of a specific task to be signaled or for a
  4933. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4934. */
  4935. unsigned long __sched
  4936. wait_for_completion_interruptible_timeout(struct completion *x,
  4937. unsigned long timeout)
  4938. {
  4939. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4940. }
  4941. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4942. /**
  4943. * wait_for_completion_killable: - waits for completion of a task (killable)
  4944. * @x: holds the state of this particular completion
  4945. *
  4946. * This waits to be signaled for completion of a specific task. It can be
  4947. * interrupted by a kill signal.
  4948. */
  4949. int __sched wait_for_completion_killable(struct completion *x)
  4950. {
  4951. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4952. if (t == -ERESTARTSYS)
  4953. return t;
  4954. return 0;
  4955. }
  4956. EXPORT_SYMBOL(wait_for_completion_killable);
  4957. /**
  4958. * try_wait_for_completion - try to decrement a completion without blocking
  4959. * @x: completion structure
  4960. *
  4961. * Returns: 0 if a decrement cannot be done without blocking
  4962. * 1 if a decrement succeeded.
  4963. *
  4964. * If a completion is being used as a counting completion,
  4965. * attempt to decrement the counter without blocking. This
  4966. * enables us to avoid waiting if the resource the completion
  4967. * is protecting is not available.
  4968. */
  4969. bool try_wait_for_completion(struct completion *x)
  4970. {
  4971. int ret = 1;
  4972. spin_lock_irq(&x->wait.lock);
  4973. if (!x->done)
  4974. ret = 0;
  4975. else
  4976. x->done--;
  4977. spin_unlock_irq(&x->wait.lock);
  4978. return ret;
  4979. }
  4980. EXPORT_SYMBOL(try_wait_for_completion);
  4981. /**
  4982. * completion_done - Test to see if a completion has any waiters
  4983. * @x: completion structure
  4984. *
  4985. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4986. * 1 if there are no waiters.
  4987. *
  4988. */
  4989. bool completion_done(struct completion *x)
  4990. {
  4991. int ret = 1;
  4992. spin_lock_irq(&x->wait.lock);
  4993. if (!x->done)
  4994. ret = 0;
  4995. spin_unlock_irq(&x->wait.lock);
  4996. return ret;
  4997. }
  4998. EXPORT_SYMBOL(completion_done);
  4999. static long __sched
  5000. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5001. {
  5002. unsigned long flags;
  5003. wait_queue_t wait;
  5004. init_waitqueue_entry(&wait, current);
  5005. __set_current_state(state);
  5006. spin_lock_irqsave(&q->lock, flags);
  5007. __add_wait_queue(q, &wait);
  5008. spin_unlock(&q->lock);
  5009. timeout = schedule_timeout(timeout);
  5010. spin_lock_irq(&q->lock);
  5011. __remove_wait_queue(q, &wait);
  5012. spin_unlock_irqrestore(&q->lock, flags);
  5013. return timeout;
  5014. }
  5015. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5016. {
  5017. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5018. }
  5019. EXPORT_SYMBOL(interruptible_sleep_on);
  5020. long __sched
  5021. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5022. {
  5023. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5024. }
  5025. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5026. void __sched sleep_on(wait_queue_head_t *q)
  5027. {
  5028. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5029. }
  5030. EXPORT_SYMBOL(sleep_on);
  5031. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5032. {
  5033. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5034. }
  5035. EXPORT_SYMBOL(sleep_on_timeout);
  5036. #ifdef CONFIG_RT_MUTEXES
  5037. /*
  5038. * rt_mutex_setprio - set the current priority of a task
  5039. * @p: task
  5040. * @prio: prio value (kernel-internal form)
  5041. *
  5042. * This function changes the 'effective' priority of a task. It does
  5043. * not touch ->normal_prio like __setscheduler().
  5044. *
  5045. * Used by the rt_mutex code to implement priority inheritance logic.
  5046. */
  5047. void rt_mutex_setprio(struct task_struct *p, int prio)
  5048. {
  5049. unsigned long flags;
  5050. int oldprio, on_rq, running;
  5051. struct rq *rq;
  5052. const struct sched_class *prev_class = p->sched_class;
  5053. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5054. rq = task_rq_lock(p, &flags);
  5055. update_rq_clock(rq);
  5056. oldprio = p->prio;
  5057. on_rq = p->se.on_rq;
  5058. running = task_current(rq, p);
  5059. if (on_rq)
  5060. dequeue_task(rq, p, 0);
  5061. if (running)
  5062. p->sched_class->put_prev_task(rq, p);
  5063. if (rt_prio(prio))
  5064. p->sched_class = &rt_sched_class;
  5065. else
  5066. p->sched_class = &fair_sched_class;
  5067. p->prio = prio;
  5068. if (running)
  5069. p->sched_class->set_curr_task(rq);
  5070. if (on_rq) {
  5071. enqueue_task(rq, p, 0);
  5072. check_class_changed(rq, p, prev_class, oldprio, running);
  5073. }
  5074. task_rq_unlock(rq, &flags);
  5075. }
  5076. #endif
  5077. void set_user_nice(struct task_struct *p, long nice)
  5078. {
  5079. int old_prio, delta, on_rq;
  5080. unsigned long flags;
  5081. struct rq *rq;
  5082. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5083. return;
  5084. /*
  5085. * We have to be careful, if called from sys_setpriority(),
  5086. * the task might be in the middle of scheduling on another CPU.
  5087. */
  5088. rq = task_rq_lock(p, &flags);
  5089. update_rq_clock(rq);
  5090. /*
  5091. * The RT priorities are set via sched_setscheduler(), but we still
  5092. * allow the 'normal' nice value to be set - but as expected
  5093. * it wont have any effect on scheduling until the task is
  5094. * SCHED_FIFO/SCHED_RR:
  5095. */
  5096. if (task_has_rt_policy(p)) {
  5097. p->static_prio = NICE_TO_PRIO(nice);
  5098. goto out_unlock;
  5099. }
  5100. on_rq = p->se.on_rq;
  5101. if (on_rq)
  5102. dequeue_task(rq, p, 0);
  5103. p->static_prio = NICE_TO_PRIO(nice);
  5104. set_load_weight(p);
  5105. old_prio = p->prio;
  5106. p->prio = effective_prio(p);
  5107. delta = p->prio - old_prio;
  5108. if (on_rq) {
  5109. enqueue_task(rq, p, 0);
  5110. /*
  5111. * If the task increased its priority or is running and
  5112. * lowered its priority, then reschedule its CPU:
  5113. */
  5114. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5115. resched_task(rq->curr);
  5116. }
  5117. out_unlock:
  5118. task_rq_unlock(rq, &flags);
  5119. }
  5120. EXPORT_SYMBOL(set_user_nice);
  5121. /*
  5122. * can_nice - check if a task can reduce its nice value
  5123. * @p: task
  5124. * @nice: nice value
  5125. */
  5126. int can_nice(const struct task_struct *p, const int nice)
  5127. {
  5128. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5129. int nice_rlim = 20 - nice;
  5130. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5131. capable(CAP_SYS_NICE));
  5132. }
  5133. #ifdef __ARCH_WANT_SYS_NICE
  5134. /*
  5135. * sys_nice - change the priority of the current process.
  5136. * @increment: priority increment
  5137. *
  5138. * sys_setpriority is a more generic, but much slower function that
  5139. * does similar things.
  5140. */
  5141. SYSCALL_DEFINE1(nice, int, increment)
  5142. {
  5143. long nice, retval;
  5144. /*
  5145. * Setpriority might change our priority at the same moment.
  5146. * We don't have to worry. Conceptually one call occurs first
  5147. * and we have a single winner.
  5148. */
  5149. if (increment < -40)
  5150. increment = -40;
  5151. if (increment > 40)
  5152. increment = 40;
  5153. nice = TASK_NICE(current) + increment;
  5154. if (nice < -20)
  5155. nice = -20;
  5156. if (nice > 19)
  5157. nice = 19;
  5158. if (increment < 0 && !can_nice(current, nice))
  5159. return -EPERM;
  5160. retval = security_task_setnice(current, nice);
  5161. if (retval)
  5162. return retval;
  5163. set_user_nice(current, nice);
  5164. return 0;
  5165. }
  5166. #endif
  5167. /**
  5168. * task_prio - return the priority value of a given task.
  5169. * @p: the task in question.
  5170. *
  5171. * This is the priority value as seen by users in /proc.
  5172. * RT tasks are offset by -200. Normal tasks are centered
  5173. * around 0, value goes from -16 to +15.
  5174. */
  5175. int task_prio(const struct task_struct *p)
  5176. {
  5177. return p->prio - MAX_RT_PRIO;
  5178. }
  5179. /**
  5180. * task_nice - return the nice value of a given task.
  5181. * @p: the task in question.
  5182. */
  5183. int task_nice(const struct task_struct *p)
  5184. {
  5185. return TASK_NICE(p);
  5186. }
  5187. EXPORT_SYMBOL(task_nice);
  5188. /**
  5189. * idle_cpu - is a given cpu idle currently?
  5190. * @cpu: the processor in question.
  5191. */
  5192. int idle_cpu(int cpu)
  5193. {
  5194. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5195. }
  5196. /**
  5197. * idle_task - return the idle task for a given cpu.
  5198. * @cpu: the processor in question.
  5199. */
  5200. struct task_struct *idle_task(int cpu)
  5201. {
  5202. return cpu_rq(cpu)->idle;
  5203. }
  5204. /**
  5205. * find_process_by_pid - find a process with a matching PID value.
  5206. * @pid: the pid in question.
  5207. */
  5208. static struct task_struct *find_process_by_pid(pid_t pid)
  5209. {
  5210. return pid ? find_task_by_vpid(pid) : current;
  5211. }
  5212. /* Actually do priority change: must hold rq lock. */
  5213. static void
  5214. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5215. {
  5216. BUG_ON(p->se.on_rq);
  5217. p->policy = policy;
  5218. switch (p->policy) {
  5219. case SCHED_NORMAL:
  5220. case SCHED_BATCH:
  5221. case SCHED_IDLE:
  5222. p->sched_class = &fair_sched_class;
  5223. break;
  5224. case SCHED_FIFO:
  5225. case SCHED_RR:
  5226. p->sched_class = &rt_sched_class;
  5227. break;
  5228. }
  5229. p->rt_priority = prio;
  5230. p->normal_prio = normal_prio(p);
  5231. /* we are holding p->pi_lock already */
  5232. p->prio = rt_mutex_getprio(p);
  5233. set_load_weight(p);
  5234. }
  5235. /*
  5236. * check the target process has a UID that matches the current process's
  5237. */
  5238. static bool check_same_owner(struct task_struct *p)
  5239. {
  5240. const struct cred *cred = current_cred(), *pcred;
  5241. bool match;
  5242. rcu_read_lock();
  5243. pcred = __task_cred(p);
  5244. match = (cred->euid == pcred->euid ||
  5245. cred->euid == pcred->uid);
  5246. rcu_read_unlock();
  5247. return match;
  5248. }
  5249. static int __sched_setscheduler(struct task_struct *p, int policy,
  5250. struct sched_param *param, bool user)
  5251. {
  5252. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5253. unsigned long flags;
  5254. const struct sched_class *prev_class = p->sched_class;
  5255. struct rq *rq;
  5256. int reset_on_fork;
  5257. /* may grab non-irq protected spin_locks */
  5258. BUG_ON(in_interrupt());
  5259. recheck:
  5260. /* double check policy once rq lock held */
  5261. if (policy < 0) {
  5262. reset_on_fork = p->sched_reset_on_fork;
  5263. policy = oldpolicy = p->policy;
  5264. } else {
  5265. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5266. policy &= ~SCHED_RESET_ON_FORK;
  5267. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5268. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5269. policy != SCHED_IDLE)
  5270. return -EINVAL;
  5271. }
  5272. /*
  5273. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5274. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5275. * SCHED_BATCH and SCHED_IDLE is 0.
  5276. */
  5277. if (param->sched_priority < 0 ||
  5278. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5279. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5280. return -EINVAL;
  5281. if (rt_policy(policy) != (param->sched_priority != 0))
  5282. return -EINVAL;
  5283. /*
  5284. * Allow unprivileged RT tasks to decrease priority:
  5285. */
  5286. if (user && !capable(CAP_SYS_NICE)) {
  5287. if (rt_policy(policy)) {
  5288. unsigned long rlim_rtprio;
  5289. if (!lock_task_sighand(p, &flags))
  5290. return -ESRCH;
  5291. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5292. unlock_task_sighand(p, &flags);
  5293. /* can't set/change the rt policy */
  5294. if (policy != p->policy && !rlim_rtprio)
  5295. return -EPERM;
  5296. /* can't increase priority */
  5297. if (param->sched_priority > p->rt_priority &&
  5298. param->sched_priority > rlim_rtprio)
  5299. return -EPERM;
  5300. }
  5301. /*
  5302. * Like positive nice levels, dont allow tasks to
  5303. * move out of SCHED_IDLE either:
  5304. */
  5305. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5306. return -EPERM;
  5307. /* can't change other user's priorities */
  5308. if (!check_same_owner(p))
  5309. return -EPERM;
  5310. /* Normal users shall not reset the sched_reset_on_fork flag */
  5311. if (p->sched_reset_on_fork && !reset_on_fork)
  5312. return -EPERM;
  5313. }
  5314. if (user) {
  5315. #ifdef CONFIG_RT_GROUP_SCHED
  5316. /*
  5317. * Do not allow realtime tasks into groups that have no runtime
  5318. * assigned.
  5319. */
  5320. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5321. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5322. return -EPERM;
  5323. #endif
  5324. retval = security_task_setscheduler(p, policy, param);
  5325. if (retval)
  5326. return retval;
  5327. }
  5328. /*
  5329. * make sure no PI-waiters arrive (or leave) while we are
  5330. * changing the priority of the task:
  5331. */
  5332. spin_lock_irqsave(&p->pi_lock, flags);
  5333. /*
  5334. * To be able to change p->policy safely, the apropriate
  5335. * runqueue lock must be held.
  5336. */
  5337. rq = __task_rq_lock(p);
  5338. /* recheck policy now with rq lock held */
  5339. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5340. policy = oldpolicy = -1;
  5341. __task_rq_unlock(rq);
  5342. spin_unlock_irqrestore(&p->pi_lock, flags);
  5343. goto recheck;
  5344. }
  5345. update_rq_clock(rq);
  5346. on_rq = p->se.on_rq;
  5347. running = task_current(rq, p);
  5348. if (on_rq)
  5349. deactivate_task(rq, p, 0);
  5350. if (running)
  5351. p->sched_class->put_prev_task(rq, p);
  5352. p->sched_reset_on_fork = reset_on_fork;
  5353. oldprio = p->prio;
  5354. __setscheduler(rq, p, policy, param->sched_priority);
  5355. if (running)
  5356. p->sched_class->set_curr_task(rq);
  5357. if (on_rq) {
  5358. activate_task(rq, p, 0);
  5359. check_class_changed(rq, p, prev_class, oldprio, running);
  5360. }
  5361. __task_rq_unlock(rq);
  5362. spin_unlock_irqrestore(&p->pi_lock, flags);
  5363. rt_mutex_adjust_pi(p);
  5364. return 0;
  5365. }
  5366. /**
  5367. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5368. * @p: the task in question.
  5369. * @policy: new policy.
  5370. * @param: structure containing the new RT priority.
  5371. *
  5372. * NOTE that the task may be already dead.
  5373. */
  5374. int sched_setscheduler(struct task_struct *p, int policy,
  5375. struct sched_param *param)
  5376. {
  5377. return __sched_setscheduler(p, policy, param, true);
  5378. }
  5379. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5380. /**
  5381. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5382. * @p: the task in question.
  5383. * @policy: new policy.
  5384. * @param: structure containing the new RT priority.
  5385. *
  5386. * Just like sched_setscheduler, only don't bother checking if the
  5387. * current context has permission. For example, this is needed in
  5388. * stop_machine(): we create temporary high priority worker threads,
  5389. * but our caller might not have that capability.
  5390. */
  5391. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5392. struct sched_param *param)
  5393. {
  5394. return __sched_setscheduler(p, policy, param, false);
  5395. }
  5396. static int
  5397. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5398. {
  5399. struct sched_param lparam;
  5400. struct task_struct *p;
  5401. int retval;
  5402. if (!param || pid < 0)
  5403. return -EINVAL;
  5404. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5405. return -EFAULT;
  5406. rcu_read_lock();
  5407. retval = -ESRCH;
  5408. p = find_process_by_pid(pid);
  5409. if (p != NULL)
  5410. retval = sched_setscheduler(p, policy, &lparam);
  5411. rcu_read_unlock();
  5412. return retval;
  5413. }
  5414. /**
  5415. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5416. * @pid: the pid in question.
  5417. * @policy: new policy.
  5418. * @param: structure containing the new RT priority.
  5419. */
  5420. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5421. struct sched_param __user *, param)
  5422. {
  5423. /* negative values for policy are not valid */
  5424. if (policy < 0)
  5425. return -EINVAL;
  5426. return do_sched_setscheduler(pid, policy, param);
  5427. }
  5428. /**
  5429. * sys_sched_setparam - set/change the RT priority of a thread
  5430. * @pid: the pid in question.
  5431. * @param: structure containing the new RT priority.
  5432. */
  5433. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5434. {
  5435. return do_sched_setscheduler(pid, -1, param);
  5436. }
  5437. /**
  5438. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5439. * @pid: the pid in question.
  5440. */
  5441. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5442. {
  5443. struct task_struct *p;
  5444. int retval;
  5445. if (pid < 0)
  5446. return -EINVAL;
  5447. retval = -ESRCH;
  5448. read_lock(&tasklist_lock);
  5449. p = find_process_by_pid(pid);
  5450. if (p) {
  5451. retval = security_task_getscheduler(p);
  5452. if (!retval)
  5453. retval = p->policy
  5454. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5455. }
  5456. read_unlock(&tasklist_lock);
  5457. return retval;
  5458. }
  5459. /**
  5460. * sys_sched_getparam - get the RT priority of a thread
  5461. * @pid: the pid in question.
