arm_arch_timer.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/clockchips.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/of_irq.h>
  19. #include <linux/io.h>
  20. #include <asm/arch_timer.h>
  21. #include <asm/virt.h>
  22. #include <clocksource/arm_arch_timer.h>
  23. static u32 arch_timer_rate;
  24. enum ppi_nr {
  25. PHYS_SECURE_PPI,
  26. PHYS_NONSECURE_PPI,
  27. VIRT_PPI,
  28. HYP_PPI,
  29. MAX_TIMER_PPI
  30. };
  31. static int arch_timer_ppi[MAX_TIMER_PPI];
  32. static struct clock_event_device __percpu *arch_timer_evt;
  33. static bool arch_timer_use_virtual = true;
  34. /*
  35. * Architected system timer support.
  36. */
  37. static __always_inline
  38. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  39. struct clock_event_device *clk)
  40. {
  41. arch_timer_reg_write_cp15(access, reg, val);
  42. }
  43. static __always_inline
  44. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  45. struct clock_event_device *clk)
  46. {
  47. return arch_timer_reg_read_cp15(access, reg);
  48. }
  49. static __always_inline irqreturn_t timer_handler(const int access,
  50. struct clock_event_device *evt)
  51. {
  52. unsigned long ctrl;
  53. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  54. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  55. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  56. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  57. evt->event_handler(evt);
  58. return IRQ_HANDLED;
  59. }
  60. return IRQ_NONE;
  61. }
  62. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  63. {
  64. struct clock_event_device *evt = dev_id;
  65. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  66. }
  67. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  68. {
  69. struct clock_event_device *evt = dev_id;
  70. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  71. }
  72. static __always_inline void timer_set_mode(const int access, int mode,
  73. struct clock_event_device *clk)
  74. {
  75. unsigned long ctrl;
  76. switch (mode) {
  77. case CLOCK_EVT_MODE_UNUSED:
  78. case CLOCK_EVT_MODE_SHUTDOWN:
  79. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  80. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  81. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  82. break;
  83. default:
  84. break;
  85. }
  86. }
  87. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  88. struct clock_event_device *clk)
  89. {
  90. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  91. }
  92. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  93. struct clock_event_device *clk)
  94. {
  95. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  96. }
  97. static __always_inline void set_next_event(const int access, unsigned long evt,
  98. struct clock_event_device *clk)
  99. {
  100. unsigned long ctrl;
  101. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  102. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  103. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  104. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  105. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  106. }
  107. static int arch_timer_set_next_event_virt(unsigned long evt,
  108. struct clock_event_device *clk)
  109. {
  110. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  111. return 0;
  112. }
  113. static int arch_timer_set_next_event_phys(unsigned long evt,
  114. struct clock_event_device *clk)
  115. {
  116. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  117. return 0;
  118. }
  119. static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
  120. {
  121. clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
  122. clk->name = "arch_sys_timer";
  123. clk->rating = 450;
  124. if (arch_timer_use_virtual) {
  125. clk->irq = arch_timer_ppi[VIRT_PPI];
  126. clk->set_mode = arch_timer_set_mode_virt;
  127. clk->set_next_event = arch_timer_set_next_event_virt;
  128. } else {
  129. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  130. clk->set_mode = arch_timer_set_mode_phys;
  131. clk->set_next_event = arch_timer_set_next_event_phys;
  132. }
  133. clk->cpumask = cpumask_of(smp_processor_id());
  134. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  135. clockevents_config_and_register(clk, arch_timer_rate,
  136. 0xf, 0x7fffffff);
  137. if (arch_timer_use_virtual)
  138. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  139. else {
  140. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  141. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  142. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  143. }
  144. arch_counter_set_user_access();
  145. return 0;
  146. }
  147. static int arch_timer_available(void)
  148. {
  149. u32 freq;
  150. if (arch_timer_rate == 0) {
  151. freq = arch_timer_get_cntfrq();
  152. /* Check the timer frequency. */
  153. if (freq == 0) {
  154. pr_warn("Architected timer frequency not available\n");
  155. return -EINVAL;
  156. }
  157. arch_timer_rate = freq;
  158. }
  159. pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
  160. (unsigned long)arch_timer_rate / 1000000,
  161. (unsigned long)(arch_timer_rate / 10000) % 100,
  162. arch_timer_use_virtual ? "virt" : "phys");
  163. return 0;
  164. }
  165. u32 arch_timer_get_rate(void)
  166. {
  167. return arch_timer_rate;
  168. }
  169. u64 arch_timer_read_counter(void)
  170. {
