mixer.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267
  1. /*
  2. * (Tentative) USB Audio Driver for ALSA
  3. *
  4. * Mixer control part
  5. *
  6. * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
  7. *
  8. * Many codes borrowed from audio.c by
  9. * Alan Cox (alan@lxorguk.ukuu.org.uk)
  10. * Thomas Sailer (sailer@ife.ee.ethz.ch)
  11. *
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or
  16. * (at your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  26. *
  27. */
  28. /*
  29. * TODOs, for both the mixer and the streaming interfaces:
  30. *
  31. * - support for UAC2 effect units
  32. * - support for graphical equalizers
  33. * - RANGE and MEM set commands (UAC2)
  34. * - RANGE and MEM interrupt dispatchers (UAC2)
  35. * - audio channel clustering (UAC2)
  36. * - audio sample rate converter units (UAC2)
  37. * - proper handling of clock multipliers (UAC2)
  38. * - dispatch clock change notifications (UAC2)
  39. * - stop PCM streams which use a clock that became invalid
  40. * - stop PCM streams which use a clock selector that has changed
  41. * - parse available sample rates again when clock sources changed
  42. */
  43. #include <linux/bitops.h>
  44. #include <linux/init.h>
  45. #include <linux/list.h>
  46. #include <linux/slab.h>
  47. #include <linux/string.h>
  48. #include <linux/usb.h>
  49. #include <linux/usb/audio.h>
  50. #include <linux/usb/audio-v2.h>
  51. #include <sound/core.h>
  52. #include <sound/control.h>
  53. #include <sound/hwdep.h>
  54. #include <sound/info.h>
  55. #include <sound/tlv.h>
  56. #include "usbaudio.h"
  57. #include "mixer.h"
  58. #include "helper.h"
  59. #include "mixer_quirks.h"
  60. #include "power.h"
  61. #define MAX_ID_ELEMS 256
  62. struct usb_audio_term {
  63. int id;
  64. int type;
  65. int channels;
  66. unsigned int chconfig;
  67. int name;
  68. };
  69. struct usbmix_name_map;
  70. struct mixer_build {
  71. struct snd_usb_audio *chip;
  72. struct usb_mixer_interface *mixer;
  73. unsigned char *buffer;
  74. unsigned int buflen;
  75. DECLARE_BITMAP(unitbitmap, MAX_ID_ELEMS);
  76. struct usb_audio_term oterm;
  77. const struct usbmix_name_map *map;
  78. const struct usbmix_selector_map *selector_map;
  79. };
  80. /*E-mu 0202/0404/0204 eXtension Unit(XU) control*/
  81. enum {
  82. USB_XU_CLOCK_RATE = 0xe301,
  83. USB_XU_CLOCK_SOURCE = 0xe302,
  84. USB_XU_DIGITAL_IO_STATUS = 0xe303,
  85. USB_XU_DEVICE_OPTIONS = 0xe304,
  86. USB_XU_DIRECT_MONITORING = 0xe305,
  87. USB_XU_METERING = 0xe306
  88. };
  89. enum {
  90. USB_XU_CLOCK_SOURCE_SELECTOR = 0x02, /* clock source*/
  91. USB_XU_CLOCK_RATE_SELECTOR = 0x03, /* clock rate */
  92. USB_XU_DIGITAL_FORMAT_SELECTOR = 0x01, /* the spdif format */
  93. USB_XU_SOFT_LIMIT_SELECTOR = 0x03 /* soft limiter */
  94. };
  95. /*
  96. * manual mapping of mixer names
  97. * if the mixer topology is too complicated and the parsed names are
  98. * ambiguous, add the entries in usbmixer_maps.c.
  99. */
  100. #include "mixer_maps.c"
  101. static const struct usbmix_name_map *
  102. find_map(struct mixer_build *state, int unitid, int control)
  103. {
  104. const struct usbmix_name_map *p = state->map;
  105. if (!p)
  106. return NULL;
  107. for (p = state->map; p->id; p++) {
  108. if (p->id == unitid &&
  109. (!control || !p->control || control == p->control))
  110. return p;
  111. }
  112. return NULL;
  113. }
  114. /* get the mapped name if the unit matches */
  115. static int
  116. check_mapped_name(const struct usbmix_name_map *p, char *buf, int buflen)
  117. {
  118. if (!p || !p->name)
  119. return 0;
  120. buflen--;
  121. return strlcpy(buf, p->name, buflen);
  122. }
  123. /* check whether the control should be ignored */
  124. static inline int
  125. check_ignored_ctl(const struct usbmix_name_map *p)
  126. {
  127. if (!p || p->name || p->dB)
  128. return 0;
  129. return 1;
  130. }
  131. /* dB mapping */
  132. static inline void check_mapped_dB(const struct usbmix_name_map *p,
  133. struct usb_mixer_elem_info *cval)
  134. {
  135. if (p && p->dB) {
  136. cval->dBmin = p->dB->min;
  137. cval->dBmax = p->dB->max;
  138. }
  139. }
  140. /* get the mapped selector source name */
  141. static int check_mapped_selector_name(struct mixer_build *state, int unitid,
  142. int index, char *buf, int buflen)
  143. {
  144. const struct usbmix_selector_map *p;
  145. if (! state->selector_map)
  146. return 0;
  147. for (p = state->selector_map; p->id; p++) {
  148. if (p->id == unitid && index < p->count)
  149. return strlcpy(buf, p->names[index], buflen);
  150. }
  151. return 0;
  152. }
  153. /*
  154. * find an audio control unit with the given unit id
  155. */
  156. static void *find_audio_control_unit(struct mixer_build *state, unsigned char unit)
  157. {
  158. /* we just parse the header */
  159. struct uac_feature_unit_descriptor *hdr = NULL;
  160. while ((hdr = snd_usb_find_desc(state->buffer, state->buflen, hdr,
  161. USB_DT_CS_INTERFACE)) != NULL) {
  162. if (hdr->bLength >= 4 &&
  163. hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL &&
  164. hdr->bDescriptorSubtype <= UAC2_SAMPLE_RATE_CONVERTER &&
  165. hdr->bUnitID == unit)
  166. return hdr;
  167. }
  168. return NULL;
  169. }
  170. /*
  171. * copy a string with the given id
  172. */
  173. static int snd_usb_copy_string_desc(struct mixer_build *state, int index, char *buf, int maxlen)
  174. {
  175. int len = usb_string(state->chip->dev, index, buf, maxlen - 1);
  176. buf[len] = 0;
  177. return len;
  178. }
  179. /*
  180. * convert from the byte/word on usb descriptor to the zero-based integer
  181. */
  182. static int convert_signed_value(struct usb_mixer_elem_info *cval, int val)
  183. {
  184. switch (cval->val_type) {
  185. case USB_MIXER_BOOLEAN:
  186. return !!val;
  187. case USB_MIXER_INV_BOOLEAN:
  188. return !val;
  189. case USB_MIXER_U8:
  190. val &= 0xff;
  191. break;
  192. case USB_MIXER_S8:
  193. val &= 0xff;
  194. if (val >= 0x80)
  195. val -= 0x100;
  196. break;
  197. case USB_MIXER_U16:
  198. val &= 0xffff;
  199. break;
  200. case USB_MIXER_S16:
  201. val &= 0xffff;
  202. if (val >= 0x8000)
  203. val -= 0x10000;
  204. break;
  205. }
  206. return val;
  207. }
  208. /*
  209. * convert from the zero-based int to the byte/word for usb descriptor
  210. */
  211. static int convert_bytes_value(struct usb_mixer_elem_info *cval, int val)
  212. {
  213. switch (cval->val_type) {
  214. case USB_MIXER_BOOLEAN:
  215. return !!val;
  216. case USB_MIXER_INV_BOOLEAN:
  217. return !val;
  218. case USB_MIXER_S8:
  219. case USB_MIXER_U8:
  220. return val & 0xff;
  221. case USB_MIXER_S16:
  222. case USB_MIXER_U16:
  223. return val & 0xffff;
  224. }
  225. return 0; /* not reached */
  226. }
  227. static int get_relative_value(struct usb_mixer_elem_info *cval, int val)
  228. {
  229. if (! cval->res)
  230. cval->res = 1;
  231. if (val < cval->min)
  232. return 0;
  233. else if (val >= cval->max)
  234. return (cval->max - cval->min + cval->res - 1) / cval->res;
  235. else
  236. return (val - cval->min) / cval->res;
  237. }
  238. static int get_abs_value(struct usb_mixer_elem_info *cval, int val)
  239. {
  240. if (val < 0)
  241. return cval->min;
  242. if (! cval->res)
  243. cval->res = 1;
  244. val *= cval->res;
  245. val += cval->min;
  246. if (val > cval->max)
  247. return cval->max;
  248. return val;
  249. }
  250. /*
  251. * retrieve a mixer value
  252. */
  253. static int get_ctl_value_v1(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  254. {
  255. struct snd_usb_audio *chip = cval->mixer->chip;
  256. unsigned char buf[2];
  257. int val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
  258. int timeout = 10;
  259. int err;
  260. err = snd_usb_autoresume(cval->mixer->chip);
  261. if (err < 0)
  262. return -EIO;
  263. while (timeout-- > 0) {
  264. if (snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), request,
  265. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  266. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  267. buf, val_len, 100) >= val_len) {
  268. *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(buf, val_len));
  269. snd_usb_autosuspend(cval->mixer->chip);
  270. return 0;
  271. }
  272. }
  273. snd_usb_autosuspend(cval->mixer->chip);
  274. snd_printdd(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
  275. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
  276. return -EINVAL;
  277. }
  278. static int get_ctl_value_v2(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  279. {
  280. struct snd_usb_audio *chip = cval->mixer->chip;
  281. unsigned char buf[2 + 3*sizeof(__u16)]; /* enough space for one range */
  282. unsigned char *val;
  283. int ret, size;
  284. __u8 bRequest;
  285. if (request == UAC_GET_CUR) {
  286. bRequest = UAC2_CS_CUR;
  287. size = sizeof(__u16);
  288. } else {
  289. bRequest = UAC2_CS_RANGE;
  290. size = sizeof(buf);
  291. }
  292. memset(buf, 0, sizeof(buf));
  293. ret = snd_usb_autoresume(chip) ? -EIO : 0;
  294. if (ret)
  295. goto error;
  296. ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), bRequest,
  297. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  298. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  299. buf, size, 1000);
  300. snd_usb_autosuspend(chip);
  301. if (ret < 0) {
  302. error:
  303. snd_printk(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
  304. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
  305. return ret;
  306. }
  307. /* FIXME: how should we handle multiple triplets here? */
  308. switch (request) {
  309. case UAC_GET_CUR:
  310. val = buf;
  311. break;
  312. case UAC_GET_MIN:
  313. val = buf + sizeof(__u16);
  314. break;
  315. case UAC_GET_MAX:
  316. val = buf + sizeof(__u16) * 2;
  317. break;
  318. case UAC_GET_RES:
  319. val = buf + sizeof(__u16) * 3;
  320. break;
  321. default:
  322. return -EINVAL;
  323. }
  324. *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(val, sizeof(__u16)));
  325. return 0;
  326. }
  327. static int get_ctl_value(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  328. {
  329. return (cval->mixer->protocol == UAC_VERSION_1) ?
