skge.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/mii.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "1.11"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  48. #define MAX_RX_RING_SIZE 4096
  49. #define RX_COPY_THRESHOLD 128
  50. #define RX_BUF_SIZE 1536
  51. #define PHY_RETRIES 1000
  52. #define ETH_JUMBO_MTU 9000
  53. #define TX_WATCHDOG (5 * HZ)
  54. #define NAPI_WEIGHT 64
  55. #define BLINK_MS 250
  56. #define LINK_HZ (HZ/2)
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct net_device *dev);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  99. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  100. static int skge_get_regs_len(struct net_device *dev)
  101. {
  102. return 0x4000;
  103. }
  104. /*
  105. * Returns copy of whole control register region
  106. * Note: skip RAM address register because accessing it will
  107. * cause bus hangs!
  108. */
  109. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  110. void *p)
  111. {
  112. const struct skge_port *skge = netdev_priv(dev);
  113. const void __iomem *io = skge->hw->regs;
  114. regs->version = 1;
  115. memset(p, 0, regs->len);
  116. memcpy_fromio(p, io, B3_RAM_ADDR);
  117. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  118. regs->len - B3_RI_WTO_R1);
  119. }
  120. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  121. static u32 wol_supported(const struct skge_hw *hw)
  122. {
  123. if (hw->chip_id == CHIP_ID_GENESIS)
  124. return 0;
  125. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  126. return 0;
  127. return WAKE_MAGIC | WAKE_PHY;
  128. }
  129. static u32 pci_wake_enabled(struct pci_dev *dev)
  130. {
  131. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  132. u16 value;
  133. /* If device doesn't support PM Capabilities, but request is to disable
  134. * wake events, it's a nop; otherwise fail */
  135. if (!pm)
  136. return 0;
  137. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  138. value &= PCI_PM_CAP_PME_MASK;
  139. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  140. return value != 0;
  141. }
  142. static void skge_wol_init(struct skge_port *skge)
  143. {
  144. struct skge_hw *hw = skge->hw;
  145. int port = skge->port;
  146. u16 ctrl;
  147. skge_write16(hw, B0_CTST, CS_RST_CLR);
  148. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  149. /* Turn on Vaux */
  150. skge_write8(hw, B0_POWER_CTRL,
  151. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  152. /* WA code for COMA mode -- clear PHY reset */
  153. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  154. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  155. u32 reg = skge_read32(hw, B2_GP_IO);
  156. reg |= GP_DIR_9;
  157. reg &= ~GP_IO_9;
  158. skge_write32(hw, B2_GP_IO, reg);
  159. }
  160. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  161. GPC_DIS_SLEEP |
  162. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  163. GPC_ANEG_1 | GPC_RST_SET);
  164. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  165. GPC_DIS_SLEEP |
  166. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  167. GPC_ANEG_1 | GPC_RST_CLR);
  168. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  169. /* Force to 10/100 skge_reset will re-enable on resume */
  170. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  171. PHY_AN_100FULL | PHY_AN_100HALF |
  172. PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
  173. /* no 1000 HD/FD */
  174. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  175. gm_phy_write(hw, port, PHY_MARV_CTRL,
  176. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  177. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  178. /* Set GMAC to no flow control and auto update for speed/duplex */
  179. gma_write16(hw, port, GM_GP_CTRL,
  180. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  181. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  182. /* Set WOL address */
  183. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  184. skge->netdev->dev_addr, ETH_ALEN);
  185. /* Turn on appropriate WOL control bits */
  186. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  187. ctrl = 0;
  188. if (skge->wol & WAKE_PHY)
  189. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  190. else
  191. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  192. if (skge->wol & WAKE_MAGIC)
  193. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  194. else
  195. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  196. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  197. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  198. /* block receiver */
  199. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  200. }
  201. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  202. {
  203. struct skge_port *skge = netdev_priv(dev);
  204. wol->supported = wol_supported(skge->hw);
  205. wol->wolopts = skge->wol;
  206. }
  207. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  208. {
  209. struct skge_port *skge = netdev_priv(dev);
  210. struct skge_hw *hw = skge->hw;
  211. if (wol->wolopts & ~wol_supported(hw))
  212. return -EOPNOTSUPP;
  213. skge->wol = wol->wolopts;
  214. return 0;
  215. }
  216. /* Determine supported/advertised modes based on hardware.
  217. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  218. */
  219. static u32 skge_supported_modes(const struct skge_hw *hw)
  220. {
  221. u32 supported;
  222. if (hw->copper) {
  223. supported = SUPPORTED_10baseT_Half
  224. | SUPPORTED_10baseT_Full
  225. | SUPPORTED_100baseT_Half
  226. | SUPPORTED_100baseT_Full
  227. | SUPPORTED_1000baseT_Half
  228. | SUPPORTED_1000baseT_Full
  229. | SUPPORTED_Autoneg| SUPPORTED_TP;
  230. if (hw->chip_id == CHIP_ID_GENESIS)
  231. supported &= ~(SUPPORTED_10baseT_Half
  232. | SUPPORTED_10baseT_Full
  233. | SUPPORTED_100baseT_Half
  234. | SUPPORTED_100baseT_Full);
  235. else if (hw->chip_id == CHIP_ID_YUKON)
  236. supported &= ~SUPPORTED_1000baseT_Half;
  237. } else
  238. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  239. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  240. return supported;
  241. }
  242. static int skge_get_settings(struct net_device *dev,
  243. struct ethtool_cmd *ecmd)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. struct skge_hw *hw = skge->hw;
  247. ecmd->transceiver = XCVR_INTERNAL;
  248. ecmd->supported = skge_supported_modes(hw);
  249. if (hw->copper) {
  250. ecmd->port = PORT_TP;
  251. ecmd->phy_address = hw->phy_addr;
  252. } else
  253. ecmd->port = PORT_FIBRE;
  254. ecmd->advertising = skge->advertising;
  255. ecmd->autoneg = skge->autoneg;
  256. ecmd->speed = skge->speed;
  257. ecmd->duplex = skge->duplex;
  258. return 0;
  259. }
  260. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  261. {
