cfq-iosched.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. static struct blkio_policy_type blkio_policy_cfq;
  20. /*
  21. * tunables
  22. */
  23. /* max queue in one round of service */
  24. static const int cfq_quantum = 8;
  25. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  26. /* maximum backwards seek, in KiB */
  27. static const int cfq_back_max = 16 * 1024;
  28. /* penalty of a backwards seek */
  29. static const int cfq_back_penalty = 2;
  30. static const int cfq_slice_sync = HZ / 10;
  31. static int cfq_slice_async = HZ / 25;
  32. static const int cfq_slice_async_rq = 2;
  33. static int cfq_slice_idle = HZ / 125;
  34. static int cfq_group_idle = HZ / 125;
  35. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  36. static const int cfq_hist_divisor = 4;
  37. /*
  38. * offset from end of service tree
  39. */
  40. #define CFQ_IDLE_DELAY (HZ / 5)
  41. /*
  42. * below this threshold, we consider thinktime immediate
  43. */
  44. #define CFQ_MIN_TT (2)
  45. #define CFQ_SLICE_SCALE (5)
  46. #define CFQ_HW_QUEUE_MIN (5)
  47. #define CFQ_SERVICE_SHIFT 12
  48. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  49. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  50. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  51. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  52. #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
  55. static struct kmem_cache *cfq_pool;
  56. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  57. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  58. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  59. #define sample_valid(samples) ((samples) > 80)
  60. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  61. struct cfq_ttime {
  62. unsigned long last_end_request;
  63. unsigned long ttime_total;
  64. unsigned long ttime_samples;
  65. unsigned long ttime_mean;
  66. };
  67. /*
  68. * Most of our rbtree usage is for sorting with min extraction, so
  69. * if we cache the leftmost node we don't have to walk down the tree
  70. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  71. * move this into the elevator for the rq sorting as well.
  72. */
  73. struct cfq_rb_root {
  74. struct rb_root rb;
  75. struct rb_node *left;
  76. unsigned count;
  77. unsigned total_weight;
  78. u64 min_vdisktime;
  79. struct cfq_ttime ttime;
  80. };
  81. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  82. .ttime = {.last_end_request = jiffies,},}
  83. /*
  84. * Per process-grouping structure
  85. */
  86. struct cfq_queue {
  87. /* reference count */
  88. int ref;
  89. /* various state flags, see below */
  90. unsigned int flags;
  91. /* parent cfq_data */
  92. struct cfq_data *cfqd;
  93. /* service_tree member */
  94. struct rb_node rb_node;
  95. /* service_tree key */
  96. unsigned long rb_key;
  97. /* prio tree member */
  98. struct rb_node p_node;
  99. /* prio tree root we belong to, if any */
  100. struct rb_root *p_root;
  101. /* sorted list of pending requests */
  102. struct rb_root sort_list;
  103. /* if fifo isn't expired, next request to serve */
  104. struct request *next_rq;
  105. /* requests queued in sort_list */
  106. int queued[2];
  107. /* currently allocated requests */
  108. int allocated[2];
  109. /* fifo list of requests in sort_list */
  110. struct list_head fifo;
  111. /* time when queue got scheduled in to dispatch first request. */
  112. unsigned long dispatch_start;
  113. unsigned int allocated_slice;
  114. unsigned int slice_dispatch;
  115. /* time when first request from queue completed and slice started. */
  116. unsigned long slice_start;
  117. unsigned long slice_end;
  118. long slice_resid;
  119. /* pending priority requests */
  120. int prio_pending;
  121. /* number of requests that are on the dispatch list or inside driver */
  122. int dispatched;
  123. /* io prio of this group */
  124. unsigned short ioprio, org_ioprio;
  125. unsigned short ioprio_class;
  126. pid_t pid;
  127. u32 seek_history;
  128. sector_t last_request_pos;
  129. struct cfq_rb_root *service_tree;
  130. struct cfq_queue *new_cfqq;
  131. struct cfq_group *cfqg;
  132. /* Number of sectors dispatched from queue in single dispatch round */
  133. unsigned long nr_sectors;
  134. };
  135. /*
  136. * First index in the service_trees.
  137. * IDLE is handled separately, so it has negative index
  138. */
  139. enum wl_prio_t {
  140. BE_WORKLOAD = 0,
  141. RT_WORKLOAD = 1,
  142. IDLE_WORKLOAD = 2,
  143. CFQ_PRIO_NR,
  144. };
  145. /*
  146. * Second index in the service_trees.
  147. */
  148. enum wl_type_t {
  149. ASYNC_WORKLOAD = 0,
  150. SYNC_NOIDLE_WORKLOAD = 1,
  151. SYNC_WORKLOAD = 2
  152. };
  153. /* This is per cgroup per device grouping structure */
  154. struct cfq_group {
  155. /* group service_tree member */
  156. struct rb_node rb_node;
  157. /* group service_tree key */
  158. u64 vdisktime;
  159. unsigned int weight;
  160. unsigned int new_weight;
  161. bool needs_update;
  162. /* number of cfqq currently on this group */
  163. int nr_cfqq;
  164. /*
  165. * Per group busy queues average. Useful for workload slice calc. We
  166. * create the array for each prio class but at run time it is used
  167. * only for RT and BE class and slot for IDLE class remains unused.
  168. * This is primarily done to avoid confusion and a gcc warning.
  169. */
  170. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  171. /*
  172. * rr lists of queues with requests. We maintain service trees for
  173. * RT and BE classes. These trees are subdivided in subclasses
  174. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  175. * class there is no subclassification and all the cfq queues go on
  176. * a single tree service_tree_idle.
  177. * Counts are embedded in the cfq_rb_root
  178. */
  179. struct cfq_rb_root service_trees[2][3];
  180. struct cfq_rb_root service_tree_idle;
  181. unsigned long saved_workload_slice;
  182. enum wl_type_t saved_workload;
  183. enum wl_prio_t saved_serving_prio;
  184. /* number of requests that are on the dispatch list or inside driver */
  185. int dispatched;
  186. struct cfq_ttime ttime;
  187. };
  188. struct cfq_io_cq {
  189. struct io_cq icq; /* must be the first member */
  190. struct cfq_queue *cfqq[2];
  191. struct cfq_ttime ttime;
  192. int ioprio; /* the current ioprio */
  193. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  194. uint64_t blkcg_id; /* the current blkcg ID */
  195. #endif
  196. };
  197. /*
  198. * Per block device queue structure
  199. */
  200. struct cfq_data {
  201. struct request_queue *queue;
  202. /* Root service tree for cfq_groups */
  203. struct cfq_rb_root grp_service_tree;
  204. struct cfq_group *root_group;
  205. /*
  206. * The priority currently being served
  207. */
  208. enum wl_prio_t serving_prio;
  209. enum wl_type_t serving_type;
  210. unsigned long workload_expires;
  211. struct cfq_group *serving_group;
  212. /*
  213. * Each priority tree is sorted by next_request position. These
  214. * trees are used when determining if two or more queues are
  215. * interleaving requests (see cfq_close_cooperator).
  216. */
  217. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  218. unsigned int busy_queues;
  219. unsigned int busy_sync_queues;
  220. int rq_in_driver;
  221. int rq_in_flight[2];
  222. /*
  223. * queue-depth detection
  224. */
  225. int rq_queued;
  226. int hw_tag;
  227. /*
  228. * hw_tag can be
  229. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  230. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  231. * 0 => no NCQ
  232. */
  233. int hw_tag_est_depth;
  234. unsigned int hw_tag_samples;
  235. /*
  236. * idle window management
  237. */
  238. struct timer_list idle_slice_timer;
  239. struct work_struct unplug_work;
  240. struct cfq_queue *active_queue;
  241. struct cfq_io_cq *active_cic;
  242. /*
  243. * async queue for each priority case
  244. */
  245. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  246. struct cfq_queue *async_idle_cfqq;
  247. sector_t last_position;
  248. /*
  249. * tunables, see top of file
  250. */
  251. unsigned int cfq_quantum;
  252. unsigned int cfq_fifo_expire[2];
  253. unsigned int cfq_back_penalty;
  254. unsigned int cfq_back_max;
  255. unsigned int cfq_slice[2];
  256. unsigned int cfq_slice_async_rq;
  257. unsigned int cfq_slice_idle;
  258. unsigned int cfq_group_idle;
  259. unsigned int cfq_latency;
  260. /*
  261. * Fallback dummy cfqq for extreme OOM conditions
  262. */
  263. struct cfq_queue oom_cfqq;
  264. unsigned long last_delayed_sync;
  265. };
  266. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  267. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  268. enum wl_prio_t prio,
  269. enum wl_type_t type)
  270. {
  271. if (!cfqg)
  272. return NULL;
  273. if (prio == IDLE_WORKLOAD)
  274. return &cfqg->service_tree_idle;
  275. return &cfqg->service_trees[prio][type];
  276. }
  277. enum cfqq_state_flags {
  278. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  279. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  280. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  281. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  282. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  283. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  284. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  285. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  286. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  287. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  288. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  289. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  290. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  291. };
  292. #define CFQ_CFQQ_FNS(name) \
  293. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  294. { \
  295. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  296. } \
  297. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  298. { \
  299. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  300. } \
  301. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  302. { \
  303. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  304. }
  305. CFQ_CFQQ_FNS(on_rr);
  306. CFQ_CFQQ_FNS(wait_request);
  307. CFQ_CFQQ_FNS(must_dispatch);
  308. CFQ_CFQQ_FNS(must_alloc_slice);
  309. CFQ_CFQQ_FNS(fifo_expire);
  310. CFQ_CFQQ_FNS(idle_window);
  311. CFQ_CFQQ_FNS(prio_changed);
  312. CFQ_CFQQ_FNS(slice_new);
  313. CFQ_CFQQ_FNS(sync);
  314. CFQ_CFQQ_FNS(coop);
  315. CFQ_CFQQ_FNS(split_coop);
  316. CFQ_CFQQ_FNS(deep);
  317. CFQ_CFQQ_FNS(wait_busy);
  318. #undef CFQ_CFQQ_FNS
  319. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  320. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg)
  321. {
  322. return blkg_to_pdata(blkg, &blkio_policy_cfq);
  323. }
  324. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg)
  325. {
  326. return pdata_to_blkg(cfqg);
  327. }
  328. static inline void cfqg_get(struct cfq_group *cfqg)
  329. {
  330. return blkg_get(cfqg_to_blkg(cfqg));
  331. }
  332. static inline void cfqg_put(struct cfq_group *cfqg)
  333. {
  334. return blkg_put(cfqg_to_blkg(cfqg));
  335. }
  336. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  337. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  338. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  339. blkg_path(cfqg_to_blkg((cfqq)->cfqg)), ##args)
  340. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  341. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  342. blkg_path(cfqg_to_blkg((cfqg))), ##args) \
  343. #else /* CONFIG_CFQ_GROUP_IOSCHED */
  344. static inline struct cfq_group *blkg_to_cfqg(struct blkio_group *blkg) { return NULL; }
  345. static inline struct blkio_group *cfqg_to_blkg(struct cfq_group *cfqg) { return NULL; }
  346. static inline void cfqg_get(struct cfq_group *cfqg) { }
  347. static inline void cfqg_put(struct cfq_group *cfqg) { }
  348. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  349. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  350. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  351. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  352. #define cfq_log(cfqd, fmt, args...) \
  353. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  354. /* Traverses through cfq group service trees */
  355. #define for_each_cfqg_st(cfqg, i, j, st) \
  356. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  357. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  358. : &cfqg->service_tree_idle; \
  359. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  360. (i == IDLE_WORKLOAD && j == 0); \
  361. j++, st = i < IDLE_WORKLOAD ? \
  362. &cfqg->service_trees[i][j]: NULL) \
  363. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  364. struct cfq_ttime *ttime, bool group_idle)
  365. {
  366. unsigned long slice;
  367. if (!sample_valid(ttime->ttime_samples))
  368. return false;
  369. if (group_idle)
  370. slice = cfqd->cfq_group_idle;
  371. else
  372. slice = cfqd->cfq_slice_idle;
  373. return ttime->ttime_mean > slice;
  374. }
  375. static inline bool iops_mode(struct cfq_data *cfqd)
  376. {
  377. /*
  378. * If we are not idling on queues and it is a NCQ drive, parallel
  379. * execution of requests is on and measuring time is not possible
  380. * in most of the cases until and unless we drive shallower queue
  381. * depths and that becomes a performance bottleneck. In such cases
  382. * switch to start providing fairness in terms of number of IOs.
  383. */
  384. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  385. return true;
  386. else
  387. return false;
  388. }
  389. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  390. {
  391. if (cfq_class_idle(cfqq))
  392. return IDLE_WORKLOAD;
  393. if (cfq_class_rt(cfqq))
  394. return RT_WORKLOAD;
  395. return BE_WORKLOAD;
  396. }
  397. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  398. {
  399. if (!cfq_cfqq_sync(cfqq))
  400. return ASYNC_WORKLOAD;
  401. if (!cfq_cfqq_idle_window(cfqq))
  402. return SYNC_NOIDLE_WORKLOAD;
  403. return SYNC_WORKLOAD;
  404. }
  405. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  406. struct cfq_data *cfqd,
  407. struct cfq_group *cfqg)
  408. {
  409. if (wl == IDLE_WORKLOAD)
  410. return cfqg->service_tree_idle.count;
  411. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  412. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  413. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  414. }
  415. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  416. struct cfq_group *cfqg)
  417. {
  418. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  419. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  420. }
  421. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  422. static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
  423. struct cfq_io_cq *cic, struct bio *bio,
  424. gfp_t gfp_mask);
  425. static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
  426. {
  427. /* cic->icq is the first member, %NULL will convert to %NULL */
  428. return container_of(icq, struct cfq_io_cq, icq);
  429. }
  430. static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
  431. struct io_context *ioc)
  432. {
  433. if (ioc)
  434. return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
  435. return NULL;
  436. }
  437. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
  438. {
  439. return cic->cfqq[is_sync];
  440. }
  441. static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
  442. bool is_sync)
  443. {
  444. cic->cfqq[is_sync] = cfqq;
  445. }
  446. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
  447. {
  448. return cic->icq.q->elevator->elevator_data;
  449. }
  450. /*
  451. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  452. * set (in which case it could also be direct WRITE).
