vmx.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. static int bypass_guest_pf = 1;
  35. module_param(bypass_guest_pf, bool, 0);
  36. static int enable_vpid = 1;
  37. module_param(enable_vpid, bool, 0);
  38. static int flexpriority_enabled = 1;
  39. module_param(flexpriority_enabled, bool, 0);
  40. static int enable_ept = 1;
  41. module_param(enable_ept, bool, 0);
  42. struct vmcs {
  43. u32 revision_id;
  44. u32 abort;
  45. char data[0];
  46. };
  47. struct vcpu_vmx {
  48. struct kvm_vcpu vcpu;
  49. struct list_head local_vcpus_link;
  50. int launched;
  51. u8 fail;
  52. u32 idt_vectoring_info;
  53. struct kvm_msr_entry *guest_msrs;
  54. struct kvm_msr_entry *host_msrs;
  55. int nmsrs;
  56. int save_nmsrs;
  57. int msr_offset_efer;
  58. #ifdef CONFIG_X86_64
  59. int msr_offset_kernel_gs_base;
  60. #endif
  61. struct vmcs *vmcs;
  62. struct {
  63. int loaded;
  64. u16 fs_sel, gs_sel, ldt_sel;
  65. int gs_ldt_reload_needed;
  66. int fs_reload_needed;
  67. int guest_efer_loaded;
  68. } host_state;
  69. struct {
  70. struct {
  71. bool pending;
  72. u8 vector;
  73. unsigned rip;
  74. } irq;
  75. } rmode;
  76. int vpid;
  77. };
  78. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  79. {
  80. return container_of(vcpu, struct vcpu_vmx, vcpu);
  81. }
  82. static int init_rmode(struct kvm *kvm);
  83. static u64 construct_eptp(unsigned long root_hpa);
  84. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  85. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  86. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  87. static struct page *vmx_io_bitmap_a;
  88. static struct page *vmx_io_bitmap_b;
  89. static struct page *vmx_msr_bitmap;
  90. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  91. static DEFINE_SPINLOCK(vmx_vpid_lock);
  92. static struct vmcs_config {
  93. int size;
  94. int order;
  95. u32 revision_id;
  96. u32 pin_based_exec_ctrl;
  97. u32 cpu_based_exec_ctrl;
  98. u32 cpu_based_2nd_exec_ctrl;
  99. u32 vmexit_ctrl;
  100. u32 vmentry_ctrl;
  101. } vmcs_config;
  102. struct vmx_capability {
  103. u32 ept;
  104. u32 vpid;
  105. } vmx_capability;
  106. #define VMX_SEGMENT_FIELD(seg) \
  107. [VCPU_SREG_##seg] = { \
  108. .selector = GUEST_##seg##_SELECTOR, \
  109. .base = GUEST_##seg##_BASE, \
  110. .limit = GUEST_##seg##_LIMIT, \
  111. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  112. }
  113. static struct kvm_vmx_segment_field {
  114. unsigned selector;
  115. unsigned base;
  116. unsigned limit;
  117. unsigned ar_bytes;
  118. } kvm_vmx_segment_fields[] = {
  119. VMX_SEGMENT_FIELD(CS),
  120. VMX_SEGMENT_FIELD(DS),
  121. VMX_SEGMENT_FIELD(ES),
  122. VMX_SEGMENT_FIELD(FS),
  123. VMX_SEGMENT_FIELD(GS),
  124. VMX_SEGMENT_FIELD(SS),
  125. VMX_SEGMENT_FIELD(TR),
  126. VMX_SEGMENT_FIELD(LDTR),
  127. };
  128. /*
  129. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  130. * away by decrementing the array size.
  131. */
  132. static const u32 vmx_msr_index[] = {
  133. #ifdef CONFIG_X86_64
  134. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  135. #endif
  136. MSR_EFER, MSR_K6_STAR,
  137. };
  138. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  139. static void load_msrs(struct kvm_msr_entry *e, int n)
  140. {
  141. int i;
  142. for (i = 0; i < n; ++i)
  143. wrmsrl(e[i].index, e[i].data);
  144. }
  145. static void save_msrs(struct kvm_msr_entry *e, int n)
  146. {
  147. int i;
  148. for (i = 0; i < n; ++i)
  149. rdmsrl(e[i].index, e[i].data);
  150. }
  151. static inline int is_page_fault(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  154. INTR_INFO_VALID_MASK)) ==
  155. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  156. }
  157. static inline int is_no_device(u32 intr_info)
  158. {
  159. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  160. INTR_INFO_VALID_MASK)) ==
  161. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  162. }
  163. static inline int is_invalid_opcode(u32 intr_info)
  164. {
  165. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  166. INTR_INFO_VALID_MASK)) ==
  167. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  168. }
  169. static inline int is_external_interrupt(u32 intr_info)
  170. {
  171. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  172. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int cpu_has_vmx_msr_bitmap(void)
  175. {
  176. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  177. }
  178. static inline int cpu_has_vmx_tpr_shadow(void)
  179. {
  180. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  181. }
  182. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  183. {
  184. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  185. }
  186. static inline int cpu_has_secondary_exec_ctrls(void)
  187. {
  188. return (vmcs_config.cpu_based_exec_ctrl &
  189. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  190. }
  191. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  192. {
  193. return flexpriority_enabled
  194. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  195. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  196. }
  197. static inline int cpu_has_vmx_invept_individual_addr(void)
  198. {
  199. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  200. }
  201. static inline int cpu_has_vmx_invept_context(void)
  202. {
  203. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  204. }
  205. static inline int cpu_has_vmx_invept_global(void)
  206. {
  207. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  208. }
  209. static inline int cpu_has_vmx_ept(void)
  210. {
  211. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  212. SECONDARY_EXEC_ENABLE_EPT);
  213. }
  214. static inline int vm_need_ept(void)
  215. {
  216. return (cpu_has_vmx_ept() && enable_ept);
  217. }
  218. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  219. {
  220. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  221. (irqchip_in_kernel(kvm)));
  222. }
  223. static inline int cpu_has_vmx_vpid(void)
  224. {
  225. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  226. SECONDARY_EXEC_ENABLE_VPID);
  227. }
  228. static inline int cpu_has_virtual_nmis(void)
  229. {
  230. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  231. }
  232. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  233. {
  234. int i;
  235. for (i = 0; i < vmx->nmsrs; ++i)
  236. if (vmx->guest_msrs[i].index == msr)
  237. return i;
  238. return -1;
  239. }
  240. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  241. {
  242. struct {
  243. u64 vpid : 16;
  244. u64 rsvd : 48;
  245. u64 gva;
  246. } operand = { vpid, 0, gva };
  247. asm volatile (__ex(ASM_VMX_INVVPID)
  248. /* CF==1 or ZF==1 --> rc = -1 */
  249. "; ja 1f ; ud2 ; 1:"
  250. : : "a"(&operand), "c"(ext) : "cc", "memory");
  251. }
  252. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  253. {
  254. struct {
  255. u64 eptp, gpa;
  256. } operand = {eptp, gpa};
  257. asm volatile (__ex(ASM_VMX_INVEPT)
  258. /* CF==1 or ZF==1 --> rc = -1 */
  259. "; ja 1f ; ud2 ; 1:\n"
  260. : : "a" (&operand), "c" (ext) : "cc", "memory");
  261. }
  262. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  263. {
  264. int i;
  265. i = __find_msr_index(vmx, msr);
  266. if (i >= 0)
  267. return &vmx->guest_msrs[i];
  268. return NULL;
  269. }
  270. static void vmcs_clear(struct vmcs *vmcs)
  271. {
  272. u64 phys_addr = __pa(vmcs);
  273. u8 error;
  274. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  275. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  276. : "cc", "memory");
  277. if (error)
  278. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  279. vmcs, phys_addr);
  280. }
  281. static void __vcpu_clear(void *arg)
  282. {
  283. struct vcpu_vmx *vmx = arg;
  284. int cpu = raw_smp_processor_id();
  285. if (vmx->vcpu.cpu == cpu)
  286. vmcs_clear(vmx->vmcs);
  287. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  288. per_cpu(current_vmcs, cpu) = NULL;
  289. rdtscll(vmx->vcpu.arch.host_tsc);
  290. list_del(&vmx->local_vcpus_link);
  291. vmx->vcpu.cpu = -1;
  292. vmx->launched = 0;
  293. }
  294. static void vcpu_clear(struct vcpu_vmx *vmx)
  295. {
  296. if (vmx->vcpu.cpu == -1)
  297. return;
  298. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  299. }
  300. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  301. {
  302. if (vmx->vpid == 0)
  303. return;
  304. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  305. }
  306. static inline void ept_sync_global(void)
  307. {
  308. if (cpu_has_vmx_invept_global())
  309. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  310. }
  311. static inline void ept_sync_context(u64 eptp)
  312. {
  313. if (vm_need_ept()) {
  314. if (cpu_has_vmx_invept_context())
  315. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  316. else
  317. ept_sync_global();
  318. }
  319. }
  320. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  321. {
  322. if (vm_need_ept()) {
  323. if (cpu_has_vmx_invept_individual_addr())
  324. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  325. eptp, gpa);
  326. else
  327. ept_sync_context(eptp);
  328. }
  329. }
  330. static unsigned long vmcs_readl(unsigned long field)
  331. {
  332. unsigned long value;
  333. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  334. : "=a"(value) : "d"(field) : "cc");
  335. return value;
  336. }
  337. static u16 vmcs_read16(unsigned long field)
  338. {
  339. return vmcs_readl(field);
  340. }
  341. static u32 vmcs_read32(unsigned long field)
  342. {
  343. return vmcs_readl(field);
  344. }
  345. static u64 vmcs_read64(unsigned long field)
  346. {
  347. #ifdef CONFIG_X86_64
  348. return vmcs_readl(field);
  349. #else
  350. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  351. #endif
  352. }
  353. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  354. {
  355. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  356. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  357. dump_stack();
  358. }
  359. static void vmcs_writel(unsigned long field, unsigned long value)
  360. {
  361. u8 error;
  362. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  363. : "=q"(error) : "a"(value), "d"(field) : "cc");
  364. if (unlikely(error))
  365. vmwrite_error(field, value);
  366. }
  367. static void vmcs_write16(unsigned long field, u16 value)
  368. {
  369. vmcs_writel(field, value);
  370. }
  371. static void vmcs_write32(unsigned long field, u32 value)
  372. {
  373. vmcs_writel(field, value);
  374. }
  375. static void vmcs_write64(unsigned long field, u64 value)
  376. {
  377. vmcs_writel(field, value);
  378. #ifndef CONFIG_X86_64
  379. asm volatile ("");
  380. vmcs_writel(field+1, value >> 32);
  381. #endif
  382. }
  383. static void vmcs_clear_bits(unsigned long field, u32 mask)
  384. {
  385. vmcs_writel(field, vmcs_readl(field) & ~mask);
  386. }
  387. static void vmcs_set_bits(unsigned long field, u32 mask)
  388. {
  389. vmcs_writel(field, vmcs_readl(field) | mask);
  390. }
  391. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  392. {
  393. u32 eb;
  394. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  395. if (!vcpu->fpu_active)
  396. eb |= 1u << NM_VECTOR;
  397. if (vcpu->guest_debug.enabled)
  398. eb |= 1u << 1;
  399. if (vcpu->arch.rmode.active)
  400. eb = ~0;
  401. if (vm_need_ept())
  402. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  403. vmcs_write32(EXCEPTION_BITMAP, eb);
  404. }
  405. static void reload_tss(void)
  406. {
  407. /*
  408. * VT restores TR but not its size. Useless.