  262. struct skge_port *skge = netdev_priv(dev);
  263. const struct skge_hw *hw = skge->hw;
  264. u32 supported = skge_supported_modes(hw);
  265. if (ecmd->autoneg == AUTONEG_ENABLE) {
  266. ecmd->advertising = supported;
  267. skge->duplex = -1;
  268. skge->speed = -1;
  269. } else {
  270. u32 setting;
  271. switch (ecmd->speed) {
  272. case SPEED_1000:
  273. if (ecmd->duplex == DUPLEX_FULL)
  274. setting = SUPPORTED_1000baseT_Full;
  275. else if (ecmd->duplex == DUPLEX_HALF)
  276. setting = SUPPORTED_1000baseT_Half;
  277. else
  278. return -EINVAL;
  279. break;
  280. case SPEED_100:
  281. if (ecmd->duplex == DUPLEX_FULL)
  282. setting = SUPPORTED_100baseT_Full;
  283. else if (ecmd->duplex == DUPLEX_HALF)
  284. setting = SUPPORTED_100baseT_Half;
  285. else
  286. return -EINVAL;
  287. break;
  288. case SPEED_10:
  289. if (ecmd->duplex == DUPLEX_FULL)
  290. setting = SUPPORTED_10baseT_Full;
  291. else if (ecmd->duplex == DUPLEX_HALF)
  292. setting = SUPPORTED_10baseT_Half;
  293. else
  294. return -EINVAL;
  295. break;
  296. default:
  297. return -EINVAL;
  298. }
  299. if ((setting & supported) == 0)
  300. return -EINVAL;
  301. skge->speed = ecmd->speed;
  302. skge->duplex = ecmd->duplex;
  303. }
  304. skge->autoneg = ecmd->autoneg;
  305. skge->advertising = ecmd->advertising;
  306. if (netif_running(dev))
  307. skge_phy_reset(skge);
  308. return (0);
  309. }
  310. static void skge_get_drvinfo(struct net_device *dev,
  311. struct ethtool_drvinfo *info)
  312. {
  313. struct skge_port *skge = netdev_priv(dev);
  314. strcpy(info->driver, DRV_NAME);
  315. strcpy(info->version, DRV_VERSION);
  316. strcpy(info->fw_version, "N/A");
  317. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  318. }
  319. static const struct skge_stat {
  320. char name[ETH_GSTRING_LEN];
  321. u16 xmac_offset;
  322. u16 gma_offset;
  323. } skge_stats[] = {
  324. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  325. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  326. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  327. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  328. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  329. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  330. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  331. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  332. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  333. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  334. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  335. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  336. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  337. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  338. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  339. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  340. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  341. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  342. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  343. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  344. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  345. };
  346. static int skge_get_sset_count(struct net_device *dev, int sset)
  347. {
  348. switch (sset) {
  349. case ETH_SS_STATS:
  350. return ARRAY_SIZE(skge_stats);
  351. default:
  352. return -EOPNOTSUPP;
  353. }
  354. }
  355. static void skge_get_ethtool_stats(struct net_device *dev,
  356. struct ethtool_stats *stats, u64 *data)
  357. {
  358. struct skge_port *skge = netdev_priv(dev);
  359. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  360. genesis_get_stats(skge, data);
  361. else
  362. yukon_get_stats(skge, data);
  363. }
  364. /* Use hardware MIB variables for critical path statistics and
  365. * transmit feedback not reported at interrupt.
  366. * Other errors are accounted for in interrupt handler.
  367. */
  368. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  369. {
  370. struct skge_port *skge = netdev_priv(dev);
  371. u64 data[ARRAY_SIZE(skge_stats)];
  372. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  373. genesis_get_stats(skge, data);
  374. else
  375. yukon_get_stats(skge, data);
  376. skge->net_stats.tx_bytes = data[0];
  377. skge->net_stats.rx_bytes = data[1];
  378. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  379. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  380. skge->net_stats.multicast = data[3] + data[5];
  381. skge->net_stats.collisions = data[10];
  382. skge->net_stats.tx_aborted_errors = data[12];
  383. return &skge->net_stats;
  384. }
  385. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  386. {
  387. int i;
  388. switch (stringset) {
  389. case ETH_SS_STATS:
  390. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  391. memcpy(data + i * ETH_GSTRING_LEN,
  392. skge_stats[i].name, ETH_GSTRING_LEN);
  393. break;
  394. }
  395. }
  396. static void skge_get_ring_param(struct net_device *dev,
  397. struct ethtool_ringparam *p)
  398. {
  399. struct skge_port *skge = netdev_priv(dev);
  400. p->rx_max_pending = MAX_RX_RING_SIZE;
  401. p->tx_max_pending = MAX_TX_RING_SIZE;
  402. p->rx_mini_max_pending = 0;
  403. p->rx_jumbo_max_pending = 0;
  404. p->rx_pending = skge->rx_ring.count;
  405. p->tx_pending = skge->tx_ring.count;
  406. p->rx_mini_pending = 0;
  407. p->rx_jumbo_pending = 0;
  408. }
  409. static int skge_set_ring_param(struct net_device *dev,
  410. struct ethtool_ringparam *p)
  411. {
  412. struct skge_port *skge = netdev_priv(dev);
  413. int err;
  414. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  415. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  416. return -EINVAL;
  417. skge->rx_ring.count = p->rx_pending;
  418. skge->tx_ring.count = p->tx_pending;
  419. if (netif_running(dev)) {
  420. skge_down(dev);
  421. err = skge_up(dev);
  422. if (err)
  423. dev_close(dev);
  424. }
  425. return 0;
  426. }
  427. static u32 skge_get_msglevel(struct net_device *netdev)
  428. {
  429. struct skge_port *skge = netdev_priv(netdev);
  430. return skge->msg_enable;
  431. }
  432. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  433. {
  434. struct skge_port *skge = netdev_priv(netdev);
  435. skge->msg_enable = value;
  436. }
  437. static int skge_nway_reset(struct net_device *dev)
  438. {
  439. struct skge_port *skge = netdev_priv(dev);
  440. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  441. return -EINVAL;
  442. skge_phy_reset(skge);
  443. return 0;
  444. }
  445. static int skge_set_sg(struct net_device *dev, u32 data)
  446. {
  447. struct skge_port *skge = netdev_priv(dev);
  448. struct skge_hw *hw = skge->hw;
  449. if (hw->chip_id == CHIP_ID_GENESIS && data)