  330. get_ctl_value_v1(cval, request, validx, value_ret) :
  331. get_ctl_value_v2(cval, request, validx, value_ret);
  332. }
  333. static int get_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int *value)
  334. {
  335. return get_ctl_value(cval, UAC_GET_CUR, validx, value);
  336. }
  337. /* channel = 0: master, 1 = first channel */
  338. static inline int get_cur_mix_raw(struct usb_mixer_elem_info *cval,
  339. int channel, int *value)
  340. {
  341. return get_ctl_value(cval, UAC_GET_CUR, (cval->control << 8) | channel, value);
  342. }
  343. static int get_cur_mix_value(struct usb_mixer_elem_info *cval,
  344. int channel, int index, int *value)
  345. {
  346. int err;
  347. if (cval->cached & (1 << channel)) {
  348. *value = cval->cache_val[index];
  349. return 0;
  350. }
  351. err = get_cur_mix_raw(cval, channel, value);
  352. if (err < 0) {
  353. if (!cval->mixer->ignore_ctl_error)
  354. snd_printd(KERN_ERR "cannot get current value for control %d ch %d: err = %d\n",
  355. cval->control, channel, err);
  356. return err;
  357. }
  358. cval->cached |= 1 << channel;
  359. cval->cache_val[index] = *value;
  360. return 0;
  361. }
  362. /*
  363. * set a mixer value
  364. */
  365. int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval,
  366. int request, int validx, int value_set)
  367. {
  368. struct snd_usb_audio *chip = cval->mixer->chip;
  369. unsigned char buf[2];
  370. int val_len, err, timeout = 10;
  371. if (cval->mixer->protocol == UAC_VERSION_1) {
  372. val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
  373. } else { /* UAC_VERSION_2 */
  374. /* audio class v2 controls are always 2 bytes in size */
  375. val_len = sizeof(__u16);
  376. /* FIXME */
  377. if (request != UAC_SET_CUR) {
  378. snd_printdd(KERN_WARNING "RANGE setting not yet supported\n");
  379. return -EINVAL;
  380. }
  381. request = UAC2_CS_CUR;
  382. }
  383. value_set = convert_bytes_value(cval, value_set);
  384. buf[0] = value_set & 0xff;
  385. buf[1] = (value_set >> 8) & 0xff;
  386. err = snd_usb_autoresume(chip);
  387. if (err < 0)
  388. return -EIO;
  389. while (timeout-- > 0)
  390. if (snd_usb_ctl_msg(chip->dev,
  391. usb_sndctrlpipe(chip->dev, 0), request,
  392. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  393. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  394. buf, val_len, 100) >= 0) {
  395. snd_usb_autosuspend(chip);
  396. return 0;
  397. }
  398. snd_usb_autosuspend(chip);
  399. snd_printdd(KERN_ERR "cannot set ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d, data = %#x/%#x\n",
  400. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type, buf[0], buf[1]);
  401. return -EINVAL;
  402. }
  403. static int set_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int value)
  404. {
  405. return snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, validx, value);
  406. }
  407. static int set_cur_mix_value(struct usb_mixer_elem_info *cval, int channel,
  408. int index, int value)
  409. {
  410. int err;
  411. unsigned int read_only = (channel == 0) ?
  412. cval->master_readonly :
  413. cval->ch_readonly & (1 << (channel - 1));
  414. if (read_only) {
  415. snd_printdd(KERN_INFO "%s(): channel %d of control %d is read_only\n",
  416. __func__, channel, cval->control);
  417. return 0;
  418. }
  419. err = snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, (cval->control << 8) | channel,
  420. value);
  421. if (err < 0)
  422. return err;
  423. cval->cached |= 1 << channel;
  424. cval->cache_val[index] = value;
  425. return 0;
  426. }
  427. /*
  428. * TLV callback for mixer volume controls
  429. */
  430. static int mixer_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag,
  431. unsigned int size, unsigned int __user *_tlv)
  432. {
  433. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  434. DECLARE_TLV_DB_MINMAX(scale, 0, 0);
  435. if (size < sizeof(scale))
  436. return -ENOMEM;
  437. scale[2] = cval->dBmin;
  438. scale[3] = cval->dBmax;
  439. if (copy_to_user(_tlv, scale, sizeof(scale)))
  440. return -EFAULT;
  441. return 0;
  442. }
  443. /*
  444. * parser routines begin here...
  445. */
  446. static int parse_audio_unit(struct mixer_build *state, int unitid);
  447. /*
  448. * check if the input/output channel routing is enabled on the given bitmap.
  449. * used for mixer unit parser
  450. */
  451. static int check_matrix_bitmap(unsigned char *bmap, int ich, int och, int num_outs)
  452. {
  453. int idx = ich * num_outs + och;
  454. return bmap[idx >> 3] & (0x80 >> (idx & 7));
  455. }
  456. /*
  457. * add an alsa control element
  458. * search and increment the index until an empty slot is found.
  459. *
  460. * if failed, give up and free the control instance.
  461. */
  462. int snd_usb_mixer_add_control(struct usb_mixer_interface *mixer,
  463. struct snd_kcontrol *kctl)
  464. {
  465. struct usb_mixer_elem_info *cval = kctl->private_data;
  466. int err;
  467. while (snd_ctl_find_id(mixer->chip->card, &kctl->id))
  468. kctl->id.index++;
  469. if ((err = snd_ctl_add(mixer->chip->card, kctl)) < 0) {
  470. snd_printd(KERN_ERR "cannot add control (err = %d)\n", err);
  471. return err;
  472. }
  473. cval->elem_id = &kctl->id;
  474. cval->next_id_elem = mixer->id_elems[cval->id];
  475. mixer->id_elems[cval->id] = cval;
  476. return 0;
  477. }
  478. /*
  479. * get a terminal name string
  480. */
  481. static struct iterm_name_combo {
  482. int type;
  483. char *name;
  484. } iterm_names[] = {
  485. { 0x0300, "Output" },
  486. { 0x0301, "Speaker" },
  487. { 0x0302, "Headphone" },
  488. { 0x0303, "HMD Audio" },
  489. { 0x0304, "Desktop Speaker" },
  490. { 0x0305, "Room Speaker" },
  491. { 0x0306, "Com Speaker" },
  492. { 0x0307, "LFE" },
  493. { 0x0600, "External In" },
  494. { 0x0601, "Analog In" },
  495. { 0x0602, "Digital In" },
  496. { 0x0603, "Line" },
  497. { 0x0604, "Legacy In" },
  498. { 0x0605, "IEC958 In" },
  499. { 0x0606, "1394 DA Stream" },
  500. { 0x0607, "1394 DV Stream" },
  501. { 0x0700, "Embedded" },
  502. { 0x0701, "Noise Source" },
  503. { 0x0702, "Equalization Noise" },
  504. { 0x0703, "CD" },
  505. { 0x0704, "DAT" },
  506. { 0x0705, "DCC" },
  507. { 0x0706, "MiniDisk" },
  508. { 0x0707, "Analog Tape" },
  509. { 0x0708, "Phonograph" },
  510. { 0x0709, "VCR Audio" },
  511. { 0x070a, "Video Disk Audio" },
  512. { 0x070b, "DVD Audio" },
  513. { 0x070c, "TV Tuner Audio" },
  514. { 0x070d, "Satellite Rec Audio" },
  515. { 0x070e, "Cable Tuner Audio" },
  516. { 0x070f, "DSS Audio" },
  517. { 0x0710, "Radio Receiver" },
  518. { 0x0711, "Radio Transmitter" },
  519. { 0x0712, "Multi-Track Recorder" },
  520. { 0x0713, "Synthesizer" },
  521. { 0 },
  522. };
  523. static int get_term_name(struct mixer_build *state, struct usb_audio_term *iterm,
  524. unsigned char *name, int maxlen, int term_only)
  525. {
  526. struct iterm_name_combo *names;
  527. if (iterm->name)
  528. return snd_usb_copy_string_desc(state, iterm->name, name, maxlen);
  529. /* virtual type - not a real terminal */
  530. if (iterm->type >> 16) {
  531. if (term_only)
  532. return 0;
  533. switch (iterm->type >> 16) {
  534. case UAC_SELECTOR_UNIT:
  535. strcpy(name, "Selector"); return 8;
  536. case UAC1_PROCESSING_UNIT:
  537. strcpy(name, "Process Unit"); return 12;
  538. case UAC1_EXTENSION_UNIT:
  539. strcpy(name, "Ext Unit"); return 8;
  540. case UAC_MIXER_UNIT:
  541. strcpy(name, "Mixer"); return 5;
  542. default:
  543. return sprintf(name, "Unit %d", iterm->id);
  544. }
  545. }
  546. switch (iterm->type & 0xff00) {
  547. case 0x0100:
  548. strcpy(name, "PCM"); return 3;
  549. case 0x0200:
  550. strcpy(name, "Mic"); return 3;
  551. case 0x0400:
  552. strcpy(name, "Headset"); return 7;
  553. case 0x0500:
  554. strcpy(name, "Phone"); return 5;
  555. }
  556. for (names = iterm_names; names->type; names++)
  557. if (names->type == iterm->type) {
  558. strcpy(name, names->name);
  559. return strlen(names->name);
  560. }
  561. return 0;
  562. }
  563. /*
  564. * parse the source unit recursively until it reaches to a terminal
  565. * or a branched unit.