  409. */
  410. struct descriptor_table gdt;
  411. struct desc_struct *descs;
  412. kvm_get_gdt(&gdt);
  413. descs = (void *)gdt.base;
  414. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  415. load_TR_desc();
  416. }
  417. static void load_transition_efer(struct vcpu_vmx *vmx)
  418. {
  419. int efer_offset = vmx->msr_offset_efer;
  420. u64 host_efer = vmx->host_msrs[efer_offset].data;
  421. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  422. u64 ignore_bits;
  423. if (efer_offset < 0)
  424. return;
  425. /*
  426. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  427. * outside long mode
  428. */
  429. ignore_bits = EFER_NX | EFER_SCE;
  430. #ifdef CONFIG_X86_64
  431. ignore_bits |= EFER_LMA | EFER_LME;
  432. /* SCE is meaningful only in long mode on Intel */
  433. if (guest_efer & EFER_LMA)
  434. ignore_bits &= ~(u64)EFER_SCE;
  435. #endif
  436. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  437. return;
  438. vmx->host_state.guest_efer_loaded = 1;
  439. guest_efer &= ~ignore_bits;
  440. guest_efer |= host_efer & ignore_bits;
  441. wrmsrl(MSR_EFER, guest_efer);
  442. vmx->vcpu.stat.efer_reload++;
  443. }
  444. static void reload_host_efer(struct vcpu_vmx *vmx)
  445. {
  446. if (vmx->host_state.guest_efer_loaded) {
  447. vmx->host_state.guest_efer_loaded = 0;
  448. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  449. }
  450. }
  451. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  452. {
  453. struct vcpu_vmx *vmx = to_vmx(vcpu);
  454. if (vmx->host_state.loaded)
  455. return;
  456. vmx->host_state.loaded = 1;
  457. /*
  458. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  459. * allow segment selectors with cpl > 0 or ti == 1.
  460. */
  461. vmx->host_state.ldt_sel = kvm_read_ldt();
  462. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  463. vmx->host_state.fs_sel = kvm_read_fs();
  464. if (!(vmx->host_state.fs_sel & 7)) {
  465. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  466. vmx->host_state.fs_reload_needed = 0;
  467. } else {
  468. vmcs_write16(HOST_FS_SELECTOR, 0);
  469. vmx->host_state.fs_reload_needed = 1;
  470. }
  471. vmx->host_state.gs_sel = kvm_read_gs();
  472. if (!(vmx->host_state.gs_sel & 7))
  473. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  474. else {
  475. vmcs_write16(HOST_GS_SELECTOR, 0);
  476. vmx->host_state.gs_ldt_reload_needed = 1;
  477. }
  478. #ifdef CONFIG_X86_64
  479. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  480. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  481. #else
  482. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  483. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  484. #endif
  485. #ifdef CONFIG_X86_64
  486. if (is_long_mode(&vmx->vcpu))
  487. save_msrs(vmx->host_msrs +
  488. vmx->msr_offset_kernel_gs_base, 1);
  489. #endif
  490. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  491. load_transition_efer(vmx);
  492. }
  493. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  494. {
  495. unsigned long flags;
  496. if (!vmx->host_state.loaded)
  497. return;
  498. ++vmx->vcpu.stat.host_state_reload;
  499. vmx->host_state.loaded = 0;
  500. if (vmx->host_state.fs_reload_needed)
  501. kvm_load_fs(vmx->host_state.fs_sel);
  502. if (vmx->host_state.gs_ldt_reload_needed) {
  503. kvm_load_ldt(vmx->host_state.ldt_sel);
  504. /*
  505. * If we have to reload gs, we must take care to
  506. * preserve our gs base.
  507. */
  508. local_irq_save(flags);
  509. kvm_load_gs(vmx->host_state.gs_sel);
  510. #ifdef CONFIG_X86_64
  511. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  512. #endif
  513. local_irq_restore(flags);
  514. }
  515. reload_tss();
  516. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  517. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  518. reload_host_efer(vmx);
  519. }
  520. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  521. {
  522. preempt_disable();
  523. __vmx_load_host_state(vmx);
  524. preempt_enable();
  525. }
  526. /*
  527. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  528. * vcpu mutex is already taken.
  529. */
  530. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  531. {
  532. struct vcpu_vmx *vmx = to_vmx(vcpu);
  533. u64 phys_addr = __pa(vmx->vmcs);
  534. u64 tsc_this, delta, new_offset;
  535. if (vcpu->cpu != cpu) {
  536. vcpu_clear(vmx);
  537. kvm_migrate_timers(vcpu);
  538. vpid_sync_vcpu_all(vmx);
  539. local_irq_disable();
  540. list_add(&vmx->local_vcpus_link,
  541. &per_cpu(vcpus_on_cpu, cpu));
  542. local_irq_enable();
  543. }
  544. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  545. u8 error;
  546. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  547. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  548. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  549. : "cc");
  550. if (error)
  551. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  552. vmx->vmcs, phys_addr);
  553. }
  554. if (vcpu->cpu != cpu) {
  555. struct descriptor_table dt;
  556. unsigned long sysenter_esp;
  557. vcpu->cpu = cpu;
  558. /*
  559. * Linux uses per-cpu TSS and GDT, so set these when switching
  560. * processors.
  561. */
  562. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  563. kvm_get_gdt(&dt);
  564. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  565. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  566. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  567. /*
  568. * Make sure the time stamp counter is monotonous.
  569. */
  570. rdtscll(tsc_this);
  571. if (tsc_this < vcpu->arch.host_tsc) {
  572. delta = vcpu->arch.host_tsc - tsc_this;
  573. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  574. vmcs_write64(TSC_OFFSET, new_offset);
  575. }
  576. }
  577. }
  578. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  579. {
  580. __vmx_load_host_state(to_vmx(vcpu));
  581. }
  582. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  583. {
  584. if (vcpu->fpu_active)
  585. return;
  586. vcpu->fpu_active = 1;
  587. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  588. if (vcpu->arch.cr0 & X86_CR0_TS)
  589. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  590. update_exception_bitmap(vcpu);
  591. }
  592. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  593. {
  594. if (!vcpu->fpu_active)
  595. return;
  596. vcpu->fpu_active = 0;
  597. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  598. update_exception_bitmap(vcpu);
  599. }
  600. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  601. {
  602. return vmcs_readl(GUEST_RFLAGS);
  603. }
  604. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  605. {
  606. if (vcpu->arch.rmode.active)
  607. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  608. vmcs_writel(GUEST_RFLAGS, rflags);
  609. }
  610. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  611. {
  612. unsigned long rip;
  613. u32 interruptibility;
  614. rip = kvm_rip_read(vcpu);
  615. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  616. kvm_rip_write(vcpu, rip);
  617. /*
  618. * We emulated an instruction, so temporary interrupt blocking
  619. * should be removed, if set.
  620. */
  621. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  622. if (interruptibility & 3)
  623. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  624. interruptibility & ~3);
  625. vcpu->arch.interrupt_window_open = 1;
  626. }
  627. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  628. bool has_error_code, u32 error_code)
  629. {
  630. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  631. nr | INTR_TYPE_EXCEPTION
  632. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  633. | INTR_INFO_VALID_MASK);
  634. if (has_error_code)
  635. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  636. }
  637. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  638. {
  639. return false;
  640. }
  641. /*
  642. * Swap MSR entry in host/guest MSR entry array.
  643. */
  644. #ifdef CONFIG_X86_64
  645. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  646. {
  647. struct kvm_msr_entry tmp;
  648. tmp = vmx->guest_msrs[to];
  649. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  650. vmx->guest_msrs[from] = tmp;
  651. tmp = vmx->host_msrs[to];
  652. vmx->host_msrs[to] = vmx->host_msrs[from];
  653. vmx->host_msrs[from] = tmp;
  654. }
  655. #endif
  656. /*
  657. * Set up the vmcs to automatically save and restore system
  658. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  659. * mode, as fiddling with msrs is very expensive.
  660. */
  661. static void setup_msrs(struct vcpu_vmx *vmx)
  662. {
  663. int save_nmsrs;
  664. vmx_load_host_state(vmx);
  665. save_nmsrs = 0;
  666. #ifdef CONFIG_X86_64
  667. if (is_long_mode(&vmx->vcpu)) {
  668. int index;
  669. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  670. if (index >= 0)
  671. move_msr_up(vmx, index, save_nmsrs++);
  672. index = __find_msr_index(vmx, MSR_LSTAR);
  673. if (index >= 0)
  674. move_msr_up(vmx, index, save_nmsrs++);
  675. index = __find_msr_index(vmx, MSR_CSTAR);
  676. if (index >= 0)
  677. move_msr_up(vmx, index, save_nmsrs++);
  678. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  679. if (index >= 0)
  680. move_msr_up(vmx, index, save_nmsrs++);
  681. /*
  682. * MSR_K6_STAR is only needed on long mode guests, and only
  683. * if efer.sce is enabled.
  684. */
  685. index = __find_msr_index(vmx, MSR_K6_STAR);
  686. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  687. move_msr_up(vmx, index, save_nmsrs++);
  688. }
  689. #endif
  690. vmx->save_nmsrs = save_nmsrs;
  691. #ifdef CONFIG_X86_64
  692. vmx->msr_offset_kernel_gs_base =
  693. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  694. #endif
  695. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  696. }
  697. /*
  698. * reads and returns guest's timestamp counter "register"
  699. * guest_tsc = host_tsc + tsc_offset -- 21.3
  700. */
  701. static u64 guest_read_tsc(void)
  702. {
  703. u64 host_tsc, tsc_offset;
  704. rdtscll(host_tsc);
  705. tsc_offset = vmcs_read64(TSC_OFFSET);
  706. return host_tsc + tsc_offset;
  707. }
  708. /*
  709. * writes 'guest_tsc' into guest's timestamp counter "register"
  710. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  711. */
  712. static void guest_write_tsc(u64 guest_tsc)
  713. {
  714. u64 host_tsc;
  715. rdtscll(host_tsc);
  716. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  717. }
  718. /*
  719. * Reads an msr value (of 'msr_index') into 'pdata'.
  720. * Returns 0 on success, non-0 otherwise.
  721. * Assumes vcpu_load() was already called.