  450. return -EOPNOTSUPP;
  451. return ethtool_op_set_sg(dev, data);
  452. }
  453. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  454. {
  455. struct skge_port *skge = netdev_priv(dev);
  456. struct skge_hw *hw = skge->hw;
  457. if (hw->chip_id == CHIP_ID_GENESIS && data)
  458. return -EOPNOTSUPP;
  459. return ethtool_op_set_tx_csum(dev, data);
  460. }
  461. static u32 skge_get_rx_csum(struct net_device *dev)
  462. {
  463. struct skge_port *skge = netdev_priv(dev);
  464. return skge->rx_csum;
  465. }
  466. /* Only Yukon supports checksum offload. */
  467. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  468. {
  469. struct skge_port *skge = netdev_priv(dev);
  470. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  471. return -EOPNOTSUPP;
  472. skge->rx_csum = data;
  473. return 0;
  474. }
  475. static void skge_get_pauseparam(struct net_device *dev,
  476. struct ethtool_pauseparam *ecmd)
  477. {
  478. struct skge_port *skge = netdev_priv(dev);
  479. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  480. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  481. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  482. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  483. }
  484. static int skge_set_pauseparam(struct net_device *dev,
  485. struct ethtool_pauseparam *ecmd)
  486. {
  487. struct skge_port *skge = netdev_priv(dev);
  488. struct ethtool_pauseparam old;
  489. skge_get_pauseparam(dev, &old);
  490. if (ecmd->autoneg != old.autoneg)
  491. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  492. else {
  493. if (ecmd->rx_pause && ecmd->tx_pause)
  494. skge->flow_control = FLOW_MODE_SYMMETRIC;
  495. else if (ecmd->rx_pause && !ecmd->tx_pause)
  496. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  497. else if (!ecmd->rx_pause && ecmd->tx_pause)
  498. skge->flow_control = FLOW_MODE_LOC_SEND;
  499. else
  500. skge->flow_control = FLOW_MODE_NONE;
  501. }
  502. if (netif_running(dev))
  503. skge_phy_reset(skge);
  504. return 0;
  505. }
  506. /* Chip internal frequency for clock calculations */
  507. static inline u32 hwkhz(const struct skge_hw *hw)
  508. {
  509. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  510. }
  511. /* Chip HZ to microseconds */
  512. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  513. {
  514. return (ticks * 1000) / hwkhz(hw);
  515. }
  516. /* Microseconds to chip HZ */
  517. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  518. {
  519. return hwkhz(hw) * usec / 1000;
  520. }
  521. static int skge_get_coalesce(struct net_device *dev,
  522. struct ethtool_coalesce *ecmd)
  523. {
  524. struct skge_port *skge = netdev_priv(dev);
  525. struct skge_hw *hw = skge->hw;
  526. int port = skge->port;
  527. ecmd->rx_coalesce_usecs = 0;
  528. ecmd->tx_coalesce_usecs = 0;
  529. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  530. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  531. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  532. if (msk & rxirqmask[port])
  533. ecmd->rx_coalesce_usecs = delay;
  534. if (msk & txirqmask[port])
  535. ecmd->tx_coalesce_usecs = delay;
  536. }
  537. return 0;
  538. }
  539. /* Note: interrupt timer is per board, but can turn on/off per port */
  540. static int skge_set_coalesce(struct net_device *dev,
  541. struct ethtool_coalesce *ecmd)
  542. {
  543. struct skge_port *skge = netdev_priv(dev);
  544. struct skge_hw *hw = skge->hw;
  545. int port = skge->port;
  546. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  547. u32 delay = 25;
  548. if (ecmd->rx_coalesce_usecs == 0)
  549. msk &= ~rxirqmask[port];
  550. else if (ecmd->rx_coalesce_usecs < 25 ||
  551. ecmd->rx_coalesce_usecs > 33333)
  552. return -EINVAL;
  553. else {
  554. msk |= rxirqmask[port];
  555. delay = ecmd->rx_coalesce_usecs;
  556. }
  557. if (ecmd->tx_coalesce_usecs == 0)
  558. msk &= ~txirqmask[port];
  559. else if (ecmd->tx_coalesce_usecs < 25 ||
  560. ecmd->tx_coalesce_usecs > 33333)
  561. return -EINVAL;
  562. else {
  563. msk |= txirqmask[port];
  564. delay = min(delay, ecmd->rx_coalesce_usecs);
  565. }
  566. skge_write32(hw, B2_IRQM_MSK, msk);
  567. if (msk == 0)
  568. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  569. else {
  570. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  571. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  572. }
  573. return 0;
  574. }
  575. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  576. static void skge_led(struct skge_port *skge, enum led_mode mode)
  577. {
  578. struct skge_hw *hw = skge->hw;
  579. int port = skge->port;
  580. spin_lock_bh(&hw->phy_lock);
  581. if (hw->chip_id == CHIP_ID_GENESIS) {
  582. switch (mode) {
  583. case LED_MODE_OFF:
  584. if (hw->phy_type == SK_PHY_BCOM)
  585. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  586. else {
  587. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  588. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  589. }
  590. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  591. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  592. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  593. break;
  594. case LED_MODE_ON:
  595. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  596. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  597. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  598. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  599. break;
  600. case LED_MODE_TST:
  601. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  602. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  603. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  604. if (hw->phy_type == SK_PHY_BCOM)
  605. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  606. else {
  607. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  608. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  609. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  610. }
  611. }
  612. } else {
  613. switch (mode) {
  614. case LED_MODE_OFF:
  615. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  616. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  617. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  618. PHY_M_LED_MO_10(MO_LED_OFF) |
  619. PHY_M_LED_MO_100(MO_LED_OFF) |
  620. PHY_M_LED_MO_1000(MO_LED_OFF) |
  621. PHY_M_LED_MO_RX(MO_LED_OFF));
  622. break;
  623. case LED_MODE_ON:
  624. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  625. PHY_M_LED_PULS_DUR(PULS_170MS) |
  626. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  627. PHY_M_LEDC_TX_CTRL |
  628. PHY_M_LEDC_DP_CTRL);
  629. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  630. PHY_M_LED_MO_RX(MO_LED_OFF) |
  631. (skge->speed == SPEED_100 ?