  566. */
  567. static int check_input_term(struct mixer_build *state, int id, struct usb_audio_term *term)
  568. {
  569. int err;
  570. void *p1;
  571. memset(term, 0, sizeof(*term));
  572. while ((p1 = find_audio_control_unit(state, id)) != NULL) {
  573. unsigned char *hdr = p1;
  574. term->id = id;
  575. switch (hdr[2]) {
  576. case UAC_INPUT_TERMINAL:
  577. if (state->mixer->protocol == UAC_VERSION_1) {
  578. struct uac_input_terminal_descriptor *d = p1;
  579. term->type = le16_to_cpu(d->wTerminalType);
  580. term->channels = d->bNrChannels;
  581. term->chconfig = le16_to_cpu(d->wChannelConfig);
  582. term->name = d->iTerminal;
  583. } else { /* UAC_VERSION_2 */
  584. struct uac2_input_terminal_descriptor *d = p1;
  585. term->type = le16_to_cpu(d->wTerminalType);
  586. term->channels = d->bNrChannels;
  587. term->chconfig = le32_to_cpu(d->bmChannelConfig);
  588. term->name = d->iTerminal;
  589. /* call recursively to get the clock selectors */
  590. err = check_input_term(state, d->bCSourceID, term);
  591. if (err < 0)
  592. return err;
  593. }
  594. return 0;
  595. case UAC_FEATURE_UNIT: {
  596. /* the header is the same for v1 and v2 */
  597. struct uac_feature_unit_descriptor *d = p1;
  598. id = d->bSourceID;
  599. break; /* continue to parse */
  600. }
  601. case UAC_MIXER_UNIT: {
  602. struct uac_mixer_unit_descriptor *d = p1;
  603. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  604. term->channels = uac_mixer_unit_bNrChannels(d);
  605. term->chconfig = uac_mixer_unit_wChannelConfig(d, state->mixer->protocol);
  606. term->name = uac_mixer_unit_iMixer(d);
  607. return 0;
  608. }
  609. case UAC_SELECTOR_UNIT:
  610. case UAC2_CLOCK_SELECTOR: {
  611. struct uac_selector_unit_descriptor *d = p1;
  612. /* call recursively to retrieve the channel info */
  613. if (check_input_term(state, d->baSourceID[0], term) < 0)
  614. return -ENODEV;
  615. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  616. term->id = id;
  617. term->name = uac_selector_unit_iSelector(d);
  618. return 0;
  619. }
  620. case UAC1_PROCESSING_UNIT:
  621. case UAC1_EXTENSION_UNIT: {
  622. struct uac_processing_unit_descriptor *d = p1;
  623. if (d->bNrInPins) {
  624. id = d->baSourceID[0];
  625. break; /* continue to parse */
  626. }
  627. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  628. term->channels = uac_processing_unit_bNrChannels(d);
  629. term->chconfig = uac_processing_unit_wChannelConfig(d, state->mixer->protocol);
  630. term->name = uac_processing_unit_iProcessing(d, state->mixer->protocol);
  631. return 0;
  632. }
  633. case UAC2_CLOCK_SOURCE: {
  634. struct uac_clock_source_descriptor *d = p1;
  635. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  636. term->id = id;
  637. term->name = d->iClockSource;
  638. return 0;
  639. }
  640. default:
  641. return -ENODEV;
  642. }
  643. }
  644. return -ENODEV;
  645. }
  646. /*
  647. * Feature Unit
  648. */
  649. /* feature unit control information */
  650. struct usb_feature_control_info {
  651. const char *name;
  652. unsigned int type; /* control type (mute, volume, etc.) */
  653. };
  654. static struct usb_feature_control_info audio_feature_info[] = {
  655. { "Mute", USB_MIXER_INV_BOOLEAN },
  656. { "Volume", USB_MIXER_S16 },
  657. { "Tone Control - Bass", USB_MIXER_S8 },
  658. { "Tone Control - Mid", USB_MIXER_S8 },
  659. { "Tone Control - Treble", USB_MIXER_S8 },
  660. { "Graphic Equalizer", USB_MIXER_S8 }, /* FIXME: not implemeted yet */
  661. { "Auto Gain Control", USB_MIXER_BOOLEAN },
  662. { "Delay Control", USB_MIXER_U16 },
  663. { "Bass Boost", USB_MIXER_BOOLEAN },
  664. { "Loudness", USB_MIXER_BOOLEAN },
  665. /* UAC2 specific */
  666. { "Input Gain Control", USB_MIXER_U16 },
  667. { "Input Gain Pad Control", USB_MIXER_BOOLEAN },
  668. { "Phase Inverter Control", USB_MIXER_BOOLEAN },
  669. };
  670. /* private_free callback */
  671. static void usb_mixer_elem_free(struct snd_kcontrol *kctl)
  672. {
  673. kfree(kctl->private_data);
  674. kctl->private_data = NULL;
  675. }
  676. /*
  677. * interface to ALSA control for feature/mixer units
  678. */
  679. /*
  680. * retrieve the minimum and maximum values for the specified control
  681. */
  682. static int get_min_max(struct usb_mixer_elem_info *cval, int default_min)
  683. {
  684. /* for failsafe */
  685. cval->min = default_min;
  686. cval->max = cval->min + 1;
  687. cval->res = 1;
  688. cval->dBmin = cval->dBmax = 0;
  689. if (cval->val_type == USB_MIXER_BOOLEAN ||
  690. cval->val_type == USB_MIXER_INV_BOOLEAN) {
  691. cval->initialized = 1;
  692. } else {
  693. int minchn = 0;
  694. if (cval->cmask) {
  695. int i;
  696. for (i = 0; i < MAX_CHANNELS; i++)
  697. if (cval->cmask & (1 << i)) {
  698. minchn = i + 1;
  699. break;
  700. }
  701. }
  702. if (get_ctl_value(cval, UAC_GET_MAX, (cval->control << 8) | minchn, &cval->max) < 0 ||
  703. get_ctl_value(cval, UAC_GET_MIN, (cval->control << 8) | minchn, &cval->min) < 0) {
  704. snd_printd(KERN_ERR "%d:%d: cannot get min/max values for control %d (id %d)\n",
  705. cval->id, snd_usb_ctrl_intf(cval->mixer->chip), cval->control, cval->id);
  706. return -EINVAL;
  707. }
  708. if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0) {
  709. cval->res = 1;
  710. } else {
  711. int last_valid_res = cval->res;
  712. while (cval->res > 1) {
  713. if (snd_usb_mixer_set_ctl_value(cval, UAC_SET_RES,
  714. (cval->control << 8) | minchn, cval->res / 2) < 0)
  715. break;
  716. cval->res /= 2;
  717. }
  718. if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0)
  719. cval->res = last_valid_res;
  720. }
  721. if (cval->res == 0)
  722. cval->res = 1;
  723. /* Additional checks for the proper resolution
  724. *
  725. * Some devices report smaller resolutions than actually
  726. * reacting. They don't return errors but simply clip
  727. * to the lower aligned value.
  728. */
  729. if (cval->min + cval->res < cval->max) {
  730. int last_valid_res = cval->res;
  731. int saved, test, check;
  732. get_cur_mix_raw(cval, minchn, &saved);
  733. for (;;) {
  734. test = saved;
  735. if (test < cval->max)
  736. test += cval->res;
  737. else
  738. test -= cval->res;
  739. if (test < cval->min || test > cval->max ||
  740. set_cur_mix_value(cval, minchn, 0, test) ||
  741. get_cur_mix_raw(cval, minchn, &check)) {
  742. cval->res = last_valid_res;
  743. break;
  744. }
  745. if (test == check)
  746. break;
  747. cval->res *= 2;
  748. }
  749. set_cur_mix_value(cval, minchn, 0, saved);
  750. }
  751. cval->initialized = 1;
  752. }
  753. /* USB descriptions contain the dB scale in 1/256 dB unit
  754. * while ALSA TLV contains in 1/100 dB unit
  755. */
  756. cval->dBmin = (convert_signed_value(cval, cval->min) * 100) / 256;
  757. cval->dBmax = (convert_signed_value(cval, cval->max) * 100) / 256;
  758. if (cval->dBmin > cval->dBmax) {
  759. /* something is wrong; assume it's either from/to 0dB */
  760. if (cval->dBmin < 0)
  761. cval->dBmax = 0;
  762. else if (cval->dBmin > 0)
  763. cval->dBmin = 0;
  764. if (cval->dBmin > cval->dBmax) {
  765. /* totally crap, return an error */
  766. return -EINVAL;
  767. }
  768. }
  769. return 0;
  770. }
  771. /* get a feature/mixer unit info */
  772. static int mixer_ctl_feature_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  773. {
  774. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  775. if (cval->val_type == USB_MIXER_BOOLEAN ||
  776. cval->val_type == USB_MIXER_INV_BOOLEAN)
  777. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  778. else
  779. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  780. uinfo->count = cval->channels;
  781. if (cval->val_type == USB_MIXER_BOOLEAN ||
  782. cval->val_type == USB_MIXER_INV_BOOLEAN) {
  783. uinfo->value.integer.min = 0;
  784. uinfo->value.integer.max = 1;
  785. } else {
  786. if (! cval->initialized)
  787. get_min_max(cval, 0);
  788. uinfo->value.integer.min = 0;
  789. uinfo->value.integer.max =
  790. (cval->max - cval->min + cval->res - 1) / cval->res;
  791. }
  792. return 0;
  793. }
  794. /* get the current value from feature/mixer unit */
  795. static int mixer_ctl_feature_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  796. {
  797. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  798. int c, cnt, val, err;
  799. ucontrol->value.integer.value[0] = cval->min;
  800. if (cval->cmask) {
  801. cnt = 0;
  802. for (c = 0; c < MAX_CHANNELS; c++) {
  803. if (!(cval->cmask & (1 << c)))
  804. continue;
  805. err = get_cur_mix_value(cval, c + 1, cnt, &val);
  806. if (err < 0)
  807. return cval->mixer->ignore_ctl_error ? 0 : err;
  808. val = get_relative_value(cval, val);
  809. ucontrol->value.integer.value[cnt] = val;
  810. cnt++;
  811. }
  812. return 0;
  813. } else {
  814. /* master channel */