  722. */
  723. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  724. {
  725. u64 data;
  726. struct kvm_msr_entry *msr;
  727. if (!pdata) {
  728. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  729. return -EINVAL;
  730. }
  731. switch (msr_index) {
  732. #ifdef CONFIG_X86_64
  733. case MSR_FS_BASE:
  734. data = vmcs_readl(GUEST_FS_BASE);
  735. break;
  736. case MSR_GS_BASE:
  737. data = vmcs_readl(GUEST_GS_BASE);
  738. break;
  739. case MSR_EFER:
  740. return kvm_get_msr_common(vcpu, msr_index, pdata);
  741. #endif
  742. case MSR_IA32_TIME_STAMP_COUNTER:
  743. data = guest_read_tsc();
  744. break;
  745. case MSR_IA32_SYSENTER_CS:
  746. data = vmcs_read32(GUEST_SYSENTER_CS);
  747. break;
  748. case MSR_IA32_SYSENTER_EIP:
  749. data = vmcs_readl(GUEST_SYSENTER_EIP);
  750. break;
  751. case MSR_IA32_SYSENTER_ESP:
  752. data = vmcs_readl(GUEST_SYSENTER_ESP);
  753. break;
  754. default:
  755. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  756. if (msr) {
  757. data = msr->data;
  758. break;
  759. }
  760. return kvm_get_msr_common(vcpu, msr_index, pdata);
  761. }
  762. *pdata = data;
  763. return 0;
  764. }
  765. /*
  766. * Writes msr value into into the appropriate "register".
  767. * Returns 0 on success, non-0 otherwise.
  768. * Assumes vcpu_load() was already called.
  769. */
  770. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  771. {
  772. struct vcpu_vmx *vmx = to_vmx(vcpu);
  773. struct kvm_msr_entry *msr;
  774. int ret = 0;
  775. switch (msr_index) {
  776. #ifdef CONFIG_X86_64
  777. case MSR_EFER:
  778. vmx_load_host_state(vmx);
  779. ret = kvm_set_msr_common(vcpu, msr_index, data);
  780. break;
  781. case MSR_FS_BASE:
  782. vmcs_writel(GUEST_FS_BASE, data);
  783. break;
  784. case MSR_GS_BASE:
  785. vmcs_writel(GUEST_GS_BASE, data);
  786. break;
  787. #endif
  788. case MSR_IA32_SYSENTER_CS:
  789. vmcs_write32(GUEST_SYSENTER_CS, data);
  790. break;
  791. case MSR_IA32_SYSENTER_EIP:
  792. vmcs_writel(GUEST_SYSENTER_EIP, data);
  793. break;
  794. case MSR_IA32_SYSENTER_ESP:
  795. vmcs_writel(GUEST_SYSENTER_ESP, data);
  796. break;
  797. case MSR_IA32_TIME_STAMP_COUNTER:
  798. guest_write_tsc(data);
  799. break;
  800. case MSR_P6_PERFCTR0:
  801. case MSR_P6_PERFCTR1:
  802. case MSR_P6_EVNTSEL0:
  803. case MSR_P6_EVNTSEL1:
  804. /*
  805. * Just discard all writes to the performance counters; this
  806. * should keep both older linux and windows 64-bit guests
  807. * happy
  808. */
  809. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  810. break;
  811. default:
  812. vmx_load_host_state(vmx);
  813. msr = find_msr_entry(vmx, msr_index);
  814. if (msr) {
  815. msr->data = data;
  816. break;
  817. }
  818. ret = kvm_set_msr_common(vcpu, msr_index, data);
  819. }
  820. return ret;
  821. }
  822. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  823. {
  824. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  825. switch (reg) {
  826. case VCPU_REGS_RSP:
  827. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  828. break;
  829. case VCPU_REGS_RIP:
  830. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  831. break;
  832. default:
  833. break;
  834. }
  835. }
  836. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  837. {
  838. unsigned long dr7 = 0x400;
  839. int old_singlestep;
  840. old_singlestep = vcpu->guest_debug.singlestep;
  841. vcpu->guest_debug.enabled = dbg->enabled;
  842. if (vcpu->guest_debug.enabled) {
  843. int i;
  844. dr7 |= 0x200; /* exact */
  845. for (i = 0; i < 4; ++i) {
  846. if (!dbg->breakpoints[i].enabled)
  847. continue;
  848. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  849. dr7 |= 2 << (i*2); /* global enable */
  850. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  851. }
  852. vcpu->guest_debug.singlestep = dbg->singlestep;
  853. } else
  854. vcpu->guest_debug.singlestep = 0;
  855. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  856. unsigned long flags;
  857. flags = vmcs_readl(GUEST_RFLAGS);
  858. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  859. vmcs_writel(GUEST_RFLAGS, flags);
  860. }
  861. update_exception_bitmap(vcpu);
  862. vmcs_writel(GUEST_DR7, dr7);
  863. return 0;
  864. }
  865. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  866. {
  867. if (!vcpu->arch.interrupt.pending)
  868. return -1;
  869. return vcpu->arch.interrupt.nr;
  870. }
  871. static __init int cpu_has_kvm_support(void)
  872. {
  873. unsigned long ecx = cpuid_ecx(1);
  874. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  875. }
  876. static __init int vmx_disabled_by_bios(void)
  877. {
  878. u64 msr;
  879. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  880. return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  881. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  882. == IA32_FEATURE_CONTROL_LOCKED_BIT;
  883. /* locked but not enabled */
  884. }
  885. static void hardware_enable(void *garbage)
  886. {
  887. int cpu = raw_smp_processor_id();
  888. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  889. u64 old;
  890. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  891. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  892. if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  893. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  894. != (IA32_FEATURE_CONTROL_LOCKED_BIT |
  895. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  896. /* enable and lock */
  897. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  898. IA32_FEATURE_CONTROL_LOCKED_BIT |
  899. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
  900. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  901. asm volatile (ASM_VMX_VMXON_RAX
  902. : : "a"(&phys_addr), "m"(phys_addr)
  903. : "memory", "cc");
  904. }
  905. static void vmclear_local_vcpus(void)
  906. {
  907. int cpu = raw_smp_processor_id();
  908. struct vcpu_vmx *vmx, *n;
  909. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  910. local_vcpus_link)
  911. __vcpu_clear(vmx);
  912. }
  913. static void hardware_disable(void *garbage)
  914. {
  915. vmclear_local_vcpus();
  916. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  917. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  918. }
  919. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  920. u32 msr, u32 *result)
  921. {
  922. u32 vmx_msr_low, vmx_msr_high;
  923. u32 ctl = ctl_min | ctl_opt;
  924. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  925. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  926. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  927. /* Ensure minimum (required) set of control bits are supported. */
  928. if (ctl_min & ~ctl)
  929. return -EIO;
  930. *result = ctl;
  931. return 0;
  932. }
  933. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  934. {
  935. u32 vmx_msr_low, vmx_msr_high;
  936. u32 min, opt, min2, opt2;
  937. u32 _pin_based_exec_control = 0;
  938. u32 _cpu_based_exec_control = 0;
  939. u32 _cpu_based_2nd_exec_control = 0;
  940. u32 _vmexit_control = 0;
  941. u32 _vmentry_control = 0;
  942. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  943. opt = PIN_BASED_VIRTUAL_NMIS;
  944. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  945. &_pin_based_exec_control) < 0)
  946. return -EIO;
  947. min = CPU_BASED_HLT_EXITING |
  948. #ifdef CONFIG_X86_64
  949. CPU_BASED_CR8_LOAD_EXITING |
  950. CPU_BASED_CR8_STORE_EXITING |
  951. #endif
  952. CPU_BASED_CR3_LOAD_EXITING |
  953. CPU_BASED_CR3_STORE_EXITING |
  954. CPU_BASED_USE_IO_BITMAPS |
  955. CPU_BASED_MOV_DR_EXITING |
  956. CPU_BASED_USE_TSC_OFFSETING;
  957. opt = CPU_BASED_TPR_SHADOW |
  958. CPU_BASED_USE_MSR_BITMAPS |
  959. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  960. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  961. &_cpu_based_exec_control) < 0)
  962. return -EIO;
  963. #ifdef CONFIG_X86_64
  964. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  965. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  966. ~CPU_BASED_CR8_STORE_EXITING;
  967. #endif
  968. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  969. min2 = 0;
  970. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  971. SECONDARY_EXEC_WBINVD_EXITING |
  972. SECONDARY_EXEC_ENABLE_VPID |
  973. SECONDARY_EXEC_ENABLE_EPT;
  974. if (adjust_vmx_controls(min2, opt2,
  975. MSR_IA32_VMX_PROCBASED_CTLS2,
  976. &_cpu_based_2nd_exec_control) < 0)
  977. return -EIO;
  978. }
  979. #ifndef CONFIG_X86_64
  980. if (!(_cpu_based_2nd_exec_control &
  981. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  982. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  983. #endif
  984. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  985. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  986. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  987. CPU_BASED_CR3_STORE_EXITING);
  988. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  989. &_cpu_based_exec_control) < 0)
  990. return -EIO;
  991. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  992. vmx_capability.ept, vmx_capability.vpid);
  993. }
  994. min = 0;
  995. #ifdef CONFIG_X86_64
  996. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  997. #endif
  998. opt = 0;
  999. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1000. &_vmexit_control) < 0)
  1001. return -EIO;
  1002. min = opt = 0;
  1003. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1004. &_vmentry_control) < 0)
  1005. return -EIO;
  1006. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1007. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1008. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1009. return -EIO;
  1010. #ifdef CONFIG_X86_64
  1011. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1012. if (vmx_msr_high & (1u<<16))
  1013. return -EIO;
  1014. #endif
  1015. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1016. if (((vmx_msr_high >> 18) & 15) != 6)
  1017. return -EIO;
  1018. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1019. vmcs_conf->order = get_order(vmcs_config.size);
  1020. vmcs_conf->revision_id = vmx_msr_low;
  1021. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1022. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1023. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1024. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1025. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1026. return 0;
  1027. }
  1028. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1029. {
  1030. int node = cpu_to_node(cpu);
  1031. struct page *pages;
  1032. struct vmcs *vmcs;
  1033. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1034. if (!pages)
  1035. return NULL;
  1036. vmcs = page_address(pages);
  1037. memset(vmcs, 0, vmcs_config.size);
  1038. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1039. return vmcs;
  1040. }
  1041. static struct vmcs *alloc_vmcs(void)
  1042. {
  1043. return alloc_vmcs_cpu(raw_smp_processor_id());
  1044. }
  1045. static void free_vmcs(struct vmcs *vmcs)
  1046. {
  1047. free_pages((unsigned long)vmcs, vmcs_config.order);
  1048. }
  1049. static void free_kvm_area(void)
  1050. {
  1051. int cpu;
  1052. for_each_online_cpu(cpu)
  1053. free_vmcs(per_cpu(vmxarea, cpu));
  1054. }
  1055. static __init int alloc_kvm_area(void)
  1056. {
  1057. int cpu;
  1058. for_each_online_cpu(cpu) {
  1059. struct vmcs *vmcs;
  1060. vmcs = alloc_vmcs_cpu(cpu);
  1061. if (!vmcs) {
  1062. free_kvm_area();
  1063. return -ENOMEM;
  1064. }
  1065. per_cpu(vmxarea, cpu) = vmcs;
  1066. }
  1067. return 0;
  1068. }
  1069. static __init int hardware_setup(void)
  1070. {
  1071. if (setup_vmcs_config(&vmcs_config) < 0)
  1072. return -EIO;
  1073. if (boot_cpu_has(X86_FEATURE_NX))
  1074. kvm_enable_efer_bits(EFER_NX);
  1075. return alloc_kvm_area();
  1076. }
  1077. static __exit void hardware_unsetup(void)
  1078. {
  1079. free_kvm_area();
  1080. }
  1081. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1082. {
  1083. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1084. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1085. vmcs_write16(sf->selector, save->selector);
  1086. vmcs_writel(sf->base, save->base);
  1087. vmcs_write32(sf->limit, save->limit);
  1088. vmcs_write32(sf->ar_bytes, save->ar);