  5462. * @param: structure containing the RT priority.
  5463. */
  5464. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5465. {
  5466. struct sched_param lp;
  5467. struct task_struct *p;
  5468. int retval;
  5469. if (!param || pid < 0)
  5470. return -EINVAL;
  5471. read_lock(&tasklist_lock);
  5472. p = find_process_by_pid(pid);
  5473. retval = -ESRCH;
  5474. if (!p)
  5475. goto out_unlock;
  5476. retval = security_task_getscheduler(p);
  5477. if (retval)
  5478. goto out_unlock;
  5479. lp.sched_priority = p->rt_priority;
  5480. read_unlock(&tasklist_lock);
  5481. /*
  5482. * This one might sleep, we cannot do it with a spinlock held ...
  5483. */
  5484. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5485. return retval;
  5486. out_unlock:
  5487. read_unlock(&tasklist_lock);
  5488. return retval;
  5489. }
  5490. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5491. {
  5492. cpumask_var_t cpus_allowed, new_mask;
  5493. struct task_struct *p;
  5494. int retval;
  5495. get_online_cpus();
  5496. read_lock(&tasklist_lock);
  5497. p = find_process_by_pid(pid);
  5498. if (!p) {
  5499. read_unlock(&tasklist_lock);
  5500. put_online_cpus();
  5501. return -ESRCH;
  5502. }
  5503. /*
  5504. * It is not safe to call set_cpus_allowed with the
  5505. * tasklist_lock held. We will bump the task_struct's
  5506. * usage count and then drop tasklist_lock.
  5507. */
  5508. get_task_struct(p);
  5509. read_unlock(&tasklist_lock);
  5510. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5511. retval = -ENOMEM;
  5512. goto out_put_task;
  5513. }
  5514. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5515. retval = -ENOMEM;
  5516. goto out_free_cpus_allowed;
  5517. }
  5518. retval = -EPERM;
  5519. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5520. goto out_unlock;
  5521. retval = security_task_setscheduler(p, 0, NULL);
  5522. if (retval)
  5523. goto out_unlock;
  5524. cpuset_cpus_allowed(p, cpus_allowed);
  5525. cpumask_and(new_mask, in_mask, cpus_allowed);
  5526. again:
  5527. retval = set_cpus_allowed_ptr(p, new_mask);
  5528. if (!retval) {
  5529. cpuset_cpus_allowed(p, cpus_allowed);
  5530. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5531. /*
  5532. * We must have raced with a concurrent cpuset
  5533. * update. Just reset the cpus_allowed to the
  5534. * cpuset's cpus_allowed
  5535. */
  5536. cpumask_copy(new_mask, cpus_allowed);
  5537. goto again;
  5538. }
  5539. }
  5540. out_unlock:
  5541. free_cpumask_var(new_mask);
  5542. out_free_cpus_allowed:
  5543. free_cpumask_var(cpus_allowed);
  5544. out_put_task:
  5545. put_task_struct(p);
  5546. put_online_cpus();
  5547. return retval;
  5548. }
  5549. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5550. struct cpumask *new_mask)
  5551. {
  5552. if (len < cpumask_size())
  5553. cpumask_clear(new_mask);
  5554. else if (len > cpumask_size())
  5555. len = cpumask_size();
  5556. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5557. }
  5558. /**
  5559. * sys_sched_setaffinity - set the cpu affinity of a process
  5560. * @pid: pid of the process
  5561. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5562. * @user_mask_ptr: user-space pointer to the new cpu mask
  5563. */
  5564. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5565. unsigned long __user *, user_mask_ptr)
  5566. {
  5567. cpumask_var_t new_mask;
  5568. int retval;
  5569. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5570. return -ENOMEM;
  5571. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5572. if (retval == 0)
  5573. retval = sched_setaffinity(pid, new_mask);
  5574. free_cpumask_var(new_mask);
  5575. return retval;
  5576. }
  5577. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5578. {
  5579. struct task_struct *p;
  5580. int retval;
  5581. get_online_cpus();
  5582. read_lock(&tasklist_lock);
  5583. retval = -ESRCH;
  5584. p = find_process_by_pid(pid);
  5585. if (!p)
  5586. goto out_unlock;
  5587. retval = security_task_getscheduler(p);
  5588. if (retval)
  5589. goto out_unlock;
  5590. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5591. out_unlock:
  5592. read_unlock(&tasklist_lock);
  5593. put_online_cpus();
  5594. return retval;
  5595. }
  5596. /**
  5597. * sys_sched_getaffinity - get the cpu affinity of a process
  5598. * @pid: pid of the process
  5599. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5600. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5601. */
  5602. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5603. unsigned long __user *, user_mask_ptr)
  5604. {
  5605. int ret;
  5606. cpumask_var_t mask;
  5607. if (len < cpumask_size())
  5608. return -EINVAL;
  5609. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5610. return -ENOMEM;
  5611. ret = sched_getaffinity(pid, mask);
  5612. if (ret == 0) {
  5613. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5614. ret = -EFAULT;
  5615. else
  5616. ret = cpumask_size();
  5617. }
  5618. free_cpumask_var(mask);
  5619. return ret;
  5620. }
  5621. /**
  5622. * sys_sched_yield - yield the current processor to other threads.
  5623. *
  5624. * This function yields the current CPU to other tasks. If there are no
  5625. * other threads running on this CPU then this function will return.
  5626. */
  5627. SYSCALL_DEFINE0(sched_yield)
  5628. {
  5629. struct rq *rq = this_rq_lock();
  5630. schedstat_inc(rq, yld_count);
  5631. current->sched_class->yield_task(rq);
  5632. /*
  5633. * Since we are going to call schedule() anyway, there's
  5634. * no need to preempt or enable interrupts:
  5635. */
  5636. __release(rq->lock);
  5637. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5638. _raw_spin_unlock(&rq->lock);
  5639. preempt_enable_no_resched();
  5640. schedule();
  5641. return 0;
  5642. }
  5643. static inline int should_resched(void)
  5644. {
  5645. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5646. }
  5647. static void __cond_resched(void)
  5648. {
  5649. add_preempt_count(PREEMPT_ACTIVE);
  5650. schedule();
  5651. sub_preempt_count(PREEMPT_ACTIVE);
  5652. }
  5653. int __sched _cond_resched(void)
  5654. {
  5655. if (should_resched()) {
  5656. __cond_resched();
  5657. return 1;
  5658. }
  5659. return 0;
  5660. }
  5661. EXPORT_SYMBOL(_cond_resched);
  5662. /*
  5663. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5664. * call schedule, and on return reacquire the lock.
  5665. *
  5666. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5667. * operations here to prevent schedule() from being called twice (once via
  5668. * spin_unlock(), once by hand).
  5669. */
  5670. int __cond_resched_lock(spinlock_t *lock)
  5671. {
  5672. int resched = should_resched();
  5673. int ret = 0;
  5674. if (spin_needbreak(lock) || resched) {
  5675. spin_unlock(lock);
  5676. if (resched)
  5677. __cond_resched();
  5678. else
  5679. cpu_relax();
  5680. ret = 1;
  5681. spin_lock(lock);
  5682. }
  5683. return ret;
  5684. }
  5685. EXPORT_SYMBOL(__cond_resched_lock);
  5686. int __sched __cond_resched_softirq(void)
  5687. {
  5688. BUG_ON(!in_softirq());
  5689. if (should_resched()) {
  5690. local_bh_enable();
  5691. __cond_resched();
  5692. local_bh_disable();
  5693. return 1;
  5694. }
  5695. return 0;
  5696. }
  5697. EXPORT_SYMBOL(__cond_resched_softirq);
  5698. /**
  5699. * yield - yield the current processor to other threads.
  5700. *
  5701. * This is a shortcut for kernel-space yielding - it marks the
  5702. * thread runnable and calls sys_sched_yield().
  5703. */
  5704. void __sched yield(void)
  5705. {
  5706. set_current_state(TASK_RUNNING);
  5707. sys_sched_yield();
  5708. }
  5709. EXPORT_SYMBOL(yield);
  5710. /*
  5711. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5712. * that process accounting knows that this is a task in IO wait state.
  5713. *
  5714. * But don't do that if it is a deliberate, throttling IO wait (this task
  5715. * has set its backing_dev_info: the queue against which it should throttle)
  5716. */
  5717. void __sched io_schedule(void)
  5718. {
  5719. struct rq *rq = raw_rq();
  5720. delayacct_blkio_start();
  5721. atomic_inc(&rq->nr_iowait);
  5722. schedule();
  5723. atomic_dec(&rq->nr_iowait);
  5724. delayacct_blkio_end();
  5725. }
  5726. EXPORT_SYMBOL(io_schedule);
  5727. long __sched io_schedule_timeout(long timeout)
  5728. {
  5729. struct rq *rq = raw_rq();
  5730. long ret;
  5731. delayacct_blkio_start();
  5732. atomic_inc(&rq->nr_iowait);
  5733. ret = schedule_timeout(timeout);
  5734. atomic_dec(&rq->nr_iowait);
  5735. delayacct_blkio_end();
  5736. return ret;
  5737. }
  5738. /**
  5739. * sys_sched_get_priority_max - return maximum RT priority.
  5740. * @policy: scheduling class.
  5741. *
  5742. * this syscall returns the maximum rt_priority that can be used
  5743. * by a given scheduling class.
  5744. */
  5745. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5746. {
  5747. int ret = -EINVAL;
  5748. switch (policy) {
  5749. case SCHED_FIFO:
  5750. case SCHED_RR:
  5751. ret = MAX_USER_RT_PRIO-1;
  5752. break;
  5753. case SCHED_NORMAL:
  5754. case SCHED_BATCH:
  5755. case SCHED_IDLE:
  5756. ret = 0;
  5757. break;
  5758. }
  5759. return ret;
  5760. }
  5761. /**
  5762. * sys_sched_get_priority_min - return minimum RT priority.
  5763. * @policy: scheduling class.
  5764. *
  5765. * this syscall returns the minimum rt_priority that can be used
  5766. * by a given scheduling class.
  5767. */
  5768. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5769. {
  5770. int ret = -EINVAL;
  5771. switch (policy) {
  5772. case SCHED_FIFO:
  5773. case SCHED_RR:
  5774. ret = 1;
  5775. break;
  5776. case SCHED_NORMAL:
  5777. case SCHED_BATCH:
  5778. case SCHED_IDLE:
  5779. ret = 0;
  5780. }
  5781. return ret;
  5782. }
  5783. /**
  5784. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5785. * @pid: pid of the process.
  5786. * @interval: userspace pointer to the timeslice value.
  5787. *
  5788. * this syscall writes the default timeslice value of a given process
  5789. * into the user-space timespec buffer. A value of '0' means infinity.
  5790. */
  5791. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5792. struct timespec __user *, interval)
  5793. {
  5794. struct task_struct *p;
  5795. unsigned int time_slice;
  5796. int retval;
  5797. struct timespec t;
  5798. if (pid < 0)
  5799. return -EINVAL;
  5800. retval = -ESRCH;
  5801. read_lock(&tasklist_lock);
  5802. p = find_process_by_pid(pid);
  5803. if (!p)
  5804. goto out_unlock;
  5805. retval = security_task_getscheduler(p);
  5806. if (retval)
  5807. goto out_unlock;
  5808. /*
  5809. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5810. * tasks that are on an otherwise idle runqueue:
  5811. */
  5812. time_slice = 0;
  5813. if (p->policy == SCHED_RR) {
  5814. time_slice = DEF_TIMESLICE;
  5815. } else if (p->policy != SCHED_FIFO) {
  5816. struct sched_entity *se = &p->se;
  5817. unsigned long flags;
  5818. struct rq *rq;
  5819. rq = task_rq_lock(p, &flags);
  5820. if (rq->cfs.load.weight)
  5821. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5822. task_rq_unlock(rq, &flags);
  5823. }
  5824. read_unlock(&tasklist_lock);
  5825. jiffies_to_timespec(time_slice, &t);
  5826. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5827. return retval;
  5828. out_unlock:
  5829. read_unlock(&tasklist_lock);
  5830. return retval;
  5831. }
  5832. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5833. void sched_show_task(struct task_struct *p)
  5834. {
  5835. unsigned long free = 0;
  5836. unsigned state;
  5837. state = p->state ? __ffs(p->state) + 1 : 0;
  5838. printk(KERN_INFO "%-13.13s %c", p->comm,
  5839. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5840. #if BITS_PER_LONG == 32
  5841. if (state == TASK_RUNNING)
  5842. printk(KERN_CONT " running ");
  5843. else
  5844. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5845. #else
  5846. if (state == TASK_RUNNING)
  5847. printk(KERN_CONT " running task ");
  5848. else
  5849. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5850. #endif
  5851. #ifdef CONFIG_DEBUG_STACK_USAGE
  5852. free = stack_not_used(p);
  5853. #endif
  5854. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5855. task_pid_nr(p), task_pid_nr(p->real_parent),
  5856. (unsigned long)task_thread_info(p)->flags);
  5857. show_stack(p, NULL);
  5858. }
  5859. void show_state_filter(unsigned long state_filter)
  5860. {
  5861. struct task_struct *g, *p;
  5862. #if BITS_PER_LONG == 32
  5863. printk(KERN_INFO
  5864. " task PC stack pid father\n");
  5865. #else
  5866. printk(KERN_INFO
  5867. " task PC stack pid father\n");
  5868. #endif
  5869. read_lock(&tasklist_lock);
  5870. do_each_thread(g, p) {
  5871. /*
  5872. * reset the NMI-timeout, listing all files on a slow
  5873. * console might take alot of time:
  5874. */
  5875. touch_nmi_watchdog();
  5876. if (!state_filter || (p->state & state_filter))
  5877. sched_show_task(p);
  5878. } while_each_thread(g, p);
  5879. touch_all_softlockup_watchdogs();
  5880. #ifdef CONFIG_SCHED_DEBUG
  5881. sysrq_sched_debug_show();
  5882. #endif
  5883. read_unlock(&tasklist_lock);
  5884. /*
  5885. * Only show locks if all tasks are dumped:
  5886. */
  5887. if (state_filter == -1)
  5888. debug_show_all_locks();
  5889. }
  5890. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5891. {
  5892. idle->sched_class = &idle_sched_class;
  5893. }
  5894. /**
  5895. * init_idle - set up an idle thread for a given CPU
  5896. * @idle: task in question
  5897. * @cpu: cpu the idle task belongs to
  5898. *
  5899. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5900. * flag, to make booting more robust.
  5901. */
  5902. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5903. {
  5904. struct rq *rq = cpu_rq(cpu);
  5905. unsigned long flags;
  5906. spin_lock_irqsave(&rq->lock, flags);
  5907. __sched_fork(idle);
  5908. idle->se.exec_start = sched_clock();
  5909. idle->prio = idle->normal_prio = MAX_PRIO;
  5910. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5911. __set_task_cpu(idle, cpu);
  5912. rq->curr = rq->idle = idle;
  5913. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5914. idle->oncpu = 1;
  5915. #endif
  5916. spin_unlock_irqrestore(&rq->lock, flags);
  5917. /* Set the preempt count _outside_ the spinlocks! */
  5918. #if defined(CONFIG_PREEMPT)
  5919. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5920. #else
  5921. task_thread_info(idle)->preempt_count = 0;
  5922. #endif
  5923. /*
  5924. * The idle tasks have their own, simple scheduling class:
  5925. */
  5926. idle->sched_class = &idle_sched_class;
  5927. ftrace_graph_init_task(idle);
  5928. }
  5929. /*
  5930. * In a system that switches off the HZ timer nohz_cpu_mask
  5931. * indicates which cpus entered this state. This is used
  5932. * in the rcu update to wait only for active cpus. For system
  5933. * which do not switch off the HZ timer nohz_cpu_mask should
  5934. * always be CPU_BITS_NONE.
  5935. */
  5936. cpumask_var_t nohz_cpu_mask;
  5937. /*
  5938. * Increase the granularity value when there are more CPUs,
  5939. * because with more CPUs the 'effective latency' as visible
  5940. * to users decreases. But the relationship is not linear,
  5941. * so pick a second-best guess by going with the log2 of the
  5942. * number of CPUs.
  5943. *
  5944. * This idea comes from the SD scheduler of Con Kolivas:
  5945. */
  5946. static inline void sched_init_granularity(void)
  5947. {
  5948. unsigned int factor = 1 + ilog2(num_online_cpus());
  5949. const unsigned long limit = 200000000;
  5950. sysctl_sched_min_granularity *= factor;
  5951. if (sysctl_sched_min_granularity > limit)
  5952. sysctl_sched_min_granularity = limit;
  5953. sysctl_sched_latency *= factor;
  5954. if (sysctl_sched_latency > limit)
  5955. sysctl_sched_latency = limit;
  5956. sysctl_sched_wakeup_granularity *= factor;
  5957. sysctl_sched_shares_ratelimit *= factor;
  5958. }
  5959. #ifdef CONFIG_SMP
  5960. /*
  5961. * This is how migration works:
  5962. *
  5963. * 1) we queue a struct migration_req structure in the source CPU's
  5964. * runqueue and wake up that CPU's migration thread.
  5965. * 2) we down() the locked semaphore => thread blocks.
  5966. * 3) migration thread wakes up (implicitly it forces the migrated
  5967. * thread off the CPU)
  5968. * 4) it gets the migration request and checks whether the migrated
  5969. * task is still in the wrong runqueue.
  5970. * 5) if it's in the wrong runqueue then the migration thread removes
  5971. * it and puts it into the right queue.