  632. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  633. break;
  634. case LED_MODE_TST:
  635. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  636. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  637. PHY_M_LED_MO_DUP(MO_LED_ON) |
  638. PHY_M_LED_MO_10(MO_LED_ON) |
  639. PHY_M_LED_MO_100(MO_LED_ON) |
  640. PHY_M_LED_MO_1000(MO_LED_ON) |
  641. PHY_M_LED_MO_RX(MO_LED_ON));
  642. }
  643. }
  644. spin_unlock_bh(&hw->phy_lock);
  645. }
  646. /* blink LED's for finding board */
  647. static int skge_phys_id(struct net_device *dev, u32 data)
  648. {
  649. struct skge_port *skge = netdev_priv(dev);
  650. unsigned long ms;
  651. enum led_mode mode = LED_MODE_TST;
  652. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  653. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  654. else
  655. ms = data * 1000;
  656. while (ms > 0) {
  657. skge_led(skge, mode);
  658. mode ^= LED_MODE_TST;
  659. if (msleep_interruptible(BLINK_MS))
  660. break;
  661. ms -= BLINK_MS;
  662. }
  663. /* back to regular LED state */
  664. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  665. return 0;
  666. }
  667. static const struct ethtool_ops skge_ethtool_ops = {
  668. .get_settings = skge_get_settings,
  669. .set_settings = skge_set_settings,
  670. .get_drvinfo = skge_get_drvinfo,
  671. .get_regs_len = skge_get_regs_len,
  672. .get_regs = skge_get_regs,
  673. .get_wol = skge_get_wol,
  674. .set_wol = skge_set_wol,
  675. .get_msglevel = skge_get_msglevel,
  676. .set_msglevel = skge_set_msglevel,
  677. .nway_reset = skge_nway_reset,
  678. .get_link = ethtool_op_get_link,
  679. .get_ringparam = skge_get_ring_param,
  680. .set_ringparam = skge_set_ring_param,
  681. .get_pauseparam = skge_get_pauseparam,
  682. .set_pauseparam = skge_set_pauseparam,
  683. .get_coalesce = skge_get_coalesce,
  684. .set_coalesce = skge_set_coalesce,
  685. .set_sg = skge_set_sg,
  686. .set_tx_csum = skge_set_tx_csum,
  687. .get_rx_csum = skge_get_rx_csum,
  688. .set_rx_csum = skge_set_rx_csum,
  689. .get_strings = skge_get_strings,
  690. .phys_id = skge_phys_id,
  691. .get_sset_count = skge_get_sset_count,
  692. .get_ethtool_stats = skge_get_ethtool_stats,
  693. };
  694. /*
  695. * Allocate ring elements and chain them together
  696. * One-to-one association of board descriptors with ring elements
  697. */
  698. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  699. {
  700. struct skge_tx_desc *d;
  701. struct skge_element *e;
  702. int i;
  703. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  704. if (!ring->start)
  705. return -ENOMEM;
  706. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  707. e->desc = d;
  708. if (i == ring->count - 1) {
  709. e->next = ring->start;
  710. d->next_offset = base;
  711. } else {
  712. e->next = e + 1;
  713. d->next_offset = base + (i+1) * sizeof(*d);
  714. }
  715. }
  716. ring->to_use = ring->to_clean = ring->start;
  717. return 0;
  718. }
  719. /* Allocate and setup a new buffer for receiving */
  720. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  721. struct sk_buff *skb, unsigned int bufsize)
  722. {
  723. struct skge_rx_desc *rd = e->desc;
  724. u64 map;
  725. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  726. PCI_DMA_FROMDEVICE);
  727. rd->dma_lo = map;
  728. rd->dma_hi = map >> 32;
  729. e->skb = skb;
  730. rd->csum1_start = ETH_HLEN;
  731. rd->csum2_start = ETH_HLEN;
  732. rd->csum1 = 0;
  733. rd->csum2 = 0;
  734. wmb();
  735. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  736. pci_unmap_addr_set(e, mapaddr, map);
  737. pci_unmap_len_set(e, maplen, bufsize);
  738. }
  739. /* Resume receiving using existing skb,
  740. * Note: DMA address is not changed by chip.
  741. * MTU not changed while receiver active.
  742. */
  743. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  744. {
  745. struct skge_rx_desc *rd = e->desc;
  746. rd->csum2 = 0;
  747. rd->csum2_start = ETH_HLEN;
  748. wmb();
  749. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  750. }
  751. /* Free all buffers in receive ring, assumes receiver stopped */
  752. static void skge_rx_clean(struct skge_port *skge)
  753. {
  754. struct skge_hw *hw = skge->hw;
  755. struct skge_ring *ring = &skge->rx_ring;
  756. struct skge_element *e;
  757. e = ring->start;
  758. do {
  759. struct skge_rx_desc *rd = e->desc;
  760. rd->control = 0;
  761. if (e->skb) {
  762. pci_unmap_single(hw->pdev,
  763. pci_unmap_addr(e, mapaddr),
  764. pci_unmap_len(e, maplen),
  765. PCI_DMA_FROMDEVICE);
  766. dev_kfree_skb(e->skb);
  767. e->skb = NULL;
  768. }
  769. } while ((e = e->next) != ring->start);
  770. }
  771. /* Allocate buffers for receive ring
  772. * For receive: to_clean is next received frame.