  815. err = get_cur_mix_value(cval, 0, 0, &val);
  816. if (err < 0)
  817. return cval->mixer->ignore_ctl_error ? 0 : err;
  818. val = get_relative_value(cval, val);
  819. ucontrol->value.integer.value[0] = val;
  820. }
  821. return 0;
  822. }
  823. /* put the current value to feature/mixer unit */
  824. static int mixer_ctl_feature_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  825. {
  826. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  827. int c, cnt, val, oval, err;
  828. int changed = 0;
  829. if (cval->cmask) {
  830. cnt = 0;
  831. for (c = 0; c < MAX_CHANNELS; c++) {
  832. if (!(cval->cmask & (1 << c)))
  833. continue;
  834. err = get_cur_mix_value(cval, c + 1, cnt, &oval);
  835. if (err < 0)
  836. return cval->mixer->ignore_ctl_error ? 0 : err;
  837. val = ucontrol->value.integer.value[cnt];
  838. val = get_abs_value(cval, val);
  839. if (oval != val) {
  840. set_cur_mix_value(cval, c + 1, cnt, val);
  841. changed = 1;
  842. }
  843. cnt++;
  844. }
  845. } else {
  846. /* master channel */
  847. err = get_cur_mix_value(cval, 0, 0, &oval);
  848. if (err < 0)
  849. return cval->mixer->ignore_ctl_error ? 0 : err;
  850. val = ucontrol->value.integer.value[0];
  851. val = get_abs_value(cval, val);
  852. if (val != oval) {
  853. set_cur_mix_value(cval, 0, 0, val);
  854. changed = 1;
  855. }
  856. }
  857. return changed;
  858. }
  859. static struct snd_kcontrol_new usb_feature_unit_ctl = {
  860. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  861. .name = "", /* will be filled later manually */
  862. .info = mixer_ctl_feature_info,
  863. .get = mixer_ctl_feature_get,
  864. .put = mixer_ctl_feature_put,
  865. };
  866. /* the read-only variant */
  867. static struct snd_kcontrol_new usb_feature_unit_ctl_ro = {
  868. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  869. .name = "", /* will be filled later manually */
  870. .info = mixer_ctl_feature_info,
  871. .get = mixer_ctl_feature_get,
  872. .put = NULL,
  873. };
  874. /* This symbol is exported in order to allow the mixer quirks to
  875. * hook up to the standard feature unit control mechanism */
  876. struct snd_kcontrol_new *snd_usb_feature_unit_ctl = &usb_feature_unit_ctl;
  877. /*
  878. * build a feature control
  879. */
  880. static size_t append_ctl_name(struct snd_kcontrol *kctl, const char *str)
  881. {
  882. return strlcat(kctl->id.name, str, sizeof(kctl->id.name));
  883. }
  884. static void build_feature_ctl(struct mixer_build *state, void *raw_desc,
  885. unsigned int ctl_mask, int control,
  886. struct usb_audio_term *iterm, int unitid,
  887. int readonly_mask)
  888. {
  889. struct uac_feature_unit_descriptor *desc = raw_desc;
  890. unsigned int len = 0;
  891. int mapped_name = 0;
  892. int nameid = uac_feature_unit_iFeature(desc);
  893. struct snd_kcontrol *kctl;
  894. struct usb_mixer_elem_info *cval;
  895. const struct usbmix_name_map *map;
  896. unsigned int range;
  897. control++; /* change from zero-based to 1-based value */
  898. if (control == UAC_FU_GRAPHIC_EQUALIZER) {
  899. /* FIXME: not supported yet */
  900. return;
  901. }
  902. map = find_map(state, unitid, control);
  903. if (check_ignored_ctl(map))
  904. return;
  905. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  906. if (! cval) {
  907. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  908. return;
  909. }
  910. cval->mixer = state->mixer;
  911. cval->id = unitid;
  912. cval->control = control;
  913. cval->cmask = ctl_mask;
  914. cval->val_type = audio_feature_info[control-1].type;
  915. if (ctl_mask == 0) {
  916. cval->channels = 1; /* master channel */
  917. cval->master_readonly = readonly_mask;
  918. } else {
  919. int i, c = 0;
  920. for (i = 0; i < 16; i++)
  921. if (ctl_mask & (1 << i))
  922. c++;
  923. cval->channels = c;
  924. cval->ch_readonly = readonly_mask;
  925. }
  926. /* get min/max values */
  927. get_min_max(cval, 0);
  928. /* if all channels in the mask are marked read-only, make the control
  929. * read-only. set_cur_mix_value() will check the mask again and won't
  930. * issue write commands to read-only channels. */
  931. if (cval->channels == readonly_mask)
  932. kctl = snd_ctl_new1(&usb_feature_unit_ctl_ro, cval);
  933. else
  934. kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
  935. if (! kctl) {
  936. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  937. kfree(cval);
  938. return;
  939. }
  940. kctl->private_free = usb_mixer_elem_free;
  941. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  942. mapped_name = len != 0;
  943. if (! len && nameid)
  944. len = snd_usb_copy_string_desc(state, nameid,
  945. kctl->id.name, sizeof(kctl->id.name));
  946. switch (control) {
  947. case UAC_FU_MUTE:
  948. case UAC_FU_VOLUME:
  949. /* determine the control name. the rule is:
  950. * - if a name id is given in descriptor, use it.
  951. * - if the connected input can be determined, then use the name
  952. * of terminal type.
  953. * - if the connected output can be determined, use it.
  954. * - otherwise, anonymous name.
  955. */
  956. if (! len) {
  957. len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 1);
  958. if (! len)
  959. len = get_term_name(state, &state->oterm, kctl->id.name, sizeof(kctl->id.name), 1);
  960. if (! len)
  961. len = snprintf(kctl->id.name, sizeof(kctl->id.name),
  962. "Feature %d", unitid);
  963. }
  964. /* determine the stream direction:
  965. * if the connected output is USB stream, then it's likely a
  966. * capture stream. otherwise it should be playback (hopefully :)
  967. */
  968. if (! mapped_name && ! (state->oterm.type >> 16)) {
  969. if ((state->oterm.type & 0xff00) == 0x0100) {
  970. len = append_ctl_name(kctl, " Capture");
  971. } else {
  972. len = append_ctl_name(kctl, " Playback");
  973. }
  974. }
  975. append_ctl_name(kctl, control == UAC_FU_MUTE ?
  976. " Switch" : " Volume");
  977. if (control == UAC_FU_VOLUME) {
  978. check_mapped_dB(map, cval);
  979. if (cval->dBmin < cval->dBmax) {
  980. kctl->tlv.c = mixer_vol_tlv;
  981. kctl->vd[0].access |=
  982. SNDRV_CTL_ELEM_ACCESS_TLV_READ |
  983. SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  984. }
  985. }
  986. break;
  987. default:
  988. if (! len)
  989. strlcpy(kctl->id.name, audio_feature_info[control-1].name,
  990. sizeof(kctl->id.name));
  991. break;
  992. }
  993. /* volume control quirks */
  994. switch (state->chip->usb_id) {
  995. case USB_ID(0x0471, 0x0101):
  996. case USB_ID(0x0471, 0x0104):
  997. case USB_ID(0x0471, 0x0105):
  998. case USB_ID(0x0672, 0x1041):
  999. /* quirk for UDA1321/N101.
  1000. * note that detection between firmware 2.1.1.7 (N101)
  1001. * and later 2.1.1.21 is not very clear from datasheets.
  1002. * I hope that the min value is -15360 for newer firmware --jk
  1003. */
  1004. if (!strcmp(kctl->id.name, "PCM Playback Volume") &&
  1005. cval->min == -15616) {
  1006. snd_printk(KERN_INFO
  1007. "set volume quirk for UDA1321/N101 chip\n");
  1008. cval->max = -256;
  1009. }
  1010. break;
  1011. case USB_ID(0x046d, 0x09a4):
  1012. if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
  1013. snd_printk(KERN_INFO
  1014. "set volume quirk for QuickCam E3500\n");
  1015. cval->min = 6080;
  1016. cval->max = 8768;
  1017. cval->res = 192;
  1018. }
  1019. break;
  1020. case USB_ID(0x046d, 0x0808):
  1021. case USB_ID(0x046d, 0x0809):
  1022. case USB_ID(0x046d, 0x0991):
  1023. /* Most audio usb devices lie about volume resolution.
  1024. * Most Logitech webcams have res = 384.
  1025. * Proboly there is some logitech magic behind this number --fishor
  1026. */
  1027. if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
  1028. snd_printk(KERN_INFO
  1029. "set resolution quirk: cval->res = 384\n");
  1030. cval->res = 384;
  1031. }
  1032. break;
  1033. }
  1034. range = (cval->max - cval->min) / cval->res;
  1035. /* Are there devices with volume range more than 255? I use a bit more
  1036. * to be sure. 384 is a resolution magic number found on Logitech
  1037. * devices. It will definitively catch all buggy Logitech devices.
  1038. */
  1039. if (range > 384) {
  1040. snd_printk(KERN_WARNING "usb_audio: Warning! Unlikely big "
  1041. "volume range (=%u), cval->res is probably wrong.",
  1042. range);
  1043. snd_printk(KERN_WARNING "usb_audio: [%d] FU [%s] ch = %d, "
  1044. "val = %d/%d/%d", cval->id,
  1045. kctl->id.name, cval->channels,
  1046. cval->min, cval->max, cval->res);
  1047. }
  1048. snd_printdd(KERN_INFO "[%d] FU [%s] ch = %d, val = %d/%d/%d\n",
  1049. cval->id, kctl->id.name, cval->channels, cval->min, cval->max, cval->res);
  1050. snd_usb_mixer_add_control(state->mixer, kctl);
  1051. }
  1052. /*
  1053. * parse a feature unit
  1054. *
  1055. * most of controls are defined here.