  5972. * 6) migration thread up()s the semaphore.
  5973. * 7) we wake up and the migration is done.
  5974. */
  5975. /*
  5976. * Change a given task's CPU affinity. Migrate the thread to a
  5977. * proper CPU and schedule it away if the CPU it's executing on
  5978. * is removed from the allowed bitmask.
  5979. *
  5980. * NOTE: the caller must have a valid reference to the task, the
  5981. * task must not exit() & deallocate itself prematurely. The
  5982. * call is not atomic; no spinlocks may be held.
  5983. */
  5984. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5985. {
  5986. struct migration_req req;
  5987. unsigned long flags;
  5988. struct rq *rq;
  5989. int ret = 0;
  5990. rq = task_rq_lock(p, &flags);
  5991. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5992. ret = -EINVAL;
  5993. goto out;
  5994. }
  5995. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5996. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5997. ret = -EINVAL;
  5998. goto out;
  5999. }
  6000. if (p->sched_class->set_cpus_allowed)
  6001. p->sched_class->set_cpus_allowed(p, new_mask);
  6002. else {
  6003. cpumask_copy(&p->cpus_allowed, new_mask);
  6004. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6005. }
  6006. /* Can the task run on the task's current CPU? If so, we're done */
  6007. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6008. goto out;
  6009. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  6010. /* Need help from migration thread: drop lock and wait. */
  6011. task_rq_unlock(rq, &flags);
  6012. wake_up_process(rq->migration_thread);
  6013. wait_for_completion(&req.done);
  6014. tlb_migrate_finish(p->mm);
  6015. return 0;
  6016. }
  6017. out:
  6018. task_rq_unlock(rq, &flags);
  6019. return ret;
  6020. }
  6021. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6022. /*
  6023. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6024. * this because either it can't run here any more (set_cpus_allowed()
  6025. * away from this CPU, or CPU going down), or because we're
  6026. * attempting to rebalance this task on exec (sched_exec).
  6027. *
  6028. * So we race with normal scheduler movements, but that's OK, as long
  6029. * as the task is no longer on this CPU.
  6030. *
  6031. * Returns non-zero if task was successfully migrated.
  6032. */
  6033. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6034. {
  6035. struct rq *rq_dest, *rq_src;
  6036. int ret = 0, on_rq;
  6037. if (unlikely(!cpu_active(dest_cpu)))
  6038. return ret;
  6039. rq_src = cpu_rq(src_cpu);
  6040. rq_dest = cpu_rq(dest_cpu);
  6041. double_rq_lock(rq_src, rq_dest);
  6042. /* Already moved. */
  6043. if (task_cpu(p) != src_cpu)
  6044. goto done;
  6045. /* Affinity changed (again). */
  6046. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6047. goto fail;
  6048. on_rq = p->se.on_rq;
  6049. if (on_rq)
  6050. deactivate_task(rq_src, p, 0);
  6051. set_task_cpu(p, dest_cpu);
  6052. if (on_rq) {
  6053. activate_task(rq_dest, p, 0);
  6054. check_preempt_curr(rq_dest, p, 0);
  6055. }
  6056. done:
  6057. ret = 1;
  6058. fail:
  6059. double_rq_unlock(rq_src, rq_dest);
  6060. return ret;
  6061. }
  6062. /*
  6063. * migration_thread - this is a highprio system thread that performs
  6064. * thread migration by bumping thread off CPU then 'pushing' onto
  6065. * another runqueue.
  6066. */
  6067. static int migration_thread(void *data)
  6068. {
  6069. int cpu = (long)data;
  6070. struct rq *rq;
  6071. rq = cpu_rq(cpu);
  6072. BUG_ON(rq->migration_thread != current);
  6073. set_current_state(TASK_INTERRUPTIBLE);
  6074. while (!kthread_should_stop()) {
  6075. struct migration_req *req;
  6076. struct list_head *head;
  6077. spin_lock_irq(&rq->lock);
  6078. if (cpu_is_offline(cpu)) {
  6079. spin_unlock_irq(&rq->lock);
  6080. break;
  6081. }
  6082. if (rq->active_balance) {
  6083. active_load_balance(rq, cpu);
  6084. rq->active_balance = 0;
  6085. }
  6086. head = &rq->migration_queue;
  6087. if (list_empty(head)) {
  6088. spin_unlock_irq(&rq->lock);
  6089. schedule();
  6090. set_current_state(TASK_INTERRUPTIBLE);
  6091. continue;
  6092. }
  6093. req = list_entry(head->next, struct migration_req, list);
  6094. list_del_init(head->next);
  6095. spin_unlock(&rq->lock);
  6096. __migrate_task(req->task, cpu, req->dest_cpu);
  6097. local_irq_enable();
  6098. complete(&req->done);
  6099. }
  6100. __set_current_state(TASK_RUNNING);
  6101. return 0;
  6102. }
  6103. #ifdef CONFIG_HOTPLUG_CPU
  6104. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6105. {
  6106. int ret;
  6107. local_irq_disable();
  6108. ret = __migrate_task(p, src_cpu, dest_cpu);
  6109. local_irq_enable();
  6110. return ret;
  6111. }
  6112. /*
  6113. * Figure out where task on dead CPU should go, use force if necessary.
  6114. */
  6115. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6116. {
  6117. int dest_cpu;
  6118. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6119. again:
  6120. /* Look for allowed, online CPU in same node. */
  6121. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6122. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6123. goto move;
  6124. /* Any allowed, online CPU? */
  6125. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6126. if (dest_cpu < nr_cpu_ids)
  6127. goto move;
  6128. /* No more Mr. Nice Guy. */
  6129. if (dest_cpu >= nr_cpu_ids) {
  6130. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6131. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6132. /*
  6133. * Don't tell them about moving exiting tasks or
  6134. * kernel threads (both mm NULL), since they never
  6135. * leave kernel.
  6136. */
  6137. if (p->mm && printk_ratelimit()) {
  6138. printk(KERN_INFO "process %d (%s) no "
  6139. "longer affine to cpu%d\n",
  6140. task_pid_nr(p), p->comm, dead_cpu);
  6141. }
  6142. }
  6143. move:
  6144. /* It can have affinity changed while we were choosing. */
  6145. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6146. goto again;
  6147. }
  6148. /*
  6149. * While a dead CPU has no uninterruptible tasks queued at this point,
  6150. * it might still have a nonzero ->nr_uninterruptible counter, because
  6151. * for performance reasons the counter is not stricly tracking tasks to
  6152. * their home CPUs. So we just add the counter to another CPU's counter,
  6153. * to keep the global sum constant after CPU-down:
  6154. */
  6155. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6156. {
  6157. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6158. unsigned long flags;
  6159. local_irq_save(flags);
  6160. double_rq_lock(rq_src, rq_dest);
  6161. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6162. rq_src->nr_uninterruptible = 0;
  6163. double_rq_unlock(rq_src, rq_dest);
  6164. local_irq_restore(flags);
  6165. }
  6166. /* Run through task list and migrate tasks from the dead cpu. */
  6167. static void migrate_live_tasks(int src_cpu)
  6168. {
  6169. struct task_struct *p, *t;
  6170. read_lock(&tasklist_lock);
  6171. do_each_thread(t, p) {
  6172. if (p == current)
  6173. continue;
  6174. if (task_cpu(p) == src_cpu)
  6175. move_task_off_dead_cpu(src_cpu, p);
  6176. } while_each_thread(t, p);
  6177. read_unlock(&tasklist_lock);
  6178. }
  6179. /*
  6180. * Schedules idle task to be the next runnable task on current CPU.
  6181. * It does so by boosting its priority to highest possible.
  6182. * Used by CPU offline code.
  6183. */
  6184. void sched_idle_next(void)
  6185. {
  6186. int this_cpu = smp_processor_id();
  6187. struct rq *rq = cpu_rq(this_cpu);
  6188. struct task_struct *p = rq->idle;
  6189. unsigned long flags;
  6190. /* cpu has to be offline */
  6191. BUG_ON(cpu_online(this_cpu));
  6192. /*
  6193. * Strictly not necessary since rest of the CPUs are stopped by now
  6194. * and interrupts disabled on the current cpu.
  6195. */
  6196. spin_lock_irqsave(&rq->lock, flags);
  6197. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6198. update_rq_clock(rq);
  6199. activate_task(rq, p, 0);
  6200. spin_unlock_irqrestore(&rq->lock, flags);
  6201. }
  6202. /*
  6203. * Ensures that the idle task is using init_mm right before its cpu goes
  6204. * offline.
  6205. */
  6206. void idle_task_exit(void)
  6207. {
  6208. struct mm_struct *mm = current->active_mm;
  6209. BUG_ON(cpu_online(smp_processor_id()));
  6210. if (mm != &init_mm)
  6211. switch_mm(mm, &init_mm, current);
  6212. mmdrop(mm);
  6213. }
  6214. /* called under rq->lock with disabled interrupts */
  6215. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6216. {
  6217. struct rq *rq = cpu_rq(dead_cpu);
  6218. /* Must be exiting, otherwise would be on tasklist. */
  6219. BUG_ON(!p->exit_state);
  6220. /* Cannot have done final schedule yet: would have vanished. */
  6221. BUG_ON(p->state == TASK_DEAD);
  6222. get_task_struct(p);
  6223. /*
  6224. * Drop lock around migration; if someone else moves it,
  6225. * that's OK. No task can be added to this CPU, so iteration is
  6226. * fine.
  6227. */
  6228. spin_unlock_irq(&rq->lock);
  6229. move_task_off_dead_cpu(dead_cpu, p);
  6230. spin_lock_irq(&rq->lock);
  6231. put_task_struct(p);
  6232. }
  6233. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6234. static void migrate_dead_tasks(unsigned int dead_cpu)
  6235. {
  6236. struct rq *rq = cpu_rq(dead_cpu);
  6237. struct task_struct *next;
  6238. for ( ; ; ) {
  6239. if (!rq->nr_running)
  6240. break;
  6241. update_rq_clock(rq);
  6242. next = pick_next_task(rq);
  6243. if (!next)
  6244. break;
  6245. next->sched_class->put_prev_task(rq, next);
  6246. migrate_dead(dead_cpu, next);
  6247. }
  6248. }
  6249. /*
  6250. * remove the tasks which were accounted by rq from calc_load_tasks.
  6251. */
  6252. static void calc_global_load_remove(struct rq *rq)
  6253. {
  6254. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6255. }
  6256. #endif /* CONFIG_HOTPLUG_CPU */
  6257. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6258. static struct ctl_table sd_ctl_dir[] = {
  6259. {
  6260. .procname = "sched_domain",
  6261. .mode = 0555,
  6262. },
  6263. {0, },
  6264. };
  6265. static struct ctl_table sd_ctl_root[] = {
  6266. {
  6267. .ctl_name = CTL_KERN,
  6268. .procname = "kernel",
  6269. .mode = 0555,
  6270. .child = sd_ctl_dir,
  6271. },
  6272. {0, },
  6273. };
  6274. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6275. {
  6276. struct ctl_table *entry =
  6277. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6278. return entry;
  6279. }
  6280. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6281. {
  6282. struct ctl_table *entry;
  6283. /*
  6284. * In the intermediate directories, both the child directory and
  6285. * procname are dynamically allocated and could fail but the mode
  6286. * will always be set. In the lowest directory the names are
  6287. * static strings and all have proc handlers.
  6288. */
  6289. for (entry = *tablep; entry->mode; entry++) {
  6290. if (entry->child)
  6291. sd_free_ctl_entry(&entry->child);
  6292. if (entry->proc_handler == NULL)
  6293. kfree(entry->procname);
  6294. }
  6295. kfree(*tablep);
  6296. *tablep = NULL;
  6297. }
  6298. static void
  6299. set_table_entry(struct ctl_table *entry,
  6300. const char *procname, void *data, int maxlen,
  6301. mode_t mode, proc_handler *proc_handler)
  6302. {
  6303. entry->procname = procname;
  6304. entry->data = data;
  6305. entry->maxlen = maxlen;
  6306. entry->mode = mode;
  6307. entry->proc_handler = proc_handler;
  6308. }
  6309. static struct ctl_table *
  6310. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6311. {
  6312. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6313. if (table == NULL)
  6314. return NULL;
  6315. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6316. sizeof(long), 0644, proc_doulongvec_minmax);
  6317. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6318. sizeof(long), 0644, proc_doulongvec_minmax);
  6319. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6320. sizeof(int), 0644, proc_dointvec_minmax);
  6321. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6322. sizeof(int), 0644, proc_dointvec_minmax);
  6323. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6324. sizeof(int), 0644, proc_dointvec_minmax);
  6325. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6326. sizeof(int), 0644, proc_dointvec_minmax);
  6327. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6328. sizeof(int), 0644, proc_dointvec_minmax);
  6329. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6330. sizeof(int), 0644, proc_dointvec_minmax);
  6331. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6332. sizeof(int), 0644, proc_dointvec_minmax);
  6333. set_table_entry(&table[9], "cache_nice_tries",
  6334. &sd->cache_nice_tries,
  6335. sizeof(int), 0644, proc_dointvec_minmax);
  6336. set_table_entry(&table[10], "flags", &sd->flags,
  6337. sizeof(int), 0644, proc_dointvec_minmax);
  6338. set_table_entry(&table[11], "name", sd->name,
  6339. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6340. /* &table[12] is terminator */
  6341. return table;
  6342. }
  6343. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6344. {
  6345. struct ctl_table *entry, *table;
  6346. struct sched_domain *sd;
  6347. int domain_num = 0, i;
  6348. char buf[32];
  6349. for_each_domain(cpu, sd)
  6350. domain_num++;
  6351. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6352. if (table == NULL)
  6353. return NULL;
  6354. i = 0;
  6355. for_each_domain(cpu, sd) {
  6356. snprintf(buf, 32, "domain%d", i);
  6357. entry->procname = kstrdup(buf, GFP_KERNEL);
  6358. entry->mode = 0555;
  6359. entry->child = sd_alloc_ctl_domain_table(sd);
  6360. entry++;
  6361. i++;
  6362. }
  6363. return table;
  6364. }
  6365. static struct ctl_table_header *sd_sysctl_header;
  6366. static void register_sched_domain_sysctl(void)
  6367. {
  6368. int i, cpu_num = num_online_cpus();
  6369. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6370. char buf[32];
  6371. WARN_ON(sd_ctl_dir[0].child);
  6372. sd_ctl_dir[0].child = entry;
  6373. if (entry == NULL)
  6374. return;
  6375. for_each_online_cpu(i) {
  6376. snprintf(buf, 32, "cpu%d", i);
  6377. entry->procname = kstrdup(buf, GFP_KERNEL);
  6378. entry->mode = 0555;
  6379. entry->child = sd_alloc_ctl_cpu_table(i);
  6380. entry++;
  6381. }
  6382. WARN_ON(sd_sysctl_header);
  6383. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6384. }
  6385. /* may be called multiple times per register */
  6386. static void unregister_sched_domain_sysctl(void)
  6387. {
  6388. if (sd_sysctl_header)
  6389. unregister_sysctl_table(sd_sysctl_header);
  6390. sd_sysctl_header = NULL;
  6391. if (sd_ctl_dir[0].child)
  6392. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6393. }
  6394. #else
  6395. static void register_sched_domain_sysctl(void)
  6396. {
  6397. }
  6398. static void unregister_sched_domain_sysctl(void)
  6399. {
  6400. }
  6401. #endif
  6402. static void set_rq_online(struct rq *rq)
  6403. {
  6404. if (!rq->online) {
  6405. const struct sched_class *class;
  6406. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6407. rq->online = 1;
  6408. for_each_class(class) {
  6409. if (class->rq_online)
  6410. class->rq_online(rq);
  6411. }
  6412. }
  6413. }
  6414. static void set_rq_offline(struct rq *rq)
  6415. {
  6416. if (rq->online) {
  6417. const struct sched_class *class;
  6418. for_each_class(class) {
  6419. if (class->rq_offline)
  6420. class->rq_offline(rq);
  6421. }
  6422. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6423. rq->online = 0;
  6424. }
  6425. }
  6426. /*
  6427. * migration_call - callback that gets triggered when a CPU is added.
  6428. * Here we can start up the necessary migration thread for the new CPU.