  773. */
  774. static int skge_rx_fill(struct net_device *dev)
  775. {
  776. struct skge_port *skge = netdev_priv(dev);
  777. struct skge_ring *ring = &skge->rx_ring;
  778. struct skge_element *e;
  779. e = ring->start;
  780. do {
  781. struct sk_buff *skb;
  782. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  783. GFP_KERNEL);
  784. if (!skb)
  785. return -ENOMEM;
  786. skb_reserve(skb, NET_IP_ALIGN);
  787. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  788. } while ( (e = e->next) != ring->start);
  789. ring->to_clean = ring->start;
  790. return 0;
  791. }
  792. static const char *skge_pause(enum pause_status status)
  793. {
  794. switch(status) {
  795. case FLOW_STAT_NONE:
  796. return "none";
  797. case FLOW_STAT_REM_SEND:
  798. return "rx only";
  799. case FLOW_STAT_LOC_SEND:
  800. return "tx_only";
  801. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  802. return "both";
  803. default:
  804. return "indeterminated";
  805. }
  806. }
  807. static void skge_link_up(struct skge_port *skge)
  808. {
  809. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  810. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  811. netif_carrier_on(skge->netdev);
  812. netif_wake_queue(skge->netdev);
  813. if (netif_msg_link(skge)) {
  814. printk(KERN_INFO PFX
  815. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  816. skge->netdev->name, skge->speed,
  817. skge->duplex == DUPLEX_FULL ? "full" : "half",
  818. skge_pause(skge->flow_status));
  819. }
  820. }
  821. static void skge_link_down(struct skge_port *skge)
  822. {
  823. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  824. netif_carrier_off(skge->netdev);
  825. netif_stop_queue(skge->netdev);
  826. if (netif_msg_link(skge))
  827. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  828. }
  829. static void xm_link_down(struct skge_hw *hw, int port)
  830. {
  831. struct net_device *dev = hw->dev[port];
  832. struct skge_port *skge = netdev_priv(dev);
  833. u16 cmd, msk;
  834. if (hw->phy_type == SK_PHY_XMAC) {
  835. msk = xm_read16(hw, port, XM_IMSK);
  836. msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
  837. xm_write16(hw, port, XM_IMSK, msk);
  838. }
  839. cmd = xm_read16(hw, port, XM_MMU_CMD);
  840. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  841. xm_write16(hw, port, XM_MMU_CMD, cmd);
  842. /* dummy read to ensure writing */
  843. (void) xm_read16(hw, port, XM_MMU_CMD);
  844. if (netif_carrier_ok(dev))
  845. skge_link_down(skge);
  846. }
  847. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  848. {
  849. int i;
  850. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  851. *val = xm_read16(hw, port, XM_PHY_DATA);
  852. if (hw->phy_type == SK_PHY_XMAC)
  853. goto ready;
  854. for (i = 0; i < PHY_RETRIES; i++) {
  855. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  856. goto ready;
  857. udelay(1);
  858. }
  859. return -ETIMEDOUT;
  860. ready:
  861. *val = xm_read16(hw, port, XM_PHY_DATA);
  862. return 0;
  863. }
  864. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  865. {
  866. u16 v = 0;
  867. if (__xm_phy_read(hw, port, reg, &v))
  868. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  869. hw->dev[port]->name);
  870. return v;
  871. }
  872. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  873. {
  874. int i;
  875. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  876. for (i = 0; i < PHY_RETRIES; i++) {
  877. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  878. goto ready;
  879. udelay(1);
  880. }
  881. return -EIO;
  882. ready:
  883. xm_write16(hw, port, XM_PHY_DATA, val);
  884. for (i = 0; i < PHY_RETRIES; i++) {
  885. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  886. return 0;
  887. udelay(1);
  888. }
  889. return -ETIMEDOUT;
  890. }
  891. static void genesis_init(struct skge_hw *hw)
  892. {
  893. /* set blink source counter */
  894. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  895. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  896. /* configure mac arbiter */
  897. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  898. /* configure mac arbiter timeout values */
  899. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  900. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  901. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  902. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  903. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  904. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  905. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  906. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  907. /* configure packet arbiter timeout */
  908. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  909. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  910. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  911. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  912. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  913. }
  914. static void genesis_reset(struct skge_hw *hw, int port)
  915. {
  916. const u8 zero[8] = { 0 };
  917. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  918. /* reset the statistics module */
  919. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  920. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  921. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  922. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  923. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  924. /* disable Broadcom PHY IRQ */
  925. if (hw->phy_type == SK_PHY_BCOM)
  926. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  927. xm_outhash(hw, port, XM_HSM, zero);
  928. }
  929. /* Convert mode to MII values */
  930. static const u16 phy_pause_map[] = {
  931. [FLOW_MODE_NONE] = 0,
  932. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  933. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  934. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  935. };
  936. /* special defines for FIBER (88E1011S only) */
  937. static const u16 fiber_pause_map[] = {
  938. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  939. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  940. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  941. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  942. };
  943. /* Check status of Broadcom phy link */
  944. static void bcom_check_link(struct skge_hw *hw, int port)
  945. {
  946. struct net_device *dev = hw->dev[port];
  947. struct skge_port *skge = netdev_priv(dev);
  948. u16 status;
  949. /* read twice because of latch */
  950. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  951. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  952. if ((status & PHY_ST_LSYNC) == 0) {
  953. xm_link_down(hw, port);
  954. return;
  955. }
  956. if (skge->autoneg == AUTONEG_ENABLE) {
  957. u16 lpa, aux;
  958. if (!(status & PHY_ST_AN_OVER))
  959. return;
  960. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  961. if (lpa & PHY_B_AN_RF) {
  962. printk(KERN_NOTICE PFX "%s: remote fault\n",
  963. dev->name);
  964. return;
  965. }
  966. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  967. /* Check Duplex mismatch */
  968. switch (aux & PHY_B_AS_AN_RES_MSK) {
  969. case PHY_B_RES_1000FD:
  970. skge->duplex = DUPLEX_FULL;
  971. break;
  972. case PHY_B_RES_1000HD:
  973. skge->duplex = DUPLEX_HALF;
  974. break;
  975. default:
  976. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  977. dev->name);
  978. return;
  979. }
  980. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  981. switch (aux & PHY_B_AS_PAUSE_MSK) {
  982. case PHY_B_AS_PAUSE_MSK:
  983. skge->flow_status = FLOW_STAT_SYMMETRIC;
  984. break;
  985. case PHY_B_AS_PRR:
  986. skge->flow_status = FLOW_STAT_REM_SEND;
  987. break;
  988. case PHY_B_AS_PRT:
  989. skge->flow_status = FLOW_STAT_LOC_SEND;
  990. break;
  991. default:
  992. skge->flow_status = FLOW_STAT_NONE;
  993. }
  994. skge->speed = SPEED_1000;
  995. }
  996. if (!netif_carrier_ok(dev))
  997. genesis_link_up(skge);
  998. }
  999. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1000. * Phy on for 100 or 10Mbit operation
  1001. */
  1002. static void bcom_phy_init(struct skge_port *skge)
  1003. {
  1004. struct skge_hw *hw = skge->hw;
  1005. int port = skge->port;
  1006. int i;
  1007. u16 id1, r, ext, ctl;
  1008. /* magic workaround patterns for Broadcom */
  1009. static const struct {
  1010. u16 reg;
  1011. u16 val;
  1012. } A1hack[] = {
  1013. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1014. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1015. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1016. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1017. }, C0hack[] = {
  1018. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1019. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1020. };
  1021. /* read Id from external PHY (all have the same address) */
  1022. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1023. /* Optimize MDIO transfer by suppressing preamble. */
  1024. r = xm_read16(hw, port, XM_MMU_CMD);
  1025. r |= XM_MMU_NO_PRE;
  1026. xm_write16(hw, port, XM_MMU_CMD,r);
  1027. switch (id1) {
  1028. case PHY_BCOM_ID1_C0:
  1029. /*
  1030. * Workaround BCOM Errata for the C0 type.