  453. */
  454. static inline bool cfq_bio_sync(struct bio *bio)
  455. {
  456. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  457. }
  458. /*
  459. * scheduler run of queue, if there are requests pending and no one in the
  460. * driver that will restart queueing
  461. */
  462. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  463. {
  464. if (cfqd->busy_queues) {
  465. cfq_log(cfqd, "schedule dispatch");
  466. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  467. }
  468. }
  469. /*
  470. * Scale schedule slice based on io priority. Use the sync time slice only
  471. * if a queue is marked sync and has sync io queued. A sync queue with async
  472. * io only, should not get full sync slice length.
  473. */
  474. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  475. unsigned short prio)
  476. {
  477. const int base_slice = cfqd->cfq_slice[sync];
  478. WARN_ON(prio >= IOPRIO_BE_NR);
  479. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  480. }
  481. static inline int
  482. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  483. {
  484. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  485. }
  486. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  487. {
  488. u64 d = delta << CFQ_SERVICE_SHIFT;
  489. d = d * BLKIO_WEIGHT_DEFAULT;
  490. do_div(d, cfqg->weight);
  491. return d;
  492. }
  493. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  494. {
  495. s64 delta = (s64)(vdisktime - min_vdisktime);
  496. if (delta > 0)
  497. min_vdisktime = vdisktime;
  498. return min_vdisktime;
  499. }
  500. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  501. {
  502. s64 delta = (s64)(vdisktime - min_vdisktime);
  503. if (delta < 0)
  504. min_vdisktime = vdisktime;
  505. return min_vdisktime;
  506. }
  507. static void update_min_vdisktime(struct cfq_rb_root *st)
  508. {
  509. struct cfq_group *cfqg;
  510. if (st->left) {
  511. cfqg = rb_entry_cfqg(st->left);
  512. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  513. cfqg->vdisktime);
  514. }
  515. }
  516. /*
  517. * get averaged number of queues of RT/BE priority.
  518. * average is updated, with a formula that gives more weight to higher numbers,
  519. * to quickly follows sudden increases and decrease slowly
  520. */
  521. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  522. struct cfq_group *cfqg, bool rt)
  523. {
  524. unsigned min_q, max_q;
  525. unsigned mult = cfq_hist_divisor - 1;
  526. unsigned round = cfq_hist_divisor / 2;
  527. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  528. min_q = min(cfqg->busy_queues_avg[rt], busy);
  529. max_q = max(cfqg->busy_queues_avg[rt], busy);
  530. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  531. cfq_hist_divisor;
  532. return cfqg->busy_queues_avg[rt];
  533. }
  534. static inline unsigned
  535. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  536. {
  537. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  538. return cfq_target_latency * cfqg->weight / st->total_weight;
  539. }
  540. static inline unsigned
  541. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  542. {
  543. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  544. if (cfqd->cfq_latency) {
  545. /*
  546. * interested queues (we consider only the ones with the same
  547. * priority class in the cfq group)
  548. */
  549. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  550. cfq_class_rt(cfqq));
  551. unsigned sync_slice = cfqd->cfq_slice[1];
  552. unsigned expect_latency = sync_slice * iq;
  553. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  554. if (expect_latency > group_slice) {
  555. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  556. /* scale low_slice according to IO priority
  557. * and sync vs async */
  558. unsigned low_slice =
  559. min(slice, base_low_slice * slice / sync_slice);
  560. /* the adapted slice value is scaled to fit all iqs
  561. * into the target latency */
  562. slice = max(slice * group_slice / expect_latency,
  563. low_slice);
  564. }
  565. }
  566. return slice;
  567. }
  568. static inline void
  569. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  570. {
  571. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  572. cfqq->slice_start = jiffies;
  573. cfqq->slice_end = jiffies + slice;
  574. cfqq->allocated_slice = slice;
  575. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  576. }
  577. /*
  578. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  579. * isn't valid until the first request from the dispatch is activated
  580. * and the slice time set.
  581. */
  582. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  583. {
  584. if (cfq_cfqq_slice_new(cfqq))
  585. return false;
  586. if (time_before(jiffies, cfqq->slice_end))
  587. return false;
  588. return true;
  589. }
  590. /*
  591. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  592. * We choose the request that is closest to the head right now. Distance
  593. * behind the head is penalized and only allowed to a certain extent.
  594. */
  595. static struct request *
  596. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  597. {
  598. sector_t s1, s2, d1 = 0, d2 = 0;
  599. unsigned long back_max;
  600. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  601. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  602. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  603. if (rq1 == NULL || rq1 == rq2)
  604. return rq2;
  605. if (rq2 == NULL)
  606. return rq1;
  607. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  608. return rq_is_sync(rq1) ? rq1 : rq2;
  609. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  610. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  611. s1 = blk_rq_pos(rq1);
  612. s2 = blk_rq_pos(rq2);
  613. /*
  614. * by definition, 1KiB is 2 sectors
  615. */
  616. back_max = cfqd->cfq_back_max * 2;
  617. /*
  618. * Strict one way elevator _except_ in the case where we allow
  619. * short backward seeks which are biased as twice the cost of a
  620. * similar forward seek.
  621. */
  622. if (s1 >= last)
  623. d1 = s1 - last;
  624. else if (s1 + back_max >= last)
  625. d1 = (last - s1) * cfqd->cfq_back_penalty;
  626. else
  627. wrap |= CFQ_RQ1_WRAP;
  628. if (s2 >= last)
  629. d2 = s2 - last;
  630. else if (s2 + back_max >= last)
  631. d2 = (last - s2) * cfqd->cfq_back_penalty;
  632. else
  633. wrap |= CFQ_RQ2_WRAP;
  634. /* Found required data */
  635. /*
  636. * By doing switch() on the bit mask "wrap" we avoid having to
  637. * check two variables for all permutations: --> faster!
  638. */
  639. switch (wrap) {
  640. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  641. if (d1 < d2)
  642. return rq1;
  643. else if (d2 < d1)
  644. return rq2;
  645. else {
  646. if (s1 >= s2)
  647. return rq1;
  648. else
  649. return rq2;
  650. }
  651. case CFQ_RQ2_WRAP:
  652. return rq1;
  653. case CFQ_RQ1_WRAP:
  654. return rq2;
  655. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  656. default:
  657. /*
  658. * Since both rqs are wrapped,
  659. * start with the one that's further behind head
  660. * (--> only *one* back seek required),
  661. * since back seek takes more time than forward.
  662. */
  663. if (s1 <= s2)
  664. return rq1;
  665. else
  666. return rq2;
  667. }
  668. }
  669. /*
  670. * The below is leftmost cache rbtree addon
  671. */
  672. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  673. {
  674. /* Service tree is empty */
  675. if (!root->count)
  676. return NULL;
  677. if (!root->left)
  678. root->left = rb_first(&root->rb);
  679. if (root->left)
  680. return rb_entry(root->left, struct cfq_queue, rb_node);
  681. return NULL;
  682. }
  683. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  684. {
  685. if (!root->left)
  686. root->left = rb_first(&root->rb);
  687. if (root->left)
  688. return rb_entry_cfqg(root->left);
  689. return NULL;
  690. }
  691. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  692. {
  693. rb_erase(n, root);
  694. RB_CLEAR_NODE(n);
  695. }
  696. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  697. {
  698. if (root->left == n)
  699. root->left = NULL;
  700. rb_erase_init(n, &root->rb);
  701. --root->count;
  702. }
  703. /*
  704. * would be nice to take fifo expire time into account as well
  705. */
  706. static struct request *
  707. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  708. struct request *last)
  709. {
  710. struct rb_node *rbnext = rb_next(&last->rb_node);
  711. struct rb_node *rbprev = rb_prev(&last->rb_node);
  712. struct request *next = NULL, *prev = NULL;
  713. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  714. if (rbprev)
  715. prev = rb_entry_rq(rbprev);
  716. if (rbnext)
  717. next = rb_entry_rq(rbnext);
  718. else {
  719. rbnext = rb_first(&cfqq->sort_list);
  720. if (rbnext && rbnext != &last->rb_node)
  721. next = rb_entry_rq(rbnext);
  722. }
  723. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  724. }
  725. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  726. struct cfq_queue *cfqq)
  727. {
  728. /*
  729. * just an approximation, should be ok.
  730. */
  731. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  732. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  733. }
  734. static inline s64
  735. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  736. {
  737. return cfqg->vdisktime - st->min_vdisktime;
  738. }
  739. static void
  740. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  741. {
  742. struct rb_node **node = &st->rb.rb_node;
  743. struct rb_node *parent = NULL;
  744. struct cfq_group *__cfqg;
  745. s64 key = cfqg_key(st, cfqg);
  746. int left = 1;
  747. while (*node != NULL) {
  748. parent = *node;
  749. __cfqg = rb_entry_cfqg(parent);
  750. if (key < cfqg_key(st, __cfqg))
  751. node = &parent->rb_left;
  752. else {
  753. node = &parent->rb_right;
  754. left = 0;
  755. }
  756. }
  757. if (left)
  758. st->left = &cfqg->rb_node;
  759. rb_link_node(&cfqg->rb_node, parent, node);
  760. rb_insert_color(&cfqg->rb_node, &st->rb);
  761. }
  762. static void
  763. cfq_update_group_weight(struct cfq_group *cfqg)
  764. {
  765. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  766. if (cfqg->needs_update) {
  767. cfqg->weight = cfqg->new_weight;
  768. cfqg->needs_update = false;
  769. }
  770. }
  771. static void
  772. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  773. {
  774. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  775. cfq_update_group_weight(cfqg);
  776. __cfq_group_service_tree_add(st, cfqg);
  777. st->total_weight += cfqg->weight;
  778. }
  779. static void
  780. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  781. {
  782. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  783. struct cfq_group *__cfqg;
  784. struct rb_node *n;
  785. cfqg->nr_cfqq++;
  786. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  787. return;
  788. /*
  789. * Currently put the group at the end. Later implement something
  790. * so that groups get lesser vtime based on their weights, so that
  791. * if group does not loose all if it was not continuously backlogged.
  792. */
  793. n = rb_last(&st->rb);
  794. if (n) {
  795. __cfqg = rb_entry_cfqg(n);
  796. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  797. } else
  798. cfqg->vdisktime = st->min_vdisktime;
  799. cfq_group_service_tree_add(st, cfqg);
  800. }
  801. static void
  802. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  803. {
  804. st->total_weight -= cfqg->weight;
  805. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  806. cfq_rb_erase(&cfqg->rb_node, st);
  807. }
  808. static void
  809. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  810. {
  811. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  812. BUG_ON(cfqg->nr_cfqq < 1);
  813. cfqg->nr_cfqq--;
  814. /* If there are other cfq queues under this group, don't delete it */
  815. if (cfqg->nr_cfqq)
  816. return;
  817. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  818. cfq_group_service_tree_del(st, cfqg);
  819. cfqg->saved_workload_slice = 0;
  820. cfq_blkiocg_update_dequeue_stats(cfqg_to_blkg(cfqg),
  821. &blkio_policy_cfq, 1);
  822. }
  823. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  824. unsigned int *unaccounted_time)
  825. {
  826. unsigned int slice_used;
  827. /*
  828. * Queue got expired before even a single request completed or
  829. * got expired immediately after first request completion.
  830. */
  831. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  832. /*
  833. * Also charge the seek time incurred to the group, otherwise
  834. * if there are mutiple queues in the group, each can dispatch
  835. * a single request on seeky media and cause lots of seek time
  836. * and group will never know it.
  837. */
  838. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  839. 1);
  840. } else {
  841. slice_used = jiffies - cfqq->slice_start;
  842. if (slice_used > cfqq->allocated_slice) {
  843. *unaccounted_time = slice_used - cfqq->allocated_slice;
  844. slice_used = cfqq->allocated_slice;
  845. }
  846. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  847. *unaccounted_time += cfqq->slice_start -
  848. cfqq->dispatch_start;
  849. }
  850. return slice_used;
  851. }
  852. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  853. struct cfq_queue *cfqq)
  854. {
  855. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  856. unsigned int used_sl, charge, unaccounted_sl = 0;
  857. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  858. - cfqg->service_tree_idle.count;
  859. BUG_ON(nr_sync < 0);
  860. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  861. if (iops_mode(cfqd))
  862. charge = cfqq->slice_dispatch;
  863. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  864. charge = cfqq->allocated_slice;
  865. /* Can't update vdisktime while group is on service tree */
  866. cfq_group_service_tree_del(st, cfqg);
  867. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  868. /* If a new weight was requested, update now, off tree */
  869. cfq_group_service_tree_add(st, cfqg);
  870. /* This group is being expired. Save the context */
  871. if (time_after(cfqd->workload_expires, jiffies)) {
  872. cfqg->saved_workload_slice = cfqd->workload_expires
  873. - jiffies;
  874. cfqg->saved_workload = cfqd->serving_type;
  875. cfqg->saved_serving_prio = cfqd->serving_prio;
  876. } else
  877. cfqg->saved_workload_slice = 0;
  878. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  879. st->min_vdisktime);
  880. cfq_log_cfqq(cfqq->cfqd, cfqq,
  881. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  882. used_sl, cfqq->slice_dispatch, charge,
  883. iops_mode(cfqd), cfqq->nr_sectors);
  884. cfq_blkiocg_update_timeslice_used(cfqg_to_blkg(cfqg), &blkio_policy_cfq,
  885. used_sl, unaccounted_sl);
  886. cfq_blkiocg_set_start_empty_time(cfqg_to_blkg(cfqg), &blkio_policy_cfq);
  887. }
  888. /**
  889. * cfq_init_cfqg_base - initialize base part of a cfq_group
  890. * @cfqg: cfq_group to initialize
  891. *
  892. * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
  893. * is enabled or not.