  6429. */
  6430. static int __cpuinit
  6431. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6432. {
  6433. struct task_struct *p;
  6434. int cpu = (long)hcpu;
  6435. unsigned long flags;
  6436. struct rq *rq;
  6437. switch (action) {
  6438. case CPU_UP_PREPARE:
  6439. case CPU_UP_PREPARE_FROZEN:
  6440. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6441. if (IS_ERR(p))
  6442. return NOTIFY_BAD;
  6443. kthread_bind(p, cpu);
  6444. /* Must be high prio: stop_machine expects to yield to it. */
  6445. rq = task_rq_lock(p, &flags);
  6446. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6447. task_rq_unlock(rq, &flags);
  6448. get_task_struct(p);
  6449. cpu_rq(cpu)->migration_thread = p;
  6450. break;
  6451. case CPU_ONLINE:
  6452. case CPU_ONLINE_FROZEN:
  6453. /* Strictly unnecessary, as first user will wake it. */
  6454. wake_up_process(cpu_rq(cpu)->migration_thread);
  6455. /* Update our root-domain */
  6456. rq = cpu_rq(cpu);
  6457. spin_lock_irqsave(&rq->lock, flags);
  6458. rq->calc_load_update = calc_load_update;
  6459. rq->calc_load_active = 0;
  6460. if (rq->rd) {
  6461. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6462. set_rq_online(rq);
  6463. }
  6464. spin_unlock_irqrestore(&rq->lock, flags);
  6465. break;
  6466. #ifdef CONFIG_HOTPLUG_CPU
  6467. case CPU_UP_CANCELED:
  6468. case CPU_UP_CANCELED_FROZEN:
  6469. if (!cpu_rq(cpu)->migration_thread)
  6470. break;
  6471. /* Unbind it from offline cpu so it can run. Fall thru. */
  6472. kthread_bind(cpu_rq(cpu)->migration_thread,
  6473. cpumask_any(cpu_online_mask));
  6474. kthread_stop(cpu_rq(cpu)->migration_thread);
  6475. put_task_struct(cpu_rq(cpu)->migration_thread);
  6476. cpu_rq(cpu)->migration_thread = NULL;
  6477. break;
  6478. case CPU_DEAD:
  6479. case CPU_DEAD_FROZEN:
  6480. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6481. migrate_live_tasks(cpu);
  6482. rq = cpu_rq(cpu);
  6483. kthread_stop(rq->migration_thread);
  6484. put_task_struct(rq->migration_thread);
  6485. rq->migration_thread = NULL;
  6486. /* Idle task back to normal (off runqueue, low prio) */
  6487. spin_lock_irq(&rq->lock);
  6488. update_rq_clock(rq);
  6489. deactivate_task(rq, rq->idle, 0);
  6490. rq->idle->static_prio = MAX_PRIO;
  6491. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6492. rq->idle->sched_class = &idle_sched_class;
  6493. migrate_dead_tasks(cpu);
  6494. spin_unlock_irq(&rq->lock);
  6495. cpuset_unlock();
  6496. migrate_nr_uninterruptible(rq);
  6497. BUG_ON(rq->nr_running != 0);
  6498. calc_global_load_remove(rq);
  6499. /*
  6500. * No need to migrate the tasks: it was best-effort if
  6501. * they didn't take sched_hotcpu_mutex. Just wake up
  6502. * the requestors.
  6503. */
  6504. spin_lock_irq(&rq->lock);
  6505. while (!list_empty(&rq->migration_queue)) {
  6506. struct migration_req *req;
  6507. req = list_entry(rq->migration_queue.next,
  6508. struct migration_req, list);
  6509. list_del_init(&req->list);
  6510. spin_unlock_irq(&rq->lock);
  6511. complete(&req->done);
  6512. spin_lock_irq(&rq->lock);
  6513. }
  6514. spin_unlock_irq(&rq->lock);
  6515. break;
  6516. case CPU_DYING:
  6517. case CPU_DYING_FROZEN:
  6518. /* Update our root-domain */
  6519. rq = cpu_rq(cpu);
  6520. spin_lock_irqsave(&rq->lock, flags);
  6521. if (rq->rd) {
  6522. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6523. set_rq_offline(rq);
  6524. }
  6525. spin_unlock_irqrestore(&rq->lock, flags);
  6526. break;
  6527. #endif
  6528. }
  6529. return NOTIFY_OK;
  6530. }
  6531. /*
  6532. * Register at high priority so that task migration (migrate_all_tasks)
  6533. * happens before everything else. This has to be lower priority than
  6534. * the notifier in the perf_counter subsystem, though.
  6535. */
  6536. static struct notifier_block __cpuinitdata migration_notifier = {
  6537. .notifier_call = migration_call,
  6538. .priority = 10
  6539. };
  6540. static int __init migration_init(void)
  6541. {
  6542. void *cpu = (void *)(long)smp_processor_id();
  6543. int err;
  6544. /* Start one for the boot CPU: */
  6545. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6546. BUG_ON(err == NOTIFY_BAD);
  6547. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6548. register_cpu_notifier(&migration_notifier);
  6549. return err;
  6550. }
  6551. early_initcall(migration_init);
  6552. #endif
  6553. #ifdef CONFIG_SMP
  6554. #ifdef CONFIG_SCHED_DEBUG
  6555. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6556. struct cpumask *groupmask)
  6557. {
  6558. struct sched_group *group = sd->groups;
  6559. char str[256];
  6560. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6561. cpumask_clear(groupmask);
  6562. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6563. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6564. printk("does not load-balance\n");
  6565. if (sd->parent)
  6566. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6567. " has parent");
  6568. return -1;
  6569. }
  6570. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6571. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6572. printk(KERN_ERR "ERROR: domain->span does not contain "
  6573. "CPU%d\n", cpu);
  6574. }
  6575. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6576. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6577. " CPU%d\n", cpu);
  6578. }
  6579. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6580. do {
  6581. if (!group) {
  6582. printk("\n");
  6583. printk(KERN_ERR "ERROR: group is NULL\n");
  6584. break;
  6585. }
  6586. if (!group->__cpu_power) {
  6587. printk(KERN_CONT "\n");
  6588. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6589. "set\n");
  6590. break;
  6591. }
  6592. if (!cpumask_weight(sched_group_cpus(group))) {
  6593. printk(KERN_CONT "\n");
  6594. printk(KERN_ERR "ERROR: empty group\n");
  6595. break;
  6596. }
  6597. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6598. printk(KERN_CONT "\n");
  6599. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6600. break;
  6601. }
  6602. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6603. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6604. printk(KERN_CONT " %s", str);
  6605. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6606. printk(KERN_CONT " (__cpu_power = %d)",
  6607. group->__cpu_power);
  6608. }
  6609. group = group->next;
  6610. } while (group != sd->groups);
  6611. printk(KERN_CONT "\n");
  6612. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6613. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6614. if (sd->parent &&
  6615. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6616. printk(KERN_ERR "ERROR: parent span is not a superset "
  6617. "of domain->span\n");
  6618. return 0;
  6619. }
  6620. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6621. {
  6622. cpumask_var_t groupmask;
  6623. int level = 0;
  6624. if (!sd) {
  6625. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6626. return;
  6627. }
  6628. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6629. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6630. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6631. return;
  6632. }
  6633. for (;;) {
  6634. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6635. break;
  6636. level++;
  6637. sd = sd->parent;
  6638. if (!sd)
  6639. break;
  6640. }
  6641. free_cpumask_var(groupmask);
  6642. }
  6643. #else /* !CONFIG_SCHED_DEBUG */
  6644. # define sched_domain_debug(sd, cpu) do { } while (0)
  6645. #endif /* CONFIG_SCHED_DEBUG */
  6646. static int sd_degenerate(struct sched_domain *sd)
  6647. {
  6648. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6649. return 1;
  6650. /* Following flags need at least 2 groups */
  6651. if (sd->flags & (SD_LOAD_BALANCE |
  6652. SD_BALANCE_NEWIDLE |
  6653. SD_BALANCE_FORK |
  6654. SD_BALANCE_EXEC |
  6655. SD_SHARE_CPUPOWER |
  6656. SD_SHARE_PKG_RESOURCES)) {
  6657. if (sd->groups != sd->groups->next)
  6658. return 0;
  6659. }
  6660. /* Following flags don't use groups */
  6661. if (sd->flags & (SD_WAKE_IDLE |
  6662. SD_WAKE_AFFINE |
  6663. SD_WAKE_BALANCE))
  6664. return 0;
  6665. return 1;
  6666. }
  6667. static int
  6668. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6669. {
  6670. unsigned long cflags = sd->flags, pflags = parent->flags;
  6671. if (sd_degenerate(parent))
  6672. return 1;
  6673. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6674. return 0;
  6675. /* Does parent contain flags not in child? */
  6676. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6677. if (cflags & SD_WAKE_AFFINE)
  6678. pflags &= ~SD_WAKE_BALANCE;
  6679. /* Flags needing groups don't count if only 1 group in parent */
  6680. if (parent->groups == parent->groups->next) {
  6681. pflags &= ~(SD_LOAD_BALANCE |
  6682. SD_BALANCE_NEWIDLE |
  6683. SD_BALANCE_FORK |
  6684. SD_BALANCE_EXEC |
  6685. SD_SHARE_CPUPOWER |
  6686. SD_SHARE_PKG_RESOURCES);
  6687. if (nr_node_ids == 1)
  6688. pflags &= ~SD_SERIALIZE;
  6689. }
  6690. if (~cflags & pflags)
  6691. return 0;
  6692. return 1;
  6693. }
  6694. static void free_rootdomain(struct root_domain *rd)
  6695. {
  6696. cpupri_cleanup(&rd->cpupri);
  6697. free_cpumask_var(rd->rto_mask);
  6698. free_cpumask_var(rd->online);
  6699. free_cpumask_var(rd->span);
  6700. kfree(rd);
  6701. }
  6702. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6703. {
  6704. struct root_domain *old_rd = NULL;
  6705. unsigned long flags;
  6706. spin_lock_irqsave(&rq->lock, flags);
  6707. if (rq->rd) {
  6708. old_rd = rq->rd;
  6709. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6710. set_rq_offline(rq);
  6711. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6712. /*
  6713. * If we dont want to free the old_rt yet then
  6714. * set old_rd to NULL to skip the freeing later
  6715. * in this function:
  6716. */
  6717. if (!atomic_dec_and_test(&old_rd->refcount))
  6718. old_rd = NULL;
  6719. }
  6720. atomic_inc(&rd->refcount);
  6721. rq->rd = rd;
  6722. cpumask_set_cpu(rq->cpu, rd->span);
  6723. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6724. set_rq_online(rq);
  6725. spin_unlock_irqrestore(&rq->lock, flags);
  6726. if (old_rd)
  6727. free_rootdomain(old_rd);
  6728. }
  6729. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6730. {
  6731. gfp_t gfp = GFP_KERNEL;
  6732. memset(rd, 0, sizeof(*rd));
  6733. if (bootmem)
  6734. gfp = GFP_NOWAIT;
  6735. if (!alloc_cpumask_var(&rd->span, gfp))
  6736. goto out;
  6737. if (!alloc_cpumask_var(&rd->online, gfp))
  6738. goto free_span;
  6739. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6740. goto free_online;
  6741. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6742. goto free_rto_mask;
  6743. return 0;
  6744. free_rto_mask:
  6745. free_cpumask_var(rd->rto_mask);
  6746. free_online:
  6747. free_cpumask_var(rd->online);
  6748. free_span:
  6749. free_cpumask_var(rd->span);
  6750. out:
  6751. return -ENOMEM;
  6752. }
  6753. static void init_defrootdomain(void)
  6754. {
  6755. init_rootdomain(&def_root_domain, true);
  6756. atomic_set(&def_root_domain.refcount, 1);
  6757. }
  6758. static struct root_domain *alloc_rootdomain(void)
  6759. {
  6760. struct root_domain *rd;
  6761. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6762. if (!rd)
  6763. return NULL;
  6764. if (init_rootdomain(rd, false) != 0) {
  6765. kfree(rd);
  6766. return NULL;
  6767. }
  6768. return rd;
  6769. }
  6770. /*
  6771. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6772. * hold the hotplug lock.
  6773. */
  6774. static void
  6775. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6776. {
  6777. struct rq *rq = cpu_rq(cpu);
  6778. struct sched_domain *tmp;
  6779. /* Remove the sched domains which do not contribute to scheduling. */
  6780. for (tmp = sd; tmp; ) {
  6781. struct sched_domain *parent = tmp->parent;
  6782. if (!parent)
  6783. break;
  6784. if (sd_parent_degenerate(tmp, parent)) {
  6785. tmp->parent = parent->parent;
  6786. if (parent->parent)
  6787. parent->parent->child = tmp;
  6788. } else
  6789. tmp = tmp->parent;
  6790. }
  6791. if (sd && sd_degenerate(sd)) {
  6792. sd = sd->parent;
  6793. if (sd)
  6794. sd->child = NULL;
  6795. }
  6796. sched_domain_debug(sd, cpu);
  6797. rq_attach_root(rq, rd);
  6798. rcu_assign_pointer(rq->sd, sd);
  6799. }
  6800. /* cpus with isolated domains */
  6801. static cpumask_var_t cpu_isolated_map;
  6802. /* Setup the mask of cpus configured for isolated domains */
  6803. static int __init isolated_cpu_setup(char *str)
  6804. {
  6805. cpulist_parse(str, cpu_isolated_map);
  6806. return 1;
  6807. }
  6808. __setup("isolcpus=", isolated_cpu_setup);
  6809. /*
  6810. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6811. * to a function which identifies what group(along with sched group) a CPU
  6812. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6813. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6814. *
  6815. * init_sched_build_groups will build a circular linked list of the groups
  6816. * covered by the given span, and will set each group's ->cpumask correctly,
  6817. * and ->cpu_power to 0.
  6818. */
  6819. static void
  6820. init_sched_build_groups(const struct cpumask *span,
  6821. const struct cpumask *cpu_map,
  6822. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6823. struct sched_group **sg,
  6824. struct cpumask *tmpmask),
  6825. struct cpumask *covered, struct cpumask *tmpmask)
  6826. {
  6827. struct sched_group *first = NULL, *last = NULL;
  6828. int i;
  6829. cpumask_clear(covered);
  6830. for_each_cpu(i, span) {
  6831. struct sched_group *sg;
  6832. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6833. int j;
  6834. if (cpumask_test_cpu(i, covered))
  6835. continue;
  6836. cpumask_clear(sched_group_cpus(sg));
  6837. sg->__cpu_power = 0;
  6838. for_each_cpu(j, span) {
  6839. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6840. continue;
  6841. cpumask_set_cpu(j, covered);
  6842. cpumask_set_cpu(j, sched_group_cpus(sg));
  6843. }
  6844. if (!first)
  6845. first = sg;
  6846. if (last)
  6847. last->next = sg;
  6848. last = sg;
  6849. }
  6850. last->next = first;
  6851. }
  6852. #define SD_NODES_PER_DOMAIN 16
  6853. #ifdef CONFIG_NUMA
  6854. /**
  6855. * find_next_best_node - find the next node to include in a sched_domain
  6856. * @node: node whose sched_domain we're building
  6857. * @used_nodes: nodes already in the sched_domain
  6858. *
  6859. * Find the next node to include in a given scheduling domain. Simply
  6860. * finds the closest node not already in the @used_nodes map.
  6861. *
  6862. * Should use nodemask_t.
  6863. */
  6864. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6865. {
  6866. int i, n, val, min_val, best_node = 0;
  6867. min_val = INT_MAX;
  6868. for (i = 0; i < nr_node_ids; i++) {
  6869. /* Start at @node */
  6870. n = (node + i) % nr_node_ids;
  6871. if (!nr_cpus_node(n))
  6872. continue;
  6873. /* Skip already used nodes */
  6874. if (node_isset(n, *used_nodes))
  6875. continue;
  6876. /* Simple min distance search */
  6877. val = node_distance(node, n);
  6878. if (val < min_val) {
  6879. min_val = val;
  6880. best_node = n;
  6881. }
  6882. }
  6883. node_set(best_node, *used_nodes);
  6884. return best_node;
  6885. }
  6886. /**
  6887. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6888. * @node: node whose cpumask we're constructing
  6889. * @span: resulting cpumask
  6890. *
  6891. * Given a node, construct a good cpumask for its sched_domain to span. It
  6892. * should be one that prevents unnecessary balancing, but also spreads tasks
  6893. * out optimally.
  6894. */
  6895. static void sched_domain_node_span(int node, struct cpumask *span)
  6896. {
  6897. nodemask_t used_nodes;
  6898. int i;
  6899. cpumask_clear(span);
  6900. nodes_clear(used_nodes);
  6901. cpumask_or(span, span, cpumask_of_node(node));
  6902. node_set(node, used_nodes);
  6903. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6904. int next_node = find_next_best_node(node, &used_nodes);
  6905. cpumask_or(span, span, cpumask_of_node(next_node));
  6906. }
  6907. }
  6908. #endif /* CONFIG_NUMA */
  6909. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6910. /*
  6911. * The cpus mask in sched_group and sched_domain hangs off the end.
  6912. *
  6913. * ( See the the comments in include/linux/sched.h:struct sched_group
  6914. * and struct sched_domain. )
  6915. */
  6916. struct static_sched_group {
  6917. struct sched_group sg;
  6918. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6919. };
  6920. struct static_sched_domain {
  6921. struct sched_domain sd;
  6922. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6923. };
  6924. /*
  6925. * SMT sched-domains:
  6926. */
  6927. #ifdef CONFIG_SCHED_SMT
  6928. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6929. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6930. static int
  6931. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6932. struct sched_group **sg, struct cpumask *unused)
  6933. {
  6934. if (sg)
  6935. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6936. return cpu;
  6937. }
  6938. #endif /* CONFIG_SCHED_SMT */
  6939. /*
  6940. * multi-core sched-domains:
  6941. */
  6942. #ifdef CONFIG_SCHED_MC
  6943. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6944. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6945. #endif /* CONFIG_SCHED_MC */
  6946. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6947. static int
  6948. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6949. struct sched_group **sg, struct cpumask *mask)
  6950. {
  6951. int group;
  6952. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6953. group = cpumask_first(mask);
  6954. if (sg)
  6955. *sg = &per_cpu(sched_group_core, group).sg;
  6956. return group;
  6957. }
  6958. #elif defined(CONFIG_SCHED_MC)
  6959. static int
  6960. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6961. struct sched_group **sg, struct cpumask *unused)
  6962. {
  6963. if (sg)
  6964. *sg = &per_cpu(sched_group_core, cpu).sg;
  6965. return cpu;
  6966. }
  6967. #endif
  6968. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6969. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6970. static int
  6971. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6972. struct sched_group **sg, struct cpumask *mask)
  6973. {
  6974. int group;
  6975. #ifdef CONFIG_SCHED_MC
  6976. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6977. group = cpumask_first(mask);
  6978. #elif defined(CONFIG_SCHED_SMT)
  6979. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6980. group = cpumask_first(mask);
  6981. #else
  6982. group = cpu;
  6983. #endif
  6984. if (sg)
  6985. *sg = &per_cpu(sched_group_phys, group).sg;
  6986. return group;
  6987. }
  6988. #ifdef CONFIG_NUMA
  6989. /*
  6990. * The init_sched_build_groups can't handle what we want to do with node
  6991. * groups, so roll our own. Now each node has its own list of groups which
  6992. * gets dynamically allocated.