  1031. * Write magic patterns to reserved registers.
  1032. */
  1033. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1034. xm_phy_write(hw, port,
  1035. C0hack[i].reg, C0hack[i].val);
  1036. break;
  1037. case PHY_BCOM_ID1_A1:
  1038. /*
  1039. * Workaround BCOM Errata for the A1 type.
  1040. * Write magic patterns to reserved registers.
  1041. */
  1042. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1043. xm_phy_write(hw, port,
  1044. A1hack[i].reg, A1hack[i].val);
  1045. break;
  1046. }
  1047. /*
  1048. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1049. * Disable Power Management after reset.
  1050. */
  1051. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1052. r |= PHY_B_AC_DIS_PM;
  1053. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1054. /* Dummy read */
  1055. xm_read16(hw, port, XM_ISRC);
  1056. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1057. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1058. if (skge->autoneg == AUTONEG_ENABLE) {
  1059. /*
  1060. * Workaround BCOM Errata #1 for the C5 type.
  1061. * 1000Base-T Link Acquisition Failure in Slave Mode
  1062. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1063. */
  1064. u16 adv = PHY_B_1000C_RD;
  1065. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1066. adv |= PHY_B_1000C_AHD;
  1067. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1068. adv |= PHY_B_1000C_AFD;
  1069. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1070. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1071. } else {
  1072. if (skge->duplex == DUPLEX_FULL)
  1073. ctl |= PHY_CT_DUP_MD;
  1074. /* Force to slave */
  1075. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1076. }
  1077. /* Set autonegotiation pause parameters */
  1078. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1079. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1080. /* Handle Jumbo frames */
  1081. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1082. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1083. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1084. ext |= PHY_B_PEC_HIGH_LA;
  1085. }
  1086. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1087. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1088. /* Use link status change interrupt */
  1089. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1090. }
  1091. static void xm_phy_init(struct skge_port *skge)
  1092. {
  1093. struct skge_hw *hw = skge->hw;
  1094. int port = skge->port;
  1095. u16 ctrl = 0;
  1096. if (skge->autoneg == AUTONEG_ENABLE) {
  1097. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1098. ctrl |= PHY_X_AN_HD;
  1099. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1100. ctrl |= PHY_X_AN_FD;
  1101. ctrl |= fiber_pause_map[skge->flow_control];
  1102. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1103. /* Restart Auto-negotiation */
  1104. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1105. } else {
  1106. /* Set DuplexMode in Config register */
  1107. if (skge->duplex == DUPLEX_FULL)
  1108. ctrl |= PHY_CT_DUP_MD;
  1109. /*
  1110. * Do NOT enable Auto-negotiation here. This would hold
  1111. * the link down because no IDLEs are transmitted
  1112. */
  1113. }
  1114. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1115. /* Poll PHY for status changes */
  1116. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1117. }
  1118. static void xm_check_link(struct net_device *dev)
  1119. {
  1120. struct skge_port *skge = netdev_priv(dev);
  1121. struct skge_hw *hw = skge->hw;
  1122. int port = skge->port;
  1123. u16 status;
  1124. /* read twice because of latch */
  1125. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1126. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1127. if ((status & PHY_ST_LSYNC) == 0) {
  1128. xm_link_down(hw, port);
  1129. return;
  1130. }
  1131. if (skge->autoneg == AUTONEG_ENABLE) {
  1132. u16 lpa, res;
  1133. if (!(status & PHY_ST_AN_OVER))
  1134. return;
  1135. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1136. if (lpa & PHY_B_AN_RF) {
  1137. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1138. dev->name);
  1139. return;
  1140. }
  1141. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1142. /* Check Duplex mismatch */
  1143. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1144. case PHY_X_RS_FD:
  1145. skge->duplex = DUPLEX_FULL;
  1146. break;
  1147. case PHY_X_RS_HD:
  1148. skge->duplex = DUPLEX_HALF;
  1149. break;
  1150. default:
  1151. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1152. dev->name);
  1153. return;
  1154. }
  1155. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1156. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1157. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1158. (lpa & PHY_X_P_SYM_MD))
  1159. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1160. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1161. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1162. /* Enable PAUSE receive, disable PAUSE transmit */
  1163. skge->flow_status = FLOW_STAT_REM_SEND;
  1164. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1165. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1166. /* Disable PAUSE receive, enable PAUSE transmit */
  1167. skge->flow_status = FLOW_STAT_LOC_SEND;
  1168. else
  1169. skge->flow_status = FLOW_STAT_NONE;
  1170. skge->speed = SPEED_1000;
  1171. }
  1172. if (!netif_carrier_ok(dev))
  1173. genesis_link_up(skge);
  1174. }
  1175. /* Poll to check for link coming up.
  1176. * Since internal PHY is wired to a level triggered pin, can't
  1177. * get an interrupt when carrier is detected.
  1178. */
  1179. static void xm_link_timer(unsigned long arg)
  1180. {
  1181. struct skge_port *skge = (struct skge_port *) arg;
  1182. struct net_device *dev = skge->netdev;
  1183. struct skge_hw *hw = skge->hw;
  1184. int port = skge->port;
  1185. if (!netif_running(dev))
  1186. return;
  1187. if (netif_carrier_ok(dev)) {
  1188. xm_read16(hw, port, XM_ISRC);
  1189. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1190. goto nochange;
  1191. } else {
  1192. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1193. goto nochange;
  1194. xm_read16(hw, port, XM_ISRC);
  1195. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1196. goto nochange;
  1197. }
  1198. spin_lock(&hw->phy_lock);
  1199. xm_check_link(dev);
  1200. spin_unlock(&hw->phy_lock);
  1201. nochange:
  1202. if (netif_running(dev))
  1203. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1204. }
  1205. static void genesis_mac_init(struct skge_hw *hw, int port)
  1206. {
  1207. struct net_device *dev = hw->dev[port];
  1208. struct skge_port *skge = netdev_priv(dev);
  1209. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1210. int i;
  1211. u32 r;
  1212. const u8 zero[6] = { 0 };
  1213. for (i = 0; i < 10; i++) {
  1214. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1215. MFF_SET_MAC_RST);
  1216. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1217. goto reset_ok;
  1218. udelay(1);
  1219. }
  1220. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1221. reset_ok:
  1222. /* Unreset the XMAC. */
  1223. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1224. /*
  1225. * Perform additional initialization for external PHYs,
  1226. * namely for the 1000baseTX cards that use the XMAC's
  1227. * GMII mode.