  894. */
  895. static void cfq_init_cfqg_base(struct cfq_group *cfqg)
  896. {
  897. struct cfq_rb_root *st;
  898. int i, j;
  899. for_each_cfqg_st(cfqg, i, j, st)
  900. *st = CFQ_RB_ROOT;
  901. RB_CLEAR_NODE(&cfqg->rb_node);
  902. cfqg->ttime.last_end_request = jiffies;
  903. }
  904. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  905. static void cfq_update_blkio_group_weight(struct blkio_group *blkg,
  906. unsigned int weight)
  907. {
  908. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  909. cfqg->new_weight = weight;
  910. cfqg->needs_update = true;
  911. }
  912. static void cfq_init_blkio_group(struct blkio_group *blkg)
  913. {
  914. struct cfq_group *cfqg = blkg_to_cfqg(blkg);
  915. cfq_init_cfqg_base(cfqg);
  916. cfqg->weight = blkg->blkcg->weight;
  917. }
  918. /*
  919. * Search for the cfq group current task belongs to. request_queue lock must
  920. * be held.
  921. */
  922. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  923. struct blkio_cgroup *blkcg)
  924. {
  925. struct request_queue *q = cfqd->queue;
  926. struct cfq_group *cfqg = NULL;
  927. /* avoid lookup for the common case where there's no blkio cgroup */
  928. if (blkcg == &blkio_root_cgroup) {
  929. cfqg = cfqd->root_group;
  930. } else {
  931. struct blkio_group *blkg;
  932. blkg = blkg_lookup_create(blkcg, q, false);
  933. if (!IS_ERR(blkg))
  934. cfqg = blkg_to_cfqg(blkg);
  935. }
  936. return cfqg;
  937. }
  938. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  939. {
  940. /* Currently, all async queues are mapped to root group */
  941. if (!cfq_cfqq_sync(cfqq))
  942. cfqg = cfqq->cfqd->root_group;
  943. cfqq->cfqg = cfqg;
  944. /* cfqq reference on cfqg */
  945. cfqg_get(cfqg);
  946. }
  947. static u64 blkg_prfill_weight_device(struct seq_file *sf,
  948. struct blkg_policy_data *pd, int off)
  949. {
  950. if (!pd->conf.weight)
  951. return 0;
  952. return __blkg_prfill_u64(sf, pd, pd->conf.weight);
  953. }
  954. static int blkcg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
  955. struct seq_file *sf)
  956. {
  957. blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp),
  958. blkg_prfill_weight_device, BLKIO_POLICY_PROP, 0,
  959. false);
  960. return 0;
  961. }
  962. static int blkcg_print_weight(struct cgroup *cgrp, struct cftype *cft,
  963. struct seq_file *sf)
  964. {
  965. seq_printf(sf, "%u\n", cgroup_to_blkio_cgroup(cgrp)->weight);
  966. return 0;
  967. }
  968. static int blkcg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
  969. const char *buf)
  970. {
  971. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
  972. struct blkg_policy_data *pd;
  973. struct blkg_conf_ctx ctx;
  974. int ret;
  975. ret = blkg_conf_prep(blkcg, buf, &ctx);
  976. if (ret)
  977. return ret;
  978. ret = -EINVAL;
  979. pd = ctx.blkg->pd[BLKIO_POLICY_PROP];
  980. if (pd && (!ctx.v || (ctx.v >= BLKIO_WEIGHT_MIN &&
  981. ctx.v <= BLKIO_WEIGHT_MAX))) {
  982. pd->conf.weight = ctx.v;
  983. cfq_update_blkio_group_weight(ctx.blkg, ctx.v ?: blkcg->weight);
  984. ret = 0;
  985. }
  986. blkg_conf_finish(&ctx);
  987. return ret;
  988. }
  989. static int blkcg_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
  990. {
  991. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
  992. struct blkio_group *blkg;
  993. struct hlist_node *n;
  994. if (val < BLKIO_WEIGHT_MIN || val > BLKIO_WEIGHT_MAX)
  995. return -EINVAL;
  996. spin_lock_irq(&blkcg->lock);
  997. blkcg->weight = (unsigned int)val;
  998. hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
  999. struct blkg_policy_data *pd = blkg->pd[BLKIO_POLICY_PROP];
  1000. if (pd && !pd->conf.weight)
  1001. cfq_update_blkio_group_weight(blkg, blkcg->weight);
  1002. }
  1003. spin_unlock_irq(&blkcg->lock);
  1004. return 0;
  1005. }
  1006. #ifdef CONFIG_DEBUG_BLK_CGROUP
  1007. static u64 blkg_prfill_avg_queue_size(struct seq_file *sf,
  1008. struct blkg_policy_data *pd, int off)
  1009. {
  1010. u64 samples = blkg_stat_read(&pd->stats.avg_queue_size_samples);
  1011. u64 v = 0;
  1012. if (samples) {
  1013. v = blkg_stat_read(&pd->stats.avg_queue_size_sum);
  1014. do_div(v, samples);
  1015. }
  1016. __blkg_prfill_u64(sf, pd, v);
  1017. return 0;
  1018. }
  1019. /* print avg_queue_size */
  1020. static int blkcg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
  1021. struct seq_file *sf)
  1022. {
  1023. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
  1024. blkcg_print_blkgs(sf, blkcg, blkg_prfill_avg_queue_size,
  1025. BLKIO_POLICY_PROP, 0, false);
  1026. return 0;
  1027. }
  1028. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  1029. static struct cftype cfq_blkcg_files[] = {
  1030. {
  1031. .name = "weight_device",
  1032. .read_seq_string = blkcg_print_weight_device,
  1033. .write_string = blkcg_set_weight_device,
  1034. .max_write_len = 256,
  1035. },
  1036. {
  1037. .name = "weight",
  1038. .read_seq_string = blkcg_print_weight,
  1039. .write_u64 = blkcg_set_weight,
  1040. },
  1041. {
  1042. .name = "time",
  1043. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1044. offsetof(struct blkio_group_stats, time)),
  1045. .read_seq_string = blkcg_print_stat,
  1046. },
  1047. {
  1048. .name = "sectors",
  1049. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1050. offsetof(struct blkio_group_stats_cpu, sectors)),
  1051. .read_seq_string = blkcg_print_cpu_stat,
  1052. },
  1053. {
  1054. .name = "io_service_bytes",
  1055. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1056. offsetof(struct blkio_group_stats_cpu, service_bytes)),
  1057. .read_seq_string = blkcg_print_cpu_rwstat,
  1058. },
  1059. {
  1060. .name = "io_serviced",
  1061. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1062. offsetof(struct blkio_group_stats_cpu, serviced)),
  1063. .read_seq_string = blkcg_print_cpu_rwstat,
  1064. },
  1065. {
  1066. .name = "io_service_time",
  1067. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1068. offsetof(struct blkio_group_stats, service_time)),
  1069. .read_seq_string = blkcg_print_rwstat,
  1070. },
  1071. {
  1072. .name = "io_wait_time",
  1073. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1074. offsetof(struct blkio_group_stats, wait_time)),
  1075. .read_seq_string = blkcg_print_rwstat,
  1076. },
  1077. {
  1078. .name = "io_merged",
  1079. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1080. offsetof(struct blkio_group_stats, merged)),
  1081. .read_seq_string = blkcg_print_rwstat,
  1082. },
  1083. {
  1084. .name = "io_queued",
  1085. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1086. offsetof(struct blkio_group_stats, queued)),
  1087. .read_seq_string = blkcg_print_rwstat,
  1088. },
  1089. #ifdef CONFIG_DEBUG_BLK_CGROUP
  1090. {
  1091. .name = "avg_queue_size",
  1092. .read_seq_string = blkcg_print_avg_queue_size,
  1093. },
  1094. {
  1095. .name = "group_wait_time",
  1096. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1097. offsetof(struct blkio_group_stats, group_wait_time)),
  1098. .read_seq_string = blkcg_print_stat,
  1099. },
  1100. {
  1101. .name = "idle_time",
  1102. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1103. offsetof(struct blkio_group_stats, idle_time)),
  1104. .read_seq_string = blkcg_print_stat,
  1105. },
  1106. {
  1107. .name = "empty_time",
  1108. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1109. offsetof(struct blkio_group_stats, empty_time)),
  1110. .read_seq_string = blkcg_print_stat,
  1111. },
  1112. {
  1113. .name = "dequeue",
  1114. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1115. offsetof(struct blkio_group_stats, dequeue)),
  1116. .read_seq_string = blkcg_print_stat,
  1117. },
  1118. {
  1119. .name = "unaccounted_time",
  1120. .private = BLKCG_STAT_PRIV(BLKIO_POLICY_PROP,
  1121. offsetof(struct blkio_group_stats, unaccounted_time)),
  1122. .read_seq_string = blkcg_print_stat,
  1123. },
  1124. #endif /* CONFIG_DEBUG_BLK_CGROUP */
  1125. { } /* terminate */
  1126. };
  1127. #else /* GROUP_IOSCHED */
  1128. static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
  1129. struct blkio_cgroup *blkcg)
  1130. {
  1131. return cfqd->root_group;
  1132. }
  1133. static inline void
  1134. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1135. cfqq->cfqg = cfqg;
  1136. }
  1137. #endif /* GROUP_IOSCHED */
  1138. /*
  1139. * The cfqd->service_trees holds all pending cfq_queue's that have
  1140. * requests waiting to be processed. It is sorted in the order that
  1141. * we will service the queues.
  1142. */
  1143. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1144. bool add_front)
  1145. {
  1146. struct rb_node **p, *parent;
  1147. struct cfq_queue *__cfqq;
  1148. unsigned long rb_key;
  1149. struct cfq_rb_root *service_tree;
  1150. int left;
  1151. int new_cfqq = 1;
  1152. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1153. cfqq_type(cfqq));
  1154. if (cfq_class_idle(cfqq)) {
  1155. rb_key = CFQ_IDLE_DELAY;
  1156. parent = rb_last(&service_tree->rb);
  1157. if (parent && parent != &cfqq->rb_node) {
  1158. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1159. rb_key += __cfqq->rb_key;
  1160. } else
  1161. rb_key += jiffies;
  1162. } else if (!add_front) {
  1163. /*
  1164. * Get our rb key offset. Subtract any residual slice
  1165. * value carried from last service. A negative resid
  1166. * count indicates slice overrun, and this should position
  1167. * the next service time further away in the tree.
  1168. */
  1169. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1170. rb_key -= cfqq->slice_resid;
  1171. cfqq->slice_resid = 0;
  1172. } else {
  1173. rb_key = -HZ;
  1174. __cfqq = cfq_rb_first(service_tree);
  1175. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1176. }
  1177. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1178. new_cfqq = 0;
  1179. /*
  1180. * same position, nothing more to do
  1181. */
  1182. if (rb_key == cfqq->rb_key &&
  1183. cfqq->service_tree == service_tree)
  1184. return;
  1185. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1186. cfqq->service_tree = NULL;
  1187. }
  1188. left = 1;
  1189. parent = NULL;
  1190. cfqq->service_tree = service_tree;
  1191. p = &service_tree->rb.rb_node;
  1192. while (*p) {
  1193. struct rb_node **n;
  1194. parent = *p;
  1195. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1196. /*
  1197. * sort by key, that represents service time.
  1198. */
  1199. if (time_before(rb_key, __cfqq->rb_key))
  1200. n = &(*p)->rb_left;
  1201. else {
  1202. n = &(*p)->rb_right;
  1203. left = 0;
  1204. }
  1205. p = n;
  1206. }
  1207. if (left)
  1208. service_tree->left = &cfqq->rb_node;
  1209. cfqq->rb_key = rb_key;
  1210. rb_link_node(&cfqq->rb_node, parent, p);
  1211. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1212. service_tree->count++;
  1213. if (add_front || !new_cfqq)
  1214. return;
  1215. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1216. }
  1217. static struct cfq_queue *
  1218. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1219. sector_t sector, struct rb_node **ret_parent,
  1220. struct rb_node ***rb_link)
  1221. {
  1222. struct rb_node **p, *parent;
  1223. struct cfq_queue *cfqq = NULL;
  1224. parent = NULL;
  1225. p = &root->rb_node;
  1226. while (*p) {
  1227. struct rb_node **n;
  1228. parent = *p;
  1229. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1230. /*
  1231. * Sort strictly based on sector. Smallest to the left,
  1232. * largest to the right.
  1233. */
  1234. if (sector > blk_rq_pos(cfqq->next_rq))
  1235. n = &(*p)->rb_right;
  1236. else if (sector < blk_rq_pos(cfqq->next_rq))
  1237. n = &(*p)->rb_left;
  1238. else
  1239. break;
  1240. p = n;
  1241. cfqq = NULL;
  1242. }
  1243. *ret_parent = parent;
  1244. if (rb_link)
  1245. *rb_link = p;
  1246. return cfqq;
  1247. }
  1248. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1249. {
  1250. struct rb_node **p, *parent;
  1251. struct cfq_queue *__cfqq;
  1252. if (cfqq->p_root) {
  1253. rb_erase(&cfqq->p_node, cfqq->p_root);
  1254. cfqq->p_root = NULL;
  1255. }
  1256. if (cfq_class_idle(cfqq))
  1257. return;
  1258. if (!cfqq->next_rq)
  1259. return;
  1260. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1261. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1262. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1263. if (!__cfqq) {
  1264. rb_link_node(&cfqq->p_node, parent, p);
  1265. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1266. } else
  1267. cfqq->p_root = NULL;
  1268. }
  1269. /*
  1270. * Update cfqq's position in the service tree.
  1271. */
  1272. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1273. {
  1274. /*
  1275. * Resorting requires the cfqq to be on the RR list already.
  1276. */
  1277. if (cfq_cfqq_on_rr(cfqq)) {
  1278. cfq_service_tree_add(cfqd, cfqq, 0);
  1279. cfq_prio_tree_add(cfqd, cfqq);
  1280. }
  1281. }
  1282. /*
  1283. * add to busy list of queues for service, trying to be fair in ordering
  1284. * the pending list according to last request service
  1285. */
  1286. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1287. {
  1288. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1289. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1290. cfq_mark_cfqq_on_rr(cfqq);
  1291. cfqd->busy_queues++;
  1292. if (cfq_cfqq_sync(cfqq))
  1293. cfqd->busy_sync_queues++;
  1294. cfq_resort_rr_list(cfqd, cfqq);
  1295. }
  1296. /*
  1297. * Called when the cfqq no longer has requests pending, remove it from
  1298. * the service tree.