  6993. */
  6994. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6995. static struct sched_group ***sched_group_nodes_bycpu;
  6996. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6997. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6998. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6999. struct sched_group **sg,
  7000. struct cpumask *nodemask)
  7001. {
  7002. int group;
  7003. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7004. group = cpumask_first(nodemask);
  7005. if (sg)
  7006. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7007. return group;
  7008. }
  7009. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7010. {
  7011. struct sched_group *sg = group_head;
  7012. int j;
  7013. if (!sg)
  7014. return;
  7015. do {
  7016. for_each_cpu(j, sched_group_cpus(sg)) {
  7017. struct sched_domain *sd;
  7018. sd = &per_cpu(phys_domains, j).sd;
  7019. if (j != group_first_cpu(sd->groups)) {
  7020. /*
  7021. * Only add "power" once for each
  7022. * physical package.
  7023. */
  7024. continue;
  7025. }
  7026. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  7027. }
  7028. sg = sg->next;
  7029. } while (sg != group_head);
  7030. }
  7031. #endif /* CONFIG_NUMA */
  7032. #ifdef CONFIG_NUMA
  7033. /* Free memory allocated for various sched_group structures */
  7034. static void free_sched_groups(const struct cpumask *cpu_map,
  7035. struct cpumask *nodemask)
  7036. {
  7037. int cpu, i;
  7038. for_each_cpu(cpu, cpu_map) {
  7039. struct sched_group **sched_group_nodes
  7040. = sched_group_nodes_bycpu[cpu];
  7041. if (!sched_group_nodes)
  7042. continue;
  7043. for (i = 0; i < nr_node_ids; i++) {
  7044. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7045. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7046. if (cpumask_empty(nodemask))
  7047. continue;
  7048. if (sg == NULL)
  7049. continue;
  7050. sg = sg->next;
  7051. next_sg:
  7052. oldsg = sg;
  7053. sg = sg->next;
  7054. kfree(oldsg);
  7055. if (oldsg != sched_group_nodes[i])
  7056. goto next_sg;
  7057. }
  7058. kfree(sched_group_nodes);
  7059. sched_group_nodes_bycpu[cpu] = NULL;
  7060. }
  7061. }
  7062. #else /* !CONFIG_NUMA */
  7063. static void free_sched_groups(const struct cpumask *cpu_map,
  7064. struct cpumask *nodemask)
  7065. {
  7066. }
  7067. #endif /* CONFIG_NUMA */
  7068. /*
  7069. * Initialize sched groups cpu_power.
  7070. *
  7071. * cpu_power indicates the capacity of sched group, which is used while
  7072. * distributing the load between different sched groups in a sched domain.
  7073. * Typically cpu_power for all the groups in a sched domain will be same unless
  7074. * there are asymmetries in the topology. If there are asymmetries, group
  7075. * having more cpu_power will pickup more load compared to the group having
  7076. * less cpu_power.
  7077. *
  7078. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  7079. * the maximum number of tasks a group can handle in the presence of other idle
  7080. * or lightly loaded groups in the same sched domain.
  7081. */
  7082. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7083. {
  7084. struct sched_domain *child;
  7085. struct sched_group *group;
  7086. WARN_ON(!sd || !sd->groups);
  7087. if (cpu != group_first_cpu(sd->groups))
  7088. return;
  7089. child = sd->child;
  7090. sd->groups->__cpu_power = 0;
  7091. /*
  7092. * For perf policy, if the groups in child domain share resources
  7093. * (for example cores sharing some portions of the cache hierarchy
  7094. * or SMT), then set this domain groups cpu_power such that each group
  7095. * can handle only one task, when there are other idle groups in the
  7096. * same sched domain.
  7097. */
  7098. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7099. (child->flags &
  7100. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7101. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7102. return;
  7103. }
  7104. /*
  7105. * add cpu_power of each child group to this groups cpu_power
  7106. */
  7107. group = child->groups;
  7108. do {
  7109. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7110. group = group->next;
  7111. } while (group != child->groups);
  7112. }
  7113. /*
  7114. * Initializers for schedule domains
  7115. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7116. */
  7117. #ifdef CONFIG_SCHED_DEBUG
  7118. # define SD_INIT_NAME(sd, type) sd->name = #type
  7119. #else
  7120. # define SD_INIT_NAME(sd, type) do { } while (0)
  7121. #endif
  7122. #define SD_INIT(sd, type) sd_init_##type(sd)
  7123. #define SD_INIT_FUNC(type) \
  7124. static noinline void sd_init_##type(struct sched_domain *sd) \
  7125. { \
  7126. memset(sd, 0, sizeof(*sd)); \
  7127. *sd = SD_##type##_INIT; \
  7128. sd->level = SD_LV_##type; \
  7129. SD_INIT_NAME(sd, type); \
  7130. }
  7131. SD_INIT_FUNC(CPU)
  7132. #ifdef CONFIG_NUMA
  7133. SD_INIT_FUNC(ALLNODES)
  7134. SD_INIT_FUNC(NODE)
  7135. #endif
  7136. #ifdef CONFIG_SCHED_SMT
  7137. SD_INIT_FUNC(SIBLING)
  7138. #endif
  7139. #ifdef CONFIG_SCHED_MC
  7140. SD_INIT_FUNC(MC)
  7141. #endif
  7142. static int default_relax_domain_level = -1;
  7143. static int __init setup_relax_domain_level(char *str)
  7144. {
  7145. unsigned long val;
  7146. val = simple_strtoul(str, NULL, 0);
  7147. if (val < SD_LV_MAX)
  7148. default_relax_domain_level = val;
  7149. return 1;
  7150. }
  7151. __setup("relax_domain_level=", setup_relax_domain_level);
  7152. static void set_domain_attribute(struct sched_domain *sd,
  7153. struct sched_domain_attr *attr)
  7154. {
  7155. int request;
  7156. if (!attr || attr->relax_domain_level < 0) {
  7157. if (default_relax_domain_level < 0)
  7158. return;
  7159. else
  7160. request = default_relax_domain_level;
  7161. } else
  7162. request = attr->relax_domain_level;
  7163. if (request < sd->level) {
  7164. /* turn off idle balance on this domain */
  7165. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7166. } else {
  7167. /* turn on idle balance on this domain */
  7168. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7169. }
  7170. }
  7171. /*
  7172. * Build sched domains for a given set of cpus and attach the sched domains
  7173. * to the individual cpus
  7174. */
  7175. static int __build_sched_domains(const struct cpumask *cpu_map,
  7176. struct sched_domain_attr *attr)
  7177. {
  7178. int i, err = -ENOMEM;
  7179. struct root_domain *rd;
  7180. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7181. tmpmask;
  7182. #ifdef CONFIG_NUMA
  7183. cpumask_var_t domainspan, covered, notcovered;
  7184. struct sched_group **sched_group_nodes = NULL;
  7185. int sd_allnodes = 0;
  7186. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7187. goto out;
  7188. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7189. goto free_domainspan;
  7190. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7191. goto free_covered;
  7192. #endif
  7193. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7194. goto free_notcovered;
  7195. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7196. goto free_nodemask;
  7197. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7198. goto free_this_sibling_map;
  7199. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7200. goto free_this_core_map;
  7201. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7202. goto free_send_covered;
  7203. #ifdef CONFIG_NUMA
  7204. /*
  7205. * Allocate the per-node list of sched groups
  7206. */
  7207. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7208. GFP_KERNEL);
  7209. if (!sched_group_nodes) {
  7210. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7211. goto free_tmpmask;
  7212. }
  7213. #endif
  7214. rd = alloc_rootdomain();
  7215. if (!rd) {
  7216. printk(KERN_WARNING "Cannot alloc root domain\n");
  7217. goto free_sched_groups;
  7218. }
  7219. #ifdef CONFIG_NUMA
  7220. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7221. #endif
  7222. /*
  7223. * Set up domains for cpus specified by the cpu_map.
  7224. */
  7225. for_each_cpu(i, cpu_map) {
  7226. struct sched_domain *sd = NULL, *p;
  7227. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7228. #ifdef CONFIG_NUMA
  7229. if (cpumask_weight(cpu_map) >
  7230. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7231. sd = &per_cpu(allnodes_domains, i).sd;
  7232. SD_INIT(sd, ALLNODES);
  7233. set_domain_attribute(sd, attr);
  7234. cpumask_copy(sched_domain_span(sd), cpu_map);
  7235. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7236. p = sd;
  7237. sd_allnodes = 1;
  7238. } else
  7239. p = NULL;
  7240. sd = &per_cpu(node_domains, i).sd;
  7241. SD_INIT(sd, NODE);
  7242. set_domain_attribute(sd, attr);
  7243. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7244. sd->parent = p;
  7245. if (p)
  7246. p->child = sd;
  7247. cpumask_and(sched_domain_span(sd),
  7248. sched_domain_span(sd), cpu_map);
  7249. #endif
  7250. p = sd;
  7251. sd = &per_cpu(phys_domains, i).sd;
  7252. SD_INIT(sd, CPU);
  7253. set_domain_attribute(sd, attr);
  7254. cpumask_copy(sched_domain_span(sd), nodemask);
  7255. sd->parent = p;
  7256. if (p)
  7257. p->child = sd;
  7258. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7259. #ifdef CONFIG_SCHED_MC
  7260. p = sd;
  7261. sd = &per_cpu(core_domains, i).sd;
  7262. SD_INIT(sd, MC);
  7263. set_domain_attribute(sd, attr);
  7264. cpumask_and(sched_domain_span(sd), cpu_map,
  7265. cpu_coregroup_mask(i));
  7266. sd->parent = p;
  7267. p->child = sd;
  7268. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7269. #endif
  7270. #ifdef CONFIG_SCHED_SMT
  7271. p = sd;
  7272. sd = &per_cpu(cpu_domains, i).sd;
  7273. SD_INIT(sd, SIBLING);
  7274. set_domain_attribute(sd, attr);
  7275. cpumask_and(sched_domain_span(sd),
  7276. topology_thread_cpumask(i), cpu_map);
  7277. sd->parent = p;
  7278. p->child = sd;
  7279. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7280. #endif
  7281. }
  7282. #ifdef CONFIG_SCHED_SMT
  7283. /* Set up CPU (sibling) groups */
  7284. for_each_cpu(i, cpu_map) {
  7285. cpumask_and(this_sibling_map,
  7286. topology_thread_cpumask(i), cpu_map);
  7287. if (i != cpumask_first(this_sibling_map))
  7288. continue;
  7289. init_sched_build_groups(this_sibling_map, cpu_map,
  7290. &cpu_to_cpu_group,
  7291. send_covered, tmpmask);
  7292. }
  7293. #endif
  7294. #ifdef CONFIG_SCHED_MC
  7295. /* Set up multi-core groups */
  7296. for_each_cpu(i, cpu_map) {
  7297. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7298. if (i != cpumask_first(this_core_map))
  7299. continue;
  7300. init_sched_build_groups(this_core_map, cpu_map,
  7301. &cpu_to_core_group,
  7302. send_covered, tmpmask);
  7303. }
  7304. #endif
  7305. /* Set up physical groups */
  7306. for (i = 0; i < nr_node_ids; i++) {
  7307. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7308. if (cpumask_empty(nodemask))
  7309. continue;
  7310. init_sched_build_groups(nodemask, cpu_map,
  7311. &cpu_to_phys_group,
  7312. send_covered, tmpmask);
  7313. }
  7314. #ifdef CONFIG_NUMA
  7315. /* Set up node groups */
  7316. if (sd_allnodes) {
  7317. init_sched_build_groups(cpu_map, cpu_map,
  7318. &cpu_to_allnodes_group,
  7319. send_covered, tmpmask);
  7320. }
  7321. for (i = 0; i < nr_node_ids; i++) {
  7322. /* Set up node groups */
  7323. struct sched_group *sg, *prev;
  7324. int j;
  7325. cpumask_clear(covered);
  7326. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7327. if (cpumask_empty(nodemask)) {
  7328. sched_group_nodes[i] = NULL;
  7329. continue;
  7330. }
  7331. sched_domain_node_span(i, domainspan);
  7332. cpumask_and(domainspan, domainspan, cpu_map);
  7333. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7334. GFP_KERNEL, i);
  7335. if (!sg) {
  7336. printk(KERN_WARNING "Can not alloc domain group for "
  7337. "node %d\n", i);
  7338. goto error;
  7339. }
  7340. sched_group_nodes[i] = sg;
  7341. for_each_cpu(j, nodemask) {
  7342. struct sched_domain *sd;
  7343. sd = &per_cpu(node_domains, j).sd;
  7344. sd->groups = sg;
  7345. }
  7346. sg->__cpu_power = 0;
  7347. cpumask_copy(sched_group_cpus(sg), nodemask);
  7348. sg->next = sg;
  7349. cpumask_or(covered, covered, nodemask);
  7350. prev = sg;
  7351. for (j = 0; j < nr_node_ids; j++) {
  7352. int n = (i + j) % nr_node_ids;
  7353. cpumask_complement(notcovered, covered);
  7354. cpumask_and(tmpmask, notcovered, cpu_map);
  7355. cpumask_and(tmpmask, tmpmask, domainspan);
  7356. if (cpumask_empty(tmpmask))
  7357. break;
  7358. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7359. if (cpumask_empty(tmpmask))
  7360. continue;
  7361. sg = kmalloc_node(sizeof(struct sched_group) +
  7362. cpumask_size(),
  7363. GFP_KERNEL, i);
  7364. if (!sg) {
  7365. printk(KERN_WARNING
  7366. "Can not alloc domain group for node %d\n", j);
  7367. goto error;
  7368. }
  7369. sg->__cpu_power = 0;
  7370. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7371. sg->next = prev->next;
  7372. cpumask_or(covered, covered, tmpmask);
  7373. prev->next = sg;
  7374. prev = sg;
  7375. }
  7376. }
  7377. #endif
  7378. /* Calculate CPU power for physical packages and nodes */
  7379. #ifdef CONFIG_SCHED_SMT
  7380. for_each_cpu(i, cpu_map) {
  7381. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7382. init_sched_groups_power(i, sd);
  7383. }
  7384. #endif
  7385. #ifdef CONFIG_SCHED_MC
  7386. for_each_cpu(i, cpu_map) {
  7387. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7388. init_sched_groups_power(i, sd);
  7389. }
  7390. #endif
  7391. for_each_cpu(i, cpu_map) {
  7392. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7393. init_sched_groups_power(i, sd);
  7394. }
  7395. #ifdef CONFIG_NUMA
  7396. for (i = 0; i < nr_node_ids; i++)
  7397. init_numa_sched_groups_power(sched_group_nodes[i]);
  7398. if (sd_allnodes) {
  7399. struct sched_group *sg;
  7400. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7401. tmpmask);
  7402. init_numa_sched_groups_power(sg);
  7403. }
  7404. #endif
  7405. /* Attach the domains */
  7406. for_each_cpu(i, cpu_map) {
  7407. struct sched_domain *sd;
  7408. #ifdef CONFIG_SCHED_SMT
  7409. sd = &per_cpu(cpu_domains, i).sd;
  7410. #elif defined(CONFIG_SCHED_MC)
  7411. sd = &per_cpu(core_domains, i).sd;
  7412. #else
  7413. sd = &per_cpu(phys_domains, i).sd;
  7414. #endif
  7415. cpu_attach_domain(sd, rd, i);
  7416. }
  7417. err = 0;
  7418. free_tmpmask:
  7419. free_cpumask_var(tmpmask);
  7420. free_send_covered:
  7421. free_cpumask_var(send_covered);
  7422. free_this_core_map:
  7423. free_cpumask_var(this_core_map);
  7424. free_this_sibling_map:
  7425. free_cpumask_var(this_sibling_map);
  7426. free_nodemask:
  7427. free_cpumask_var(nodemask);
  7428. free_notcovered:
  7429. #ifdef CONFIG_NUMA
  7430. free_cpumask_var(notcovered);
  7431. free_covered:
  7432. free_cpumask_var(covered);
  7433. free_domainspan:
  7434. free_cpumask_var(domainspan);
  7435. out:
  7436. #endif
  7437. return err;
  7438. free_sched_groups:
  7439. #ifdef CONFIG_NUMA
  7440. kfree(sched_group_nodes);
  7441. #endif
  7442. goto free_tmpmask;
  7443. #ifdef CONFIG_NUMA
  7444. error:
  7445. free_sched_groups(cpu_map, tmpmask);
  7446. free_rootdomain(rd);
  7447. goto free_tmpmask;
  7448. #endif
  7449. }
  7450. static int build_sched_domains(const struct cpumask *cpu_map)
  7451. {
  7452. return __build_sched_domains(cpu_map, NULL);
  7453. }
  7454. static struct cpumask *doms_cur; /* current sched domains */
  7455. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7456. static struct sched_domain_attr *dattr_cur;
  7457. /* attribues of custom domains in 'doms_cur' */
  7458. /*
  7459. * Special case: If a kmalloc of a doms_cur partition (array of
  7460. * cpumask) fails, then fallback to a single sched domain,
  7461. * as determined by the single cpumask fallback_doms.
  7462. */
  7463. static cpumask_var_t fallback_doms;
  7464. /*
  7465. * arch_update_cpu_topology lets virtualized architectures update the
  7466. * cpu core maps. It is supposed to return 1 if the topology changed
  7467. * or 0 if it stayed the same.
  7468. */
  7469. int __attribute__((weak)) arch_update_cpu_topology(void)
  7470. {
  7471. return 0;
  7472. }
  7473. /*
  7474. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7475. * For now this just excludes isolated cpus, but could be used to
  7476. * exclude other special cases in the future.