  1089. } else {
  1090. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1091. << AR_DPL_SHIFT;
  1092. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1093. }
  1094. }
  1095. static void enter_pmode(struct kvm_vcpu *vcpu)
  1096. {
  1097. unsigned long flags;
  1098. vcpu->arch.rmode.active = 0;
  1099. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1100. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1101. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1102. flags = vmcs_readl(GUEST_RFLAGS);
  1103. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1104. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1105. vmcs_writel(GUEST_RFLAGS, flags);
  1106. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1107. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1108. update_exception_bitmap(vcpu);
  1109. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1110. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1111. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1112. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1113. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1114. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1115. vmcs_write16(GUEST_CS_SELECTOR,
  1116. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1117. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1118. }
  1119. static gva_t rmode_tss_base(struct kvm *kvm)
  1120. {
  1121. if (!kvm->arch.tss_addr) {
  1122. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1123. kvm->memslots[0].npages - 3;
  1124. return base_gfn << PAGE_SHIFT;
  1125. }
  1126. return kvm->arch.tss_addr;
  1127. }
  1128. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1129. {
  1130. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1131. save->selector = vmcs_read16(sf->selector);
  1132. save->base = vmcs_readl(sf->base);
  1133. save->limit = vmcs_read32(sf->limit);
  1134. save->ar = vmcs_read32(sf->ar_bytes);
  1135. vmcs_write16(sf->selector, save->base >> 4);
  1136. vmcs_write32(sf->base, save->base & 0xfffff);
  1137. vmcs_write32(sf->limit, 0xffff);
  1138. vmcs_write32(sf->ar_bytes, 0xf3);
  1139. }
  1140. static void enter_rmode(struct kvm_vcpu *vcpu)
  1141. {
  1142. unsigned long flags;
  1143. vcpu->arch.rmode.active = 1;
  1144. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1145. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1146. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1147. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1148. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1149. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1150. flags = vmcs_readl(GUEST_RFLAGS);
  1151. vcpu->arch.rmode.save_iopl
  1152. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1153. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1154. vmcs_writel(GUEST_RFLAGS, flags);
  1155. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1156. update_exception_bitmap(vcpu);
  1157. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1158. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1159. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1160. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1161. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1162. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1163. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1164. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1165. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1166. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1167. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1168. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1169. kvm_mmu_reset_context(vcpu);
  1170. init_rmode(vcpu->kvm);
  1171. }
  1172. #ifdef CONFIG_X86_64
  1173. static void enter_lmode(struct kvm_vcpu *vcpu)
  1174. {
  1175. u32 guest_tr_ar;
  1176. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1177. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1178. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1179. __func__);
  1180. vmcs_write32(GUEST_TR_AR_BYTES,
  1181. (guest_tr_ar & ~AR_TYPE_MASK)
  1182. | AR_TYPE_BUSY_64_TSS);
  1183. }
  1184. vcpu->arch.shadow_efer |= EFER_LMA;
  1185. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1186. vmcs_write32(VM_ENTRY_CONTROLS,
  1187. vmcs_read32(VM_ENTRY_CONTROLS)
  1188. | VM_ENTRY_IA32E_MODE);
  1189. }
  1190. static void exit_lmode(struct kvm_vcpu *vcpu)
  1191. {
  1192. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1193. vmcs_write32(VM_ENTRY_CONTROLS,
  1194. vmcs_read32(VM_ENTRY_CONTROLS)
  1195. & ~VM_ENTRY_IA32E_MODE);
  1196. }
  1197. #endif
  1198. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1199. {
  1200. vpid_sync_vcpu_all(to_vmx(vcpu));
  1201. if (vm_need_ept())
  1202. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1203. }
  1204. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1205. {
  1206. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1207. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1208. }
  1209. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1210. {
  1211. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1212. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1213. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1214. return;
  1215. }
  1216. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1217. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1218. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1219. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1220. }
  1221. }
  1222. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1223. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1224. unsigned long cr0,
  1225. struct kvm_vcpu *vcpu)
  1226. {
  1227. if (!(cr0 & X86_CR0_PG)) {
  1228. /* From paging/starting to nonpaging */
  1229. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1230. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1231. (CPU_BASED_CR3_LOAD_EXITING |
  1232. CPU_BASED_CR3_STORE_EXITING));
  1233. vcpu->arch.cr0 = cr0;
  1234. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1235. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1236. *hw_cr0 &= ~X86_CR0_WP;
  1237. } else if (!is_paging(vcpu)) {
  1238. /* From nonpaging to paging */
  1239. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1240. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1241. ~(CPU_BASED_CR3_LOAD_EXITING |
  1242. CPU_BASED_CR3_STORE_EXITING));
  1243. vcpu->arch.cr0 = cr0;
  1244. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1245. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1246. *hw_cr0 &= ~X86_CR0_WP;
  1247. }
  1248. }
  1249. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1250. struct kvm_vcpu *vcpu)
  1251. {
  1252. if (!is_paging(vcpu)) {
  1253. *hw_cr4 &= ~X86_CR4_PAE;
  1254. *hw_cr4 |= X86_CR4_PSE;
  1255. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1256. *hw_cr4 &= ~X86_CR4_PAE;
  1257. }
  1258. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1259. {
  1260. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1261. KVM_VM_CR0_ALWAYS_ON;
  1262. vmx_fpu_deactivate(vcpu);
  1263. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1264. enter_pmode(vcpu);
  1265. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1266. enter_rmode(vcpu);
  1267. #ifdef CONFIG_X86_64
  1268. if (vcpu->arch.shadow_efer & EFER_LME) {
  1269. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1270. enter_lmode(vcpu);
  1271. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1272. exit_lmode(vcpu);
  1273. }
  1274. #endif
  1275. if (vm_need_ept())
  1276. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1277. vmcs_writel(CR0_READ_SHADOW, cr0);
  1278. vmcs_writel(GUEST_CR0, hw_cr0);
  1279. vcpu->arch.cr0 = cr0;
  1280. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1281. vmx_fpu_activate(vcpu);
  1282. }
  1283. static u64 construct_eptp(unsigned long root_hpa)
  1284. {
  1285. u64 eptp;
  1286. /* TODO write the value reading from MSR */
  1287. eptp = VMX_EPT_DEFAULT_MT |
  1288. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1289. eptp |= (root_hpa & PAGE_MASK);
  1290. return eptp;
  1291. }
  1292. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1293. {
  1294. unsigned long guest_cr3;
  1295. u64 eptp;
  1296. guest_cr3 = cr3;
  1297. if (vm_need_ept()) {
  1298. eptp = construct_eptp(cr3);
  1299. vmcs_write64(EPT_POINTER, eptp);
  1300. ept_sync_context(eptp);
  1301. ept_load_pdptrs(vcpu);
  1302. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1303. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1304. }
  1305. vmx_flush_tlb(vcpu);
  1306. vmcs_writel(GUEST_CR3, guest_cr3);
  1307. if (vcpu->arch.cr0 & X86_CR0_PE)
  1308. vmx_fpu_deactivate(vcpu);
  1309. }
  1310. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1311. {
  1312. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1313. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1314. vcpu->arch.cr4 = cr4;
  1315. if (vm_need_ept())
  1316. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1317. vmcs_writel(CR4_READ_SHADOW, cr4);
  1318. vmcs_writel(GUEST_CR4, hw_cr4);
  1319. }
  1320. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1321. {
  1322. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1323. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1324. vcpu->arch.shadow_efer = efer;
  1325. if (!msr)
  1326. return;
  1327. if (efer & EFER_LMA) {
  1328. vmcs_write32(VM_ENTRY_CONTROLS,
  1329. vmcs_read32(VM_ENTRY_CONTROLS) |
  1330. VM_ENTRY_IA32E_MODE);
  1331. msr->data = efer;
  1332. } else {
  1333. vmcs_write32(VM_ENTRY_CONTROLS,
  1334. vmcs_read32(VM_ENTRY_CONTROLS) &
  1335. ~VM_ENTRY_IA32E_MODE);
  1336. msr->data = efer & ~EFER_LME;
  1337. }
  1338. setup_msrs(vmx);
  1339. }
  1340. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1341. {
  1342. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1343. return vmcs_readl(sf->base);
  1344. }
  1345. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1346. struct kvm_segment *var, int seg)
  1347. {
  1348. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1349. u32 ar;
  1350. var->base = vmcs_readl(sf->base);
  1351. var->limit = vmcs_read32(sf->limit);
  1352. var->selector = vmcs_read16(sf->selector);
  1353. ar = vmcs_read32(sf->ar_bytes);
  1354. if (ar & AR_UNUSABLE_MASK)
  1355. ar = 0;
  1356. var->type = ar & 15;
  1357. var->s = (ar >> 4) & 1;
  1358. var->dpl = (ar >> 5) & 3;
  1359. var->present = (ar >> 7) & 1;
  1360. var->avl = (ar >> 12) & 1;
  1361. var->l = (ar >> 13) & 1;
  1362. var->db = (ar >> 14) & 1;
  1363. var->g = (ar >> 15) & 1;
  1364. var->unusable = (ar >> 16) & 1;
  1365. }
  1366. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1367. {
  1368. struct kvm_segment kvm_seg;
  1369. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1370. return 0;
  1371. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1372. return 3;
  1373. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1374. return kvm_seg.selector & 3;
  1375. }
  1376. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1377. {
  1378. u32 ar;
  1379. if (var->unusable)
  1380. ar = 1 << 16;
  1381. else {
  1382. ar = var->type & 15;
  1383. ar |= (var->s & 1) << 4;
  1384. ar |= (var->dpl & 3) << 5;
  1385. ar |= (var->present & 1) << 7;
  1386. ar |= (var->avl & 1) << 12;
  1387. ar |= (var->l & 1) << 13;
  1388. ar |= (var->db & 1) << 14;
  1389. ar |= (var->g & 1) << 15;
  1390. }
  1391. if (ar == 0) /* a 0 value means unusable */
  1392. ar = AR_UNUSABLE_MASK;
  1393. return ar;
  1394. }
  1395. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1396. struct kvm_segment *var, int seg)
  1397. {
  1398. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1399. u32 ar;
  1400. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1401. vcpu->arch.rmode.tr.selector = var->selector;
  1402. vcpu->arch.rmode.tr.base = var->base;
  1403. vcpu->arch.rmode.tr.limit = var->limit;
  1404. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1405. return;
  1406. }
  1407. vmcs_writel(sf->base, var->base);
  1408. vmcs_write32(sf->limit, var->limit);
  1409. vmcs_write16(sf->selector, var->selector);
  1410. if (vcpu->arch.rmode.active && var->s) {
  1411. /*
  1412. * Hack real-mode segments into vm86 compatibility.
