hpet.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. #include <linux/clocksource.h>
  2. #include <linux/clockchips.h>
  3. #include <linux/delay.h>
  4. #include <linux/errno.h>
  5. #include <linux/hpet.h>
  6. #include <linux/init.h>
  7. #include <linux/sysdev.h>
  8. #include <linux/pm.h>
  9. #include <linux/delay.h>
  10. #include <asm/fixmap.h>
  11. #include <asm/hpet.h>
  12. #include <asm/i8253.h>
  13. #include <asm/io.h>
  14. #define HPET_MASK CLOCKSOURCE_MASK(32)
  15. #define HPET_SHIFT 22
  16. /* FSEC = 10^-15 NSEC = 10^-9 */
  17. #define FSEC_PER_NSEC 1000000
  18. /*
  19. * HPET address is set in acpi/boot.c, when an ACPI entry exists
  20. */
  21. unsigned long hpet_address;
  22. static void __iomem *hpet_virt_address;
  23. unsigned long hpet_readl(unsigned long a)
  24. {
  25. return readl(hpet_virt_address + a);
  26. }
  27. static inline void hpet_writel(unsigned long d, unsigned long a)
  28. {
  29. writel(d, hpet_virt_address + a);
  30. }
  31. #ifdef CONFIG_X86_64
  32. #include <asm/pgtable.h>
  33. static inline void hpet_set_mapping(void)
  34. {
  35. set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
  36. __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
  37. hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
  38. }
  39. static inline void hpet_clear_mapping(void)
  40. {
  41. hpet_virt_address = NULL;
  42. }
  43. #else
  44. static inline void hpet_set_mapping(void)
  45. {
  46. hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  47. }
  48. static inline void hpet_clear_mapping(void)
  49. {
  50. iounmap(hpet_virt_address);
  51. hpet_virt_address = NULL;
  52. }
  53. #endif
  54. /*
  55. * HPET command line enable / disable
  56. */
  57. static int boot_hpet_disable;
  58. static int __init hpet_setup(char* str)
  59. {
  60. if (str) {
  61. if (!strncmp("disable", str, 7))
  62. boot_hpet_disable = 1;
  63. }
  64. return 1;
  65. }
  66. __setup("hpet=", hpet_setup);
  67. static int __init disable_hpet(char *str)
  68. {
  69. boot_hpet_disable = 1;
  70. return 1;
  71. }
  72. __setup("nohpet", disable_hpet);
  73. static inline int is_hpet_capable(void)
  74. {
  75. return (!boot_hpet_disable && hpet_address);
  76. }
  77. /*
  78. * HPET timer interrupt enable / disable
  79. */
  80. static int hpet_legacy_int_enabled;
  81. /**
  82. * is_hpet_enabled - check whether the hpet timer interrupt is enabled
  83. */
  84. int is_hpet_enabled(void)
  85. {
  86. return is_hpet_capable() && hpet_legacy_int_enabled;
  87. }
  88. /*
  89. * When the hpet driver (/dev/hpet) is enabled, we need to reserve
  90. * timer 0 and timer 1 in case of RTC emulation.