  1299. */
  1300. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1301. {
  1302. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1303. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1304. cfq_clear_cfqq_on_rr(cfqq);
  1305. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1306. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1307. cfqq->service_tree = NULL;
  1308. }
  1309. if (cfqq->p_root) {
  1310. rb_erase(&cfqq->p_node, cfqq->p_root);
  1311. cfqq->p_root = NULL;
  1312. }
  1313. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1314. BUG_ON(!cfqd->busy_queues);
  1315. cfqd->busy_queues--;
  1316. if (cfq_cfqq_sync(cfqq))
  1317. cfqd->busy_sync_queues--;
  1318. }
  1319. /*
  1320. * rb tree support functions
  1321. */
  1322. static void cfq_del_rq_rb(struct request *rq)
  1323. {
  1324. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1325. const int sync = rq_is_sync(rq);
  1326. BUG_ON(!cfqq->queued[sync]);
  1327. cfqq->queued[sync]--;
  1328. elv_rb_del(&cfqq->sort_list, rq);
  1329. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1330. /*
  1331. * Queue will be deleted from service tree when we actually
  1332. * expire it later. Right now just remove it from prio tree
  1333. * as it is empty.
  1334. */
  1335. if (cfqq->p_root) {
  1336. rb_erase(&cfqq->p_node, cfqq->p_root);
  1337. cfqq->p_root = NULL;
  1338. }
  1339. }
  1340. }
  1341. static void cfq_add_rq_rb(struct request *rq)
  1342. {
  1343. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1344. struct cfq_data *cfqd = cfqq->cfqd;
  1345. struct request *prev;
  1346. cfqq->queued[rq_is_sync(rq)]++;
  1347. elv_rb_add(&cfqq->sort_list, rq);
  1348. if (!cfq_cfqq_on_rr(cfqq))
  1349. cfq_add_cfqq_rr(cfqd, cfqq);
  1350. /*
  1351. * check if this request is a better next-serve candidate
  1352. */
  1353. prev = cfqq->next_rq;
  1354. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1355. /*
  1356. * adjust priority tree position, if ->next_rq changes
  1357. */
  1358. if (prev != cfqq->next_rq)
  1359. cfq_prio_tree_add(cfqd, cfqq);
  1360. BUG_ON(!cfqq->next_rq);
  1361. }
  1362. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1363. {
  1364. elv_rb_del(&cfqq->sort_list, rq);
  1365. cfqq->queued[rq_is_sync(rq)]--;
  1366. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1367. &blkio_policy_cfq, rq_data_dir(rq),
  1368. rq_is_sync(rq));
  1369. cfq_add_rq_rb(rq);
  1370. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1371. &blkio_policy_cfq,
  1372. cfqg_to_blkg(cfqq->cfqd->serving_group),
  1373. rq_data_dir(rq), rq_is_sync(rq));
  1374. }
  1375. static struct request *
  1376. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1377. {
  1378. struct task_struct *tsk = current;
  1379. struct cfq_io_cq *cic;
  1380. struct cfq_queue *cfqq;
  1381. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1382. if (!cic)
  1383. return NULL;
  1384. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1385. if (cfqq) {
  1386. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1387. return elv_rb_find(&cfqq->sort_list, sector);
  1388. }
  1389. return NULL;
  1390. }
  1391. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1392. {
  1393. struct cfq_data *cfqd = q->elevator->elevator_data;
  1394. cfqd->rq_in_driver++;
  1395. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1396. cfqd->rq_in_driver);
  1397. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1398. }
  1399. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1400. {
  1401. struct cfq_data *cfqd = q->elevator->elevator_data;
  1402. WARN_ON(!cfqd->rq_in_driver);
  1403. cfqd->rq_in_driver--;
  1404. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1405. cfqd->rq_in_driver);
  1406. }
  1407. static void cfq_remove_request(struct request *rq)
  1408. {
  1409. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1410. if (cfqq->next_rq == rq)
  1411. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1412. list_del_init(&rq->queuelist);
  1413. cfq_del_rq_rb(rq);
  1414. cfqq->cfqd->rq_queued--;
  1415. cfq_blkiocg_update_io_remove_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1416. &blkio_policy_cfq, rq_data_dir(rq),
  1417. rq_is_sync(rq));
  1418. if (rq->cmd_flags & REQ_PRIO) {
  1419. WARN_ON(!cfqq->prio_pending);
  1420. cfqq->prio_pending--;
  1421. }
  1422. }
  1423. static int cfq_merge(struct request_queue *q, struct request **req,
  1424. struct bio *bio)
  1425. {
  1426. struct cfq_data *cfqd = q->elevator->elevator_data;
  1427. struct request *__rq;
  1428. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1429. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1430. *req = __rq;
  1431. return ELEVATOR_FRONT_MERGE;
  1432. }
  1433. return ELEVATOR_NO_MERGE;
  1434. }
  1435. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1436. int type)
  1437. {
  1438. if (type == ELEVATOR_FRONT_MERGE) {
  1439. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1440. cfq_reposition_rq_rb(cfqq, req);
  1441. }
  1442. }
  1443. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1444. struct bio *bio)
  1445. {
  1446. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(req)),
  1447. &blkio_policy_cfq, bio_data_dir(bio),
  1448. cfq_bio_sync(bio));
  1449. }
  1450. static void
  1451. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1452. struct request *next)
  1453. {
  1454. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1455. struct cfq_data *cfqd = q->elevator->elevator_data;
  1456. /*
  1457. * reposition in fifo if next is older than rq
  1458. */
  1459. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1460. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1461. list_move(&rq->queuelist, &next->queuelist);
  1462. rq_set_fifo_time(rq, rq_fifo_time(next));
  1463. }
  1464. if (cfqq->next_rq == next)
  1465. cfqq->next_rq = rq;
  1466. cfq_remove_request(next);
  1467. cfq_blkiocg_update_io_merged_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  1468. &blkio_policy_cfq, rq_data_dir(next),
  1469. rq_is_sync(next));
  1470. cfqq = RQ_CFQQ(next);
  1471. /*
  1472. * all requests of this queue are merged to other queues, delete it
  1473. * from the service tree. If it's the active_queue,
  1474. * cfq_dispatch_requests() will choose to expire it or do idle
  1475. */
  1476. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
  1477. cfqq != cfqd->active_queue)
  1478. cfq_del_cfqq_rr(cfqd, cfqq);
  1479. }
  1480. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1481. struct bio *bio)
  1482. {
  1483. struct cfq_data *cfqd = q->elevator->elevator_data;
  1484. struct cfq_io_cq *cic;
  1485. struct cfq_queue *cfqq;
  1486. /*
  1487. * Disallow merge of a sync bio into an async request.
  1488. */
  1489. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1490. return false;
  1491. /*
  1492. * Lookup the cfqq that this bio will be queued with and allow
  1493. * merge only if rq is queued there.
  1494. */
  1495. cic = cfq_cic_lookup(cfqd, current->io_context);
  1496. if (!cic)
  1497. return false;
  1498. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1499. return cfqq == RQ_CFQQ(rq);
  1500. }
  1501. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1502. {
  1503. del_timer(&cfqd->idle_slice_timer);
  1504. cfq_blkiocg_update_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1505. &blkio_policy_cfq);
  1506. }
  1507. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1508. struct cfq_queue *cfqq)
  1509. {
  1510. if (cfqq) {
  1511. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1512. cfqd->serving_prio, cfqd->serving_type);
  1513. cfq_blkiocg_update_avg_queue_size_stats(cfqg_to_blkg(cfqq->cfqg),
  1514. &blkio_policy_cfq);
  1515. cfqq->slice_start = 0;
  1516. cfqq->dispatch_start = jiffies;
  1517. cfqq->allocated_slice = 0;
  1518. cfqq->slice_end = 0;
  1519. cfqq->slice_dispatch = 0;
  1520. cfqq->nr_sectors = 0;
  1521. cfq_clear_cfqq_wait_request(cfqq);
  1522. cfq_clear_cfqq_must_dispatch(cfqq);
  1523. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1524. cfq_clear_cfqq_fifo_expire(cfqq);
  1525. cfq_mark_cfqq_slice_new(cfqq);
  1526. cfq_del_timer(cfqd, cfqq);
  1527. }
  1528. cfqd->active_queue = cfqq;
  1529. }
  1530. /*
  1531. * current cfqq expired its slice (or was too idle), select new one
  1532. */
  1533. static void
  1534. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1535. bool timed_out)
  1536. {
  1537. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1538. if (cfq_cfqq_wait_request(cfqq))
  1539. cfq_del_timer(cfqd, cfqq);
  1540. cfq_clear_cfqq_wait_request(cfqq);
  1541. cfq_clear_cfqq_wait_busy(cfqq);
  1542. /*
  1543. * If this cfqq is shared between multiple processes, check to
  1544. * make sure that those processes are still issuing I/Os within
  1545. * the mean seek distance. If not, it may be time to break the
  1546. * queues apart again.
  1547. */
  1548. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1549. cfq_mark_cfqq_split_coop(cfqq);
  1550. /*
  1551. * store what was left of this slice, if the queue idled/timed out
  1552. */
  1553. if (timed_out) {
  1554. if (cfq_cfqq_slice_new(cfqq))
  1555. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1556. else
  1557. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1558. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1559. }
  1560. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1561. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1562. cfq_del_cfqq_rr(cfqd, cfqq);
  1563. cfq_resort_rr_list(cfqd, cfqq);
  1564. if (cfqq == cfqd->active_queue)
  1565. cfqd->active_queue = NULL;
  1566. if (cfqd->active_cic) {
  1567. put_io_context(cfqd->active_cic->icq.ioc);
  1568. cfqd->active_cic = NULL;
  1569. }
  1570. }
  1571. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1572. {
  1573. struct cfq_queue *cfqq = cfqd->active_queue;
  1574. if (cfqq)
  1575. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1576. }
  1577. /*
  1578. * Get next queue for service. Unless we have a queue preemption,
  1579. * we'll simply select the first cfqq in the service tree.
  1580. */
  1581. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1582. {
  1583. struct cfq_rb_root *service_tree =
  1584. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1585. cfqd->serving_type);
  1586. if (!cfqd->rq_queued)
  1587. return NULL;
  1588. /* There is nothing to dispatch */
  1589. if (!service_tree)
  1590. return NULL;
  1591. if (RB_EMPTY_ROOT(&service_tree->rb))
  1592. return NULL;
  1593. return cfq_rb_first(service_tree);
  1594. }
  1595. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1596. {
  1597. struct cfq_group *cfqg;
  1598. struct cfq_queue *cfqq;
  1599. int i, j;
  1600. struct cfq_rb_root *st;
  1601. if (!cfqd->rq_queued)
  1602. return NULL;
  1603. cfqg = cfq_get_next_cfqg(cfqd);
  1604. if (!cfqg)
  1605. return NULL;
  1606. for_each_cfqg_st(cfqg, i, j, st)
  1607. if ((cfqq = cfq_rb_first(st)) != NULL)
  1608. return cfqq;
  1609. return NULL;
  1610. }
  1611. /*
  1612. * Get and set a new active queue for service.
  1613. */
  1614. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1615. struct cfq_queue *cfqq)
  1616. {
  1617. if (!cfqq)
  1618. cfqq = cfq_get_next_queue(cfqd);
  1619. __cfq_set_active_queue(cfqd, cfqq);
  1620. return cfqq;
  1621. }
  1622. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1623. struct request *rq)
  1624. {
  1625. if (blk_rq_pos(rq) >= cfqd->last_position)
  1626. return blk_rq_pos(rq) - cfqd->last_position;
  1627. else
  1628. return cfqd->last_position - blk_rq_pos(rq);
  1629. }
  1630. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1631. struct request *rq)
  1632. {
  1633. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1634. }
  1635. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1636. struct cfq_queue *cur_cfqq)
  1637. {
  1638. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1639. struct rb_node *parent, *node;
  1640. struct cfq_queue *__cfqq;
  1641. sector_t sector = cfqd->last_position;
  1642. if (RB_EMPTY_ROOT(root))
  1643. return NULL;
  1644. /*
  1645. * First, if we find a request starting at the end of the last
  1646. * request, choose it.
  1647. */
  1648. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1649. if (__cfqq)
  1650. return __cfqq;
  1651. /*
  1652. * If the exact sector wasn't found, the parent of the NULL leaf
  1653. * will contain the closest sector.
  1654. */
  1655. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1656. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1657. return __cfqq;
  1658. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1659. node = rb_next(&__cfqq->p_node);
  1660. else
  1661. node = rb_prev(&__cfqq->p_node);
  1662. if (!node)
  1663. return NULL;
  1664. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1665. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1666. return __cfqq;
  1667. return NULL;
  1668. }
  1669. /*
  1670. * cfqd - obvious
  1671. * cur_cfqq - passed in so that we don't decide that the current queue is
  1672. * closely cooperating with itself.
  1673. *
  1674. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1675. * one request, and that cfqd->last_position reflects a position on the disk
  1676. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1677. * assumption.
  1678. */
  1679. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1680. struct cfq_queue *cur_cfqq)
  1681. {
  1682. struct cfq_queue *cfqq;
  1683. if (cfq_class_idle(cur_cfqq))
  1684. return NULL;
  1685. if (!cfq_cfqq_sync(cur_cfqq))
  1686. return NULL;
  1687. if (CFQQ_SEEKY(cur_cfqq))
  1688. return NULL;
  1689. /*
  1690. * Don't search priority tree if it's the only queue in the group.
  1691. */
  1692. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1693. return NULL;
  1694. /*
  1695. * We should notice if some of the queues are cooperating, eg
  1696. * working closely on the same area of the disk. In that case,
  1697. * we can group them together and don't waste time idling.
  1698. */
  1699. cfqq = cfqq_close(cfqd, cur_cfqq);
  1700. if (!cfqq)
  1701. return NULL;
  1702. /* If new queue belongs to different cfq_group, don't choose it */
  1703. if (cur_cfqq->cfqg != cfqq->cfqg)
  1704. return NULL;
  1705. /*
  1706. * It only makes sense to merge sync queues.
  1707. */
  1708. if (!cfq_cfqq_sync(cfqq))
  1709. return NULL;
  1710. if (CFQQ_SEEKY(cfqq))
  1711. return NULL;
  1712. /*
  1713. * Do not merge queues of different priority classes
  1714. */
  1715. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1716. return NULL;
  1717. return cfqq;
  1718. }
  1719. /*
  1720. * Determine whether we should enforce idle window for this queue.