  1056. */
  1057. static int parse_audio_feature_unit(struct mixer_build *state, int unitid, void *_ftr)
  1058. {
  1059. int channels, i, j;
  1060. struct usb_audio_term iterm;
  1061. unsigned int master_bits, first_ch_bits;
  1062. int err, csize;
  1063. struct uac_feature_unit_descriptor *hdr = _ftr;
  1064. __u8 *bmaControls;
  1065. if (state->mixer->protocol == UAC_VERSION_1) {
  1066. csize = hdr->bControlSize;
  1067. if (!csize) {
  1068. snd_printdd(KERN_ERR "usbaudio: unit %u: "
  1069. "invalid bControlSize == 0\n", unitid);
  1070. return -EINVAL;
  1071. }
  1072. channels = (hdr->bLength - 7) / csize - 1;
  1073. bmaControls = hdr->bmaControls;
  1074. } else {
  1075. struct uac2_feature_unit_descriptor *ftr = _ftr;
  1076. csize = 4;
  1077. channels = (hdr->bLength - 6) / 4 - 1;
  1078. bmaControls = ftr->bmaControls;
  1079. }
  1080. if (hdr->bLength < 7 || !csize || hdr->bLength < 7 + csize) {
  1081. snd_printk(KERN_ERR "usbaudio: unit %u: invalid UAC_FEATURE_UNIT descriptor\n", unitid);
  1082. return -EINVAL;
  1083. }
  1084. /* parse the source unit */
  1085. if ((err = parse_audio_unit(state, hdr->bSourceID)) < 0)
  1086. return err;
  1087. /* determine the input source type and name */
  1088. if (check_input_term(state, hdr->bSourceID, &iterm) < 0)
  1089. return -EINVAL;
  1090. master_bits = snd_usb_combine_bytes(bmaControls, csize);
  1091. /* master configuration quirks */
  1092. switch (state->chip->usb_id) {
  1093. case USB_ID(0x08bb, 0x2702):
  1094. snd_printk(KERN_INFO
  1095. "usbmixer: master volume quirk for PCM2702 chip\n");
  1096. /* disable non-functional volume control */
  1097. master_bits &= ~UAC_CONTROL_BIT(UAC_FU_VOLUME);
  1098. break;
  1099. }
  1100. if (channels > 0)
  1101. first_ch_bits = snd_usb_combine_bytes(bmaControls + csize, csize);
  1102. else
  1103. first_ch_bits = 0;
  1104. if (state->mixer->protocol == UAC_VERSION_1) {
  1105. /* check all control types */
  1106. for (i = 0; i < 10; i++) {
  1107. unsigned int ch_bits = 0;
  1108. for (j = 0; j < channels; j++) {
  1109. unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
  1110. if (mask & (1 << i))
  1111. ch_bits |= (1 << j);
  1112. }
  1113. /* audio class v1 controls are never read-only */
  1114. if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
  1115. build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, 0);
  1116. if (master_bits & (1 << i))
  1117. build_feature_ctl(state, _ftr, 0, i, &iterm, unitid, 0);
  1118. }
  1119. } else { /* UAC_VERSION_2 */
  1120. for (i = 0; i < 30/2; i++) {
  1121. unsigned int ch_bits = 0;
  1122. unsigned int ch_read_only = 0;
  1123. for (j = 0; j < channels; j++) {
  1124. unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
  1125. if (uac2_control_is_readable(mask, i)) {
  1126. ch_bits |= (1 << j);
  1127. if (!uac2_control_is_writeable(mask, i))
  1128. ch_read_only |= (1 << j);
  1129. }
  1130. }
  1131. /* NOTE: build_feature_ctl() will mark the control read-only if all channels
  1132. * are marked read-only in the descriptors. Otherwise, the control will be
  1133. * reported as writeable, but the driver will not actually issue a write
  1134. * command for read-only channels */
  1135. if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
  1136. build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, ch_read_only);
  1137. if (uac2_control_is_readable(master_bits, i))
  1138. build_feature_ctl(state, _ftr, 0, i, &iterm, unitid,
  1139. !uac2_control_is_writeable(master_bits, i));
  1140. }
  1141. }
  1142. return 0;
  1143. }
  1144. /*
  1145. * Mixer Unit
  1146. */
  1147. /*
  1148. * build a mixer unit control
  1149. *
  1150. * the callbacks are identical with feature unit.
  1151. * input channel number (zero based) is given in control field instead.
  1152. */
  1153. static void build_mixer_unit_ctl(struct mixer_build *state,
  1154. struct uac_mixer_unit_descriptor *desc,
  1155. int in_pin, int in_ch, int unitid,
  1156. struct usb_audio_term *iterm)
  1157. {
  1158. struct usb_mixer_elem_info *cval;
  1159. unsigned int num_outs = uac_mixer_unit_bNrChannels(desc);
  1160. unsigned int i, len;
  1161. struct snd_kcontrol *kctl;
  1162. const struct usbmix_name_map *map;
  1163. map = find_map(state, unitid, 0);
  1164. if (check_ignored_ctl(map))
  1165. return;
  1166. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1167. if (! cval)
  1168. return;
  1169. cval->mixer = state->mixer;
  1170. cval->id = unitid;
  1171. cval->control = in_ch + 1; /* based on 1 */
  1172. cval->val_type = USB_MIXER_S16;
  1173. for (i = 0; i < num_outs; i++) {
  1174. if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol), in_ch, i, num_outs)) {
  1175. cval->cmask |= (1 << i);
  1176. cval->channels++;
  1177. }
  1178. }
  1179. /* get min/max values */
  1180. get_min_max(cval, 0);
  1181. kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
  1182. if (! kctl) {
  1183. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1184. kfree(cval);
  1185. return;
  1186. }
  1187. kctl->private_free = usb_mixer_elem_free;
  1188. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  1189. if (! len)
  1190. len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 0);
  1191. if (! len)
  1192. len = sprintf(kctl->id.name, "Mixer Source %d", in_ch + 1);
  1193. append_ctl_name(kctl, " Volume");
  1194. snd_printdd(KERN_INFO "[%d] MU [%s] ch = %d, val = %d/%d\n",
  1195. cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
  1196. snd_usb_mixer_add_control(state->mixer, kctl);
  1197. }
  1198. /*
  1199. * parse a mixer unit
  1200. */
  1201. static int parse_audio_mixer_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1202. {
  1203. struct uac_mixer_unit_descriptor *desc = raw_desc;
  1204. struct usb_audio_term iterm;
  1205. int input_pins, num_ins, num_outs;
  1206. int pin, ich, err;
  1207. if (desc->bLength < 11 || ! (input_pins = desc->bNrInPins) || ! (num_outs = uac_mixer_unit_bNrChannels(desc))) {
  1208. snd_printk(KERN_ERR "invalid MIXER UNIT descriptor %d\n", unitid);
  1209. return -EINVAL;
  1210. }
  1211. /* no bmControls field (e.g. Maya44) -> ignore */
  1212. if (desc->bLength <= 10 + input_pins) {
  1213. snd_printdd(KERN_INFO "MU %d has no bmControls field\n", unitid);
  1214. return 0;
  1215. }
  1216. num_ins = 0;
  1217. ich = 0;
  1218. for (pin = 0; pin < input_pins; pin++) {
  1219. err = parse_audio_unit(state, desc->baSourceID[pin]);
  1220. if (err < 0)
  1221. return err;
  1222. err = check_input_term(state, desc->baSourceID[pin], &iterm);
  1223. if (err < 0)
  1224. return err;
  1225. num_ins += iterm.channels;
  1226. for (; ich < num_ins; ++ich) {
  1227. int och, ich_has_controls = 0;
  1228. for (och = 0; och < num_outs; ++och) {
  1229. if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol),
  1230. ich, och, num_outs)) {
  1231. ich_has_controls = 1;
  1232. break;
  1233. }
  1234. }
  1235. if (ich_has_controls)
  1236. build_mixer_unit_ctl(state, desc, pin, ich,
  1237. unitid, &iterm);
  1238. }
  1239. }
  1240. return 0;
  1241. }
  1242. /*
  1243. * Processing Unit / Extension Unit
  1244. */
  1245. /* get callback for processing/extension unit */
  1246. static int mixer_ctl_procunit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1247. {
  1248. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1249. int err, val;
  1250. err = get_cur_ctl_value(cval, cval->control << 8, &val);
  1251. if (err < 0 && cval->mixer->ignore_ctl_error) {
  1252. ucontrol->value.integer.value[0] = cval->min;
  1253. return 0;
  1254. }
  1255. if (err < 0)
  1256. return err;
  1257. val = get_relative_value(cval, val);
  1258. ucontrol->value.integer.value[0] = val;
  1259. return 0;
  1260. }
  1261. /* put callback for processing/extension unit */
  1262. static int mixer_ctl_procunit_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1263. {
  1264. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1265. int val, oval, err;
  1266. err = get_cur_ctl_value(cval, cval->control << 8, &oval);
  1267. if (err < 0) {
  1268. if (cval->mixer->ignore_ctl_error)
  1269. return 0;
  1270. return err;
  1271. }
  1272. val = ucontrol->value.integer.value[0];
  1273. val = get_abs_value(cval, val);
  1274. if (val != oval) {
  1275. set_cur_ctl_value(cval, cval->control << 8, val);
  1276. return 1;
  1277. }
  1278. return 0;
  1279. }
  1280. /* alsa control interface for processing/extension unit */
  1281. static struct snd_kcontrol_new mixer_procunit_ctl = {
  1282. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1283. .name = "", /* will be filled later */
  1284. .info = mixer_ctl_feature_info,
  1285. .get = mixer_ctl_procunit_get,
  1286. .put = mixer_ctl_procunit_put,
  1287. };
  1288. /*
  1289. * predefined data for processing units
  1290. */
  1291. struct procunit_value_info {
  1292. int control;
  1293. char *suffix;
  1294. int val_type;
  1295. int min_value;
  1296. };
  1297. struct procunit_info {
  1298. int type;
  1299. char *name;
  1300. struct procunit_value_info *values;
  1301. };
  1302. static struct procunit_value_info updown_proc_info[] = {
  1303. { UAC_UD_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1304. { UAC_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
  1305. { 0 }
  1306. };
  1307. static struct procunit_value_info prologic_proc_info[] = {
  1308. { UAC_DP_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1309. { UAC_DP_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