  91. */
  92. #ifdef CONFIG_HPET
  93. static void hpet_reserve_platform_timers(unsigned long id)
  94. {
  95. struct hpet __iomem *hpet = hpet_virt_address;
  96. struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
  97. unsigned int nrtimers, i;
  98. struct hpet_data hd;
  99. nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
  100. memset(&hd, 0, sizeof (hd));
  101. hd.hd_phys_address = hpet_address;
  102. hd.hd_address = hpet;
  103. hd.hd_nirqs = nrtimers;
  104. hd.hd_flags = HPET_DATA_PLATFORM;
  105. hpet_reserve_timer(&hd, 0);
  106. #ifdef CONFIG_HPET_EMULATE_RTC
  107. hpet_reserve_timer(&hd, 1);
  108. #endif
  109. hd.hd_irq[0] = HPET_LEGACY_8254;
  110. hd.hd_irq[1] = HPET_LEGACY_RTC;
  111. for (i = 2; i < nrtimers; timer++, i++)
  112. hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
  113. Tn_INT_ROUTE_CNF_SHIFT;
  114. hpet_alloc(&hd);
  115. }
  116. #else
  117. static void hpet_reserve_platform_timers(unsigned long id) { }
  118. #endif
  119. /*
  120. * Common hpet info
  121. */
  122. static unsigned long hpet_period;
  123. static void hpet_legacy_set_mode(enum clock_event_mode mode,
  124. struct clock_event_device *evt);
  125. static int hpet_legacy_next_event(unsigned long delta,
  126. struct clock_event_device *evt);
  127. /*
  128. * The hpet clock event device
  129. */
  130. static struct clock_event_device hpet_clockevent = {
  131. .name = "hpet",
  132. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  133. .set_mode = hpet_legacy_set_mode,
  134. .set_next_event = hpet_legacy_next_event,
  135. .shift = 32,
  136. .irq = 0,
  137. };
  138. static void hpet_start_counter(void)
  139. {
  140. unsigned long cfg = hpet_readl(HPET_CFG);
  141. cfg &= ~HPET_CFG_ENABLE;
  142. hpet_writel(cfg, HPET_CFG);
  143. hpet_writel(0, HPET_COUNTER);
  144. hpet_writel(0, HPET_COUNTER + 4);
  145. cfg |= HPET_CFG_ENABLE;
  146. hpet_writel(cfg, HPET_CFG);
  147. }
  148. static void hpet_enable_legacy_int(void)
  149. {
  150. unsigned long cfg = hpet_readl(HPET_CFG);
  151. cfg |= HPET_CFG_LEGACY;
  152. hpet_writel(cfg, HPET_CFG);
  153. hpet_legacy_int_enabled = 1;
  154. }
  155. static void hpet_legacy_clockevent_register(void)
  156. {
  157. uint64_t hpet_freq;
  158. /* Start HPET legacy interrupts */
  159. hpet_enable_legacy_int();
  160. /*
  161. * The period is a femto seconds value. We need to calculate the
  162. * scaled math multiplication factor for nanosecond to hpet tick
  163. * conversion.
  164. */
  165. hpet_freq = 1000000000000000ULL;
  166. do_div(hpet_freq, hpet_period);
  167. hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
  168. NSEC_PER_SEC, 32);
  169. /* Calculate the min / max delta */
  170. hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
  171. &hpet_clockevent);
  172. hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
  173. &hpet_clockevent);
  174. /*
  175. * Start hpet with the boot cpu mask and make it
  176. * global after the IO_APIC has been initialized.
  177. */
  178. hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
  179. clockevents_register_device(&hpet_clockevent);
  180. global_clock_event = &hpet_clockevent;
  181. printk(KERN_DEBUG "hpet clockevent registered\n");
  182. }
  183. static void hpet_legacy_set_mode(enum clock_event_mode mode,
  184. struct clock_event_device *evt)
  185. {
  186. unsigned long cfg, cmp, now;
  187. uint64_t delta;
  188. switch(mode) {
  189. case CLOCK_EVT_MODE_PERIODIC:
  190. delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
  191. delta >>= hpet_clockevent.shift;
  192. now = hpet_readl(HPET_COUNTER);
  193. cmp = now + (unsigned long) delta;
  194. cfg = hpet_readl(HPET_T0_CFG);
  195. cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
  196. HPET_TN_SETVAL | HPET_TN_32BIT;
  197. hpet_writel(cfg, HPET_T0_CFG);
  198. /*
  199. * The first write after writing TN_SETVAL to the
  200. * config register sets the counter value, the second
  201. * write sets the period.