  1413. */
  1414. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1415. vmcs_writel(sf->base, 0xf0000);
  1416. ar = 0xf3;
  1417. } else
  1418. ar = vmx_segment_access_rights(var);
  1419. vmcs_write32(sf->ar_bytes, ar);
  1420. }
  1421. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1422. {
  1423. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1424. *db = (ar >> 14) & 1;
  1425. *l = (ar >> 13) & 1;
  1426. }
  1427. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1428. {
  1429. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1430. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1431. }
  1432. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1433. {
  1434. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1435. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1436. }
  1437. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1438. {
  1439. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1440. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1441. }
  1442. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1443. {
  1444. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1445. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1446. }
  1447. static int init_rmode_tss(struct kvm *kvm)
  1448. {
  1449. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1450. u16 data = 0;
  1451. int ret = 0;
  1452. int r;
  1453. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1454. if (r < 0)
  1455. goto out;
  1456. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1457. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1458. if (r < 0)
  1459. goto out;
  1460. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1461. if (r < 0)
  1462. goto out;
  1463. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1464. if (r < 0)
  1465. goto out;
  1466. data = ~0;
  1467. r = kvm_write_guest_page(kvm, fn, &data,
  1468. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1469. sizeof(u8));
  1470. if (r < 0)
  1471. goto out;
  1472. ret = 1;
  1473. out:
  1474. return ret;
  1475. }
  1476. static int init_rmode_identity_map(struct kvm *kvm)
  1477. {
  1478. int i, r, ret;
  1479. pfn_t identity_map_pfn;
  1480. u32 tmp;
  1481. if (!vm_need_ept())
  1482. return 1;
  1483. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1484. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1485. "haven't been allocated!\n");
  1486. return 0;
  1487. }
  1488. if (likely(kvm->arch.ept_identity_pagetable_done))
  1489. return 1;
  1490. ret = 0;
  1491. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1492. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1493. if (r < 0)
  1494. goto out;
  1495. /* Set up identity-mapping pagetable for EPT in real mode */
  1496. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1497. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1498. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1499. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1500. &tmp, i * sizeof(tmp), sizeof(tmp));
  1501. if (r < 0)
  1502. goto out;
  1503. }
  1504. kvm->arch.ept_identity_pagetable_done = true;
  1505. ret = 1;
  1506. out:
  1507. return ret;
  1508. }
  1509. static void seg_setup(int seg)
  1510. {
  1511. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1512. vmcs_write16(sf->selector, 0);
  1513. vmcs_writel(sf->base, 0);
  1514. vmcs_write32(sf->limit, 0xffff);
  1515. vmcs_write32(sf->ar_bytes, 0x93);
  1516. }
  1517. static int alloc_apic_access_page(struct kvm *kvm)
  1518. {
  1519. struct kvm_userspace_memory_region kvm_userspace_mem;
  1520. int r = 0;
  1521. down_write(&kvm->slots_lock);
  1522. if (kvm->arch.apic_access_page)
  1523. goto out;
  1524. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1525. kvm_userspace_mem.flags = 0;
  1526. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1527. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1528. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1529. if (r)
  1530. goto out;
  1531. down_read(&current->mm->mmap_sem);
  1532. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1533. up_read(&current->mm->mmap_sem);
  1534. out:
  1535. up_write(&kvm->slots_lock);
  1536. return r;
  1537. }
  1538. static int alloc_identity_pagetable(struct kvm *kvm)
  1539. {
  1540. struct kvm_userspace_memory_region kvm_userspace_mem;
  1541. int r = 0;
  1542. down_write(&kvm->slots_lock);
  1543. if (kvm->arch.ept_identity_pagetable)
  1544. goto out;
  1545. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1546. kvm_userspace_mem.flags = 0;
  1547. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1548. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1549. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1550. if (r)
  1551. goto out;
  1552. down_read(&current->mm->mmap_sem);
  1553. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1554. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1555. up_read(&current->mm->mmap_sem);
  1556. out:
  1557. up_write(&kvm->slots_lock);
  1558. return r;
  1559. }
  1560. static void allocate_vpid(struct vcpu_vmx *vmx)
  1561. {
  1562. int vpid;
  1563. vmx->vpid = 0;
  1564. if (!enable_vpid || !cpu_has_vmx_vpid())
  1565. return;
  1566. spin_lock(&vmx_vpid_lock);
  1567. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1568. if (vpid < VMX_NR_VPIDS) {
  1569. vmx->vpid = vpid;
  1570. __set_bit(vpid, vmx_vpid_bitmap);
  1571. }
  1572. spin_unlock(&vmx_vpid_lock);
  1573. }
  1574. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1575. {
  1576. void *va;
  1577. if (!cpu_has_vmx_msr_bitmap())
  1578. return;
  1579. /*
  1580. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1581. * have the write-low and read-high bitmap offsets the wrong way round.
  1582. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1583. */
  1584. va = kmap(msr_bitmap);
  1585. if (msr <= 0x1fff) {
  1586. __clear_bit(msr, va + 0x000); /* read-low */
  1587. __clear_bit(msr, va + 0x800); /* write-low */
  1588. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1589. msr &= 0x1fff;
  1590. __clear_bit(msr, va + 0x400); /* read-high */
  1591. __clear_bit(msr, va + 0xc00); /* write-high */
  1592. }
  1593. kunmap(msr_bitmap);
  1594. }
  1595. /*
  1596. * Sets up the vmcs for emulated real mode.
  1597. */
  1598. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1599. {
  1600. u32 host_sysenter_cs;
  1601. u32 junk;
  1602. unsigned long a;
  1603. struct descriptor_table dt;
  1604. int i;
  1605. unsigned long kvm_vmx_return;
  1606. u32 exec_control;
  1607. /* I/O */
  1608. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1609. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1610. if (cpu_has_vmx_msr_bitmap())
  1611. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1612. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1613. /* Control */
  1614. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1615. vmcs_config.pin_based_exec_ctrl);
  1616. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1617. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1618. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1619. #ifdef CONFIG_X86_64
  1620. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1621. CPU_BASED_CR8_LOAD_EXITING;
  1622. #endif
  1623. }
  1624. if (!vm_need_ept())
  1625. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1626. CPU_BASED_CR3_LOAD_EXITING;
  1627. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1628. if (cpu_has_secondary_exec_ctrls()) {
  1629. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1630. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1631. exec_control &=
  1632. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1633. if (vmx->vpid == 0)
  1634. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1635. if (!vm_need_ept())
  1636. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1637. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1638. }
  1639. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1640. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1641. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1642. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1643. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1644. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1645. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1646. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1647. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1648. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1649. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1650. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1651. #ifdef CONFIG_X86_64
  1652. rdmsrl(MSR_FS_BASE, a);
  1653. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1654. rdmsrl(MSR_GS_BASE, a);
  1655. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1656. #else
  1657. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1658. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1659. #endif
  1660. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1661. kvm_get_idt(&dt);
  1662. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1663. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1664. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1665. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1666. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1667. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1668. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1669. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1670. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1671. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1672. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1673. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1674. for (i = 0; i < NR_VMX_MSR; ++i) {
  1675. u32 index = vmx_msr_index[i];
  1676. u32 data_low, data_high;
  1677. u64 data;
  1678. int j = vmx->nmsrs;
  1679. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1680. continue;
  1681. if (wrmsr_safe(index, data_low, data_high) < 0)
  1682. continue;
  1683. data = data_low | ((u64)data_high << 32);
  1684. vmx->host_msrs[j].index = index;
  1685. vmx->host_msrs[j].reserved = 0;
  1686. vmx->host_msrs[j].data = data;
  1687. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1688. ++vmx->nmsrs;
  1689. }
  1690. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1691. /* 22.2.1, 20.8.1 */
  1692. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1693. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1694. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1695. return 0;
  1696. }
  1697. static int init_rmode(struct kvm *kvm)
  1698. {
  1699. if (!init_rmode_tss(kvm))
  1700. return 0;
  1701. if (!init_rmode_identity_map(kvm))
  1702. return 0;
  1703. return 1;
  1704. }
  1705. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1706. {
  1707. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1708. u64 msr;
  1709. int ret;
  1710. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1711. down_read(&vcpu->kvm->slots_lock);
  1712. if (!init_rmode(vmx->vcpu.kvm)) {
  1713. ret = -ENOMEM;
  1714. goto out;
  1715. }
  1716. vmx->vcpu.arch.rmode.active = 0;
  1717. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1718. kvm_set_cr8(&vmx->vcpu, 0);
  1719. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1720. if (vmx->vcpu.vcpu_id == 0)
  1721. msr |= MSR_IA32_APICBASE_BSP;
  1722. kvm_set_apic_base(&vmx->vcpu, msr);
  1723. fx_init(&vmx->vcpu);
  1724. /*
  1725. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1726. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1727. */
  1728. if (vmx->vcpu.vcpu_id == 0) {
  1729. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1730. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1731. } else {
  1732. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1733. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1734. }
  1735. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1736. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1737. seg_setup(VCPU_SREG_DS);
  1738. seg_setup(VCPU_SREG_ES);
  1739. seg_setup(VCPU_SREG_FS);
  1740. seg_setup(VCPU_SREG_GS);
  1741. seg_setup(VCPU_SREG_SS);
  1742. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1743. vmcs_writel(GUEST_TR_BASE, 0);
  1744. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1745. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1746. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1747. vmcs_writel(GUEST_LDTR_BASE, 0);
  1748. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1749. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1750. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1751. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1752. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1753. vmcs_writel(GUEST_RFLAGS, 0x02);
  1754. if (vmx->vcpu.vcpu_id == 0)
  1755. kvm_rip_write(vcpu, 0xfff0);
  1756. else
  1757. kvm_rip_write(vcpu, 0);
  1758. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1759. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1760. vmcs_writel(GUEST_DR7, 0x400);
  1761. vmcs_writel(GUEST_GDTR_BASE, 0);
  1762. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1763. vmcs_writel(GUEST_IDTR_BASE, 0);
  1764. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1765. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1766. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1767. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1768. guest_write_tsc(0);
  1769. /* Special registers */
  1770. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1771. setup_msrs(vmx);
  1772. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1773. if (cpu_has_vmx_tpr_shadow()) {
  1774. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1775. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1776. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1777. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1778. vmcs_write32(TPR_THRESHOLD, 0);
  1779. }
  1780. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1781. vmcs_write64(APIC_ACCESS_ADDR,
  1782. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1783. if (vmx->vpid != 0)
  1784. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1785. vmx->vcpu.arch.cr0 = 0x60000010;
  1786. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1787. vmx_set_cr4(&vmx->vcpu, 0);
  1788. vmx_set_efer(&vmx->vcpu, 0);
  1789. vmx_fpu_activate(&vmx->vcpu);
  1790. update_exception_bitmap(&vmx->vcpu);
  1791. vpid_sync_vcpu_all(vmx);
  1792. ret = 0;
  1793. out:
  1794. up_read(&vcpu->kvm->slots_lock);
  1795. return ret;
  1796. }
  1797. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1798. {
  1799. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1800. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1801. if (vcpu->arch.rmode.active) {
  1802. vmx->rmode.irq.pending = true;
  1803. vmx->rmode.irq.vector = irq;
  1804. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  1805. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1806. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1807. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1808. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  1809. return;
  1810. }
  1811. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1812. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1813. }
  1814. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1815. {
  1816. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1817. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  1818. }
  1819. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1820. {
  1821. int word_index = __ffs(vcpu->arch.irq_summary);
  1822. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1823. int irq = word_index * BITS_PER_LONG + bit_index;
  1824. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1825. if (!vcpu->arch.irq_pending[word_index])
  1826. clear_bit(word_index, &vcpu->arch.irq_summary);
  1827. vmx_inject_irq(vcpu, irq);
  1828. }
  1829. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1830. struct kvm_run *kvm_run)
  1831. {
  1832. u32 cpu_based_vm_exec_control;
  1833. vcpu->arch.interrupt_window_open =
  1834. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1835. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1836. if (vcpu->arch.interrupt_window_open &&
  1837. vcpu->arch.irq_summary &&
  1838. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1839. /*
  1840. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1841. */
  1842. kvm_do_inject_irq(vcpu);
  1843. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1844. if (!vcpu->arch.interrupt_window_open &&
  1845. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1846. /*
  1847. * Interrupts blocked. Wait for unblock.