  7477. */
  7478. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7479. {
  7480. int err;
  7481. arch_update_cpu_topology();
  7482. ndoms_cur = 1;
  7483. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7484. if (!doms_cur)
  7485. doms_cur = fallback_doms;
  7486. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7487. dattr_cur = NULL;
  7488. err = build_sched_domains(doms_cur);
  7489. register_sched_domain_sysctl();
  7490. return err;
  7491. }
  7492. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7493. struct cpumask *tmpmask)
  7494. {
  7495. free_sched_groups(cpu_map, tmpmask);
  7496. }
  7497. /*
  7498. * Detach sched domains from a group of cpus specified in cpu_map
  7499. * These cpus will now be attached to the NULL domain
  7500. */
  7501. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7502. {
  7503. /* Save because hotplug lock held. */
  7504. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7505. int i;
  7506. for_each_cpu(i, cpu_map)
  7507. cpu_attach_domain(NULL, &def_root_domain, i);
  7508. synchronize_sched();
  7509. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7510. }
  7511. /* handle null as "default" */
  7512. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7513. struct sched_domain_attr *new, int idx_new)
  7514. {
  7515. struct sched_domain_attr tmp;
  7516. /* fast path */
  7517. if (!new && !cur)
  7518. return 1;
  7519. tmp = SD_ATTR_INIT;
  7520. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7521. new ? (new + idx_new) : &tmp,
  7522. sizeof(struct sched_domain_attr));
  7523. }
  7524. /*
  7525. * Partition sched domains as specified by the 'ndoms_new'
  7526. * cpumasks in the array doms_new[] of cpumasks. This compares
  7527. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7528. * It destroys each deleted domain and builds each new domain.
  7529. *
  7530. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7531. * The masks don't intersect (don't overlap.) We should setup one
  7532. * sched domain for each mask. CPUs not in any of the cpumasks will
  7533. * not be load balanced. If the same cpumask appears both in the
  7534. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7535. * it as it is.
  7536. *
  7537. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7538. * ownership of it and will kfree it when done with it. If the caller
  7539. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7540. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7541. * the single partition 'fallback_doms', it also forces the domains
  7542. * to be rebuilt.
  7543. *
  7544. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7545. * ndoms_new == 0 is a special case for destroying existing domains,
  7546. * and it will not create the default domain.
  7547. *
  7548. * Call with hotplug lock held
  7549. */
  7550. /* FIXME: Change to struct cpumask *doms_new[] */
  7551. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7552. struct sched_domain_attr *dattr_new)
  7553. {
  7554. int i, j, n;
  7555. int new_topology;
  7556. mutex_lock(&sched_domains_mutex);
  7557. /* always unregister in case we don't destroy any domains */
  7558. unregister_sched_domain_sysctl();
  7559. /* Let architecture update cpu core mappings. */
  7560. new_topology = arch_update_cpu_topology();
  7561. n = doms_new ? ndoms_new : 0;
  7562. /* Destroy deleted domains */
  7563. for (i = 0; i < ndoms_cur; i++) {
  7564. for (j = 0; j < n && !new_topology; j++) {
  7565. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7566. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7567. goto match1;
  7568. }
  7569. /* no match - a current sched domain not in new doms_new[] */
  7570. detach_destroy_domains(doms_cur + i);
  7571. match1:
  7572. ;
  7573. }
  7574. if (doms_new == NULL) {
  7575. ndoms_cur = 0;
  7576. doms_new = fallback_doms;
  7577. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7578. WARN_ON_ONCE(dattr_new);
  7579. }
  7580. /* Build new domains */
  7581. for (i = 0; i < ndoms_new; i++) {
  7582. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7583. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7584. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7585. goto match2;
  7586. }
  7587. /* no match - add a new doms_new */
  7588. __build_sched_domains(doms_new + i,
  7589. dattr_new ? dattr_new + i : NULL);
  7590. match2:
  7591. ;
  7592. }
  7593. /* Remember the new sched domains */
  7594. if (doms_cur != fallback_doms)
  7595. kfree(doms_cur);
  7596. kfree(dattr_cur); /* kfree(NULL) is safe */
  7597. doms_cur = doms_new;
  7598. dattr_cur = dattr_new;
  7599. ndoms_cur = ndoms_new;
  7600. register_sched_domain_sysctl();
  7601. mutex_unlock(&sched_domains_mutex);
  7602. }
  7603. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7604. static void arch_reinit_sched_domains(void)
  7605. {
  7606. get_online_cpus();
  7607. /* Destroy domains first to force the rebuild */
  7608. partition_sched_domains(0, NULL, NULL);
  7609. rebuild_sched_domains();
  7610. put_online_cpus();
  7611. }
  7612. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7613. {
  7614. unsigned int level = 0;
  7615. if (sscanf(buf, "%u", &level) != 1)
  7616. return -EINVAL;
  7617. /*
  7618. * level is always be positive so don't check for
  7619. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7620. * What happens on 0 or 1 byte write,
  7621. * need to check for count as well?
  7622. */
  7623. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7624. return -EINVAL;
  7625. if (smt)
  7626. sched_smt_power_savings = level;
  7627. else
  7628. sched_mc_power_savings = level;
  7629. arch_reinit_sched_domains();
  7630. return count;
  7631. }
  7632. #ifdef CONFIG_SCHED_MC
  7633. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7634. char *page)
  7635. {
  7636. return sprintf(page, "%u\n", sched_mc_power_savings);
  7637. }
  7638. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7639. const char *buf, size_t count)
  7640. {
  7641. return sched_power_savings_store(buf, count, 0);
  7642. }
  7643. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7644. sched_mc_power_savings_show,
  7645. sched_mc_power_savings_store);
  7646. #endif
  7647. #ifdef CONFIG_SCHED_SMT
  7648. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7649. char *page)
  7650. {
  7651. return sprintf(page, "%u\n", sched_smt_power_savings);
  7652. }
  7653. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7654. const char *buf, size_t count)
  7655. {
  7656. return sched_power_savings_store(buf, count, 1);
  7657. }
  7658. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7659. sched_smt_power_savings_show,
  7660. sched_smt_power_savings_store);
  7661. #endif
  7662. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7663. {
  7664. int err = 0;
  7665. #ifdef CONFIG_SCHED_SMT
  7666. if (smt_capable())
  7667. err = sysfs_create_file(&cls->kset.kobj,
  7668. &attr_sched_smt_power_savings.attr);
  7669. #endif
  7670. #ifdef CONFIG_SCHED_MC
  7671. if (!err && mc_capable())
  7672. err = sysfs_create_file(&cls->kset.kobj,
  7673. &attr_sched_mc_power_savings.attr);
  7674. #endif
  7675. return err;
  7676. }
  7677. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7678. #ifndef CONFIG_CPUSETS
  7679. /*
  7680. * Add online and remove offline CPUs from the scheduler domains.
  7681. * When cpusets are enabled they take over this function.
  7682. */
  7683. static int update_sched_domains(struct notifier_block *nfb,
  7684. unsigned long action, void *hcpu)
  7685. {
  7686. switch (action) {
  7687. case CPU_ONLINE:
  7688. case CPU_ONLINE_FROZEN:
  7689. case CPU_DEAD:
  7690. case CPU_DEAD_FROZEN:
  7691. partition_sched_domains(1, NULL, NULL);
  7692. return NOTIFY_OK;
  7693. default:
  7694. return NOTIFY_DONE;
  7695. }
  7696. }
  7697. #endif
  7698. static int update_runtime(struct notifier_block *nfb,
  7699. unsigned long action, void *hcpu)
  7700. {
  7701. int cpu = (int)(long)hcpu;
  7702. switch (action) {
  7703. case CPU_DOWN_PREPARE:
  7704. case CPU_DOWN_PREPARE_FROZEN:
  7705. disable_runtime(cpu_rq(cpu));
  7706. return NOTIFY_OK;
  7707. case CPU_DOWN_FAILED:
  7708. case CPU_DOWN_FAILED_FROZEN:
  7709. case CPU_ONLINE:
  7710. case CPU_ONLINE_FROZEN:
  7711. enable_runtime(cpu_rq(cpu));
  7712. return NOTIFY_OK;
  7713. default:
  7714. return NOTIFY_DONE;
  7715. }
  7716. }
  7717. void __init sched_init_smp(void)
  7718. {
  7719. cpumask_var_t non_isolated_cpus;
  7720. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7721. #if defined(CONFIG_NUMA)
  7722. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7723. GFP_KERNEL);
  7724. BUG_ON(sched_group_nodes_bycpu == NULL);
  7725. #endif
  7726. get_online_cpus();
  7727. mutex_lock(&sched_domains_mutex);
  7728. arch_init_sched_domains(cpu_online_mask);
  7729. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7730. if (cpumask_empty(non_isolated_cpus))
  7731. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7732. mutex_unlock(&sched_domains_mutex);
  7733. put_online_cpus();
  7734. #ifndef CONFIG_CPUSETS
  7735. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7736. hotcpu_notifier(update_sched_domains, 0);
  7737. #endif
  7738. /* RT runtime code needs to handle some hotplug events */
  7739. hotcpu_notifier(update_runtime, 0);
  7740. init_hrtick();
  7741. /* Move init over to a non-isolated CPU */
  7742. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7743. BUG();
  7744. sched_init_granularity();
  7745. free_cpumask_var(non_isolated_cpus);
  7746. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7747. init_sched_rt_class();
  7748. }
  7749. #else
  7750. void __init sched_init_smp(void)
  7751. {
  7752. sched_init_granularity();
  7753. }
  7754. #endif /* CONFIG_SMP */
  7755. const_debug unsigned int sysctl_timer_migration = 1;
  7756. int in_sched_functions(unsigned long addr)
  7757. {
  7758. return in_lock_functions(addr) ||
  7759. (addr >= (unsigned long)__sched_text_start
  7760. && addr < (unsigned long)__sched_text_end);
  7761. }
  7762. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7763. {
  7764. cfs_rq->tasks_timeline = RB_ROOT;
  7765. INIT_LIST_HEAD(&cfs_rq->tasks);
  7766. #ifdef CONFIG_FAIR_GROUP_SCHED
  7767. cfs_rq->rq = rq;
  7768. #endif
  7769. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7770. }
  7771. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7772. {
  7773. struct rt_prio_array *array;
  7774. int i;
  7775. array = &rt_rq->active;
  7776. for (i = 0; i < MAX_RT_PRIO; i++) {
  7777. INIT_LIST_HEAD(array->queue + i);
  7778. __clear_bit(i, array->bitmap);
  7779. }
  7780. /* delimiter for bitsearch: */
  7781. __set_bit(MAX_RT_PRIO, array->bitmap);
  7782. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7783. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7784. #ifdef CONFIG_SMP
  7785. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7786. #endif
  7787. #endif
  7788. #ifdef CONFIG_SMP
  7789. rt_rq->rt_nr_migratory = 0;
  7790. rt_rq->overloaded = 0;
  7791. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7792. #endif
  7793. rt_rq->rt_time = 0;
  7794. rt_rq->rt_throttled = 0;
  7795. rt_rq->rt_runtime = 0;
  7796. spin_lock_init(&rt_rq->rt_runtime_lock);
  7797. #ifdef CONFIG_RT_GROUP_SCHED
  7798. rt_rq->rt_nr_boosted = 0;
  7799. rt_rq->rq = rq;
  7800. #endif
  7801. }
  7802. #ifdef CONFIG_FAIR_GROUP_SCHED
  7803. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7804. struct sched_entity *se, int cpu, int add,
  7805. struct sched_entity *parent)
  7806. {
  7807. struct rq *rq = cpu_rq(cpu);
  7808. tg->cfs_rq[cpu] = cfs_rq;
  7809. init_cfs_rq(cfs_rq, rq);
  7810. cfs_rq->tg = tg;
  7811. if (add)
  7812. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7813. tg->se[cpu] = se;
  7814. /* se could be NULL for init_task_group */
  7815. if (!se)
  7816. return;
  7817. if (!parent)
  7818. se->cfs_rq = &rq->cfs;
  7819. else
  7820. se->cfs_rq = parent->my_q;
  7821. se->my_q = cfs_rq;
  7822. se->load.weight = tg->shares;
  7823. se->load.inv_weight = 0;
  7824. se->parent = parent;
  7825. }
  7826. #endif
  7827. #ifdef CONFIG_RT_GROUP_SCHED
  7828. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7829. struct sched_rt_entity *rt_se, int cpu, int add,
  7830. struct sched_rt_entity *parent)
  7831. {
  7832. struct rq *rq = cpu_rq(cpu);
  7833. tg->rt_rq[cpu] = rt_rq;
  7834. init_rt_rq(rt_rq, rq);
  7835. rt_rq->tg = tg;
  7836. rt_rq->rt_se = rt_se;
  7837. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7838. if (add)
  7839. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7840. tg->rt_se[cpu] = rt_se;
  7841. if (!rt_se)
  7842. return;
  7843. if (!parent)
  7844. rt_se->rt_rq = &rq->rt;
  7845. else
  7846. rt_se->rt_rq = parent->my_q;
  7847. rt_se->my_q = rt_rq;
  7848. rt_se->parent = parent;
  7849. INIT_LIST_HEAD(&rt_se->run_list);
  7850. }
  7851. #endif
  7852. void __init sched_init(void)
  7853. {
  7854. int i, j;
  7855. unsigned long alloc_size = 0, ptr;
  7856. #ifdef CONFIG_FAIR_GROUP_SCHED
  7857. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7858. #endif
  7859. #ifdef CONFIG_RT_GROUP_SCHED
  7860. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7861. #endif
  7862. #ifdef CONFIG_USER_SCHED
  7863. alloc_size *= 2;
  7864. #endif
  7865. #ifdef CONFIG_CPUMASK_OFFSTACK
  7866. alloc_size += num_possible_cpus() * cpumask_size();
  7867. #endif
  7868. /*
  7869. * As sched_init() is called before page_alloc is setup,
  7870. * we use alloc_bootmem().
  7871. */
  7872. if (alloc_size) {
  7873. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7874. #ifdef CONFIG_FAIR_GROUP_SCHED
  7875. init_task_group.se = (struct sched_entity **)ptr;
  7876. ptr += nr_cpu_ids * sizeof(void **);
  7877. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7878. ptr += nr_cpu_ids * sizeof(void **);
  7879. #ifdef CONFIG_USER_SCHED
  7880. root_task_group.se = (struct sched_entity **)ptr;
  7881. ptr += nr_cpu_ids * sizeof(void **);
  7882. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7883. ptr += nr_cpu_ids * sizeof(void **);
  7884. #endif /* CONFIG_USER_SCHED */
  7885. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7886. #ifdef CONFIG_RT_GROUP_SCHED
  7887. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7888. ptr += nr_cpu_ids * sizeof(void **);
  7889. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7890. ptr += nr_cpu_ids * sizeof(void **);
  7891. #ifdef CONFIG_USER_SCHED
  7892. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7893. ptr += nr_cpu_ids * sizeof(void **);
  7894. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7895. ptr += nr_cpu_ids * sizeof(void **);
  7896. #endif /* CONFIG_USER_SCHED */
  7897. #endif /* CONFIG_RT_GROUP_SCHED */
  7898. #ifdef CONFIG_CPUMASK_OFFSTACK
  7899. for_each_possible_cpu(i) {
  7900. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7901. ptr += cpumask_size();
  7902. }
  7903. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7904. }
  7905. #ifdef CONFIG_SMP
  7906. init_defrootdomain();
  7907. #endif
  7908. init_rt_bandwidth(&def_rt_bandwidth,
  7909. global_rt_period(), global_rt_runtime());
  7910. #ifdef CONFIG_RT_GROUP_SCHED
  7911. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7912. global_rt_period(), global_rt_runtime());
  7913. #ifdef CONFIG_USER_SCHED
  7914. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7915. global_rt_period(), RUNTIME_INF);
  7916. #endif /* CONFIG_USER_SCHED */
  7917. #endif /* CONFIG_RT_GROUP_SCHED */
  7918. #ifdef CONFIG_GROUP_SCHED
  7919. list_add(&init_task_group.list, &task_groups);
  7920. INIT_LIST_HEAD(&init_task_group.children);
  7921. #ifdef CONFIG_USER_SCHED
  7922. INIT_LIST_HEAD(&root_task_group.children);
  7923. init_task_group.parent = &root_task_group;
  7924. list_add(&init_task_group.siblings, &root_task_group.children);
  7925. #endif /* CONFIG_USER_SCHED */
  7926. #endif /* CONFIG_GROUP_SCHED */
  7927. for_each_possible_cpu(i) {
  7928. struct rq *rq;
  7929. rq = cpu_rq(i);
  7930. spin_lock_init(&rq->lock);
  7931. rq->nr_running = 0;
  7932. rq->calc_load_active = 0;
  7933. rq->calc_load_update = jiffies + LOAD_FREQ;
  7934. init_cfs_rq(&rq->cfs, rq);
  7935. init_rt_rq(&rq->rt, rq);
  7936. #ifdef CONFIG_FAIR_GROUP_SCHED
  7937. init_task_group.shares = init_task_group_load;
  7938. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7939. #ifdef CONFIG_CGROUP_SCHED
  7940. /*
  7941. * How much cpu bandwidth does init_task_group get?
  7942. *
  7943. * In case of task-groups formed thr' the cgroup filesystem, it
  7944. * gets 100% of the cpu resources in the system. This overall
  7945. * system cpu resource is divided among the tasks of
  7946. * init_task_group and its child task-groups in a fair manner,
  7947. * based on each entity's (task or task-group's) weight
  7948. * (se->load.weight).
  7949. *
  7950. * In other words, if init_task_group has 10 tasks of weight
  7951. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7952. * then A0's share of the cpu resource is:
  7953. *
  7954. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7955. *
  7956. * We achieve this by letting init_task_group's tasks sit
  7957. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7958. */
  7959. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7960. #elif defined CONFIG_USER_SCHED
  7961. root_task_group.shares = NICE_0_LOAD;
  7962. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7963. /*
  7964. * In case of task-groups formed thr' the user id of tasks,
  7965. * init_task_group represents tasks belonging to root user.