  1721. */
  1722. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1723. {
  1724. enum wl_prio_t prio = cfqq_prio(cfqq);
  1725. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1726. BUG_ON(!service_tree);
  1727. BUG_ON(!service_tree->count);
  1728. if (!cfqd->cfq_slice_idle)
  1729. return false;
  1730. /* We never do for idle class queues. */
  1731. if (prio == IDLE_WORKLOAD)
  1732. return false;
  1733. /* We do for queues that were marked with idle window flag. */
  1734. if (cfq_cfqq_idle_window(cfqq) &&
  1735. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1736. return true;
  1737. /*
  1738. * Otherwise, we do only if they are the last ones
  1739. * in their service tree.
  1740. */
  1741. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1742. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1743. return true;
  1744. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1745. service_tree->count);
  1746. return false;
  1747. }
  1748. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1749. {
  1750. struct cfq_queue *cfqq = cfqd->active_queue;
  1751. struct cfq_io_cq *cic;
  1752. unsigned long sl, group_idle = 0;
  1753. /*
  1754. * SSD device without seek penalty, disable idling. But only do so
  1755. * for devices that support queuing, otherwise we still have a problem
  1756. * with sync vs async workloads.
  1757. */
  1758. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1759. return;
  1760. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1761. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1762. /*
  1763. * idle is disabled, either manually or by past process history
  1764. */
  1765. if (!cfq_should_idle(cfqd, cfqq)) {
  1766. /* no queue idling. Check for group idling */
  1767. if (cfqd->cfq_group_idle)
  1768. group_idle = cfqd->cfq_group_idle;
  1769. else
  1770. return;
  1771. }
  1772. /*
  1773. * still active requests from this queue, don't idle
  1774. */
  1775. if (cfqq->dispatched)
  1776. return;
  1777. /*
  1778. * task has exited, don't wait
  1779. */
  1780. cic = cfqd->active_cic;
  1781. if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
  1782. return;
  1783. /*
  1784. * If our average think time is larger than the remaining time
  1785. * slice, then don't idle. This avoids overrunning the allotted
  1786. * time slice.
  1787. */
  1788. if (sample_valid(cic->ttime.ttime_samples) &&
  1789. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1790. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1791. cic->ttime.ttime_mean);
  1792. return;
  1793. }
  1794. /* There are other queues in the group, don't do group idle */
  1795. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1796. return;
  1797. cfq_mark_cfqq_wait_request(cfqq);
  1798. if (group_idle)
  1799. sl = cfqd->cfq_group_idle;
  1800. else
  1801. sl = cfqd->cfq_slice_idle;
  1802. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1803. cfq_blkiocg_update_set_idle_time_stats(cfqg_to_blkg(cfqq->cfqg),
  1804. &blkio_policy_cfq);
  1805. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1806. group_idle ? 1 : 0);
  1807. }
  1808. /*
  1809. * Move request from internal lists to the request queue dispatch list.
  1810. */
  1811. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1812. {
  1813. struct cfq_data *cfqd = q->elevator->elevator_data;
  1814. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1815. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1816. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1817. cfq_remove_request(rq);
  1818. cfqq->dispatched++;
  1819. (RQ_CFQG(rq))->dispatched++;
  1820. elv_dispatch_sort(q, rq);
  1821. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1822. cfqq->nr_sectors += blk_rq_sectors(rq);
  1823. cfq_blkiocg_update_dispatch_stats(cfqg_to_blkg(cfqq->cfqg),
  1824. &blkio_policy_cfq, blk_rq_bytes(rq),
  1825. rq_data_dir(rq), rq_is_sync(rq));
  1826. }
  1827. /*
  1828. * return expired entry, or NULL to just start from scratch in rbtree
  1829. */
  1830. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1831. {
  1832. struct request *rq = NULL;
  1833. if (cfq_cfqq_fifo_expire(cfqq))
  1834. return NULL;
  1835. cfq_mark_cfqq_fifo_expire(cfqq);
  1836. if (list_empty(&cfqq->fifo))
  1837. return NULL;
  1838. rq = rq_entry_fifo(cfqq->fifo.next);
  1839. if (time_before(jiffies, rq_fifo_time(rq)))
  1840. rq = NULL;
  1841. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1842. return rq;
  1843. }
  1844. static inline int
  1845. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1846. {
  1847. const int base_rq = cfqd->cfq_slice_async_rq;
  1848. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1849. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1850. }
  1851. /*
  1852. * Must be called with the queue_lock held.
  1853. */
  1854. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1855. {
  1856. int process_refs, io_refs;
  1857. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1858. process_refs = cfqq->ref - io_refs;
  1859. BUG_ON(process_refs < 0);
  1860. return process_refs;
  1861. }
  1862. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1863. {
  1864. int process_refs, new_process_refs;
  1865. struct cfq_queue *__cfqq;
  1866. /*
  1867. * If there are no process references on the new_cfqq, then it is
  1868. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1869. * chain may have dropped their last reference (not just their
  1870. * last process reference).
  1871. */
  1872. if (!cfqq_process_refs(new_cfqq))
  1873. return;
  1874. /* Avoid a circular list and skip interim queue merges */
  1875. while ((__cfqq = new_cfqq->new_cfqq)) {
  1876. if (__cfqq == cfqq)
  1877. return;
  1878. new_cfqq = __cfqq;
  1879. }
  1880. process_refs = cfqq_process_refs(cfqq);
  1881. new_process_refs = cfqq_process_refs(new_cfqq);
  1882. /*
  1883. * If the process for the cfqq has gone away, there is no
  1884. * sense in merging the queues.
  1885. */
  1886. if (process_refs == 0 || new_process_refs == 0)
  1887. return;
  1888. /*
  1889. * Merge in the direction of the lesser amount of work.
  1890. */
  1891. if (new_process_refs >= process_refs) {
  1892. cfqq->new_cfqq = new_cfqq;
  1893. new_cfqq->ref += process_refs;
  1894. } else {
  1895. new_cfqq->new_cfqq = cfqq;
  1896. cfqq->ref += new_process_refs;
  1897. }
  1898. }
  1899. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1900. struct cfq_group *cfqg, enum wl_prio_t prio)
  1901. {
  1902. struct cfq_queue *queue;
  1903. int i;
  1904. bool key_valid = false;
  1905. unsigned long lowest_key = 0;
  1906. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1907. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1908. /* select the one with lowest rb_key */
  1909. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1910. if (queue &&
  1911. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1912. lowest_key = queue->rb_key;
  1913. cur_best = i;
  1914. key_valid = true;
  1915. }
  1916. }
  1917. return cur_best;
  1918. }
  1919. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1920. {
  1921. unsigned slice;
  1922. unsigned count;
  1923. struct cfq_rb_root *st;
  1924. unsigned group_slice;
  1925. enum wl_prio_t original_prio = cfqd->serving_prio;
  1926. /* Choose next priority. RT > BE > IDLE */
  1927. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1928. cfqd->serving_prio = RT_WORKLOAD;
  1929. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1930. cfqd->serving_prio = BE_WORKLOAD;
  1931. else {
  1932. cfqd->serving_prio = IDLE_WORKLOAD;
  1933. cfqd->workload_expires = jiffies + 1;
  1934. return;
  1935. }
  1936. if (original_prio != cfqd->serving_prio)
  1937. goto new_workload;
  1938. /*
  1939. * For RT and BE, we have to choose also the type
  1940. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1941. * expiration time
  1942. */
  1943. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1944. count = st->count;
  1945. /*
  1946. * check workload expiration, and that we still have other queues ready
  1947. */
  1948. if (count && !time_after(jiffies, cfqd->workload_expires))
  1949. return;
  1950. new_workload:
  1951. /* otherwise select new workload type */
  1952. cfqd->serving_type =
  1953. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1954. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1955. count = st->count;
  1956. /*
  1957. * the workload slice is computed as a fraction of target latency
  1958. * proportional to the number of queues in that workload, over
  1959. * all the queues in the same priority class
  1960. */
  1961. group_slice = cfq_group_slice(cfqd, cfqg);
  1962. slice = group_slice * count /
  1963. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1964. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1965. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1966. unsigned int tmp;
  1967. /*
  1968. * Async queues are currently system wide. Just taking
  1969. * proportion of queues with-in same group will lead to higher
  1970. * async ratio system wide as generally root group is going
  1971. * to have higher weight. A more accurate thing would be to
  1972. * calculate system wide asnc/sync ratio.
  1973. */
  1974. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1975. tmp = tmp/cfqd->busy_queues;
  1976. slice = min_t(unsigned, slice, tmp);
  1977. /* async workload slice is scaled down according to
  1978. * the sync/async slice ratio. */
  1979. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1980. } else
  1981. /* sync workload slice is at least 2 * cfq_slice_idle */
  1982. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1983. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1984. cfq_log(cfqd, "workload slice:%d", slice);
  1985. cfqd->workload_expires = jiffies + slice;
  1986. }
  1987. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1988. {
  1989. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1990. struct cfq_group *cfqg;
  1991. if (RB_EMPTY_ROOT(&st->rb))
  1992. return NULL;
  1993. cfqg = cfq_rb_first_group(st);
  1994. update_min_vdisktime(st);
  1995. return cfqg;
  1996. }
  1997. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1998. {
  1999. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  2000. cfqd->serving_group = cfqg;
  2001. /* Restore the workload type data */
  2002. if (cfqg->saved_workload_slice) {
  2003. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  2004. cfqd->serving_type = cfqg->saved_workload;
  2005. cfqd->serving_prio = cfqg->saved_serving_prio;
  2006. } else
  2007. cfqd->workload_expires = jiffies - 1;
  2008. choose_service_tree(cfqd, cfqg);
  2009. }
  2010. /*
  2011. * Select a queue for service. If we have a current active queue,
  2012. * check whether to continue servicing it, or retrieve and set a new one.
  2013. */
  2014. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  2015. {
  2016. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2017. cfqq = cfqd->active_queue;
  2018. if (!cfqq)
  2019. goto new_queue;
  2020. if (!cfqd->rq_queued)
  2021. return NULL;
  2022. /*
  2023. * We were waiting for group to get backlogged. Expire the queue
  2024. */
  2025. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  2026. goto expire;
  2027. /*
  2028. * The active queue has run out of time, expire it and select new.
  2029. */
  2030. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  2031. /*
  2032. * If slice had not expired at the completion of last request
  2033. * we might not have turned on wait_busy flag. Don't expire
  2034. * the queue yet. Allow the group to get backlogged.
  2035. *
  2036. * The very fact that we have used the slice, that means we
  2037. * have been idling all along on this queue and it should be
  2038. * ok to wait for this request to complete.
  2039. */
  2040. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  2041. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2042. cfqq = NULL;
  2043. goto keep_queue;
  2044. } else
  2045. goto check_group_idle;
  2046. }
  2047. /*
  2048. * The active queue has requests and isn't expired, allow it to
  2049. * dispatch.
  2050. */
  2051. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2052. goto keep_queue;
  2053. /*
  2054. * If another queue has a request waiting within our mean seek
  2055. * distance, let it run. The expire code will check for close
  2056. * cooperators and put the close queue at the front of the service
  2057. * tree. If possible, merge the expiring queue with the new cfqq.
  2058. */
  2059. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  2060. if (new_cfqq) {
  2061. if (!cfqq->new_cfqq)
  2062. cfq_setup_merge(cfqq, new_cfqq);
  2063. goto expire;
  2064. }
  2065. /*
  2066. * No requests pending. If the active queue still has requests in
  2067. * flight or is idling for a new request, allow either of these
  2068. * conditions to happen (or time out) before selecting a new queue.
  2069. */
  2070. if (timer_pending(&cfqd->idle_slice_timer)) {
  2071. cfqq = NULL;
  2072. goto keep_queue;
  2073. }
  2074. /*
  2075. * This is a deep seek queue, but the device is much faster than
  2076. * the queue can deliver, don't idle
  2077. **/
  2078. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2079. (cfq_cfqq_slice_new(cfqq) ||
  2080. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2081. cfq_clear_cfqq_deep(cfqq);
  2082. cfq_clear_cfqq_idle_window(cfqq);
  2083. }
  2084. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2085. cfqq = NULL;
  2086. goto keep_queue;
  2087. }
  2088. /*
  2089. * If group idle is enabled and there are requests dispatched from
  2090. * this group, wait for requests to complete.
  2091. */
  2092. check_group_idle:
  2093. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2094. cfqq->cfqg->dispatched &&
  2095. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2096. cfqq = NULL;
  2097. goto keep_queue;
  2098. }
  2099. expire:
  2100. cfq_slice_expired(cfqd, 0);
  2101. new_queue:
  2102. /*
  2103. * Current queue expired. Check if we have to switch to a new
  2104. * service tree
  2105. */
  2106. if (!new_cfqq)
  2107. cfq_choose_cfqg(cfqd);
  2108. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2109. keep_queue:
  2110. return cfqq;
  2111. }
  2112. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2113. {
  2114. int dispatched = 0;
  2115. while (cfqq->next_rq) {
  2116. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2117. dispatched++;
  2118. }
  2119. BUG_ON(!list_empty(&cfqq->fifo));
  2120. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2121. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2122. return dispatched;
  2123. }
  2124. /*
  2125. * Drain our current requests. Used for barriers and when switching
  2126. * io schedulers on-the-fly.
  2127. */
  2128. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2129. {
  2130. struct cfq_queue *cfqq;
  2131. int dispatched = 0;
  2132. /* Expire the timeslice of the current active queue first */
  2133. cfq_slice_expired(cfqd, 0);
  2134. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2135. __cfq_set_active_queue(cfqd, cfqq);
  2136. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2137. }
  2138. BUG_ON(cfqd->busy_queues);
  2139. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2140. return dispatched;
  2141. }
  2142. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2143. struct cfq_queue *cfqq)
  2144. {
  2145. /* the queue hasn't finished any request, can't estimate */
  2146. if (cfq_cfqq_slice_new(cfqq))
  2147. return true;
  2148. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2149. cfqq->slice_end))
  2150. return true;
  2151. return false;
  2152. }
  2153. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2154. {
  2155. unsigned int max_dispatch;
  2156. /*
  2157. * Drain async requests before we start sync IO
  2158. */
  2159. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2160. return false;
  2161. /*
  2162. * If this is an async queue and we have sync IO in flight, let it wait
  2163. */
  2164. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2165. return false;
  2166. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2167. if (cfq_class_idle(cfqq))
  2168. max_dispatch = 1;
  2169. /*
  2170. * Does this cfqq already have too much IO in flight?