  1848. */
  1849. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1850. else
  1851. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1852. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1853. }
  1854. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1855. {
  1856. int ret;
  1857. struct kvm_userspace_memory_region tss_mem = {
  1858. .slot = 8,
  1859. .guest_phys_addr = addr,
  1860. .memory_size = PAGE_SIZE * 3,
  1861. .flags = 0,
  1862. };
  1863. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1864. if (ret)
  1865. return ret;
  1866. kvm->arch.tss_addr = addr;
  1867. return 0;
  1868. }
  1869. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1870. {
  1871. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1872. set_debugreg(dbg->bp[0], 0);
  1873. set_debugreg(dbg->bp[1], 1);
  1874. set_debugreg(dbg->bp[2], 2);
  1875. set_debugreg(dbg->bp[3], 3);
  1876. if (dbg->singlestep) {
  1877. unsigned long flags;
  1878. flags = vmcs_readl(GUEST_RFLAGS);
  1879. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1880. vmcs_writel(GUEST_RFLAGS, flags);
  1881. }
  1882. }
  1883. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1884. int vec, u32 err_code)
  1885. {
  1886. /*
  1887. * Instruction with address size override prefix opcode 0x67
  1888. * Cause the #SS fault with 0 error code in VM86 mode.
  1889. */
  1890. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1891. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1892. return 1;
  1893. return 0;
  1894. }
  1895. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1896. {
  1897. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1898. u32 intr_info, error_code;
  1899. unsigned long cr2, rip;
  1900. u32 vect_info;
  1901. enum emulation_result er;
  1902. vect_info = vmx->idt_vectoring_info;
  1903. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1904. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1905. !is_page_fault(intr_info))
  1906. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1907. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1908. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1909. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1910. set_bit(irq, vcpu->arch.irq_pending);
  1911. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1912. }
  1913. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1914. return 1; /* already handled by vmx_vcpu_run() */
  1915. if (is_no_device(intr_info)) {
  1916. vmx_fpu_activate(vcpu);
  1917. return 1;
  1918. }
  1919. if (is_invalid_opcode(intr_info)) {
  1920. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1921. if (er != EMULATE_DONE)
  1922. kvm_queue_exception(vcpu, UD_VECTOR);
  1923. return 1;
  1924. }
  1925. error_code = 0;
  1926. rip = kvm_rip_read(vcpu);
  1927. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1928. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1929. if (is_page_fault(intr_info)) {
  1930. /* EPT won't cause page fault directly */
  1931. if (vm_need_ept())
  1932. BUG();
  1933. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1934. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1935. (u32)((u64)cr2 >> 32), handler);
  1936. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  1937. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  1938. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1939. }
  1940. if (vcpu->arch.rmode.active &&
  1941. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1942. error_code)) {
  1943. if (vcpu->arch.halt_request) {
  1944. vcpu->arch.halt_request = 0;
  1945. return kvm_emulate_halt(vcpu);
  1946. }
  1947. return 1;
  1948. }
  1949. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1950. (INTR_TYPE_EXCEPTION | 1)) {
  1951. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1952. return 0;
  1953. }
  1954. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1955. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1956. kvm_run->ex.error_code = error_code;
  1957. return 0;
  1958. }
  1959. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1960. struct kvm_run *kvm_run)
  1961. {
  1962. ++vcpu->stat.irq_exits;
  1963. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1964. return 1;
  1965. }
  1966. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1967. {
  1968. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1969. return 0;
  1970. }
  1971. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1972. {
  1973. unsigned long exit_qualification;
  1974. int size, down, in, string, rep;
  1975. unsigned port;
  1976. ++vcpu->stat.io_exits;
  1977. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1978. string = (exit_qualification & 16) != 0;
  1979. if (string) {
  1980. if (emulate_instruction(vcpu,
  1981. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1982. return 0;
  1983. return 1;
  1984. }
  1985. size = (exit_qualification & 7) + 1;
  1986. in = (exit_qualification & 8) != 0;
  1987. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1988. rep = (exit_qualification & 32) != 0;
  1989. port = exit_qualification >> 16;
  1990. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1991. }
  1992. static void
  1993. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1994. {
  1995. /*
  1996. * Patch in the VMCALL instruction:
  1997. */
  1998. hypercall[0] = 0x0f;
  1999. hypercall[1] = 0x01;
  2000. hypercall[2] = 0xc1;
  2001. }
  2002. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2003. {
  2004. unsigned long exit_qualification;
  2005. int cr;
  2006. int reg;
  2007. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2008. cr = exit_qualification & 15;
  2009. reg = (exit_qualification >> 8) & 15;
  2010. switch ((exit_qualification >> 4) & 3) {
  2011. case 0: /* mov to cr */
  2012. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2013. (u32)kvm_register_read(vcpu, reg),
  2014. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2015. handler);
  2016. switch (cr) {
  2017. case 0:
  2018. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2019. skip_emulated_instruction(vcpu);
  2020. return 1;
  2021. case 3:
  2022. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2023. skip_emulated_instruction(vcpu);
  2024. return 1;
  2025. case 4:
  2026. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2027. skip_emulated_instruction(vcpu);
  2028. return 1;
  2029. case 8:
  2030. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2031. skip_emulated_instruction(vcpu);
  2032. if (irqchip_in_kernel(vcpu->kvm))
  2033. return 1;
  2034. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2035. return 0;
  2036. };
  2037. break;
  2038. case 2: /* clts */
  2039. vmx_fpu_deactivate(vcpu);
  2040. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2041. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2042. vmx_fpu_activate(vcpu);
  2043. KVMTRACE_0D(CLTS, vcpu, handler);
  2044. skip_emulated_instruction(vcpu);
  2045. return 1;
  2046. case 1: /*mov from cr*/
  2047. switch (cr) {
  2048. case 3:
  2049. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2050. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2051. (u32)kvm_register_read(vcpu, reg),
  2052. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2053. handler);
  2054. skip_emulated_instruction(vcpu);
  2055. return 1;
  2056. case 8:
  2057. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2058. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2059. (u32)kvm_register_read(vcpu, reg), handler);
  2060. skip_emulated_instruction(vcpu);
  2061. return 1;
  2062. }
  2063. break;
  2064. case 3: /* lmsw */
  2065. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2066. skip_emulated_instruction(vcpu);
  2067. return 1;
  2068. default:
  2069. break;
  2070. }
  2071. kvm_run->exit_reason = 0;
  2072. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2073. (int)(exit_qualification >> 4) & 3, cr);
  2074. return 0;
  2075. }
  2076. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2077. {
  2078. unsigned long exit_qualification;
  2079. unsigned long val;
  2080. int dr, reg;
  2081. /*
  2082. * FIXME: this code assumes the host is debugging the guest.
  2083. * need to deal with guest debugging itself too.
  2084. */
  2085. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2086. dr = exit_qualification & 7;
  2087. reg = (exit_qualification >> 8) & 15;
  2088. if (exit_qualification & 16) {
  2089. /* mov from dr */
  2090. switch (dr) {
  2091. case 6:
  2092. val = 0xffff0ff0;
  2093. break;
  2094. case 7:
  2095. val = 0x400;
  2096. break;
  2097. default:
  2098. val = 0;
  2099. }
  2100. kvm_register_write(vcpu, reg, val);
  2101. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2102. } else {
  2103. /* mov to dr */
  2104. }
  2105. skip_emulated_instruction(vcpu);
  2106. return 1;
  2107. }
  2108. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2109. {
  2110. kvm_emulate_cpuid(vcpu);
  2111. return 1;
  2112. }
  2113. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2114. {
  2115. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2116. u64 data;
  2117. if (vmx_get_msr(vcpu, ecx, &data)) {
  2118. kvm_inject_gp(vcpu, 0);
  2119. return 1;
  2120. }
  2121. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2122. handler);
  2123. /* FIXME: handling of bits 32:63 of rax, rdx */
  2124. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2125. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2126. skip_emulated_instruction(vcpu);
  2127. return 1;
  2128. }
  2129. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2130. {
  2131. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2132. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2133. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2134. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2135. handler);
  2136. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2137. kvm_inject_gp(vcpu, 0);
  2138. return 1;
  2139. }
  2140. skip_emulated_instruction(vcpu);
  2141. return 1;
  2142. }
  2143. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2144. struct kvm_run *kvm_run)
  2145. {
  2146. return 1;
  2147. }
  2148. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2149. struct kvm_run *kvm_run)
  2150. {
  2151. u32 cpu_based_vm_exec_control;
  2152. /* clear pending irq */
  2153. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2154. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2155. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2156. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2157. /*
  2158. * If the user space waits to inject interrupts, exit as soon as
  2159. * possible
  2160. */
  2161. if (kvm_run->request_interrupt_window &&
  2162. !vcpu->arch.irq_summary) {
  2163. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2164. ++vcpu->stat.irq_window_exits;
  2165. return 0;
  2166. }
  2167. return 1;
  2168. }
  2169. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2170. {
  2171. skip_emulated_instruction(vcpu);
  2172. return kvm_emulate_halt(vcpu);
  2173. }
  2174. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2175. {
  2176. skip_emulated_instruction(vcpu);
  2177. kvm_emulate_hypercall(vcpu);
  2178. return 1;
  2179. }
  2180. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2181. {
  2182. skip_emulated_instruction(vcpu);
  2183. /* TODO: Add support for VT-d/pass-through device */
  2184. return 1;
  2185. }
  2186. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2187. {
  2188. u64 exit_qualification;
  2189. enum emulation_result er;
  2190. unsigned long offset;
  2191. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2192. offset = exit_qualification & 0xffful;
  2193. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2194. if (er != EMULATE_DONE) {
  2195. printk(KERN_ERR
  2196. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2197. offset);
  2198. return -ENOTSUPP;
  2199. }
  2200. return 1;
  2201. }
  2202. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2203. {
  2204. unsigned long exit_qualification;
  2205. u16 tss_selector;
  2206. int reason;
  2207. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2208. reason = (u32)exit_qualification >> 30;
  2209. tss_selector = exit_qualification;
  2210. return kvm_task_switch(vcpu, tss_selector, reason);
  2211. }
  2212. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2213. {
  2214. u64 exit_qualification;
  2215. enum emulation_result er;
  2216. gpa_t gpa;
  2217. unsigned long hva;
  2218. int gla_validity;
  2219. int r;
  2220. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2221. if (exit_qualification & (1 << 6)) {
  2222. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2223. return -ENOTSUPP;
  2224. }
  2225. gla_validity = (exit_qualification >> 7) & 0x3;
  2226. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2227. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2228. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2229. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2230. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2231. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2232. (long unsigned int)exit_qualification);
  2233. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2234. kvm_run->hw.hardware_exit_reason = 0;
  2235. return -ENOTSUPP;
  2236. }
  2237. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2238. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2239. if (!kvm_is_error_hva(hva)) {
  2240. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2241. if (r < 0) {
  2242. printk(KERN_ERR "EPT: Not enough memory!\n");
  2243. return -ENOMEM;
  2244. }
  2245. return 1;
  2246. } else {
  2247. /* must be MMIO */
  2248. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2249. if (er == EMULATE_FAIL) {
  2250. printk(KERN_ERR
  2251. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2252. er);
  2253. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2254. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2255. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2256. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2257. (long unsigned int)exit_qualification);
  2258. return -ENOTSUPP;
  2259. } else if (er == EMULATE_DO_MMIO)
  2260. return 0;
  2261. }
  2262. return 1;
  2263. }
  2264. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2265. {
  2266. u32 cpu_based_vm_exec_control;
  2267. /* clear pending NMI */
  2268. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2269. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2270. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2271. ++vcpu->stat.nmi_window_exits;
  2272. return 1;
  2273. }
  2274. /*
  2275. * The exit handlers return 1 if the exit was handled fully and guest execution
  2276. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2277. * to be done to userspace and return 0.