  202. */
  203. hpet_writel(cmp, HPET_T0_CMP);
  204. udelay(1);
  205. hpet_writel((unsigned long) delta, HPET_T0_CMP);
  206. break;
  207. case CLOCK_EVT_MODE_ONESHOT:
  208. cfg = hpet_readl(HPET_T0_CFG);
  209. cfg &= ~HPET_TN_PERIODIC;
  210. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  211. hpet_writel(cfg, HPET_T0_CFG);
  212. break;
  213. case CLOCK_EVT_MODE_UNUSED:
  214. case CLOCK_EVT_MODE_SHUTDOWN:
  215. cfg = hpet_readl(HPET_T0_CFG);
  216. cfg &= ~HPET_TN_ENABLE;
  217. hpet_writel(cfg, HPET_T0_CFG);
  218. break;
  219. case CLOCK_EVT_MODE_RESUME:
  220. hpet_enable_legacy_int();
  221. break;
  222. }
  223. }
  224. static int hpet_legacy_next_event(unsigned long delta,
  225. struct clock_event_device *evt)
  226. {
  227. unsigned long cnt;
  228. cnt = hpet_readl(HPET_COUNTER);
  229. cnt += delta;
  230. hpet_writel(cnt, HPET_T0_CMP);
  231. return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
  232. }
  233. /*
  234. * Clock source related code
  235. */
  236. static cycle_t read_hpet(void)
  237. {
  238. return (cycle_t)hpet_readl(HPET_COUNTER);
  239. }
  240. #ifdef CONFIG_X86_64
  241. static cycle_t __vsyscall_fn vread_hpet(void)
  242. {
  243. return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
  244. }
  245. #endif
  246. static struct clocksource clocksource_hpet = {
  247. .name = "hpet",
  248. .rating = 250,
  249. .read = read_hpet,
  250. .mask = HPET_MASK,
  251. .shift = HPET_SHIFT,
  252. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  253. .resume = hpet_start_counter,
  254. #ifdef CONFIG_X86_64
  255. .vread = vread_hpet,
  256. #endif
  257. };
  258. static int hpet_clocksource_register(void)
  259. {
  260. u64 tmp, start, now;
  261. cycle_t t1;
  262. /* Start the counter */
  263. hpet_start_counter();
  264. /* Verify whether hpet counter works */
  265. t1 = read_hpet();
  266. rdtscll(start);
  267. /*
  268. * We don't know the TSC frequency yet, but waiting for
  269. * 200000 TSC cycles is safe:
  270. * 4 GHz == 50us
  271. * 1 GHz == 200us
  272. */
  273. do {
  274. rep_nop();
  275. rdtscll(now);
  276. } while ((now - start) < 200000UL);
  277. if (t1 == read_hpet()) {
  278. printk(KERN_WARNING
  279. "HPET counter not counting. HPET disabled\n");
  280. return -ENODEV;
  281. }
  282. /* Initialize and register HPET clocksource
  283. *
  284. * hpet period is in femto seconds per cycle
  285. * so we need to convert this to ns/cyc units
  286. * aproximated by mult/2^shift
  287. *
  288. * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
  289. * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
  290. * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
  291. * (fsec/cyc << shift)/1000000 = mult
  292. * (hpet_period << shift)/FSEC_PER_NSEC = mult
  293. */
  294. tmp = (u64)hpet_period << HPET_SHIFT;
  295. do_div(tmp, FSEC_PER_NSEC);
  296. clocksource_hpet.mult = (u32)tmp;
  297. clocksource_register(&clocksource_hpet);
  298. return 0;
  299. }
  300. /*
  301. * Try to setup the HPET timer
  302. */
  303. int __init hpet_enable(void)
  304. {
  305. unsigned long id;
  306. if (!is_hpet_capable())
  307. return 0;
  308. hpet_set_mapping();
  309. /*
  310. * Read the period and check for a sane value:
  311. */
  312. hpet_period = hpet_readl(HPET_PERIOD);
  313. if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
  314. goto out_nohpet;
  315. /*
  316. * Read the HPET ID register to retrieve the IRQ routing
  317. * information and the number of channels
  318. */
  319. id = hpet_readl(HPET_ID);
  320. #ifdef CONFIG_HPET_EMULATE_RTC
  321. /*
  322. * The legacy routing mode needs at least two channels, tick timer
  323. * and the rtc emulation channel.