  1310. { 0 }
  1311. };
  1312. static struct procunit_value_info threed_enh_proc_info[] = {
  1313. { UAC_3D_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1314. { UAC_3D_SPACE, "Spaciousness", USB_MIXER_U8 },
  1315. { 0 }
  1316. };
  1317. static struct procunit_value_info reverb_proc_info[] = {
  1318. { UAC_REVERB_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1319. { UAC_REVERB_LEVEL, "Level", USB_MIXER_U8 },
  1320. { UAC_REVERB_TIME, "Time", USB_MIXER_U16 },
  1321. { UAC_REVERB_FEEDBACK, "Feedback", USB_MIXER_U8 },
  1322. { 0 }
  1323. };
  1324. static struct procunit_value_info chorus_proc_info[] = {
  1325. { UAC_CHORUS_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1326. { UAC_CHORUS_LEVEL, "Level", USB_MIXER_U8 },
  1327. { UAC_CHORUS_RATE, "Rate", USB_MIXER_U16 },
  1328. { UAC_CHORUS_DEPTH, "Depth", USB_MIXER_U16 },
  1329. { 0 }
  1330. };
  1331. static struct procunit_value_info dcr_proc_info[] = {
  1332. { UAC_DCR_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1333. { UAC_DCR_RATE, "Ratio", USB_MIXER_U16 },
  1334. { UAC_DCR_MAXAMPL, "Max Amp", USB_MIXER_S16 },
  1335. { UAC_DCR_THRESHOLD, "Threshold", USB_MIXER_S16 },
  1336. { UAC_DCR_ATTACK_TIME, "Attack Time", USB_MIXER_U16 },
  1337. { UAC_DCR_RELEASE_TIME, "Release Time", USB_MIXER_U16 },
  1338. { 0 }
  1339. };
  1340. static struct procunit_info procunits[] = {
  1341. { UAC_PROCESS_UP_DOWNMIX, "Up Down", updown_proc_info },
  1342. { UAC_PROCESS_DOLBY_PROLOGIC, "Dolby Prologic", prologic_proc_info },
  1343. { UAC_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", threed_enh_proc_info },
  1344. { UAC_PROCESS_REVERB, "Reverb", reverb_proc_info },
  1345. { UAC_PROCESS_CHORUS, "Chorus", chorus_proc_info },
  1346. { UAC_PROCESS_DYN_RANGE_COMP, "DCR", dcr_proc_info },
  1347. { 0 },
  1348. };
  1349. /*
  1350. * predefined data for extension units
  1351. */
  1352. static struct procunit_value_info clock_rate_xu_info[] = {
  1353. { USB_XU_CLOCK_RATE_SELECTOR, "Selector", USB_MIXER_U8, 0 },
  1354. { 0 }
  1355. };
  1356. static struct procunit_value_info clock_source_xu_info[] = {
  1357. { USB_XU_CLOCK_SOURCE_SELECTOR, "External", USB_MIXER_BOOLEAN },
  1358. { 0 }
  1359. };
  1360. static struct procunit_value_info spdif_format_xu_info[] = {
  1361. { USB_XU_DIGITAL_FORMAT_SELECTOR, "SPDIF/AC3", USB_MIXER_BOOLEAN },
  1362. { 0 }
  1363. };
  1364. static struct procunit_value_info soft_limit_xu_info[] = {
  1365. { USB_XU_SOFT_LIMIT_SELECTOR, " ", USB_MIXER_BOOLEAN },
  1366. { 0 }
  1367. };
  1368. static struct procunit_info extunits[] = {
  1369. { USB_XU_CLOCK_RATE, "Clock rate", clock_rate_xu_info },
  1370. { USB_XU_CLOCK_SOURCE, "DigitalIn CLK source", clock_source_xu_info },
  1371. { USB_XU_DIGITAL_IO_STATUS, "DigitalOut format:", spdif_format_xu_info },
  1372. { USB_XU_DEVICE_OPTIONS, "AnalogueIn Soft Limit", soft_limit_xu_info },
  1373. { 0 }
  1374. };
  1375. /*
  1376. * build a processing/extension unit
  1377. */
  1378. static int build_audio_procunit(struct mixer_build *state, int unitid, void *raw_desc, struct procunit_info *list, char *name)
  1379. {
  1380. struct uac_processing_unit_descriptor *desc = raw_desc;
  1381. int num_ins = desc->bNrInPins;
  1382. struct usb_mixer_elem_info *cval;
  1383. struct snd_kcontrol *kctl;
  1384. int i, err, nameid, type, len;
  1385. struct procunit_info *info;
  1386. struct procunit_value_info *valinfo;
  1387. const struct usbmix_name_map *map;
  1388. static struct procunit_value_info default_value_info[] = {
  1389. { 0x01, "Switch", USB_MIXER_BOOLEAN },
  1390. { 0 }
  1391. };
  1392. static struct procunit_info default_info = {
  1393. 0, NULL, default_value_info
  1394. };
  1395. if (desc->bLength < 13 || desc->bLength < 13 + num_ins ||
  1396. desc->bLength < num_ins + uac_processing_unit_bControlSize(desc, state->mixer->protocol)) {
  1397. snd_printk(KERN_ERR "invalid %s descriptor (id %d)\n", name, unitid);
  1398. return -EINVAL;
  1399. }
  1400. for (i = 0; i < num_ins; i++) {
  1401. if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
  1402. return err;
  1403. }
  1404. type = le16_to_cpu(desc->wProcessType);
  1405. for (info = list; info && info->type; info++)
  1406. if (info->type == type)
  1407. break;
  1408. if (! info || ! info->type)
  1409. info = &default_info;
  1410. for (valinfo = info->values; valinfo->control; valinfo++) {
  1411. __u8 *controls = uac_processing_unit_bmControls(desc, state->mixer->protocol);
  1412. if (! (controls[valinfo->control / 8] & (1 << ((valinfo->control % 8) - 1))))
  1413. continue;
  1414. map = find_map(state, unitid, valinfo->control);
  1415. if (check_ignored_ctl(map))
  1416. continue;
  1417. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1418. if (! cval) {
  1419. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1420. return -ENOMEM;
  1421. }
  1422. cval->mixer = state->mixer;
  1423. cval->id = unitid;
  1424. cval->control = valinfo->control;
  1425. cval->val_type = valinfo->val_type;
  1426. cval->channels = 1;
  1427. /* get min/max values */
  1428. if (type == UAC_PROCESS_UP_DOWNMIX && cval->control == UAC_UD_MODE_SELECT) {
  1429. __u8 *control_spec = uac_processing_unit_specific(desc, state->mixer->protocol);
  1430. /* FIXME: hard-coded */
  1431. cval->min = 1;
  1432. cval->max = control_spec[0];
  1433. cval->res = 1;
  1434. cval->initialized = 1;
  1435. } else {
  1436. if (type == USB_XU_CLOCK_RATE) {
  1437. /* E-Mu USB 0404/0202/TrackerPre/0204
  1438. * samplerate control quirk
  1439. */
  1440. cval->min = 0;
  1441. cval->max = 5;
  1442. cval->res = 1;
  1443. cval->initialized = 1;
  1444. } else
  1445. get_min_max(cval, valinfo->min_value);
  1446. }
  1447. kctl = snd_ctl_new1(&mixer_procunit_ctl, cval);
  1448. if (! kctl) {
  1449. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1450. kfree(cval);
  1451. return -ENOMEM;
  1452. }
  1453. kctl->private_free = usb_mixer_elem_free;
  1454. if (check_mapped_name(map, kctl->id.name,
  1455. sizeof(kctl->id.name)))
  1456. /* nothing */ ;
  1457. else if (info->name)
  1458. strlcpy(kctl->id.name, info->name, sizeof(kctl->id.name));
  1459. else {
  1460. nameid = uac_processing_unit_iProcessing(desc, state->mixer->protocol);
  1461. len = 0;
  1462. if (nameid)
  1463. len = snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
  1464. if (! len)
  1465. strlcpy(kctl->id.name, name, sizeof(kctl->id.name));
  1466. }
  1467. append_ctl_name(kctl, " ");
  1468. append_ctl_name(kctl, valinfo->suffix);
  1469. snd_printdd(KERN_INFO "[%d] PU [%s] ch = %d, val = %d/%d\n",
  1470. cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
  1471. if ((err = snd_usb_mixer_add_control(state->mixer, kctl)) < 0)
  1472. return err;
  1473. }
  1474. return 0;
  1475. }
  1476. static int parse_audio_processing_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1477. {
  1478. return build_audio_procunit(state, unitid, raw_desc, procunits, "Processing Unit");
  1479. }
  1480. static int parse_audio_extension_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1481. {
  1482. /* Note that we parse extension units with processing unit descriptors.
  1483. * That's ok as the layout is the same */
  1484. return build_audio_procunit(state, unitid, raw_desc, extunits, "Extension Unit");
  1485. }
  1486. /*
  1487. * Selector Unit
  1488. */
  1489. /* info callback for selector unit
  1490. * use an enumerator type for routing
  1491. */
  1492. static int mixer_ctl_selector_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  1493. {
  1494. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1495. const char **itemlist = (const char **)kcontrol->private_value;
  1496. if (snd_BUG_ON(!itemlist))
  1497. return -EINVAL;
  1498. return snd_ctl_enum_info(uinfo, 1, cval->max, itemlist);
  1499. }
  1500. /* get callback for selector unit */
  1501. static int mixer_ctl_selector_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1502. {
  1503. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1504. int val, err;
  1505. err = get_cur_ctl_value(cval, cval->control << 8, &val);
  1506. if (err < 0) {
  1507. if (cval->mixer->ignore_ctl_error) {
  1508. ucontrol->value.enumerated.item[0] = 0;
  1509. return 0;
  1510. }
  1511. return err;
  1512. }
  1513. val = get_relative_value(cval, val);
  1514. ucontrol->value.enumerated.item[0] = val;
  1515. return 0;
  1516. }
  1517. /* put callback for selector unit */
  1518. static int mixer_ctl_selector_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1519. {
  1520. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1521. int val, oval, err;
  1522. err = get_cur_ctl_value(cval, cval->control << 8, &oval);
  1523. if (err < 0) {
  1524. if (cval->mixer->ignore_ctl_error)
  1525. return 0;
  1526. return err;
  1527. }
  1528. val = ucontrol->value.enumerated.item[0];
  1529. val = get_abs_value(cval, val);
  1530. if (val != oval) {
  1531. set_cur_ctl_value(cval, cval->control << 8, val);
  1532. return 1;
  1533. }
  1534. return 0;
  1535. }
  1536. /* alsa control interface for selector unit */
  1537. static struct snd_kcontrol_new mixer_selectunit_ctl = {
  1538. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1539. .name = "", /* will be filled later */
  1540. .info = mixer_ctl_selector_info,
  1541. .get = mixer_ctl_selector_get,
  1542. .put = mixer_ctl_selector_put,
  1543. };
  1544. /* private free callback.