  2278. */
  2279. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2280. struct kvm_run *kvm_run) = {
  2281. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2282. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2283. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2284. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2285. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2286. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2287. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2288. [EXIT_REASON_CPUID] = handle_cpuid,
  2289. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2290. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2291. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2292. [EXIT_REASON_HLT] = handle_halt,
  2293. [EXIT_REASON_VMCALL] = handle_vmcall,
  2294. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2295. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2296. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2297. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2298. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2299. };
  2300. static const int kvm_vmx_max_exit_handlers =
  2301. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2302. /*
  2303. * The guest has exited. See if we can fix it or if we need userspace
  2304. * assistance.
  2305. */
  2306. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2307. {
  2308. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2309. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2310. u32 vectoring_info = vmx->idt_vectoring_info;
  2311. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2312. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2313. /* Access CR3 don't cause VMExit in paging mode, so we need
  2314. * to sync with guest real CR3. */
  2315. if (vm_need_ept() && is_paging(vcpu)) {
  2316. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2317. ept_load_pdptrs(vcpu);
  2318. }
  2319. if (unlikely(vmx->fail)) {
  2320. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2321. kvm_run->fail_entry.hardware_entry_failure_reason
  2322. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2323. return 0;
  2324. }
  2325. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2326. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2327. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2328. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2329. "exit reason is 0x%x\n", __func__, exit_reason);
  2330. if (exit_reason < kvm_vmx_max_exit_handlers
  2331. && kvm_vmx_exit_handlers[exit_reason])
  2332. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2333. else {
  2334. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2335. kvm_run->hw.hardware_exit_reason = exit_reason;
  2336. }
  2337. return 0;
  2338. }
  2339. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2340. {
  2341. int max_irr, tpr;
  2342. if (!vm_need_tpr_shadow(vcpu->kvm))
  2343. return;
  2344. if (!kvm_lapic_enabled(vcpu) ||
  2345. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2346. vmcs_write32(TPR_THRESHOLD, 0);
  2347. return;
  2348. }
  2349. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2350. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2351. }
  2352. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2353. {
  2354. u32 cpu_based_vm_exec_control;
  2355. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2356. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2357. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2358. }
  2359. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2360. {
  2361. u32 cpu_based_vm_exec_control;
  2362. if (!cpu_has_virtual_nmis())
  2363. return;
  2364. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2365. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2366. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2367. }
  2368. static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
  2369. {
  2370. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2371. return !(guest_intr & (GUEST_INTR_STATE_NMI |
  2372. GUEST_INTR_STATE_MOV_SS |
  2373. GUEST_INTR_STATE_STI));
  2374. }
  2375. static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
  2376. {
  2377. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2378. return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
  2379. GUEST_INTR_STATE_STI)) &&
  2380. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  2381. }
  2382. static void enable_intr_window(struct kvm_vcpu *vcpu)
  2383. {
  2384. if (vcpu->arch.nmi_pending)
  2385. enable_nmi_window(vcpu);
  2386. else if (kvm_cpu_has_interrupt(vcpu))
  2387. enable_irq_window(vcpu);
  2388. }
  2389. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2390. {
  2391. u32 exit_intr_info;
  2392. u32 idt_vectoring_info;
  2393. bool unblock_nmi;
  2394. u8 vector;
  2395. int type;
  2396. bool idtv_info_valid;
  2397. u32 error;
  2398. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2399. if (cpu_has_virtual_nmis()) {
  2400. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2401. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2402. /*
  2403. * SDM 3: 25.7.1.2
  2404. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2405. * a guest IRET fault.
  2406. */
  2407. if (unblock_nmi && vector != DF_VECTOR)
  2408. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2409. GUEST_INTR_STATE_NMI);
  2410. }
  2411. idt_vectoring_info = vmx->idt_vectoring_info;
  2412. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2413. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2414. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2415. if (vmx->vcpu.arch.nmi_injected) {
  2416. /*
  2417. * SDM 3: 25.7.1.2
  2418. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2419. * faulted.
  2420. */
  2421. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2422. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2423. GUEST_INTR_STATE_NMI);
  2424. else
  2425. vmx->vcpu.arch.nmi_injected = false;
  2426. }
  2427. kvm_clear_exception_queue(&vmx->vcpu);
  2428. if (idtv_info_valid && type == INTR_TYPE_EXCEPTION) {
  2429. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2430. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2431. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2432. } else
  2433. kvm_queue_exception(&vmx->vcpu, vector);
  2434. vmx->idt_vectoring_info = 0;
  2435. }
  2436. kvm_clear_interrupt_queue(&vmx->vcpu);
  2437. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2438. kvm_queue_interrupt(&vmx->vcpu, vector);
  2439. vmx->idt_vectoring_info = 0;
  2440. }
  2441. }
  2442. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2443. {
  2444. u32 intr_info_field;
  2445. update_tpr_threshold(vcpu);
  2446. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2447. if (cpu_has_virtual_nmis()) {
  2448. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2449. if (vmx_nmi_enabled(vcpu)) {
  2450. vcpu->arch.nmi_pending = false;
  2451. vcpu->arch.nmi_injected = true;
  2452. } else {
  2453. enable_intr_window(vcpu);
  2454. return;
  2455. }
  2456. }
  2457. if (vcpu->arch.nmi_injected) {
  2458. vmx_inject_nmi(vcpu);
  2459. enable_intr_window(vcpu);
  2460. return;
  2461. }
  2462. }
  2463. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2464. if (vmx_irq_enabled(vcpu))
  2465. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2466. else
  2467. enable_irq_window(vcpu);
  2468. }
  2469. if (vcpu->arch.interrupt.pending) {
  2470. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2471. kvm_timer_intr_post(vcpu, vcpu->arch.interrupt.nr);
  2472. }
  2473. }
  2474. /*
  2475. * Failure to inject an interrupt should give us the information
  2476. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2477. * when fetching the interrupt redirection bitmap in the real-mode
  2478. * tss, this doesn't happen. So we do it ourselves.