  324. */
  325. if (!(id & HPET_ID_NUMBER))
  326. goto out_nohpet;
  327. #endif
  328. if (hpet_clocksource_register())
  329. goto out_nohpet;
  330. if (id & HPET_ID_LEGSUP) {
  331. hpet_legacy_clockevent_register();
  332. return 1;
  333. }
  334. return 0;
  335. out_nohpet:
  336. hpet_clear_mapping();
  337. boot_hpet_disable = 1;
  338. return 0;
  339. }
  340. /*
  341. * Needs to be late, as the reserve_timer code calls kalloc !
  342. *
  343. * Not a problem on i386 as hpet_enable is called from late_time_init,
  344. * but on x86_64 it is necessary !
  345. */
  346. static __init int hpet_late_init(void)
  347. {
  348. if (!is_hpet_capable())
  349. return -ENODEV;
  350. hpet_reserve_platform_timers(hpet_readl(HPET_ID));
  351. return 0;
  352. }
  353. fs_initcall(hpet_late_init);
  354. #ifdef CONFIG_HPET_EMULATE_RTC
  355. /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
  356. * is enabled, we support RTC interrupt functionality in software.
  357. * RTC has 3 kinds of interrupts:
  358. * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
  359. * is updated
  360. * 2) Alarm Interrupt - generate an interrupt at a specific time of day
  361. * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
  362. * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
  363. * (1) and (2) above are implemented using polling at a frequency of
  364. * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
  365. * overhead. (DEFAULT_RTC_INT_FREQ)
  366. * For (3), we use interrupts at 64Hz or user specified periodic
  367. * frequency, whichever is higher.
  368. */
  369. #include <linux/mc146818rtc.h>
  370. #include <linux/rtc.h>
  371. #define DEFAULT_RTC_INT_FREQ 64
  372. #define DEFAULT_RTC_SHIFT 6
  373. #define RTC_NUM_INTS 1
  374. static unsigned long hpet_rtc_flags;
  375. static unsigned long hpet_prev_update_sec;
  376. static struct rtc_time hpet_alarm_time;
  377. static unsigned long hpet_pie_count;
  378. static unsigned long hpet_t1_cmp;
  379. static unsigned long hpet_default_delta;
  380. static unsigned long hpet_pie_delta;
  381. static unsigned long hpet_pie_limit;
  382. /*
  383. * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
  384. * is not supported by all HPET implementations for timer 1.
  385. *
  386. * hpet_rtc_timer_init() is called when the rtc is initialized.
  387. */
  388. int hpet_rtc_timer_init(void)
  389. {
  390. unsigned long cfg, cnt, delta, flags;
  391. if (!is_hpet_enabled())
  392. return 0;
  393. if (!hpet_default_delta) {
  394. uint64_t clc;
  395. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  396. clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
  397. hpet_default_delta = (unsigned long) clc;
  398. }
  399. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  400. delta = hpet_default_delta;
  401. else
  402. delta = hpet_pie_delta;
  403. local_irq_save(flags);
  404. cnt = delta + hpet_readl(HPET_COUNTER);
  405. hpet_writel(cnt, HPET_T1_CMP);
  406. hpet_t1_cmp = cnt;
  407. cfg = hpet_readl(HPET_T1_CFG);
  408. cfg &= ~HPET_TN_PERIODIC;
  409. cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
  410. hpet_writel(cfg, HPET_T1_CFG);
  411. local_irq_restore(flags);
  412. return 1;
  413. }
  414. /*
  415. * The functions below are called from rtc driver.