  7966. * Hence it forms a sibling of all subsequent groups formed.
  7967. * In this case, init_task_group gets only a fraction of overall
  7968. * system cpu resource, based on the weight assigned to root
  7969. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7970. * by letting tasks of init_task_group sit in a separate cfs_rq
  7971. * (init_cfs_rq) and having one entity represent this group of
  7972. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7973. */
  7974. init_tg_cfs_entry(&init_task_group,
  7975. &per_cpu(init_cfs_rq, i),
  7976. &per_cpu(init_sched_entity, i), i, 1,
  7977. root_task_group.se[i]);
  7978. #endif
  7979. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7980. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7981. #ifdef CONFIG_RT_GROUP_SCHED
  7982. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7983. #ifdef CONFIG_CGROUP_SCHED
  7984. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7985. #elif defined CONFIG_USER_SCHED
  7986. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7987. init_tg_rt_entry(&init_task_group,
  7988. &per_cpu(init_rt_rq, i),
  7989. &per_cpu(init_sched_rt_entity, i), i, 1,
  7990. root_task_group.rt_se[i]);
  7991. #endif
  7992. #endif
  7993. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7994. rq->cpu_load[j] = 0;
  7995. #ifdef CONFIG_SMP
  7996. rq->sd = NULL;
  7997. rq->rd = NULL;
  7998. rq->active_balance = 0;
  7999. rq->next_balance = jiffies;
  8000. rq->push_cpu = 0;
  8001. rq->cpu = i;
  8002. rq->online = 0;
  8003. rq->migration_thread = NULL;
  8004. INIT_LIST_HEAD(&rq->migration_queue);
  8005. rq_attach_root(rq, &def_root_domain);
  8006. #endif
  8007. init_rq_hrtick(rq);
  8008. atomic_set(&rq->nr_iowait, 0);
  8009. }
  8010. set_load_weight(&init_task);
  8011. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8012. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8013. #endif
  8014. #ifdef CONFIG_SMP
  8015. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8016. #endif
  8017. #ifdef CONFIG_RT_MUTEXES
  8018. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8019. #endif
  8020. /*
  8021. * The boot idle thread does lazy MMU switching as well:
  8022. */
  8023. atomic_inc(&init_mm.mm_count);
  8024. enter_lazy_tlb(&init_mm, current);
  8025. /*
  8026. * Make us the idle thread. Technically, schedule() should not be
  8027. * called from this thread, however somewhere below it might be,
  8028. * but because we are the idle thread, we just pick up running again
  8029. * when this runqueue becomes "idle".
  8030. */
  8031. init_idle(current, smp_processor_id());
  8032. calc_load_update = jiffies + LOAD_FREQ;
  8033. /*
  8034. * During early bootup we pretend to be a normal task:
  8035. */
  8036. current->sched_class = &fair_sched_class;
  8037. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8038. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8039. #ifdef CONFIG_SMP
  8040. #ifdef CONFIG_NO_HZ
  8041. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8042. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8043. #endif
  8044. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8045. #endif /* SMP */
  8046. perf_counter_init();
  8047. scheduler_running = 1;
  8048. }
  8049. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8050. static inline int preempt_count_equals(int preempt_offset)
  8051. {
  8052. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8053. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8054. }
  8055. void __might_sleep(char *file, int line, int preempt_offset)
  8056. {
  8057. #ifdef in_atomic
  8058. static unsigned long prev_jiffy; /* ratelimiting */
  8059. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8060. system_state != SYSTEM_RUNNING || oops_in_progress)
  8061. return;
  8062. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8063. return;
  8064. prev_jiffy = jiffies;
  8065. printk(KERN_ERR
  8066. "BUG: sleeping function called from invalid context at %s:%d\n",
  8067. file, line);
  8068. printk(KERN_ERR
  8069. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8070. in_atomic(), irqs_disabled(),
  8071. current->pid, current->comm);
  8072. debug_show_held_locks(current);
  8073. if (irqs_disabled())
  8074. print_irqtrace_events(current);
  8075. dump_stack();
  8076. #endif
  8077. }
  8078. EXPORT_SYMBOL(__might_sleep);
  8079. #endif
  8080. #ifdef CONFIG_MAGIC_SYSRQ
  8081. static void normalize_task(struct rq *rq, struct task_struct *p)
  8082. {
  8083. int on_rq;
  8084. update_rq_clock(rq);
  8085. on_rq = p->se.on_rq;
  8086. if (on_rq)
  8087. deactivate_task(rq, p, 0);
  8088. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8089. if (on_rq) {
  8090. activate_task(rq, p, 0);
  8091. resched_task(rq->curr);
  8092. }
  8093. }
  8094. void normalize_rt_tasks(void)
  8095. {
  8096. struct task_struct *g, *p;
  8097. unsigned long flags;
  8098. struct rq *rq;
  8099. read_lock_irqsave(&tasklist_lock, flags);
  8100. do_each_thread(g, p) {
  8101. /*
  8102. * Only normalize user tasks:
  8103. */
  8104. if (!p->mm)
  8105. continue;
  8106. p->se.exec_start = 0;
  8107. #ifdef CONFIG_SCHEDSTATS
  8108. p->se.wait_start = 0;
  8109. p->se.sleep_start = 0;
  8110. p->se.block_start = 0;
  8111. #endif
  8112. if (!rt_task(p)) {
  8113. /*
  8114. * Renice negative nice level userspace
  8115. * tasks back to 0:
  8116. */
  8117. if (TASK_NICE(p) < 0 && p->mm)
  8118. set_user_nice(p, 0);
  8119. continue;
  8120. }
  8121. spin_lock(&p->pi_lock);
  8122. rq = __task_rq_lock(p);
  8123. normalize_task(rq, p);
  8124. __task_rq_unlock(rq);
  8125. spin_unlock(&p->pi_lock);
  8126. } while_each_thread(g, p);
  8127. read_unlock_irqrestore(&tasklist_lock, flags);
  8128. }
  8129. #endif /* CONFIG_MAGIC_SYSRQ */
  8130. #ifdef CONFIG_IA64
  8131. /*
  8132. * These functions are only useful for the IA64 MCA handling.
  8133. *
  8134. * They can only be called when the whole system has been
  8135. * stopped - every CPU needs to be quiescent, and no scheduling
  8136. * activity can take place. Using them for anything else would
  8137. * be a serious bug, and as a result, they aren't even visible
  8138. * under any other configuration.
  8139. */
  8140. /**
  8141. * curr_task - return the current task for a given cpu.
  8142. * @cpu: the processor in question.
  8143. *
  8144. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8145. */
  8146. struct task_struct *curr_task(int cpu)
  8147. {
  8148. return cpu_curr(cpu);
  8149. }
  8150. /**
  8151. * set_curr_task - set the current task for a given cpu.
  8152. * @cpu: the processor in question.
  8153. * @p: the task pointer to set.
  8154. *
  8155. * Description: This function must only be used when non-maskable interrupts
  8156. * are serviced on a separate stack. It allows the architecture to switch the
  8157. * notion of the current task on a cpu in a non-blocking manner. This function
  8158. * must be called with all CPU's synchronized, and interrupts disabled, the
  8159. * and caller must save the original value of the current task (see
  8160. * curr_task() above) and restore that value before reenabling interrupts and
  8161. * re-starting the system.
  8162. *
  8163. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8164. */
  8165. void set_curr_task(int cpu, struct task_struct *p)
  8166. {
  8167. cpu_curr(cpu) = p;
  8168. }
  8169. #endif
  8170. #ifdef CONFIG_FAIR_GROUP_SCHED
  8171. static void free_fair_sched_group(struct task_group *tg)
  8172. {
  8173. int i;
  8174. for_each_possible_cpu(i) {
  8175. if (tg->cfs_rq)
  8176. kfree(tg->cfs_rq[i]);
  8177. if (tg->se)
  8178. kfree(tg->se[i]);
  8179. }
  8180. kfree(tg->cfs_rq);
  8181. kfree(tg->se);
  8182. }
  8183. static
  8184. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8185. {
  8186. struct cfs_rq *cfs_rq;
  8187. struct sched_entity *se;
  8188. struct rq *rq;
  8189. int i;
  8190. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8191. if (!tg->cfs_rq)
  8192. goto err;
  8193. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8194. if (!tg->se)
  8195. goto err;
  8196. tg->shares = NICE_0_LOAD;
  8197. for_each_possible_cpu(i) {
  8198. rq = cpu_rq(i);
  8199. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8200. GFP_KERNEL, cpu_to_node(i));
  8201. if (!cfs_rq)
  8202. goto err;
  8203. se = kzalloc_node(sizeof(struct sched_entity),
  8204. GFP_KERNEL, cpu_to_node(i));
  8205. if (!se)
  8206. goto err;
  8207. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8208. }
  8209. return 1;
  8210. err:
  8211. return 0;
  8212. }
  8213. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8214. {
  8215. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8216. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8217. }
  8218. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8219. {
  8220. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8221. }
  8222. #else /* !CONFG_FAIR_GROUP_SCHED */
  8223. static inline void free_fair_sched_group(struct task_group *tg)
  8224. {
  8225. }
  8226. static inline
  8227. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8228. {
  8229. return 1;
  8230. }
  8231. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8232. {
  8233. }
  8234. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8235. {
  8236. }
  8237. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8238. #ifdef CONFIG_RT_GROUP_SCHED
  8239. static void free_rt_sched_group(struct task_group *tg)
  8240. {
  8241. int i;
  8242. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8243. for_each_possible_cpu(i) {
  8244. if (tg->rt_rq)
  8245. kfree(tg->rt_rq[i]);
  8246. if (tg->rt_se)
  8247. kfree(tg->rt_se[i]);
  8248. }
  8249. kfree(tg->rt_rq);
  8250. kfree(tg->rt_se);
  8251. }
  8252. static
  8253. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8254. {
  8255. struct rt_rq *rt_rq;
  8256. struct sched_rt_entity *rt_se;
  8257. struct rq *rq;
  8258. int i;
  8259. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8260. if (!tg->rt_rq)
  8261. goto err;
  8262. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8263. if (!tg->rt_se)
  8264. goto err;
  8265. init_rt_bandwidth(&tg->rt_bandwidth,
  8266. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8267. for_each_possible_cpu(i) {
  8268. rq = cpu_rq(i);
  8269. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8270. GFP_KERNEL, cpu_to_node(i));
  8271. if (!rt_rq)
  8272. goto err;
  8273. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8274. GFP_KERNEL, cpu_to_node(i));
  8275. if (!rt_se)
  8276. goto err;
  8277. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8278. }
  8279. return 1;
  8280. err:
  8281. return 0;
  8282. }
  8283. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8284. {
  8285. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8286. &cpu_rq(cpu)->leaf_rt_rq_list);
  8287. }
  8288. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8289. {
  8290. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8291. }
  8292. #else /* !CONFIG_RT_GROUP_SCHED */
  8293. static inline void free_rt_sched_group(struct task_group *tg)
  8294. {
  8295. }
  8296. static inline
  8297. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8298. {
  8299. return 1;
  8300. }
  8301. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8302. {
  8303. }
  8304. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8305. {
  8306. }
  8307. #endif /* CONFIG_RT_GROUP_SCHED */
  8308. #ifdef CONFIG_GROUP_SCHED
  8309. static void free_sched_group(struct task_group *tg)
  8310. {
  8311. free_fair_sched_group(tg);
  8312. free_rt_sched_group(tg);
  8313. kfree(tg);
  8314. }
  8315. /* allocate runqueue etc for a new task group */
  8316. struct task_group *sched_create_group(struct task_group *parent)
  8317. {
  8318. struct task_group *tg;
  8319. unsigned long flags;
  8320. int i;
  8321. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8322. if (!tg)
  8323. return ERR_PTR(-ENOMEM);
  8324. if (!alloc_fair_sched_group(tg, parent))
  8325. goto err;
  8326. if (!alloc_rt_sched_group(tg, parent))
  8327. goto err;
  8328. spin_lock_irqsave(&task_group_lock, flags);
  8329. for_each_possible_cpu(i) {
  8330. register_fair_sched_group(tg, i);
  8331. register_rt_sched_group(tg, i);
  8332. }
  8333. list_add_rcu(&tg->list, &task_groups);
  8334. WARN_ON(!parent); /* root should already exist */
  8335. tg->parent = parent;
  8336. INIT_LIST_HEAD(&tg->children);
  8337. list_add_rcu(&tg->siblings, &parent->children);
  8338. spin_unlock_irqrestore(&task_group_lock, flags);
  8339. return tg;
  8340. err:
  8341. free_sched_group(tg);
  8342. return ERR_PTR(-ENOMEM);
  8343. }
  8344. /* rcu callback to free various structures associated with a task group */
  8345. static void free_sched_group_rcu(struct rcu_head *rhp)
  8346. {
  8347. /* now it should be safe to free those cfs_rqs */
  8348. free_sched_group(container_of(rhp, struct task_group, rcu));
  8349. }
  8350. /* Destroy runqueue etc associated with a task group */
  8351. void sched_destroy_group(struct task_group *tg)
  8352. {
  8353. unsigned long flags;
  8354. int i;
  8355. spin_lock_irqsave(&task_group_lock, flags);
  8356. for_each_possible_cpu(i) {
  8357. unregister_fair_sched_group(tg, i);
  8358. unregister_rt_sched_group(tg, i);
  8359. }
  8360. list_del_rcu(&tg->list);
  8361. list_del_rcu(&tg->siblings);
  8362. spin_unlock_irqrestore(&task_group_lock, flags);
  8363. /* wait for possible concurrent references to cfs_rqs complete */
  8364. call_rcu(&tg->rcu, free_sched_group_rcu);
  8365. }
  8366. /* change task's runqueue when it moves between groups.
  8367. * The caller of this function should have put the task in its new group
  8368. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8369. * reflect its new group.
  8370. */
  8371. void sched_move_task(struct task_struct *tsk)
  8372. {
  8373. int on_rq, running;
  8374. unsigned long flags;
  8375. struct rq *rq;
  8376. rq = task_rq_lock(tsk, &flags);
  8377. update_rq_clock(rq);
  8378. running = task_current(rq, tsk);
  8379. on_rq = tsk->se.on_rq;
  8380. if (on_rq)
  8381. dequeue_task(rq, tsk, 0);
  8382. if (unlikely(running))
  8383. tsk->sched_class->put_prev_task(rq, tsk);
  8384. set_task_rq(tsk, task_cpu(tsk));
  8385. #ifdef CONFIG_FAIR_GROUP_SCHED
  8386. if (tsk->sched_class->moved_group)
  8387. tsk->sched_class->moved_group(tsk);
  8388. #endif
  8389. if (unlikely(running))
  8390. tsk->sched_class->set_curr_task(rq);
  8391. if (on_rq)
  8392. enqueue_task(rq, tsk, 0);
  8393. task_rq_unlock(rq, &flags);
  8394. }
  8395. #endif /* CONFIG_GROUP_SCHED */
  8396. #ifdef CONFIG_FAIR_GROUP_SCHED
  8397. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8398. {
  8399. struct cfs_rq *cfs_rq = se->cfs_rq;
  8400. int on_rq;
  8401. on_rq = se->on_rq;
  8402. if (on_rq)
  8403. dequeue_entity(cfs_rq, se, 0);
  8404. se->load.weight = shares;
  8405. se->load.inv_weight = 0;
  8406. if (on_rq)
  8407. enqueue_entity(cfs_rq, se, 0);
  8408. }
  8409. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8410. {
  8411. struct cfs_rq *cfs_rq = se->cfs_rq;
  8412. struct rq *rq = cfs_rq->rq;
  8413. unsigned long flags;
  8414. spin_lock_irqsave(&rq->lock, flags);
  8415. __set_se_shares(se, shares);
  8416. spin_unlock_irqrestore(&rq->lock, flags);
  8417. }
  8418. static DEFINE_MUTEX(shares_mutex);
  8419. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8420. {
  8421. int i;
  8422. unsigned long flags;
  8423. /*
  8424. * We can't change the weight of the root cgroup.
  8425. */
  8426. if (!tg->se[0])
  8427. return -EINVAL;
  8428. if (shares < MIN_SHARES)
  8429. shares = MIN_SHARES;
  8430. else if (shares > MAX_SHARES)
  8431. shares = MAX_SHARES;
  8432. mutex_lock(&shares_mutex);
  8433. if (tg->shares == shares)
  8434. goto done;
  8435. spin_lock_irqsave(&task_group_lock, flags);
  8436. for_each_possible_cpu(i)
  8437. unregister_fair_sched_group(tg, i);
  8438. list_del_rcu(&tg->siblings);
  8439. spin_unlock_irqrestore(&task_group_lock, flags);
  8440. /* wait for any ongoing reference to this group to finish */
  8441. synchronize_sched();
  8442. /*
  8443. * Now we are free to modify the group's share on each cpu
  8444. * w/o tripping rebalance_share or load_balance_fair.
  8445. */
  8446. tg->shares = shares;
  8447. for_each_possible_cpu(i) {
  8448. /*
  8449. * force a rebalance
  8450. */
  8451. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8452. set_se_shares(tg->se[i], shares);
  8453. }
  8454. /*
  8455. * Enable load balance activity on this group, by inserting it back on
  8456. * each cpu's rq->leaf_cfs_rq_list.
  8457. */
  8458. spin_lock_irqsave(&task_group_lock, flags);
  8459. for_each_possible_cpu(i)
  8460. register_fair_sched_group(tg, i);
  8461. list_add_rcu(&tg->siblings, &tg->parent->children);
  8462. spin_unlock_irqrestore(&task_group_lock, flags);
  8463. done:
  8464. mutex_unlock(&shares_mutex);
  8465. return 0;
  8466. }
  8467. unsigned long sched_group_shares(struct task_group *tg)
  8468. {
  8469. return tg->shares;
  8470. }
  8471. #endif
  8472. #ifdef CONFIG_RT_GROUP_SCHED
  8473. /*
  8474. * Ensure that the real time constraints are schedulable.