  2479. */
  2480. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2481. {
  2482. vmx->rmode.irq.pending = 0;
  2483. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2484. return;
  2485. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2486. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2487. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2488. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2489. return;
  2490. }
  2491. vmx->idt_vectoring_info =
  2492. VECTORING_INFO_VALID_MASK
  2493. | INTR_TYPE_EXT_INTR
  2494. | vmx->rmode.irq.vector;
  2495. }
  2496. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2497. {
  2498. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2499. u32 intr_info;
  2500. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2501. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2502. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2503. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2504. /*
  2505. * Loading guest fpu may have cleared host cr0.ts
  2506. */
  2507. vmcs_writel(HOST_CR0, read_cr0());
  2508. asm(
  2509. /* Store host registers */
  2510. #ifdef CONFIG_X86_64
  2511. "push %%rdx; push %%rbp;"
  2512. "push %%rcx \n\t"
  2513. #else
  2514. "push %%edx; push %%ebp;"
  2515. "push %%ecx \n\t"
  2516. #endif
  2517. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2518. /* Check if vmlaunch of vmresume is needed */
  2519. "cmpl $0, %c[launched](%0) \n\t"
  2520. /* Load guest registers. Don't clobber flags. */
  2521. #ifdef CONFIG_X86_64
  2522. "mov %c[cr2](%0), %%rax \n\t"
  2523. "mov %%rax, %%cr2 \n\t"
  2524. "mov %c[rax](%0), %%rax \n\t"
  2525. "mov %c[rbx](%0), %%rbx \n\t"
  2526. "mov %c[rdx](%0), %%rdx \n\t"
  2527. "mov %c[rsi](%0), %%rsi \n\t"
  2528. "mov %c[rdi](%0), %%rdi \n\t"
  2529. "mov %c[rbp](%0), %%rbp \n\t"
  2530. "mov %c[r8](%0), %%r8 \n\t"
  2531. "mov %c[r9](%0), %%r9 \n\t"
  2532. "mov %c[r10](%0), %%r10 \n\t"
  2533. "mov %c[r11](%0), %%r11 \n\t"
  2534. "mov %c[r12](%0), %%r12 \n\t"
  2535. "mov %c[r13](%0), %%r13 \n\t"
  2536. "mov %c[r14](%0), %%r14 \n\t"
  2537. "mov %c[r15](%0), %%r15 \n\t"
  2538. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2539. #else
  2540. "mov %c[cr2](%0), %%eax \n\t"
  2541. "mov %%eax, %%cr2 \n\t"
  2542. "mov %c[rax](%0), %%eax \n\t"
  2543. "mov %c[rbx](%0), %%ebx \n\t"
  2544. "mov %c[rdx](%0), %%edx \n\t"
  2545. "mov %c[rsi](%0), %%esi \n\t"
  2546. "mov %c[rdi](%0), %%edi \n\t"
  2547. "mov %c[rbp](%0), %%ebp \n\t"
  2548. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2549. #endif
  2550. /* Enter guest mode */
  2551. "jne .Llaunched \n\t"
  2552. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2553. "jmp .Lkvm_vmx_return \n\t"
  2554. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2555. ".Lkvm_vmx_return: "
  2556. /* Save guest registers, load host registers, keep flags */
  2557. #ifdef CONFIG_X86_64
  2558. "xchg %0, (%%rsp) \n\t"
  2559. "mov %%rax, %c[rax](%0) \n\t"
  2560. "mov %%rbx, %c[rbx](%0) \n\t"
  2561. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2562. "mov %%rdx, %c[rdx](%0) \n\t"
  2563. "mov %%rsi, %c[rsi](%0) \n\t"
  2564. "mov %%rdi, %c[rdi](%0) \n\t"
  2565. "mov %%rbp, %c[rbp](%0) \n\t"
  2566. "mov %%r8, %c[r8](%0) \n\t"
  2567. "mov %%r9, %c[r9](%0) \n\t"
  2568. "mov %%r10, %c[r10](%0) \n\t"
  2569. "mov %%r11, %c[r11](%0) \n\t"
  2570. "mov %%r12, %c[r12](%0) \n\t"
  2571. "mov %%r13, %c[r13](%0) \n\t"
  2572. "mov %%r14, %c[r14](%0) \n\t"
  2573. "mov %%r15, %c[r15](%0) \n\t"
  2574. "mov %%cr2, %%rax \n\t"
  2575. "mov %%rax, %c[cr2](%0) \n\t"
  2576. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2577. #else
  2578. "xchg %0, (%%esp) \n\t"
  2579. "mov %%eax, %c[rax](%0) \n\t"
  2580. "mov %%ebx, %c[rbx](%0) \n\t"
  2581. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2582. "mov %%edx, %c[rdx](%0) \n\t"
  2583. "mov %%esi, %c[rsi](%0) \n\t"
  2584. "mov %%edi, %c[rdi](%0) \n\t"
  2585. "mov %%ebp, %c[rbp](%0) \n\t"
  2586. "mov %%cr2, %%eax \n\t"
  2587. "mov %%eax, %c[cr2](%0) \n\t"
  2588. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2589. #endif
  2590. "setbe %c[fail](%0) \n\t"
  2591. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2592. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2593. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2594. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2595. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2596. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2597. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2598. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2599. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2600. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2601. #ifdef CONFIG_X86_64
  2602. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2603. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2604. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2605. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2606. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2607. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2608. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2609. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2610. #endif
  2611. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2612. : "cc", "memory"
  2613. #ifdef CONFIG_X86_64
  2614. , "rbx", "rdi", "rsi"
  2615. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2616. #else
  2617. , "ebx", "edi", "rsi"
  2618. #endif
  2619. );
  2620. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2621. vcpu->arch.regs_dirty = 0;
  2622. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2623. if (vmx->rmode.irq.pending)
  2624. fixup_rmode_irq(vmx);
  2625. vcpu->arch.interrupt_window_open =
  2626. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2627. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
  2628. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2629. vmx->launched = 1;
  2630. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2631. /* We need to handle NMIs before interrupts are enabled */
  2632. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
  2633. (intr_info & INTR_INFO_VALID_MASK)) {
  2634. KVMTRACE_0D(NMI, vcpu, handler);
  2635. asm("int $2");
  2636. }
  2637. vmx_complete_interrupts(vmx);
  2638. }
  2639. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2640. {
  2641. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2642. if (vmx->vmcs) {
  2643. vcpu_clear(vmx);
  2644. free_vmcs(vmx->vmcs);
  2645. vmx->vmcs = NULL;
  2646. }
  2647. }
  2648. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2649. {
  2650. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2651. spin_lock(&vmx_vpid_lock);
  2652. if (vmx->vpid != 0)
  2653. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2654. spin_unlock(&vmx_vpid_lock);
  2655. vmx_free_vmcs(vcpu);
  2656. kfree(vmx->host_msrs);
  2657. kfree(vmx->guest_msrs);
  2658. kvm_vcpu_uninit(vcpu);
  2659. kmem_cache_free(kvm_vcpu_cache, vmx);
  2660. }
  2661. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2662. {
  2663. int err;
  2664. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2665. int cpu;
  2666. if (!vmx)
  2667. return ERR_PTR(-ENOMEM);
  2668. allocate_vpid(vmx);
  2669. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2670. if (err)
  2671. goto free_vcpu;
  2672. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2673. if (!vmx->guest_msrs) {
  2674. err = -ENOMEM;
  2675. goto uninit_vcpu;
  2676. }
  2677. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2678. if (!vmx->host_msrs)
  2679. goto free_guest_msrs;
  2680. vmx->vmcs = alloc_vmcs();
  2681. if (!vmx->vmcs)
  2682. goto free_msrs;
  2683. vmcs_clear(vmx->vmcs);
  2684. cpu = get_cpu();
  2685. vmx_vcpu_load(&vmx->vcpu, cpu);
  2686. err = vmx_vcpu_setup(vmx);
  2687. vmx_vcpu_put(&vmx->vcpu);
  2688. put_cpu();
  2689. if (err)
  2690. goto free_vmcs;
  2691. if (vm_need_virtualize_apic_accesses(kvm))
  2692. if (alloc_apic_access_page(kvm) != 0)
  2693. goto free_vmcs;
  2694. if (vm_need_ept())
  2695. if (alloc_identity_pagetable(kvm) != 0)
  2696. goto free_vmcs;
  2697. return &vmx->vcpu;
  2698. free_vmcs:
  2699. free_vmcs(vmx->vmcs);
  2700. free_msrs:
  2701. kfree(vmx->host_msrs);
  2702. free_guest_msrs:
  2703. kfree(vmx->guest_msrs);
  2704. uninit_vcpu:
  2705. kvm_vcpu_uninit(&vmx->vcpu);
  2706. free_vcpu:
  2707. kmem_cache_free(kvm_vcpu_cache, vmx);
  2708. return ERR_PTR(err);
  2709. }
  2710. static void __init vmx_check_processor_compat(void *rtn)
  2711. {
  2712. struct vmcs_config vmcs_conf;
  2713. *(int *)rtn = 0;
  2714. if (setup_vmcs_config(&vmcs_conf) < 0)
  2715. *(int *)rtn = -EIO;
  2716. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2717. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2718. smp_processor_id());
  2719. *(int *)rtn = -EIO;
  2720. }
  2721. }
  2722. static int get_ept_level(void)
  2723. {
  2724. return VMX_EPT_DEFAULT_GAW + 1;
  2725. }
  2726. static struct kvm_x86_ops vmx_x86_ops = {
  2727. .cpu_has_kvm_support = cpu_has_kvm_support,
  2728. .disabled_by_bios = vmx_disabled_by_bios,
  2729. .hardware_setup = hardware_setup,
  2730. .hardware_unsetup = hardware_unsetup,
  2731. .check_processor_compatibility = vmx_check_processor_compat,
  2732. .hardware_enable = hardware_enable,
  2733. .hardware_disable = hardware_disable,
  2734. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2735. .vcpu_create = vmx_create_vcpu,
  2736. .vcpu_free = vmx_free_vcpu,
  2737. .vcpu_reset = vmx_vcpu_reset,
  2738. .prepare_guest_switch = vmx_save_host_state,
  2739. .vcpu_load = vmx_vcpu_load,
  2740. .vcpu_put = vmx_vcpu_put,
  2741. .set_guest_debug = set_guest_debug,
  2742. .guest_debug_pre = kvm_guest_debug_pre,
  2743. .get_msr = vmx_get_msr,
  2744. .set_msr = vmx_set_msr,
  2745. .get_segment_base = vmx_get_segment_base,
  2746. .get_segment = vmx_get_segment,
  2747. .set_segment = vmx_set_segment,
  2748. .get_cpl = vmx_get_cpl,
  2749. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2750. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2751. .set_cr0 = vmx_set_cr0,
  2752. .set_cr3 = vmx_set_cr3,
  2753. .set_cr4 = vmx_set_cr4,
  2754. .set_efer = vmx_set_efer,
  2755. .get_idt = vmx_get_idt,
  2756. .set_idt = vmx_set_idt,
  2757. .get_gdt = vmx_get_gdt,
  2758. .set_gdt = vmx_set_gdt,
  2759. .cache_reg = vmx_cache_reg,
  2760. .get_rflags = vmx_get_rflags,
  2761. .set_rflags = vmx_set_rflags,
  2762. .tlb_flush = vmx_flush_tlb,
  2763. .run = vmx_vcpu_run,
  2764. .handle_exit = kvm_handle_exit,
  2765. .skip_emulated_instruction = skip_emulated_instruction,
  2766. .patch_hypercall = vmx_patch_hypercall,
  2767. .get_irq = vmx_get_irq,
  2768. .set_irq = vmx_inject_irq,
  2769. .queue_exception = vmx_queue_exception,
  2770. .exception_injected = vmx_exception_injected,
  2771. .inject_pending_irq = vmx_intr_assist,
  2772. .inject_pending_vectors = do_interrupt_requests,
  2773. .set_tss_addr = vmx_set_tss_addr,
  2774. .get_tdp_level = get_ept_level,
  2775. };
  2776. static int __init vmx_init(void)
  2777. {
  2778. void *va;
  2779. int r;
  2780. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2781. if (!vmx_io_bitmap_a)
  2782. return -ENOMEM;
  2783. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2784. if (!vmx_io_bitmap_b) {
  2785. r = -ENOMEM;
  2786. goto out;
  2787. }
  2788. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2789. if (!vmx_msr_bitmap) {
  2790. r = -ENOMEM;
  2791. goto out1;
  2792. }
  2793. /*
  2794. * Allow direct access to the PC debug port (it is often used for I/O
  2795. * delays, but the vmexits simply slow things down).
  2796. */
  2797. va = kmap(vmx_io_bitmap_a);
  2798. memset(va, 0xff, PAGE_SIZE);
  2799. clear_bit(0x80, va);
  2800. kunmap(vmx_io_bitmap_a);
  2801. va = kmap(vmx_io_bitmap_b);
  2802. memset(va, 0xff, PAGE_SIZE);
  2803. kunmap(vmx_io_bitmap_b);
  2804. va = kmap(vmx_msr_bitmap);
  2805. memset(va, 0xff, PAGE_SIZE);
  2806. kunmap(vmx_msr_bitmap);
  2807. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2808. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2809. if (r)
  2810. goto out2;
  2811. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2812. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2813. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2814. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2815. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2816. if (vm_need_ept()) {
  2817. bypass_guest_pf = 0;
  2818. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2819. VMX_EPT_WRITABLE_MASK |
  2820. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2821. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  2822. VMX_EPT_EXECUTABLE_MASK);
  2823. kvm_enable_tdp();
  2824. } else
  2825. kvm_disable_tdp();
  2826. if (bypass_guest_pf)
  2827. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2828. ept_sync_global();
  2829. return 0;
  2830. out2:
  2831. __free_page(vmx_msr_bitmap);
  2832. out1:
  2833. __free_page(vmx_io_bitmap_b);
  2834. out:
  2835. __free_page(vmx_io_bitmap_a);
  2836. return r;
  2837. }
  2838. static void __exit vmx_exit(void)
  2839. {
  2840. __free_page(vmx_msr_bitmap);
  2841. __free_page(vmx_io_bitmap_b);
  2842. __free_page(vmx_io_bitmap_a);
  2843. kvm_exit();
  2844. }
  2845. module_init(vmx_init)
  2846. module_exit(vmx_exit)