  416. * Return 0 if HPET is not being used.
  417. * Otherwise do the necessary changes and return 1.
  418. */
  419. int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
  420. {
  421. if (!is_hpet_enabled())
  422. return 0;
  423. hpet_rtc_flags &= ~bit_mask;
  424. return 1;
  425. }
  426. int hpet_set_rtc_irq_bit(unsigned long bit_mask)
  427. {
  428. unsigned long oldbits = hpet_rtc_flags;
  429. if (!is_hpet_enabled())
  430. return 0;
  431. hpet_rtc_flags |= bit_mask;
  432. if (!oldbits)
  433. hpet_rtc_timer_init();
  434. return 1;
  435. }
  436. int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
  437. unsigned char sec)
  438. {
  439. if (!is_hpet_enabled())
  440. return 0;
  441. hpet_alarm_time.tm_hour = hrs;
  442. hpet_alarm_time.tm_min = min;
  443. hpet_alarm_time.tm_sec = sec;
  444. return 1;
  445. }
  446. int hpet_set_periodic_freq(unsigned long freq)
  447. {
  448. uint64_t clc;
  449. if (!is_hpet_enabled())
  450. return 0;
  451. if (freq <= DEFAULT_RTC_INT_FREQ)
  452. hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
  453. else {
  454. clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
  455. do_div(clc, freq);
  456. clc >>= hpet_clockevent.shift;
  457. hpet_pie_delta = (unsigned long) clc;
  458. }
  459. return 1;
  460. }
  461. int hpet_rtc_dropped_irq(void)
  462. {
  463. return is_hpet_enabled();
  464. }
  465. static void hpet_rtc_timer_reinit(void)
  466. {
  467. unsigned long cfg, delta;
  468. int lost_ints = -1;
  469. if (unlikely(!hpet_rtc_flags)) {
  470. cfg = hpet_readl(HPET_T1_CFG);
  471. cfg &= ~HPET_TN_ENABLE;
  472. hpet_writel(cfg, HPET_T1_CFG);
  473. return;
  474. }
  475. if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
  476. delta = hpet_default_delta;
  477. else
  478. delta = hpet_pie_delta;
  479. /*
  480. * Increment the comparator value until we are ahead of the
  481. * current count.
  482. */
  483. do {
  484. hpet_t1_cmp += delta;
  485. hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
  486. lost_ints++;
  487. } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
  488. if (lost_ints) {
  489. if (hpet_rtc_flags & RTC_PIE)
  490. hpet_pie_count += lost_ints;
  491. if (printk_ratelimit())
  492. printk(KERN_WARNING "rtc: lost %d interrupts\n",
  493. lost_ints);
  494. }
  495. }
  496. irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
  497. {
  498. struct rtc_time curr_time;
  499. unsigned long rtc_int_flag = 0;
  500. hpet_rtc_timer_reinit();
  501. if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
  502. rtc_get_rtc_time(&curr_time);
  503. if (hpet_rtc_flags & RTC_UIE &&
  504. curr_time.tm_sec != hpet_prev_update_sec) {
  505. rtc_int_flag = RTC_UF;
  506. hpet_prev_update_sec = curr_time.tm_sec;
  507. }
  508. if (hpet_rtc_flags & RTC_PIE &&
  509. ++hpet_pie_count >= hpet_pie_limit) {
  510. rtc_int_flag |= RTC_PF;
  511. hpet_pie_count = 0;
  512. }
  513. if (hpet_rtc_flags & RTC_PIE &&
  514. (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
  515. (curr_time.tm_min == hpet_alarm_time.tm_min) &&
  516. (curr_time.tm_hour == hpet_alarm_time.tm_hour))
  517. rtc_int_flag |= RTC_AF;
  518. if (rtc_int_flag) {
  519. rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
  520. rtc_interrupt(rtc_int_flag, dev_id);
  521. }
  522. return IRQ_HANDLED;
  523. }
  524. #endif