  1545. * free both private_data and private_value
  1546. */
  1547. static void usb_mixer_selector_elem_free(struct snd_kcontrol *kctl)
  1548. {
  1549. int i, num_ins = 0;
  1550. if (kctl->private_data) {
  1551. struct usb_mixer_elem_info *cval = kctl->private_data;
  1552. num_ins = cval->max;
  1553. kfree(cval);
  1554. kctl->private_data = NULL;
  1555. }
  1556. if (kctl->private_value) {
  1557. char **itemlist = (char **)kctl->private_value;
  1558. for (i = 0; i < num_ins; i++)
  1559. kfree(itemlist[i]);
  1560. kfree(itemlist);
  1561. kctl->private_value = 0;
  1562. }
  1563. }
  1564. /*
  1565. * parse a selector unit
  1566. */
  1567. static int parse_audio_selector_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1568. {
  1569. struct uac_selector_unit_descriptor *desc = raw_desc;
  1570. unsigned int i, nameid, len;
  1571. int err;
  1572. struct usb_mixer_elem_info *cval;
  1573. struct snd_kcontrol *kctl;
  1574. const struct usbmix_name_map *map;
  1575. char **namelist;
  1576. if (!desc->bNrInPins || desc->bLength < 5 + desc->bNrInPins) {
  1577. snd_printk(KERN_ERR "invalid SELECTOR UNIT descriptor %d\n", unitid);
  1578. return -EINVAL;
  1579. }
  1580. for (i = 0; i < desc->bNrInPins; i++) {
  1581. if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
  1582. return err;
  1583. }
  1584. if (desc->bNrInPins == 1) /* only one ? nonsense! */
  1585. return 0;
  1586. map = find_map(state, unitid, 0);
  1587. if (check_ignored_ctl(map))
  1588. return 0;
  1589. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1590. if (! cval) {
  1591. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1592. return -ENOMEM;
  1593. }
  1594. cval->mixer = state->mixer;
  1595. cval->id = unitid;
  1596. cval->val_type = USB_MIXER_U8;
  1597. cval->channels = 1;
  1598. cval->min = 1;
  1599. cval->max = desc->bNrInPins;
  1600. cval->res = 1;
  1601. cval->initialized = 1;
  1602. if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
  1603. cval->control = UAC2_CX_CLOCK_SELECTOR;
  1604. else
  1605. cval->control = 0;
  1606. namelist = kmalloc(sizeof(char *) * desc->bNrInPins, GFP_KERNEL);
  1607. if (! namelist) {
  1608. snd_printk(KERN_ERR "cannot malloc\n");
  1609. kfree(cval);
  1610. return -ENOMEM;
  1611. }
  1612. #define MAX_ITEM_NAME_LEN 64
  1613. for (i = 0; i < desc->bNrInPins; i++) {
  1614. struct usb_audio_term iterm;
  1615. len = 0;
  1616. namelist[i] = kmalloc(MAX_ITEM_NAME_LEN, GFP_KERNEL);
  1617. if (! namelist[i]) {
  1618. snd_printk(KERN_ERR "cannot malloc\n");
  1619. while (i--)
  1620. kfree(namelist[i]);
  1621. kfree(namelist);
  1622. kfree(cval);
  1623. return -ENOMEM;
  1624. }
  1625. len = check_mapped_selector_name(state, unitid, i, namelist[i],
  1626. MAX_ITEM_NAME_LEN);
  1627. if (! len && check_input_term(state, desc->baSourceID[i], &iterm) >= 0)
  1628. len = get_term_name(state, &iterm, namelist[i], MAX_ITEM_NAME_LEN, 0);
  1629. if (! len)
  1630. sprintf(namelist[i], "Input %d", i);
  1631. }
  1632. kctl = snd_ctl_new1(&mixer_selectunit_ctl, cval);
  1633. if (! kctl) {
  1634. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1635. kfree(namelist);
  1636. kfree(cval);
  1637. return -ENOMEM;
  1638. }
  1639. kctl->private_value = (unsigned long)namelist;
  1640. kctl->private_free = usb_mixer_selector_elem_free;
  1641. nameid = uac_selector_unit_iSelector(desc);
  1642. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  1643. if (len)
  1644. ;
  1645. else if (nameid)
  1646. snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
  1647. else {
  1648. len = get_term_name(state, &state->oterm,
  1649. kctl->id.name, sizeof(kctl->id.name), 0);
  1650. if (! len)
  1651. strlcpy(kctl->id.name, "USB", sizeof(kctl->id.name));
  1652. if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
  1653. append_ctl_name(kctl, " Clock Source");
  1654. else if ((state->oterm.type & 0xff00) == 0x0100)
  1655. append_ctl_name(kctl, " Capture Source");
  1656. else
  1657. append_ctl_name(kctl, " Playback Source");
  1658. }
  1659. snd_printdd(KERN_INFO "[%d] SU [%s] items = %d\n",
  1660. cval->id, kctl->id.name, desc->bNrInPins);
  1661. if ((err = snd_usb_mixer_add_control(state->mixer, kctl)) < 0)
  1662. return err;
  1663. return 0;
  1664. }
  1665. /*
  1666. * parse an audio unit recursively
  1667. */
  1668. static int parse_audio_unit(struct mixer_build *state, int unitid)
  1669. {
  1670. unsigned char *p1;
  1671. if (test_and_set_bit(unitid, state->unitbitmap))
  1672. return 0; /* the unit already visited */
  1673. p1 = find_audio_control_unit(state, unitid);
  1674. if (!p1) {
  1675. snd_printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
  1676. return -EINVAL;
  1677. }
  1678. switch (p1[2]) {
  1679. case UAC_INPUT_TERMINAL:
  1680. case UAC2_CLOCK_SOURCE:
  1681. return 0; /* NOP */
  1682. case UAC_MIXER_UNIT:
  1683. return parse_audio_mixer_unit(state, unitid, p1);
  1684. case UAC_SELECTOR_UNIT:
  1685. case UAC2_CLOCK_SELECTOR:
  1686. return parse_audio_selector_unit(state, unitid, p1);
  1687. case UAC_FEATURE_UNIT:
  1688. return parse_audio_feature_unit(state, unitid, p1);
  1689. case UAC1_PROCESSING_UNIT:
  1690. /* UAC2_EFFECT_UNIT has the same value */
  1691. if (state->mixer->protocol == UAC_VERSION_1)
  1692. return parse_audio_processing_unit(state, unitid, p1);
  1693. else
  1694. return 0; /* FIXME - effect units not implemented yet */
  1695. case UAC1_EXTENSION_UNIT:
  1696. /* UAC2_PROCESSING_UNIT_V2 has the same value */
  1697. if (state->mixer->protocol == UAC_VERSION_1)
  1698. return parse_audio_extension_unit(state, unitid, p1);
  1699. else /* UAC_VERSION_2 */
  1700. return parse_audio_processing_unit(state, unitid, p1);
  1701. default:
  1702. snd_printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
  1703. return -EINVAL;
  1704. }
  1705. }
  1706. static void snd_usb_mixer_free(struct usb_mixer_interface *mixer)
  1707. {
  1708. kfree(mixer->id_elems);
  1709. if (mixer->urb) {
  1710. kfree(mixer->urb->transfer_buffer);
  1711. usb_free_urb(mixer->urb);
  1712. }
  1713. usb_free_urb(mixer->rc_urb);
  1714. kfree(mixer->rc_setup_packet);
  1715. kfree(mixer);
  1716. }
  1717. static int snd_usb_mixer_dev_free(struct snd_device *device)
  1718. {
  1719. struct usb_mixer_interface *mixer = device->device_data;
  1720. snd_usb_mixer_free(mixer);
  1721. return 0;
  1722. }
  1723. /*
  1724. * create mixer controls
  1725. *
  1726. * walk through all UAC_OUTPUT_TERMINAL descriptors to search for mixers
  1727. */
  1728. static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
  1729. {
  1730. struct mixer_build state;
  1731. int err;
  1732. const struct usbmix_ctl_map *map;
  1733. struct usb_host_interface *hostif;
  1734. void *p;
  1735. hostif = mixer->chip->ctrl_intf;
  1736. memset(&state, 0, sizeof(state));
  1737. state.chip = mixer->chip;
  1738. state.mixer = mixer;
  1739. state.buffer = hostif->extra;
  1740. state.buflen = hostif->extralen;
  1741. /* check the mapping table */
  1742. for (map = usbmix_ctl_maps; map->id; map++) {
  1743. if (map->id == state.chip->usb_id) {
  1744. state.map = map->map;
  1745. state.selector_map = map->selector_map;
  1746. mixer->ignore_ctl_error = map->ignore_ctl_error;
  1747. break;
  1748. }
  1749. }
  1750. p = NULL;
  1751. while ((p = snd_usb_find_csint_desc(hostif->extra, hostif->extralen, p, UAC_OUTPUT_TERMINAL)) != NULL) {
  1752. if (mixer->protocol == UAC_VERSION_1) {
  1753. struct uac1_output_terminal_descriptor *desc = p;
  1754. if (desc->bLength < sizeof(*desc))
  1755. continue; /* invalid descriptor? */
  1756. set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
  1757. state.oterm.id = desc->bTerminalID;
  1758. state.oterm.type = le16_to_cpu(desc->wTerminalType);
  1759. state.oterm.name = desc->iTerminal;
  1760. err = parse_audio_unit(&state, desc->bSourceID);
  1761. if (err < 0)
  1762. return err;
  1763. } else { /* UAC_VERSION_2 */
  1764. struct uac2_output_terminal_descriptor *desc = p;
  1765. if (desc->bLength < sizeof(*desc))
  1766. continue; /* invalid descriptor? */
  1767. set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
  1768. state.oterm.id = desc->bTerminalID;
  1769. state.oterm.type = le16_to_cpu(desc->wTerminalType);
  1770. state.oterm.name = desc->iTerminal;
  1771. err = parse_audio_unit(&state, desc->bSourceID);
  1772. if (err < 0)
  1773. return err;
  1774. /* for UAC2, use the same approach to also add the clock selectors */
  1775. err = parse_audio_unit(&state, desc->bCSourceID);
  1776. if (err < 0)