  1228. */
  1229. if (hw->phy_type != SK_PHY_XMAC) {
  1230. /* Take external Phy out of reset */
  1231. r = skge_read32(hw, B2_GP_IO);
  1232. if (port == 0)
  1233. r |= GP_DIR_0|GP_IO_0;
  1234. else
  1235. r |= GP_DIR_2|GP_IO_2;
  1236. skge_write32(hw, B2_GP_IO, r);
  1237. /* Enable GMII interface */
  1238. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1239. }
  1240. switch(hw->phy_type) {
  1241. case SK_PHY_XMAC:
  1242. xm_phy_init(skge);
  1243. break;
  1244. case SK_PHY_BCOM:
  1245. bcom_phy_init(skge);
  1246. bcom_check_link(hw, port);
  1247. }
  1248. /* Set Station Address */
  1249. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1250. /* We don't use match addresses so clear */
  1251. for (i = 1; i < 16; i++)
  1252. xm_outaddr(hw, port, XM_EXM(i), zero);
  1253. /* Clear MIB counters */
  1254. xm_write16(hw, port, XM_STAT_CMD,
  1255. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1256. /* Clear two times according to Errata #3 */
  1257. xm_write16(hw, port, XM_STAT_CMD,
  1258. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1259. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1260. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1261. /* We don't need the FCS appended to the packet. */
  1262. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1263. if (jumbo)
  1264. r |= XM_RX_BIG_PK_OK;
  1265. if (skge->duplex == DUPLEX_HALF) {
  1266. /*
  1267. * If in manual half duplex mode the other side might be in
  1268. * full duplex mode, so ignore if a carrier extension is not seen
  1269. * on frames received
  1270. */
  1271. r |= XM_RX_DIS_CEXT;
  1272. }
  1273. xm_write16(hw, port, XM_RX_CMD, r);
  1274. /* We want short frames padded to 60 bytes. */
  1275. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1276. /*
  1277. * Bump up the transmit threshold. This helps hold off transmit
  1278. * underruns when we're blasting traffic from both ports at once.
  1279. */
  1280. xm_write16(hw, port, XM_TX_THR, 512);
  1281. /*
  1282. * Enable the reception of all error frames. This is is
  1283. * a necessary evil due to the design of the XMAC. The
  1284. * XMAC's receive FIFO is only 8K in size, however jumbo
  1285. * frames can be up to 9000 bytes in length. When bad
  1286. * frame filtering is enabled, the XMAC's RX FIFO operates
  1287. * in 'store and forward' mode. For this to work, the
  1288. * entire frame has to fit into the FIFO, but that means
  1289. * that jumbo frames larger than 8192 bytes will be
  1290. * truncated. Disabling all bad frame filtering causes
  1291. * the RX FIFO to operate in streaming mode, in which
  1292. * case the XMAC will start transferring frames out of the
  1293. * RX FIFO as soon as the FIFO threshold is reached.
  1294. */
  1295. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1296. /*
  1297. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1298. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1299. * and 'Octets Rx OK Hi Cnt Ov'.
  1300. */
  1301. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1302. /*
  1303. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1304. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1305. * and 'Octets Tx OK Hi Cnt Ov'.
  1306. */
  1307. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1308. /* Configure MAC arbiter */
  1309. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1310. /* configure timeout values */
  1311. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1312. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1313. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1314. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1315. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1316. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1317. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1318. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1319. /* Configure Rx MAC FIFO */
  1320. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1321. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1322. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1323. /* Configure Tx MAC FIFO */
  1324. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1325. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1326. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1327. if (jumbo) {
  1328. /* Enable frame flushing if jumbo frames used */
  1329. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1330. } else {
  1331. /* enable timeout timers if normal frames */
  1332. skge_write16(hw, B3_PA_CTRL,
  1333. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1334. }
  1335. }
  1336. static void genesis_stop(struct skge_port *skge)
  1337. {
  1338. struct skge_hw *hw = skge->hw;
  1339. int port = skge->port;
  1340. u32 reg;
  1341. genesis_reset(hw, port);
  1342. /* Clear Tx packet arbiter timeout IRQ */
  1343. skge_write16(hw, B3_PA_CTRL,
  1344. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1345. /*
  1346. * If the transfer sticks at the MAC the STOP command will not
  1347. * terminate if we don't flush the XMAC's transmit FIFO !
  1348. */
  1349. xm_write32(hw, port, XM_MODE,
  1350. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1351. /* Reset the MAC */
  1352. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1353. /* For external PHYs there must be special handling */
  1354. if (hw->phy_type != SK_PHY_XMAC) {
  1355. reg = skge_read32(hw, B2_GP_IO);
  1356. if (port == 0) {
  1357. reg |= GP_DIR_0;
  1358. reg &= ~GP_IO_0;
  1359. } else {
  1360. reg |= GP_DIR_2;
  1361. reg &= ~GP_IO_2;
  1362. }
  1363. skge_write32(hw, B2_GP_IO, reg);
  1364. skge_read32(hw, B2_GP_IO);
  1365. }
  1366. xm_write16(hw, port, XM_MMU_CMD,
  1367. xm_read16(hw, port, XM_MMU_CMD)
  1368. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1369. xm_read16(hw, port, XM_MMU_CMD);
  1370. }
  1371. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1372. {
  1373. struct skge_hw *hw = skge->hw;
  1374. int port = skge->port;
  1375. int i;
  1376. unsigned long timeout = jiffies + HZ;
  1377. xm_write16(hw, port,
  1378. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1379. /* wait for update to complete */
  1380. while (xm_read16(hw, port, XM_STAT_CMD)
  1381. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1382. if (time_after(jiffies, timeout))
  1383. break;
  1384. udelay(10);
  1385. }
  1386. /* special case for 64 bit octet counter */
  1387. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1388. | xm_read32(hw, port, XM_TXO_OK_LO);
  1389. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1390. | xm_read32(hw, port, XM_RXO_OK_LO);
  1391. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1392. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1393. }
  1394. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1395. {
  1396. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1397. u16 status = xm_read16(hw, port, XM_ISRC);
  1398. if (netif_msg_intr(skge))
  1399. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1400. skge->netdev->name, status);
  1401. if (hw->phy_type == SK_PHY_XMAC &&
  1402. (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
  1403. xm_link_down(hw, port);
  1404. if (status & XM_IS_TXF_UR) {
  1405. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1406. ++skge->net_stats.tx_fifo_errors;
  1407. }
  1408. if (status & XM_IS_RXF_OV) {
  1409. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1410. ++skge->net_stats.rx_fifo_errors;
  1411. }
  1412. }
  1413. static void genesis_link_up(struct skge_port *skge)
  1414. {
  1415. struct skge_hw *hw = skge->hw;
  1416. int port = skge->port;
  1417. u16 cmd, msk;
  1418. u32 mode;
  1419. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1420. /*
  1421. * enabling pause frame reception is required for 1000BT
  1422. * because the XMAC is not reset if the link is going down
  1423. */
  1424. if (skge->flow_status == FLOW_STAT_NONE ||
  1425. skge->flow_status == FLOW_STAT_LOC_SEND)
  1426. /* Disable Pause Frame Reception */
  1427. cmd |= XM_MMU_IGN_PF;
  1428. else
  1429. /* Enable Pause Frame Reception */
  1430. cmd &= ~XM_MMU_IGN_PF;
  1431. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1432. mode = xm_read32(hw, port, XM_MODE);
  1433. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1434. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1435. /*
  1436. * Configure Pause Frame Generation
  1437. * Use internal and external Pause Frame Generation.