  2171. */
  2172. if (cfqq->dispatched >= max_dispatch) {
  2173. bool promote_sync = false;
  2174. /*
  2175. * idle queue must always only have a single IO in flight
  2176. */
  2177. if (cfq_class_idle(cfqq))
  2178. return false;
  2179. /*
  2180. * If there is only one sync queue
  2181. * we can ignore async queue here and give the sync
  2182. * queue no dispatch limit. The reason is a sync queue can
  2183. * preempt async queue, limiting the sync queue doesn't make
  2184. * sense. This is useful for aiostress test.
  2185. */
  2186. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2187. promote_sync = true;
  2188. /*
  2189. * We have other queues, don't allow more IO from this one
  2190. */
  2191. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2192. !promote_sync)
  2193. return false;
  2194. /*
  2195. * Sole queue user, no limit
  2196. */
  2197. if (cfqd->busy_queues == 1 || promote_sync)
  2198. max_dispatch = -1;
  2199. else
  2200. /*
  2201. * Normally we start throttling cfqq when cfq_quantum/2
  2202. * requests have been dispatched. But we can drive
  2203. * deeper queue depths at the beginning of slice
  2204. * subjected to upper limit of cfq_quantum.
  2205. * */
  2206. max_dispatch = cfqd->cfq_quantum;
  2207. }
  2208. /*
  2209. * Async queues must wait a bit before being allowed dispatch.
  2210. * We also ramp up the dispatch depth gradually for async IO,
  2211. * based on the last sync IO we serviced
  2212. */
  2213. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2214. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2215. unsigned int depth;
  2216. depth = last_sync / cfqd->cfq_slice[1];
  2217. if (!depth && !cfqq->dispatched)
  2218. depth = 1;
  2219. if (depth < max_dispatch)
  2220. max_dispatch = depth;
  2221. }
  2222. /*
  2223. * If we're below the current max, allow a dispatch
  2224. */
  2225. return cfqq->dispatched < max_dispatch;
  2226. }
  2227. /*
  2228. * Dispatch a request from cfqq, moving them to the request queue
  2229. * dispatch list.
  2230. */
  2231. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2232. {
  2233. struct request *rq;
  2234. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2235. if (!cfq_may_dispatch(cfqd, cfqq))
  2236. return false;
  2237. /*
  2238. * follow expired path, else get first next available
  2239. */
  2240. rq = cfq_check_fifo(cfqq);
  2241. if (!rq)
  2242. rq = cfqq->next_rq;
  2243. /*
  2244. * insert request into driver dispatch list
  2245. */
  2246. cfq_dispatch_insert(cfqd->queue, rq);
  2247. if (!cfqd->active_cic) {
  2248. struct cfq_io_cq *cic = RQ_CIC(rq);
  2249. atomic_long_inc(&cic->icq.ioc->refcount);
  2250. cfqd->active_cic = cic;
  2251. }
  2252. return true;
  2253. }
  2254. /*
  2255. * Find the cfqq that we need to service and move a request from that to the
  2256. * dispatch list
  2257. */
  2258. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2259. {
  2260. struct cfq_data *cfqd = q->elevator->elevator_data;
  2261. struct cfq_queue *cfqq;
  2262. if (!cfqd->busy_queues)
  2263. return 0;
  2264. if (unlikely(force))
  2265. return cfq_forced_dispatch(cfqd);
  2266. cfqq = cfq_select_queue(cfqd);
  2267. if (!cfqq)
  2268. return 0;
  2269. /*
  2270. * Dispatch a request from this cfqq, if it is allowed
  2271. */
  2272. if (!cfq_dispatch_request(cfqd, cfqq))
  2273. return 0;
  2274. cfqq->slice_dispatch++;
  2275. cfq_clear_cfqq_must_dispatch(cfqq);
  2276. /*
  2277. * expire an async queue immediately if it has used up its slice. idle
  2278. * queue always expire after 1 dispatch round.
  2279. */
  2280. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2281. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2282. cfq_class_idle(cfqq))) {
  2283. cfqq->slice_end = jiffies + 1;
  2284. cfq_slice_expired(cfqd, 0);
  2285. }
  2286. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2287. return 1;
  2288. }
  2289. /*
  2290. * task holds one reference to the queue, dropped when task exits. each rq
  2291. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2292. *
  2293. * Each cfq queue took a reference on the parent group. Drop it now.
  2294. * queue lock must be held here.
  2295. */
  2296. static void cfq_put_queue(struct cfq_queue *cfqq)
  2297. {
  2298. struct cfq_data *cfqd = cfqq->cfqd;
  2299. struct cfq_group *cfqg;
  2300. BUG_ON(cfqq->ref <= 0);
  2301. cfqq->ref--;
  2302. if (cfqq->ref)
  2303. return;
  2304. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2305. BUG_ON(rb_first(&cfqq->sort_list));
  2306. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2307. cfqg = cfqq->cfqg;
  2308. if (unlikely(cfqd->active_queue == cfqq)) {
  2309. __cfq_slice_expired(cfqd, cfqq, 0);
  2310. cfq_schedule_dispatch(cfqd);
  2311. }
  2312. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2313. kmem_cache_free(cfq_pool, cfqq);
  2314. cfqg_put(cfqg);
  2315. }
  2316. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2317. {
  2318. struct cfq_queue *__cfqq, *next;
  2319. /*
  2320. * If this queue was scheduled to merge with another queue, be
  2321. * sure to drop the reference taken on that queue (and others in
  2322. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2323. */
  2324. __cfqq = cfqq->new_cfqq;
  2325. while (__cfqq) {
  2326. if (__cfqq == cfqq) {
  2327. WARN(1, "cfqq->new_cfqq loop detected\n");
  2328. break;
  2329. }
  2330. next = __cfqq->new_cfqq;
  2331. cfq_put_queue(__cfqq);
  2332. __cfqq = next;
  2333. }
  2334. }
  2335. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2336. {
  2337. if (unlikely(cfqq == cfqd->active_queue)) {
  2338. __cfq_slice_expired(cfqd, cfqq, 0);
  2339. cfq_schedule_dispatch(cfqd);
  2340. }
  2341. cfq_put_cooperator(cfqq);
  2342. cfq_put_queue(cfqq);
  2343. }
  2344. static void cfq_init_icq(struct io_cq *icq)
  2345. {
  2346. struct cfq_io_cq *cic = icq_to_cic(icq);
  2347. cic->ttime.last_end_request = jiffies;
  2348. }
  2349. static void cfq_exit_icq(struct io_cq *icq)
  2350. {
  2351. struct cfq_io_cq *cic = icq_to_cic(icq);
  2352. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2353. if (cic->cfqq[BLK_RW_ASYNC]) {
  2354. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2355. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2356. }
  2357. if (cic->cfqq[BLK_RW_SYNC]) {
  2358. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2359. cic->cfqq[BLK_RW_SYNC] = NULL;
  2360. }
  2361. }
  2362. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
  2363. {
  2364. struct task_struct *tsk = current;
  2365. int ioprio_class;
  2366. if (!cfq_cfqq_prio_changed(cfqq))
  2367. return;
  2368. ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2369. switch (ioprio_class) {
  2370. default:
  2371. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2372. case IOPRIO_CLASS_NONE:
  2373. /*
  2374. * no prio set, inherit CPU scheduling settings
  2375. */
  2376. cfqq->ioprio = task_nice_ioprio(tsk);
  2377. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2378. break;
  2379. case IOPRIO_CLASS_RT:
  2380. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2381. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2382. break;
  2383. case IOPRIO_CLASS_BE:
  2384. cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2385. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2386. break;
  2387. case IOPRIO_CLASS_IDLE:
  2388. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2389. cfqq->ioprio = 7;
  2390. cfq_clear_cfqq_idle_window(cfqq);
  2391. break;
  2392. }
  2393. /*
  2394. * keep track of original prio settings in case we have to temporarily
  2395. * elevate the priority of this queue
  2396. */
  2397. cfqq->org_ioprio = cfqq->ioprio;
  2398. cfq_clear_cfqq_prio_changed(cfqq);
  2399. }
  2400. static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
  2401. {
  2402. int ioprio = cic->icq.ioc->ioprio;
  2403. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2404. struct cfq_queue *cfqq;
  2405. /*
  2406. * Check whether ioprio has changed. The condition may trigger
  2407. * spuriously on a newly created cic but there's no harm.
  2408. */
  2409. if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
  2410. return;
  2411. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2412. if (cfqq) {
  2413. struct cfq_queue *new_cfqq;
  2414. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
  2415. GFP_ATOMIC);
  2416. if (new_cfqq) {
  2417. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2418. cfq_put_queue(cfqq);
  2419. }
  2420. }
  2421. cfqq = cic->cfqq[BLK_RW_SYNC];
  2422. if (cfqq)
  2423. cfq_mark_cfqq_prio_changed(cfqq);
  2424. cic->ioprio = ioprio;
  2425. }
  2426. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2427. pid_t pid, bool is_sync)
  2428. {
  2429. RB_CLEAR_NODE(&cfqq->rb_node);
  2430. RB_CLEAR_NODE(&cfqq->p_node);
  2431. INIT_LIST_HEAD(&cfqq->fifo);
  2432. cfqq->ref = 0;
  2433. cfqq->cfqd = cfqd;
  2434. cfq_mark_cfqq_prio_changed(cfqq);
  2435. if (is_sync) {
  2436. if (!cfq_class_idle(cfqq))
  2437. cfq_mark_cfqq_idle_window(cfqq);
  2438. cfq_mark_cfqq_sync(cfqq);
  2439. }
  2440. cfqq->pid = pid;
  2441. }
  2442. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2443. static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
  2444. {
  2445. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2446. struct cfq_queue *sync_cfqq;
  2447. uint64_t id;
  2448. rcu_read_lock();
  2449. id = bio_blkio_cgroup(bio)->id;
  2450. rcu_read_unlock();
  2451. /*
  2452. * Check whether blkcg has changed. The condition may trigger
  2453. * spuriously on a newly created cic but there's no harm.
  2454. */
  2455. if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
  2456. return;
  2457. sync_cfqq = cic_to_cfqq(cic, 1);
  2458. if (sync_cfqq) {
  2459. /*
  2460. * Drop reference to sync queue. A new sync queue will be
  2461. * assigned in new group upon arrival of a fresh request.
  2462. */
  2463. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2464. cic_set_cfqq(cic, NULL, 1);
  2465. cfq_put_queue(sync_cfqq);
  2466. }
  2467. cic->blkcg_id = id;
  2468. }
  2469. #else
  2470. static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
  2471. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2472. static struct cfq_queue *
  2473. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2474. struct bio *bio, gfp_t gfp_mask)
  2475. {
  2476. struct blkio_cgroup *blkcg;
  2477. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2478. struct cfq_group *cfqg;
  2479. retry:
  2480. rcu_read_lock();
  2481. blkcg = bio_blkio_cgroup(bio);
  2482. cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
  2483. cfqq = cic_to_cfqq(cic, is_sync);
  2484. /*
  2485. * Always try a new alloc if we fell back to the OOM cfqq
  2486. * originally, since it should just be a temporary situation.
  2487. */
  2488. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2489. cfqq = NULL;
  2490. if (new_cfqq) {
  2491. cfqq = new_cfqq;
  2492. new_cfqq = NULL;
  2493. } else if (gfp_mask & __GFP_WAIT) {
  2494. rcu_read_unlock();
  2495. spin_unlock_irq(cfqd->queue->queue_lock);
  2496. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2497. gfp_mask | __GFP_ZERO,
  2498. cfqd->queue->node);
  2499. spin_lock_irq(cfqd->queue->queue_lock);
  2500. if (new_cfqq)
  2501. goto retry;
  2502. } else {
  2503. cfqq = kmem_cache_alloc_node(cfq_pool,
  2504. gfp_mask | __GFP_ZERO,
  2505. cfqd->queue->node);
  2506. }
  2507. if (cfqq) {
  2508. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2509. cfq_init_prio_data(cfqq, cic);
  2510. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2511. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2512. } else
  2513. cfqq = &cfqd->oom_cfqq;
  2514. }
  2515. if (new_cfqq)
  2516. kmem_cache_free(cfq_pool, new_cfqq);
  2517. rcu_read_unlock();
  2518. return cfqq;
  2519. }
  2520. static struct cfq_queue **
  2521. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2522. {
  2523. switch (ioprio_class) {
  2524. case IOPRIO_CLASS_RT:
  2525. return &cfqd->async_cfqq[0][ioprio];
  2526. case IOPRIO_CLASS_NONE:
  2527. ioprio = IOPRIO_NORM;
  2528. /* fall through */
  2529. case IOPRIO_CLASS_BE:
  2530. return &cfqd->async_cfqq[1][ioprio];
  2531. case IOPRIO_CLASS_IDLE:
  2532. return &cfqd->async_idle_cfqq;
  2533. default:
  2534. BUG();
  2535. }
  2536. }
  2537. static struct cfq_queue *
  2538. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
  2539. struct bio *bio, gfp_t gfp_mask)
  2540. {
  2541. const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
  2542. const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
  2543. struct cfq_queue **async_cfqq = NULL;
  2544. struct cfq_queue *cfqq = NULL;
  2545. if (!is_sync) {
  2546. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2547. cfqq = *async_cfqq;
  2548. }
  2549. if (!cfqq)
  2550. cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
  2551. /*
  2552. * pin the queue now that it's allocated, scheduler exit will prune it
  2553. */
  2554. if (!is_sync && !(*async_cfqq)) {
  2555. cfqq->ref++;
  2556. *async_cfqq = cfqq;
  2557. }
  2558. cfqq->ref++;
  2559. return cfqq;
  2560. }
  2561. static void
  2562. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2563. {
  2564. unsigned long elapsed = jiffies - ttime->last_end_request;
  2565. elapsed = min(elapsed, 2UL * slice_idle);
  2566. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2567. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2568. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2569. }
  2570. static void
  2571. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2572. struct cfq_io_cq *cic)
  2573. {
  2574. if (cfq_cfqq_sync(cfqq)) {
  2575. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2576. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2577. cfqd->cfq_slice_idle);
  2578. }
  2579. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2580. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2581. #endif
  2582. }
  2583. static void
  2584. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2585. struct request *rq)
  2586. {
  2587. sector_t sdist = 0;
  2588. sector_t n_sec = blk_rq_sectors(rq);
  2589. if (cfqq->last_request_pos) {
  2590. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2591. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2592. else
  2593. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2594. }
  2595. cfqq->seek_history <<= 1;
  2596. if (blk_queue_nonrot(cfqd->queue))
  2597. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2598. else
  2599. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2600. }
  2601. /*
  2602. * Disable idle window if the process thinks too long or seeks so much that
  2603. * it doesn't matter
  2604. */
  2605. static void
  2606. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2607. struct cfq_io_cq *cic)
  2608. {
  2609. int old_idle, enable_idle;
  2610. /*
  2611. * Don't idle for async or idle io prio class
  2612. */
  2613. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2614. return;
  2615. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2616. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2617. cfq_mark_cfqq_deep(cfqq);
  2618. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2619. enable_idle = 0;
  2620. else if (!atomic_read(&cic->icq.ioc->active_ref) ||
  2621. !cfqd->cfq_slice_idle ||
  2622. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2623. enable_idle = 0;
  2624. else if (sample_valid(cic->ttime.ttime_samples)) {
  2625. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2626. enable_idle = 0;
  2627. else
  2628. enable_idle = 1;
  2629. }
  2630. if (old_idle != enable_idle) {
  2631. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2632. if (enable_idle)
  2633. cfq_mark_cfqq_idle_window(cfqq);
  2634. else
  2635. cfq_clear_cfqq_idle_window(cfqq);
  2636. }
  2637. }
  2638. /*
  2639. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2640. * no or if we aren't sure, a 1 will cause a preempt.