  171. return arch_counter_get_cntvct();
  172. }
  173. static cycle_t arch_counter_read(struct clocksource *cs)
  174. {
  175. return arch_counter_get_cntvct();
  176. }
  177. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  178. {
  179. return arch_counter_get_cntvct();
  180. }
  181. static struct clocksource clocksource_counter = {
  182. .name = "arch_sys_counter",
  183. .rating = 400,
  184. .read = arch_counter_read,
  185. .mask = CLOCKSOURCE_MASK(56),
  186. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  187. };
  188. static struct cyclecounter cyclecounter = {
  189. .read = arch_counter_read_cc,
  190. .mask = CLOCKSOURCE_MASK(56),
  191. };
  192. static struct timecounter timecounter;
  193. struct timecounter *arch_timer_get_timecounter(void)
  194. {
  195. return &timecounter;
  196. }
  197. static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
  198. {
  199. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  200. clk->irq, smp_processor_id());
  201. if (arch_timer_use_virtual)
  202. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  203. else {
  204. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  205. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  206. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  207. }
  208. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  209. }
  210. static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
  211. unsigned long action, void *hcpu)
  212. {
  213. /*
  214. * Grab cpu pointer in each case to avoid spurious
  215. * preemptible warnings
  216. */
  217. switch (action & ~CPU_TASKS_FROZEN) {
  218. case CPU_STARTING:
  219. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  220. break;
  221. case CPU_DYING:
  222. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  223. break;
  224. }
  225. return NOTIFY_OK;
  226. }
  227. static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
  228. .notifier_call = arch_timer_cpu_notify,
  229. };
  230. static int __init arch_timer_register(void)
  231. {
  232. int err;
  233. int ppi;
  234. err = arch_timer_available();
  235. if (err)
  236. goto out;
  237. arch_timer_evt = alloc_percpu(struct clock_event_device);
  238. if (!arch_timer_evt) {
  239. err = -ENOMEM;
  240. goto out;
  241. }
  242. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  243. cyclecounter.mult = clocksource_counter.mult;
  244. cyclecounter.shift = clocksource_counter.shift;
  245. timecounter_init(&timecounter, &cyclecounter,
  246. arch_counter_get_cntvct());
  247. if (arch_timer_use_virtual) {
  248. ppi = arch_timer_ppi[VIRT_PPI];
  249. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  250. "arch_timer", arch_timer_evt);
  251. } else {
  252. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  253. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  254. "arch_timer", arch_timer_evt);
  255. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  256. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  257. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  258. "arch_timer", arch_timer_evt);
  259. if (err)
  260. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  261. arch_timer_evt);
  262. }
  263. }
  264. if (err) {
  265. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  266. ppi, err);
  267. goto out_free;
  268. }
  269. err = register_cpu_notifier(&arch_timer_cpu_nb);
  270. if (err)
  271. goto out_free_irq;
  272. /* Immediately configure the timer on the boot CPU */
  273. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  274. return 0;
  275. out_free_irq:
  276. if (arch_timer_use_virtual)
  277. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  278. else {
  279. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  280. arch_timer_evt);
  281. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  282. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  283. arch_timer_evt);
  284. }
  285. out_free:
  286. free_percpu(arch_timer_evt);
  287. out:
  288. return err;
  289. }
  290. static void __init arch_timer_init(struct device_node *np)
  291. {
  292. u32 freq;
  293. int i;
  294. if (arch_timer_get_rate()) {
  295. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  296. return;
  297. }
  298. /* Try to determine the frequency from the device tree or CNTFRQ */
  299. if (!of_property_read_u32(np, "clock-frequency", &freq))
  300. arch_timer_rate = freq;
  301. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  302. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  303. of_node_put(np);
  304. /*
  305. * If HYP mode is available, we know that the physical timer
  306. * has been configured to be accessible from PL1. Use it, so
  307. * that a guest can use the virtual timer instead.
  308. *
  309. * If no interrupt provided for virtual timer, we'll have to
  310. * stick to the physical timer. It'd better be accessible...
  311. */
  312. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  313. arch_timer_use_virtual = false;
  314. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  315. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  316. pr_warn("arch_timer: No interrupt available, giving up\n");
  317. return;
  318. }
  319. }
  320. arch_timer_register();
  321. arch_timer_arch_init();
  322. }
  323. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  324. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);