  8475. */
  8476. static DEFINE_MUTEX(rt_constraints_mutex);
  8477. static unsigned long to_ratio(u64 period, u64 runtime)
  8478. {
  8479. if (runtime == RUNTIME_INF)
  8480. return 1ULL << 20;
  8481. return div64_u64(runtime << 20, period);
  8482. }
  8483. /* Must be called with tasklist_lock held */
  8484. static inline int tg_has_rt_tasks(struct task_group *tg)
  8485. {
  8486. struct task_struct *g, *p;
  8487. do_each_thread(g, p) {
  8488. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8489. return 1;
  8490. } while_each_thread(g, p);
  8491. return 0;
  8492. }
  8493. struct rt_schedulable_data {
  8494. struct task_group *tg;
  8495. u64 rt_period;
  8496. u64 rt_runtime;
  8497. };
  8498. static int tg_schedulable(struct task_group *tg, void *data)
  8499. {
  8500. struct rt_schedulable_data *d = data;
  8501. struct task_group *child;
  8502. unsigned long total, sum = 0;
  8503. u64 period, runtime;
  8504. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8505. runtime = tg->rt_bandwidth.rt_runtime;
  8506. if (tg == d->tg) {
  8507. period = d->rt_period;
  8508. runtime = d->rt_runtime;
  8509. }
  8510. #ifdef CONFIG_USER_SCHED
  8511. if (tg == &root_task_group) {
  8512. period = global_rt_period();
  8513. runtime = global_rt_runtime();
  8514. }
  8515. #endif
  8516. /*
  8517. * Cannot have more runtime than the period.
  8518. */
  8519. if (runtime > period && runtime != RUNTIME_INF)
  8520. return -EINVAL;
  8521. /*
  8522. * Ensure we don't starve existing RT tasks.
  8523. */
  8524. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8525. return -EBUSY;
  8526. total = to_ratio(period, runtime);
  8527. /*
  8528. * Nobody can have more than the global setting allows.
  8529. */
  8530. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8531. return -EINVAL;
  8532. /*
  8533. * The sum of our children's runtime should not exceed our own.
  8534. */
  8535. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8536. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8537. runtime = child->rt_bandwidth.rt_runtime;
  8538. if (child == d->tg) {
  8539. period = d->rt_period;
  8540. runtime = d->rt_runtime;
  8541. }
  8542. sum += to_ratio(period, runtime);
  8543. }
  8544. if (sum > total)
  8545. return -EINVAL;
  8546. return 0;
  8547. }
  8548. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8549. {
  8550. struct rt_schedulable_data data = {
  8551. .tg = tg,
  8552. .rt_period = period,
  8553. .rt_runtime = runtime,
  8554. };
  8555. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8556. }
  8557. static int tg_set_bandwidth(struct task_group *tg,
  8558. u64 rt_period, u64 rt_runtime)
  8559. {
  8560. int i, err = 0;
  8561. mutex_lock(&rt_constraints_mutex);
  8562. read_lock(&tasklist_lock);
  8563. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8564. if (err)
  8565. goto unlock;
  8566. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8567. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8568. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8569. for_each_possible_cpu(i) {
  8570. struct rt_rq *rt_rq = tg->rt_rq[i];
  8571. spin_lock(&rt_rq->rt_runtime_lock);
  8572. rt_rq->rt_runtime = rt_runtime;
  8573. spin_unlock(&rt_rq->rt_runtime_lock);
  8574. }
  8575. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8576. unlock:
  8577. read_unlock(&tasklist_lock);
  8578. mutex_unlock(&rt_constraints_mutex);
  8579. return err;
  8580. }
  8581. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8582. {
  8583. u64 rt_runtime, rt_period;
  8584. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8585. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8586. if (rt_runtime_us < 0)
  8587. rt_runtime = RUNTIME_INF;
  8588. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8589. }
  8590. long sched_group_rt_runtime(struct task_group *tg)
  8591. {
  8592. u64 rt_runtime_us;
  8593. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8594. return -1;
  8595. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8596. do_div(rt_runtime_us, NSEC_PER_USEC);
  8597. return rt_runtime_us;
  8598. }
  8599. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8600. {
  8601. u64 rt_runtime, rt_period;
  8602. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8603. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8604. if (rt_period == 0)
  8605. return -EINVAL;
  8606. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8607. }
  8608. long sched_group_rt_period(struct task_group *tg)
  8609. {
  8610. u64 rt_period_us;
  8611. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8612. do_div(rt_period_us, NSEC_PER_USEC);
  8613. return rt_period_us;
  8614. }
  8615. static int sched_rt_global_constraints(void)
  8616. {
  8617. u64 runtime, period;
  8618. int ret = 0;
  8619. if (sysctl_sched_rt_period <= 0)
  8620. return -EINVAL;
  8621. runtime = global_rt_runtime();
  8622. period = global_rt_period();
  8623. /*
  8624. * Sanity check on the sysctl variables.
  8625. */
  8626. if (runtime > period && runtime != RUNTIME_INF)
  8627. return -EINVAL;
  8628. mutex_lock(&rt_constraints_mutex);
  8629. read_lock(&tasklist_lock);
  8630. ret = __rt_schedulable(NULL, 0, 0);
  8631. read_unlock(&tasklist_lock);
  8632. mutex_unlock(&rt_constraints_mutex);
  8633. return ret;
  8634. }
  8635. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8636. {
  8637. /* Don't accept realtime tasks when there is no way for them to run */
  8638. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8639. return 0;
  8640. return 1;
  8641. }
  8642. #else /* !CONFIG_RT_GROUP_SCHED */
  8643. static int sched_rt_global_constraints(void)
  8644. {
  8645. unsigned long flags;
  8646. int i;
  8647. if (sysctl_sched_rt_period <= 0)
  8648. return -EINVAL;
  8649. /*
  8650. * There's always some RT tasks in the root group
  8651. * -- migration, kstopmachine etc..
  8652. */
  8653. if (sysctl_sched_rt_runtime == 0)
  8654. return -EBUSY;
  8655. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8656. for_each_possible_cpu(i) {
  8657. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8658. spin_lock(&rt_rq->rt_runtime_lock);
  8659. rt_rq->rt_runtime = global_rt_runtime();
  8660. spin_unlock(&rt_rq->rt_runtime_lock);
  8661. }
  8662. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8663. return 0;
  8664. }
  8665. #endif /* CONFIG_RT_GROUP_SCHED */
  8666. int sched_rt_handler(struct ctl_table *table, int write,
  8667. struct file *filp, void __user *buffer, size_t *lenp,
  8668. loff_t *ppos)
  8669. {
  8670. int ret;
  8671. int old_period, old_runtime;
  8672. static DEFINE_MUTEX(mutex);
  8673. mutex_lock(&mutex);
  8674. old_period = sysctl_sched_rt_period;
  8675. old_runtime = sysctl_sched_rt_runtime;
  8676. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8677. if (!ret && write) {
  8678. ret = sched_rt_global_constraints();
  8679. if (ret) {
  8680. sysctl_sched_rt_period = old_period;
  8681. sysctl_sched_rt_runtime = old_runtime;
  8682. } else {
  8683. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8684. def_rt_bandwidth.rt_period =
  8685. ns_to_ktime(global_rt_period());
  8686. }
  8687. }
  8688. mutex_unlock(&mutex);
  8689. return ret;
  8690. }
  8691. #ifdef CONFIG_CGROUP_SCHED
  8692. /* return corresponding task_group object of a cgroup */
  8693. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8694. {
  8695. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8696. struct task_group, css);
  8697. }
  8698. static struct cgroup_subsys_state *
  8699. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8700. {
  8701. struct task_group *tg, *parent;
  8702. if (!cgrp->parent) {
  8703. /* This is early initialization for the top cgroup */
  8704. return &init_task_group.css;
  8705. }
  8706. parent = cgroup_tg(cgrp->parent);
  8707. tg = sched_create_group(parent);
  8708. if (IS_ERR(tg))
  8709. return ERR_PTR(-ENOMEM);
  8710. return &tg->css;
  8711. }
  8712. static void
  8713. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8714. {
  8715. struct task_group *tg = cgroup_tg(cgrp);
  8716. sched_destroy_group(tg);
  8717. }
  8718. static int
  8719. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8720. struct task_struct *tsk)
  8721. {
  8722. #ifdef CONFIG_RT_GROUP_SCHED
  8723. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8724. return -EINVAL;
  8725. #else
  8726. /* We don't support RT-tasks being in separate groups */
  8727. if (tsk->sched_class != &fair_sched_class)
  8728. return -EINVAL;
  8729. #endif
  8730. return 0;
  8731. }
  8732. static void
  8733. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8734. struct cgroup *old_cont, struct task_struct *tsk)
  8735. {
  8736. sched_move_task(tsk);
  8737. }
  8738. #ifdef CONFIG_FAIR_GROUP_SCHED
  8739. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8740. u64 shareval)
  8741. {
  8742. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8743. }
  8744. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8745. {
  8746. struct task_group *tg = cgroup_tg(cgrp);
  8747. return (u64) tg->shares;
  8748. }
  8749. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8750. #ifdef CONFIG_RT_GROUP_SCHED
  8751. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8752. s64 val)
  8753. {
  8754. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8755. }
  8756. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8757. {
  8758. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8759. }
  8760. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8761. u64 rt_period_us)
  8762. {
  8763. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8764. }
  8765. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8766. {
  8767. return sched_group_rt_period(cgroup_tg(cgrp));
  8768. }
  8769. #endif /* CONFIG_RT_GROUP_SCHED */
  8770. static struct cftype cpu_files[] = {
  8771. #ifdef CONFIG_FAIR_GROUP_SCHED
  8772. {
  8773. .name = "shares",
  8774. .read_u64 = cpu_shares_read_u64,
  8775. .write_u64 = cpu_shares_write_u64,
  8776. },
  8777. #endif
  8778. #ifdef CONFIG_RT_GROUP_SCHED
  8779. {
  8780. .name = "rt_runtime_us",
  8781. .read_s64 = cpu_rt_runtime_read,
  8782. .write_s64 = cpu_rt_runtime_write,
  8783. },
  8784. {
  8785. .name = "rt_period_us",
  8786. .read_u64 = cpu_rt_period_read_uint,
  8787. .write_u64 = cpu_rt_period_write_uint,
  8788. },
  8789. #endif
  8790. };
  8791. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8792. {
  8793. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8794. }
  8795. struct cgroup_subsys cpu_cgroup_subsys = {
  8796. .name = "cpu",
  8797. .create = cpu_cgroup_create,
  8798. .destroy = cpu_cgroup_destroy,
  8799. .can_attach = cpu_cgroup_can_attach,
  8800. .attach = cpu_cgroup_attach,
  8801. .populate = cpu_cgroup_populate,
  8802. .subsys_id = cpu_cgroup_subsys_id,
  8803. .early_init = 1,
  8804. };
  8805. #endif /* CONFIG_CGROUP_SCHED */
  8806. #ifdef CONFIG_CGROUP_CPUACCT
  8807. /*
  8808. * CPU accounting code for task groups.
  8809. *
  8810. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8811. * (balbir@in.ibm.com).
  8812. */
  8813. /* track cpu usage of a group of tasks and its child groups */
  8814. struct cpuacct {
  8815. struct cgroup_subsys_state css;
  8816. /* cpuusage holds pointer to a u64-type object on every cpu */
  8817. u64 *cpuusage;
  8818. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8819. struct cpuacct *parent;
  8820. };
  8821. struct cgroup_subsys cpuacct_subsys;
  8822. /* return cpu accounting group corresponding to this container */
  8823. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8824. {
  8825. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8826. struct cpuacct, css);
  8827. }
  8828. /* return cpu accounting group to which this task belongs */
  8829. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8830. {
  8831. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8832. struct cpuacct, css);
  8833. }
  8834. /* create a new cpu accounting group */
  8835. static struct cgroup_subsys_state *cpuacct_create(
  8836. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8837. {
  8838. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8839. int i;
  8840. if (!ca)
  8841. goto out;
  8842. ca->cpuusage = alloc_percpu(u64);
  8843. if (!ca->cpuusage)
  8844. goto out_free_ca;
  8845. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8846. if (percpu_counter_init(&ca->cpustat[i], 0))
  8847. goto out_free_counters;
  8848. if (cgrp->parent)
  8849. ca->parent = cgroup_ca(cgrp->parent);
  8850. return &ca->css;
  8851. out_free_counters:
  8852. while (--i >= 0)
  8853. percpu_counter_destroy(&ca->cpustat[i]);
  8854. free_percpu(ca->cpuusage);
  8855. out_free_ca:
  8856. kfree(ca);
  8857. out:
  8858. return ERR_PTR(-ENOMEM);
  8859. }
  8860. /* destroy an existing cpu accounting group */
  8861. static void
  8862. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8863. {
  8864. struct cpuacct *ca = cgroup_ca(cgrp);
  8865. int i;
  8866. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8867. percpu_counter_destroy(&ca->cpustat[i]);
  8868. free_percpu(ca->cpuusage);
  8869. kfree(ca);
  8870. }
  8871. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8872. {
  8873. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8874. u64 data;
  8875. #ifndef CONFIG_64BIT
  8876. /*
  8877. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8878. */
  8879. spin_lock_irq(&cpu_rq(cpu)->lock);
  8880. data = *cpuusage;
  8881. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8882. #else
  8883. data = *cpuusage;
  8884. #endif
  8885. return data;
  8886. }
  8887. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8888. {
  8889. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8890. #ifndef CONFIG_64BIT
  8891. /*
  8892. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8893. */
  8894. spin_lock_irq(&cpu_rq(cpu)->lock);
  8895. *cpuusage = val;
  8896. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8897. #else
  8898. *cpuusage = val;
  8899. #endif
  8900. }
  8901. /* return total cpu usage (in nanoseconds) of a group */
  8902. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8903. {
  8904. struct cpuacct *ca = cgroup_ca(cgrp);
  8905. u64 totalcpuusage = 0;
  8906. int i;
  8907. for_each_present_cpu(i)
  8908. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8909. return totalcpuusage;
  8910. }
  8911. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8912. u64 reset)
  8913. {
  8914. struct cpuacct *ca = cgroup_ca(cgrp);
  8915. int err = 0;
  8916. int i;
  8917. if (reset) {
  8918. err = -EINVAL;
  8919. goto out;
  8920. }
  8921. for_each_present_cpu(i)
  8922. cpuacct_cpuusage_write(ca, i, 0);
  8923. out:
  8924. return err;
  8925. }
  8926. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8927. struct seq_file *m)
  8928. {
  8929. struct cpuacct *ca = cgroup_ca(cgroup);
  8930. u64 percpu;
  8931. int i;
  8932. for_each_present_cpu(i) {
  8933. percpu = cpuacct_cpuusage_read(ca, i);
  8934. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8935. }
  8936. seq_printf(m, "\n");
  8937. return 0;
  8938. }
  8939. static const char *cpuacct_stat_desc[] = {
  8940. [CPUACCT_STAT_USER] = "user",
  8941. [CPUACCT_STAT_SYSTEM] = "system",
  8942. };
  8943. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8944. struct cgroup_map_cb *cb)
  8945. {
  8946. struct cpuacct *ca = cgroup_ca(cgrp);
  8947. int i;
  8948. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8949. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8950. val = cputime64_to_clock_t(val);
  8951. cb->fill(cb, cpuacct_stat_desc[i], val);
  8952. }
  8953. return 0;
  8954. }
  8955. static struct cftype files[] = {
  8956. {
  8957. .name = "usage",
  8958. .read_u64 = cpuusage_read,
  8959. .write_u64 = cpuusage_write,
  8960. },
  8961. {
  8962. .name = "usage_percpu",
  8963. .read_seq_string = cpuacct_percpu_seq_read,
  8964. },
  8965. {
  8966. .name = "stat",
  8967. .read_map = cpuacct_stats_show,
  8968. },
  8969. };
  8970. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8971. {
  8972. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8973. }
  8974. /*
  8975. * charge this task's execution time to its accounting group.
  8976. *
  8977. * called with rq->lock held.
  8978. */
  8979. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8980. {
  8981. struct cpuacct *ca;
  8982. int cpu;
  8983. if (unlikely(!cpuacct_subsys.active))
  8984. return;
  8985. cpu = task_cpu(tsk);
  8986. rcu_read_lock();
  8987. ca = task_ca(tsk);
  8988. for (; ca; ca = ca->parent) {
  8989. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8990. *cpuusage += cputime;
  8991. }
  8992. rcu_read_unlock();
  8993. }
  8994. /*
  8995. * Charge the system/user time to the task's accounting group.
  8996. */
  8997. static void cpuacct_update_stats(struct task_struct *tsk,
  8998. enum cpuacct_stat_index idx, cputime_t val)
  8999. {
  9000. struct cpuacct *ca;
  9001. if (unlikely(!cpuacct_subsys.active))
  9002. return;
  9003. rcu_read_lock();
  9004. ca = task_ca(tsk);
  9005. do {
  9006. percpu_counter_add(&ca->cpustat[idx], val);
  9007. ca = ca->parent;
  9008. } while (ca);
  9009. rcu_read_unlock();
  9010. }
  9011. struct cgroup_subsys cpuacct_subsys = {
  9012. .name = "cpuacct",
  9013. .create = cpuacct_create,
  9014. .destroy = cpuacct_destroy,
  9015. .populate = cpuacct_populate,
  9016. .subsys_id = cpuacct_subsys_id,
  9017. };
  9018. #endif /* CONFIG_CGROUP_CPUACCT */