  2641. */
  2642. static bool
  2643. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2644. struct request *rq)
  2645. {
  2646. struct cfq_queue *cfqq;
  2647. cfqq = cfqd->active_queue;
  2648. if (!cfqq)
  2649. return false;
  2650. if (cfq_class_idle(new_cfqq))
  2651. return false;
  2652. if (cfq_class_idle(cfqq))
  2653. return true;
  2654. /*
  2655. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2656. */
  2657. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2658. return false;
  2659. /*
  2660. * if the new request is sync, but the currently running queue is
  2661. * not, let the sync request have priority.
  2662. */
  2663. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2664. return true;
  2665. if (new_cfqq->cfqg != cfqq->cfqg)
  2666. return false;
  2667. if (cfq_slice_used(cfqq))
  2668. return true;
  2669. /* Allow preemption only if we are idling on sync-noidle tree */
  2670. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2671. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2672. new_cfqq->service_tree->count == 2 &&
  2673. RB_EMPTY_ROOT(&cfqq->sort_list))
  2674. return true;
  2675. /*
  2676. * So both queues are sync. Let the new request get disk time if
  2677. * it's a metadata request and the current queue is doing regular IO.
  2678. */
  2679. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2680. return true;
  2681. /*
  2682. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2683. */
  2684. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2685. return true;
  2686. /* An idle queue should not be idle now for some reason */
  2687. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2688. return true;
  2689. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2690. return false;
  2691. /*
  2692. * if this request is as-good as one we would expect from the
  2693. * current cfqq, let it preempt
  2694. */
  2695. if (cfq_rq_close(cfqd, cfqq, rq))
  2696. return true;
  2697. return false;
  2698. }
  2699. /*
  2700. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2701. * let it have half of its nominal slice.
  2702. */
  2703. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2704. {
  2705. enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
  2706. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2707. cfq_slice_expired(cfqd, 1);
  2708. /*
  2709. * workload type is changed, don't save slice, otherwise preempt
  2710. * doesn't happen
  2711. */
  2712. if (old_type != cfqq_type(cfqq))
  2713. cfqq->cfqg->saved_workload_slice = 0;
  2714. /*
  2715. * Put the new queue at the front of the of the current list,
  2716. * so we know that it will be selected next.
  2717. */
  2718. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2719. cfq_service_tree_add(cfqd, cfqq, 1);
  2720. cfqq->slice_end = 0;
  2721. cfq_mark_cfqq_slice_new(cfqq);
  2722. }
  2723. /*
  2724. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2725. * something we should do about it
  2726. */
  2727. static void
  2728. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2729. struct request *rq)
  2730. {
  2731. struct cfq_io_cq *cic = RQ_CIC(rq);
  2732. cfqd->rq_queued++;
  2733. if (rq->cmd_flags & REQ_PRIO)
  2734. cfqq->prio_pending++;
  2735. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2736. cfq_update_io_seektime(cfqd, cfqq, rq);
  2737. cfq_update_idle_window(cfqd, cfqq, cic);
  2738. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2739. if (cfqq == cfqd->active_queue) {
  2740. /*
  2741. * Remember that we saw a request from this process, but
  2742. * don't start queuing just yet. Otherwise we risk seeing lots
  2743. * of tiny requests, because we disrupt the normal plugging
  2744. * and merging. If the request is already larger than a single
  2745. * page, let it rip immediately. For that case we assume that
  2746. * merging is already done. Ditto for a busy system that
  2747. * has other work pending, don't risk delaying until the
  2748. * idle timer unplug to continue working.
  2749. */
  2750. if (cfq_cfqq_wait_request(cfqq)) {
  2751. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2752. cfqd->busy_queues > 1) {
  2753. cfq_del_timer(cfqd, cfqq);
  2754. cfq_clear_cfqq_wait_request(cfqq);
  2755. __blk_run_queue(cfqd->queue);
  2756. } else {
  2757. cfq_blkiocg_update_idle_time_stats(
  2758. cfqg_to_blkg(cfqq->cfqg),
  2759. &blkio_policy_cfq);
  2760. cfq_mark_cfqq_must_dispatch(cfqq);
  2761. }
  2762. }
  2763. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2764. /*
  2765. * not the active queue - expire current slice if it is
  2766. * idle and has expired it's mean thinktime or this new queue
  2767. * has some old slice time left and is of higher priority or
  2768. * this new queue is RT and the current one is BE
  2769. */
  2770. cfq_preempt_queue(cfqd, cfqq);
  2771. __blk_run_queue(cfqd->queue);
  2772. }
  2773. }
  2774. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2775. {
  2776. struct cfq_data *cfqd = q->elevator->elevator_data;
  2777. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2778. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2779. cfq_init_prio_data(cfqq, RQ_CIC(rq));
  2780. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2781. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2782. cfq_add_rq_rb(rq);
  2783. cfq_blkiocg_update_io_add_stats(cfqg_to_blkg(RQ_CFQG(rq)),
  2784. &blkio_policy_cfq,
  2785. cfqg_to_blkg(cfqd->serving_group),
  2786. rq_data_dir(rq), rq_is_sync(rq));
  2787. cfq_rq_enqueued(cfqd, cfqq, rq);
  2788. }
  2789. /*
  2790. * Update hw_tag based on peak queue depth over 50 samples under
  2791. * sufficient load.
  2792. */
  2793. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2794. {
  2795. struct cfq_queue *cfqq = cfqd->active_queue;
  2796. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2797. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2798. if (cfqd->hw_tag == 1)
  2799. return;
  2800. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2801. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2802. return;
  2803. /*
  2804. * If active queue hasn't enough requests and can idle, cfq might not
  2805. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2806. * case
  2807. */
  2808. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2809. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2810. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2811. return;
  2812. if (cfqd->hw_tag_samples++ < 50)
  2813. return;
  2814. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2815. cfqd->hw_tag = 1;
  2816. else
  2817. cfqd->hw_tag = 0;
  2818. }
  2819. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2820. {
  2821. struct cfq_io_cq *cic = cfqd->active_cic;
  2822. /* If the queue already has requests, don't wait */
  2823. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2824. return false;
  2825. /* If there are other queues in the group, don't wait */
  2826. if (cfqq->cfqg->nr_cfqq > 1)
  2827. return false;
  2828. /* the only queue in the group, but think time is big */
  2829. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2830. return false;
  2831. if (cfq_slice_used(cfqq))
  2832. return true;
  2833. /* if slice left is less than think time, wait busy */
  2834. if (cic && sample_valid(cic->ttime.ttime_samples)
  2835. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  2836. return true;
  2837. /*
  2838. * If think times is less than a jiffy than ttime_mean=0 and above
  2839. * will not be true. It might happen that slice has not expired yet
  2840. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2841. * case where think time is less than a jiffy, mark the queue wait
  2842. * busy if only 1 jiffy is left in the slice.
  2843. */
  2844. if (cfqq->slice_end - jiffies == 1)
  2845. return true;
  2846. return false;
  2847. }
  2848. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2849. {
  2850. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2851. struct cfq_data *cfqd = cfqq->cfqd;
  2852. const int sync = rq_is_sync(rq);
  2853. unsigned long now;
  2854. now = jiffies;
  2855. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2856. !!(rq->cmd_flags & REQ_NOIDLE));
  2857. cfq_update_hw_tag(cfqd);
  2858. WARN_ON(!cfqd->rq_in_driver);
  2859. WARN_ON(!cfqq->dispatched);
  2860. cfqd->rq_in_driver--;
  2861. cfqq->dispatched--;
  2862. (RQ_CFQG(rq))->dispatched--;
  2863. cfq_blkiocg_update_completion_stats(cfqg_to_blkg(cfqq->cfqg),
  2864. &blkio_policy_cfq, rq_start_time_ns(rq),
  2865. rq_io_start_time_ns(rq), rq_data_dir(rq),
  2866. rq_is_sync(rq));
  2867. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2868. if (sync) {
  2869. struct cfq_rb_root *service_tree;
  2870. RQ_CIC(rq)->ttime.last_end_request = now;
  2871. if (cfq_cfqq_on_rr(cfqq))
  2872. service_tree = cfqq->service_tree;
  2873. else
  2874. service_tree = service_tree_for(cfqq->cfqg,
  2875. cfqq_prio(cfqq), cfqq_type(cfqq));
  2876. service_tree->ttime.last_end_request = now;
  2877. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  2878. cfqd->last_delayed_sync = now;
  2879. }
  2880. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2881. cfqq->cfqg->ttime.last_end_request = now;
  2882. #endif
  2883. /*
  2884. * If this is the active queue, check if it needs to be expired,
  2885. * or if we want to idle in case it has no pending requests.
  2886. */
  2887. if (cfqd->active_queue == cfqq) {
  2888. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2889. if (cfq_cfqq_slice_new(cfqq)) {
  2890. cfq_set_prio_slice(cfqd, cfqq);
  2891. cfq_clear_cfqq_slice_new(cfqq);
  2892. }
  2893. /*
  2894. * Should we wait for next request to come in before we expire
  2895. * the queue.
  2896. */
  2897. if (cfq_should_wait_busy(cfqd, cfqq)) {
  2898. unsigned long extend_sl = cfqd->cfq_slice_idle;
  2899. if (!cfqd->cfq_slice_idle)
  2900. extend_sl = cfqd->cfq_group_idle;
  2901. cfqq->slice_end = jiffies + extend_sl;
  2902. cfq_mark_cfqq_wait_busy(cfqq);
  2903. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  2904. }
  2905. /*
  2906. * Idling is not enabled on:
  2907. * - expired queues
  2908. * - idle-priority queues
  2909. * - async queues
  2910. * - queues with still some requests queued
  2911. * - when there is a close cooperator
  2912. */
  2913. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2914. cfq_slice_expired(cfqd, 1);
  2915. else if (sync && cfqq_empty &&
  2916. !cfq_close_cooperator(cfqd, cfqq)) {
  2917. cfq_arm_slice_timer(cfqd);
  2918. }
  2919. }
  2920. if (!cfqd->rq_in_driver)
  2921. cfq_schedule_dispatch(cfqd);
  2922. }
  2923. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2924. {
  2925. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2926. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2927. return ELV_MQUEUE_MUST;
  2928. }
  2929. return ELV_MQUEUE_MAY;
  2930. }
  2931. static int cfq_may_queue(struct request_queue *q, int rw)
  2932. {
  2933. struct cfq_data *cfqd = q->elevator->elevator_data;
  2934. struct task_struct *tsk = current;
  2935. struct cfq_io_cq *cic;
  2936. struct cfq_queue *cfqq;
  2937. /*
  2938. * don't force setup of a queue from here, as a call to may_queue
  2939. * does not necessarily imply that a request actually will be queued.
  2940. * so just lookup a possibly existing queue, or return 'may queue'
  2941. * if that fails
  2942. */
  2943. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2944. if (!cic)
  2945. return ELV_MQUEUE_MAY;
  2946. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2947. if (cfqq) {
  2948. cfq_init_prio_data(cfqq, cic);
  2949. return __cfq_may_queue(cfqq);
  2950. }
  2951. return ELV_MQUEUE_MAY;
  2952. }
  2953. /*
  2954. * queue lock held here
  2955. */
  2956. static void cfq_put_request(struct request *rq)
  2957. {
  2958. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2959. if (cfqq) {
  2960. const int rw = rq_data_dir(rq);
  2961. BUG_ON(!cfqq->allocated[rw]);
  2962. cfqq->allocated[rw]--;
  2963. /* Put down rq reference on cfqg */
  2964. cfqg_put(RQ_CFQG(rq));
  2965. rq->elv.priv[0] = NULL;
  2966. rq->elv.priv[1] = NULL;
  2967. cfq_put_queue(cfqq);
  2968. }
  2969. }
  2970. static struct cfq_queue *
  2971. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
  2972. struct cfq_queue *cfqq)
  2973. {
  2974. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2975. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2976. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2977. cfq_put_queue(cfqq);
  2978. return cic_to_cfqq(cic, 1);
  2979. }
  2980. /*
  2981. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2982. * was the last process referring to said cfqq.