  1777. return err;
  1778. }
  1779. }
  1780. return 0;
  1781. }
  1782. void snd_usb_mixer_notify_id(struct usb_mixer_interface *mixer, int unitid)
  1783. {
  1784. struct usb_mixer_elem_info *info;
  1785. for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem)
  1786. snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1787. info->elem_id);
  1788. }
  1789. static void snd_usb_mixer_dump_cval(struct snd_info_buffer *buffer,
  1790. int unitid,
  1791. struct usb_mixer_elem_info *cval)
  1792. {
  1793. static char *val_types[] = {"BOOLEAN", "INV_BOOLEAN",
  1794. "S8", "U8", "S16", "U16"};
  1795. snd_iprintf(buffer, " Unit: %i\n", unitid);
  1796. if (cval->elem_id)
  1797. snd_iprintf(buffer, " Control: name=\"%s\", index=%i\n",
  1798. cval->elem_id->name, cval->elem_id->index);
  1799. snd_iprintf(buffer, " Info: id=%i, control=%i, cmask=0x%x, "
  1800. "channels=%i, type=\"%s\"\n", cval->id,
  1801. cval->control, cval->cmask, cval->channels,
  1802. val_types[cval->val_type]);
  1803. snd_iprintf(buffer, " Volume: min=%i, max=%i, dBmin=%i, dBmax=%i\n",
  1804. cval->min, cval->max, cval->dBmin, cval->dBmax);
  1805. }
  1806. static void snd_usb_mixer_proc_read(struct snd_info_entry *entry,
  1807. struct snd_info_buffer *buffer)
  1808. {
  1809. struct snd_usb_audio *chip = entry->private_data;
  1810. struct usb_mixer_interface *mixer;
  1811. struct usb_mixer_elem_info *cval;
  1812. int unitid;
  1813. list_for_each_entry(mixer, &chip->mixer_list, list) {
  1814. snd_iprintf(buffer,
  1815. "USB Mixer: usb_id=0x%08x, ctrlif=%i, ctlerr=%i\n",
  1816. chip->usb_id, snd_usb_ctrl_intf(chip),
  1817. mixer->ignore_ctl_error);
  1818. snd_iprintf(buffer, "Card: %s\n", chip->card->longname);
  1819. for (unitid = 0; unitid < MAX_ID_ELEMS; unitid++) {
  1820. for (cval = mixer->id_elems[unitid]; cval;
  1821. cval = cval->next_id_elem)
  1822. snd_usb_mixer_dump_cval(buffer, unitid, cval);
  1823. }
  1824. }
  1825. }
  1826. static void snd_usb_mixer_interrupt_v2(struct usb_mixer_interface *mixer,
  1827. int attribute, int value, int index)
  1828. {
  1829. struct usb_mixer_elem_info *info;
  1830. __u8 unitid = (index >> 8) & 0xff;
  1831. __u8 control = (value >> 8) & 0xff;
  1832. __u8 channel = value & 0xff;
  1833. if (channel >= MAX_CHANNELS) {
  1834. snd_printk(KERN_DEBUG "%s(): bogus channel number %d\n",
  1835. __func__, channel);
  1836. return;
  1837. }
  1838. for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem) {
  1839. if (info->control != control)
  1840. continue;
  1841. switch (attribute) {
  1842. case UAC2_CS_CUR:
  1843. /* invalidate cache, so the value is read from the device */
  1844. if (channel)
  1845. info->cached &= ~(1 << channel);
  1846. else /* master channel */
  1847. info->cached = 0;
  1848. snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1849. info->elem_id);
  1850. break;
  1851. case UAC2_CS_RANGE:
  1852. /* TODO */
  1853. break;
  1854. case UAC2_CS_MEM:
  1855. /* TODO */
  1856. break;
  1857. default:
  1858. snd_printk(KERN_DEBUG "unknown attribute %d in interrupt\n",
  1859. attribute);
  1860. break;
  1861. } /* switch */
  1862. }
  1863. }
  1864. static void snd_usb_mixer_interrupt(struct urb *urb)
  1865. {
  1866. struct usb_mixer_interface *mixer = urb->context;
  1867. int len = urb->actual_length;
  1868. int ustatus = urb->status;
  1869. if (ustatus != 0)
  1870. goto requeue;
  1871. if (mixer->protocol == UAC_VERSION_1) {
  1872. struct uac1_status_word *status;
  1873. for (status = urb->transfer_buffer;
  1874. len >= sizeof(*status);
  1875. len -= sizeof(*status), status++) {
  1876. snd_printd(KERN_DEBUG "status interrupt: %02x %02x\n",
  1877. status->bStatusType,
  1878. status->bOriginator);
  1879. /* ignore any notifications not from the control interface */
  1880. if ((status->bStatusType & UAC1_STATUS_TYPE_ORIG_MASK) !=
  1881. UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF)
  1882. continue;
  1883. if (status->bStatusType & UAC1_STATUS_TYPE_MEM_CHANGED)
  1884. snd_usb_mixer_rc_memory_change(mixer, status->bOriginator);
  1885. else
  1886. snd_usb_mixer_notify_id(mixer, status->bOriginator);
  1887. }
  1888. } else { /* UAC_VERSION_2 */
  1889. struct uac2_interrupt_data_msg *msg;
  1890. for (msg = urb->transfer_buffer;
  1891. len >= sizeof(*msg);
  1892. len -= sizeof(*msg), msg++) {
  1893. /* drop vendor specific and endpoint requests */
  1894. if ((msg->bInfo & UAC2_INTERRUPT_DATA_MSG_VENDOR) ||
  1895. (msg->bInfo & UAC2_INTERRUPT_DATA_MSG_EP))
  1896. continue;
  1897. snd_usb_mixer_interrupt_v2(mixer, msg->bAttribute,
  1898. le16_to_cpu(msg->wValue),
  1899. le16_to_cpu(msg->wIndex));
  1900. }
  1901. }
  1902. requeue:
  1903. if (ustatus != -ENOENT && ustatus != -ECONNRESET && ustatus != -ESHUTDOWN) {
  1904. urb->dev = mixer->chip->dev;
  1905. usb_submit_urb(urb, GFP_ATOMIC);
  1906. }
  1907. }
  1908. /* stop any bus activity of a mixer */
  1909. void snd_usb_mixer_inactivate(struct usb_mixer_interface *mixer)
  1910. {
  1911. usb_kill_urb(mixer->urb);
  1912. usb_kill_urb(mixer->rc_urb);
  1913. }
  1914. int snd_usb_mixer_activate(struct usb_mixer_interface *mixer)
  1915. {
  1916. int err;
  1917. if (mixer->urb) {
  1918. err = usb_submit_urb(mixer->urb, GFP_NOIO);
  1919. if (err < 0)
  1920. return err;
  1921. }
  1922. return 0;
  1923. }
  1924. /* create the handler for the optional status interrupt endpoint */
  1925. static int snd_usb_mixer_status_create(struct usb_mixer_interface *mixer)
  1926. {
  1927. struct usb_host_interface *hostif;
  1928. struct usb_endpoint_descriptor *ep;
  1929. void *transfer_buffer;
  1930. int buffer_length;
  1931. unsigned int epnum;
  1932. hostif = mixer->chip->ctrl_intf;
  1933. /* we need one interrupt input endpoint */
  1934. if (get_iface_desc(hostif)->bNumEndpoints < 1)
  1935. return 0;
  1936. ep = get_endpoint(hostif, 0);
  1937. if (!usb_endpoint_dir_in(ep) || !usb_endpoint_xfer_int(ep))
  1938. return 0;
  1939. epnum = usb_endpoint_num(ep);
  1940. buffer_length = le16_to_cpu(ep->wMaxPacketSize);
  1941. transfer_buffer = kmalloc(buffer_length, GFP_KERNEL);
  1942. if (!transfer_buffer)
  1943. return -ENOMEM;
  1944. mixer->urb = usb_alloc_urb(0, GFP_KERNEL);
  1945. if (!mixer->urb) {
  1946. kfree(transfer_buffer);
  1947. return -ENOMEM;
  1948. }
  1949. usb_fill_int_urb(mixer->urb, mixer->chip->dev,
  1950. usb_rcvintpipe(mixer->chip->dev, epnum),
  1951. transfer_buffer, buffer_length,
  1952. snd_usb_mixer_interrupt, mixer, ep->bInterval);
  1953. usb_submit_urb(mixer->urb, GFP_KERNEL);
  1954. return 0;
  1955. }
  1956. int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif,
  1957. int ignore_error)
  1958. {
  1959. static struct snd_device_ops dev_ops = {
  1960. .dev_free = snd_usb_mixer_dev_free
  1961. };
  1962. struct usb_mixer_interface *mixer;
  1963. struct snd_info_entry *entry;
  1964. struct usb_host_interface *host_iface;
  1965. int err;
  1966. strcpy(chip->card->mixername, "USB Mixer");
  1967. mixer = kzalloc(sizeof(*mixer), GFP_KERNEL);
  1968. if (!mixer)
  1969. return -ENOMEM;
  1970. mixer->chip = chip;
  1971. mixer->ignore_ctl_error = ignore_error;
  1972. mixer->id_elems = kcalloc(MAX_ID_ELEMS, sizeof(*mixer->id_elems),
  1973. GFP_KERNEL);
  1974. if (!mixer->id_elems) {
  1975. kfree(mixer);
  1976. return -ENOMEM;
  1977. }
  1978. host_iface = &usb_ifnum_to_if(chip->dev, ctrlif)->altsetting[0];
  1979. switch (get_iface_desc(host_iface)->bInterfaceProtocol) {
  1980. case UAC_VERSION_1:
  1981. default:
  1982. mixer->protocol = UAC_VERSION_1;
  1983. break;
  1984. case UAC_VERSION_2:
  1985. mixer->protocol = UAC_VERSION_2;
  1986. break;
  1987. }
  1988. if ((err = snd_usb_mixer_controls(mixer)) < 0 ||
  1989. (err = snd_usb_mixer_status_create(mixer)) < 0)
  1990. goto _error;
  1991. snd_usb_mixer_apply_create_quirk(mixer);
  1992. err = snd_device_new(chip->card, SNDRV_DEV_LOWLEVEL, mixer, &dev_ops);
  1993. if (err < 0)
  1994. goto _error;
  1995. if (list_empty(&chip->mixer_list) &&
  1996. !snd_card_proc_new(chip->card, "usbmixer", &entry))
  1997. snd_info_set_text_ops(entry, chip, snd_usb_mixer_proc_read);
  1998. list_add(&mixer->list, &chip->mixer_list);
  1999. return 0;
  2000. _error:
  2001. snd_usb_mixer_free(mixer);
  2002. return err;
  2003. }
  2004. void snd_usb_mixer_disconnect(struct list_head *p)
  2005. {
  2006. struct usb_mixer_interface *mixer;
  2007. mixer = list_entry(p, struct usb_mixer_interface, list);
  2008. usb_kill_urb(mixer->urb);
  2009. usb_kill_urb(mixer->rc_urb);
  2010. }