  2983. */
  2984. static struct cfq_queue *
  2985. split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
  2986. {
  2987. if (cfqq_process_refs(cfqq) == 1) {
  2988. cfqq->pid = current->pid;
  2989. cfq_clear_cfqq_coop(cfqq);
  2990. cfq_clear_cfqq_split_coop(cfqq);
  2991. return cfqq;
  2992. }
  2993. cic_set_cfqq(cic, NULL, 1);
  2994. cfq_put_cooperator(cfqq);
  2995. cfq_put_queue(cfqq);
  2996. return NULL;
  2997. }
  2998. /*
  2999. * Allocate cfq data structures associated with this request.
  3000. */
  3001. static int
  3002. cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
  3003. gfp_t gfp_mask)
  3004. {
  3005. struct cfq_data *cfqd = q->elevator->elevator_data;
  3006. struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
  3007. const int rw = rq_data_dir(rq);
  3008. const bool is_sync = rq_is_sync(rq);
  3009. struct cfq_queue *cfqq;
  3010. might_sleep_if(gfp_mask & __GFP_WAIT);
  3011. spin_lock_irq(q->queue_lock);
  3012. check_ioprio_changed(cic, bio);
  3013. check_blkcg_changed(cic, bio);
  3014. new_queue:
  3015. cfqq = cic_to_cfqq(cic, is_sync);
  3016. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3017. cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
  3018. cic_set_cfqq(cic, cfqq, is_sync);
  3019. } else {
  3020. /*
  3021. * If the queue was seeky for too long, break it apart.
  3022. */
  3023. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3024. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3025. cfqq = split_cfqq(cic, cfqq);
  3026. if (!cfqq)
  3027. goto new_queue;
  3028. }
  3029. /*
  3030. * Check to see if this queue is scheduled to merge with
  3031. * another, closely cooperating queue. The merging of
  3032. * queues happens here as it must be done in process context.
  3033. * The reference on new_cfqq was taken in merge_cfqqs.
  3034. */
  3035. if (cfqq->new_cfqq)
  3036. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3037. }
  3038. cfqq->allocated[rw]++;
  3039. cfqq->ref++;
  3040. cfqg_get(cfqq->cfqg);
  3041. rq->elv.priv[0] = cfqq;
  3042. rq->elv.priv[1] = cfqq->cfqg;
  3043. spin_unlock_irq(q->queue_lock);
  3044. return 0;
  3045. }
  3046. static void cfq_kick_queue(struct work_struct *work)
  3047. {
  3048. struct cfq_data *cfqd =
  3049. container_of(work, struct cfq_data, unplug_work);
  3050. struct request_queue *q = cfqd->queue;
  3051. spin_lock_irq(q->queue_lock);
  3052. __blk_run_queue(cfqd->queue);
  3053. spin_unlock_irq(q->queue_lock);
  3054. }
  3055. /*
  3056. * Timer running if the active_queue is currently idling inside its time slice
  3057. */
  3058. static void cfq_idle_slice_timer(unsigned long data)
  3059. {
  3060. struct cfq_data *cfqd = (struct cfq_data *) data;
  3061. struct cfq_queue *cfqq;
  3062. unsigned long flags;
  3063. int timed_out = 1;
  3064. cfq_log(cfqd, "idle timer fired");
  3065. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3066. cfqq = cfqd->active_queue;
  3067. if (cfqq) {
  3068. timed_out = 0;
  3069. /*
  3070. * We saw a request before the queue expired, let it through
  3071. */
  3072. if (cfq_cfqq_must_dispatch(cfqq))
  3073. goto out_kick;
  3074. /*
  3075. * expired
  3076. */
  3077. if (cfq_slice_used(cfqq))
  3078. goto expire;
  3079. /*
  3080. * only expire and reinvoke request handler, if there are
  3081. * other queues with pending requests
  3082. */
  3083. if (!cfqd->busy_queues)
  3084. goto out_cont;
  3085. /*
  3086. * not expired and it has a request pending, let it dispatch
  3087. */
  3088. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3089. goto out_kick;
  3090. /*
  3091. * Queue depth flag is reset only when the idle didn't succeed
  3092. */
  3093. cfq_clear_cfqq_deep(cfqq);
  3094. }
  3095. expire:
  3096. cfq_slice_expired(cfqd, timed_out);
  3097. out_kick:
  3098. cfq_schedule_dispatch(cfqd);
  3099. out_cont:
  3100. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3101. }
  3102. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3103. {
  3104. del_timer_sync(&cfqd->idle_slice_timer);
  3105. cancel_work_sync(&cfqd->unplug_work);
  3106. }
  3107. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3108. {
  3109. int i;
  3110. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3111. if (cfqd->async_cfqq[0][i])
  3112. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3113. if (cfqd->async_cfqq[1][i])
  3114. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3115. }
  3116. if (cfqd->async_idle_cfqq)
  3117. cfq_put_queue(cfqd->async_idle_cfqq);
  3118. }
  3119. static void cfq_exit_queue(struct elevator_queue *e)
  3120. {
  3121. struct cfq_data *cfqd = e->elevator_data;
  3122. struct request_queue *q = cfqd->queue;
  3123. cfq_shutdown_timer_wq(cfqd);
  3124. spin_lock_irq(q->queue_lock);
  3125. if (cfqd->active_queue)
  3126. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3127. cfq_put_async_queues(cfqd);
  3128. spin_unlock_irq(q->queue_lock);
  3129. cfq_shutdown_timer_wq(cfqd);
  3130. #ifndef CONFIG_CFQ_GROUP_IOSCHED
  3131. kfree(cfqd->root_group);
  3132. #endif
  3133. update_root_blkg_pd(q, BLKIO_POLICY_PROP);
  3134. kfree(cfqd);
  3135. }
  3136. static int cfq_init_queue(struct request_queue *q)
  3137. {
  3138. struct cfq_data *cfqd;
  3139. struct blkio_group *blkg __maybe_unused;
  3140. int i;
  3141. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3142. if (!cfqd)
  3143. return -ENOMEM;
  3144. cfqd->queue = q;
  3145. q->elevator->elevator_data = cfqd;
  3146. /* Init root service tree */
  3147. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3148. /* Init root group and prefer root group over other groups by default */
  3149. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3150. rcu_read_lock();
  3151. spin_lock_irq(q->queue_lock);
  3152. blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
  3153. if (!IS_ERR(blkg))
  3154. cfqd->root_group = blkg_to_cfqg(blkg);
  3155. spin_unlock_irq(q->queue_lock);
  3156. rcu_read_unlock();
  3157. #else
  3158. cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
  3159. GFP_KERNEL, cfqd->queue->node);
  3160. if (cfqd->root_group)
  3161. cfq_init_cfqg_base(cfqd->root_group);
  3162. #endif
  3163. if (!cfqd->root_group) {
  3164. kfree(cfqd);
  3165. return -ENOMEM;
  3166. }
  3167. cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3168. /*
  3169. * Not strictly needed (since RB_ROOT just clears the node and we
  3170. * zeroed cfqd on alloc), but better be safe in case someone decides
  3171. * to add magic to the rb code
  3172. */
  3173. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3174. cfqd->prio_trees[i] = RB_ROOT;
  3175. /*
  3176. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3177. * Grab a permanent reference to it, so that the normal code flow
  3178. * will not attempt to free it. oom_cfqq is linked to root_group
  3179. * but shouldn't hold a reference as it'll never be unlinked. Lose
  3180. * the reference from linking right away.
  3181. */
  3182. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3183. cfqd->oom_cfqq.ref++;
  3184. spin_lock_irq(q->queue_lock);
  3185. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
  3186. cfqg_put(cfqd->root_group);
  3187. spin_unlock_irq(q->queue_lock);
  3188. init_timer(&cfqd->idle_slice_timer);
  3189. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3190. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3191. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3192. cfqd->cfq_quantum = cfq_quantum;
  3193. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3194. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3195. cfqd->cfq_back_max = cfq_back_max;
  3196. cfqd->cfq_back_penalty = cfq_back_penalty;
  3197. cfqd->cfq_slice[0] = cfq_slice_async;
  3198. cfqd->cfq_slice[1] = cfq_slice_sync;
  3199. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3200. cfqd->cfq_slice_idle = cfq_slice_idle;
  3201. cfqd->cfq_group_idle = cfq_group_idle;
  3202. cfqd->cfq_latency = 1;
  3203. cfqd->hw_tag = -1;
  3204. /*
  3205. * we optimistically start assuming sync ops weren't delayed in last
  3206. * second, in order to have larger depth for async operations.
  3207. */
  3208. cfqd->last_delayed_sync = jiffies - HZ;
  3209. return 0;
  3210. }
  3211. /*
  3212. * sysfs parts below -->
  3213. */
  3214. static ssize_t
  3215. cfq_var_show(unsigned int var, char *page)
  3216. {
  3217. return sprintf(page, "%d\n", var);
  3218. }
  3219. static ssize_t
  3220. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3221. {
  3222. char *p = (char *) page;
  3223. *var = simple_strtoul(p, &p, 10);
  3224. return count;
  3225. }
  3226. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3227. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3228. { \
  3229. struct cfq_data *cfqd = e->elevator_data; \
  3230. unsigned int __data = __VAR; \
  3231. if (__CONV) \
  3232. __data = jiffies_to_msecs(__data); \
  3233. return cfq_var_show(__data, (page)); \
  3234. }
  3235. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3236. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3237. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3238. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3239. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3240. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3241. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3242. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3243. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3244. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3245. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3246. #undef SHOW_FUNCTION
  3247. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3248. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3249. { \
  3250. struct cfq_data *cfqd = e->elevator_data; \
  3251. unsigned int __data; \
  3252. int ret = cfq_var_store(&__data, (page), count); \
  3253. if (__data < (MIN)) \
  3254. __data = (MIN); \
  3255. else if (__data > (MAX)) \
  3256. __data = (MAX); \
  3257. if (__CONV) \
  3258. *(__PTR) = msecs_to_jiffies(__data); \
  3259. else \
  3260. *(__PTR) = __data; \
  3261. return ret; \
  3262. }
  3263. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3264. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3265. UINT_MAX, 1);
  3266. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3267. UINT_MAX, 1);
  3268. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3269. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3270. UINT_MAX, 0);
  3271. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3272. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3273. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3274. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3275. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3276. UINT_MAX, 0);
  3277. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3278. #undef STORE_FUNCTION
  3279. #define CFQ_ATTR(name) \
  3280. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3281. static struct elv_fs_entry cfq_attrs[] = {
  3282. CFQ_ATTR(quantum),
  3283. CFQ_ATTR(fifo_expire_sync),
  3284. CFQ_ATTR(fifo_expire_async),
  3285. CFQ_ATTR(back_seek_max),
  3286. CFQ_ATTR(back_seek_penalty),
  3287. CFQ_ATTR(slice_sync),
  3288. CFQ_ATTR(slice_async),
  3289. CFQ_ATTR(slice_async_rq),
  3290. CFQ_ATTR(slice_idle),
  3291. CFQ_ATTR(group_idle),
  3292. CFQ_ATTR(low_latency),
  3293. __ATTR_NULL
  3294. };
  3295. static struct elevator_type iosched_cfq = {
  3296. .ops = {
  3297. .elevator_merge_fn = cfq_merge,
  3298. .elevator_merged_fn = cfq_merged_request,
  3299. .elevator_merge_req_fn = cfq_merged_requests,
  3300. .elevator_allow_merge_fn = cfq_allow_merge,
  3301. .elevator_bio_merged_fn = cfq_bio_merged,
  3302. .elevator_dispatch_fn = cfq_dispatch_requests,
  3303. .elevator_add_req_fn = cfq_insert_request,
  3304. .elevator_activate_req_fn = cfq_activate_request,
  3305. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3306. .elevator_completed_req_fn = cfq_completed_request,
  3307. .elevator_former_req_fn = elv_rb_former_request,
  3308. .elevator_latter_req_fn = elv_rb_latter_request,
  3309. .elevator_init_icq_fn = cfq_init_icq,
  3310. .elevator_exit_icq_fn = cfq_exit_icq,
  3311. .elevator_set_req_fn = cfq_set_request,
  3312. .elevator_put_req_fn = cfq_put_request,
  3313. .elevator_may_queue_fn = cfq_may_queue,
  3314. .elevator_init_fn = cfq_init_queue,
  3315. .elevator_exit_fn = cfq_exit_queue,
  3316. },
  3317. .icq_size = sizeof(struct cfq_io_cq),
  3318. .icq_align = __alignof__(struct cfq_io_cq),
  3319. .elevator_attrs = cfq_attrs,
  3320. .elevator_name = "cfq",
  3321. .elevator_owner = THIS_MODULE,
  3322. };
  3323. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3324. static struct blkio_policy_type blkio_policy_cfq = {
  3325. .ops = {
  3326. .blkio_init_group_fn = cfq_init_blkio_group,
  3327. },
  3328. .plid = BLKIO_POLICY_PROP,
  3329. .pdata_size = sizeof(struct cfq_group),
  3330. .cftypes = cfq_blkcg_files,
  3331. };
  3332. #endif
  3333. static int __init cfq_init(void)
  3334. {
  3335. int ret;
  3336. /*
  3337. * could be 0 on HZ < 1000 setups
  3338. */
  3339. if (!cfq_slice_async)
  3340. cfq_slice_async = 1;
  3341. if (!cfq_slice_idle)
  3342. cfq_slice_idle = 1;
  3343. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3344. if (!cfq_group_idle)
  3345. cfq_group_idle = 1;
  3346. #else
  3347. cfq_group_idle = 0;
  3348. #endif
  3349. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3350. if (!cfq_pool)
  3351. return -ENOMEM;
  3352. ret = elv_register(&iosched_cfq);
  3353. if (ret) {
  3354. kmem_cache_destroy(cfq_pool);
  3355. return ret;
  3356. }
  3357. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3358. blkio_policy_register(&blkio_policy_cfq);
  3359. #endif
  3360. return 0;
  3361. }
  3362. static void __exit cfq_exit(void)
  3363. {
  3364. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3365. blkio_policy_unregister(&blkio_policy_cfq);
  3366. #endif
  3367. elv_unregister(&iosched_cfq);
  3368. kmem_cache_destroy(cfq_pool);
  3369. }
  3370. module_init(cfq_init);
  3371. module_exit(cfq_exit);
  3372. MODULE_AUTHOR("Jens Axboe");
  3373. MODULE_LICENSE("GPL");
  3374. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");