  1438. * Sending pause frames is edge triggered.
  1439. * Send a Pause frame with the maximum pause time if
  1440. * internal oder external FIFO full condition occurs.
  1441. * Send a zero pause time frame to re-start transmission.
  1442. */
  1443. /* XM_PAUSE_DA = '010000C28001' (default) */
  1444. /* XM_MAC_PTIME = 0xffff (maximum) */
  1445. /* remember this value is defined in big endian (!) */
  1446. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1447. mode |= XM_PAUSE_MODE;
  1448. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1449. } else {
  1450. /*
  1451. * disable pause frame generation is required for 1000BT
  1452. * because the XMAC is not reset if the link is going down
  1453. */
  1454. /* Disable Pause Mode in Mode Register */
  1455. mode &= ~XM_PAUSE_MODE;
  1456. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1457. }
  1458. xm_write32(hw, port, XM_MODE, mode);
  1459. msk = XM_DEF_MSK;
  1460. if (hw->phy_type != SK_PHY_XMAC)
  1461. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1462. xm_write16(hw, port, XM_IMSK, msk);
  1463. xm_read16(hw, port, XM_ISRC);
  1464. /* get MMU Command Reg. */
  1465. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1466. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1467. cmd |= XM_MMU_GMII_FD;
  1468. /*
  1469. * Workaround BCOM Errata (#10523) for all BCom Phys
  1470. * Enable Power Management after link up
  1471. */
  1472. if (hw->phy_type == SK_PHY_BCOM) {
  1473. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1474. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1475. & ~PHY_B_AC_DIS_PM);
  1476. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1477. }
  1478. /* enable Rx/Tx */
  1479. xm_write16(hw, port, XM_MMU_CMD,
  1480. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1481. skge_link_up(skge);
  1482. }
  1483. static inline void bcom_phy_intr(struct skge_port *skge)
  1484. {
  1485. struct skge_hw *hw = skge->hw;
  1486. int port = skge->port;
  1487. u16 isrc;
  1488. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1489. if (netif_msg_intr(skge))
  1490. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1491. skge->netdev->name, isrc);
  1492. if (isrc & PHY_B_IS_PSE)
  1493. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1494. hw->dev[port]->name);
  1495. /* Workaround BCom Errata:
  1496. * enable and disable loopback mode if "NO HCD" occurs.
  1497. */
  1498. if (isrc & PHY_B_IS_NO_HDCL) {
  1499. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1500. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1501. ctrl | PHY_CT_LOOP);
  1502. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1503. ctrl & ~PHY_CT_LOOP);
  1504. }
  1505. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1506. bcom_check_link(hw, port);
  1507. }
  1508. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1509. {
  1510. int i;
  1511. gma_write16(hw, port, GM_SMI_DATA, val);
  1512. gma_write16(hw, port, GM_SMI_CTRL,
  1513. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1514. for (i = 0; i < PHY_RETRIES; i++) {
  1515. udelay(1);
  1516. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1517. return 0;
  1518. }
  1519. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1520. hw->dev[port]->name);
  1521. return -EIO;
  1522. }
  1523. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1524. {
  1525. int i;
  1526. gma_write16(hw, port, GM_SMI_CTRL,
  1527. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1528. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1529. for (i = 0; i < PHY_RETRIES; i++) {
  1530. udelay(1);
  1531. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1532. goto ready;
  1533. }
  1534. return -ETIMEDOUT;
  1535. ready:
  1536. *val = gma_read16(hw, port, GM_SMI_DATA);
  1537. return 0;
  1538. }
  1539. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1540. {
  1541. u16 v = 0;
  1542. if (__gm_phy_read(hw, port, reg, &v))
  1543. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1544. hw->dev[port]->name);
  1545. return v;
  1546. }
  1547. /* Marvell Phy Initialization */
  1548. static void yukon_init(struct skge_hw *hw, int port)
  1549. {
  1550. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1551. u16 ctrl, ct1000, adv;
  1552. if (skge->autoneg == AUTONEG_ENABLE) {
  1553. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1554. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1555. PHY_M_EC_MAC_S_MSK);
  1556. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1557. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1558. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1559. }
  1560. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1561. if (skge->autoneg == AUTONEG_DISABLE)
  1562. ctrl &= ~PHY_CT_ANE;
  1563. ctrl |= PHY_CT_RESET;
  1564. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1565. ctrl = 0;
  1566. ct1000 = 0;
  1567. adv = PHY_AN_CSMA;
  1568. if (skge->autoneg == AUTONEG_ENABLE) {
  1569. if (hw->copper) {
  1570. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1571. ct1000 |= PHY_M_1000C_AFD;
  1572. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1573. ct1000 |= PHY_M_1000C_AHD;
  1574. if (skge->advertising & ADVERTISED_100baseT_Full)
  1575. adv |= PHY_M_AN_100_FD;
  1576. if (skge->advertising & ADVERTISED_100baseT_Half)
  1577. adv |= PHY_M_AN_100_HD;
  1578. if (skge->advertising & ADVERTISED_10baseT_Full)
  1579. adv |= PHY_M_AN_10_FD;
  1580. if (skge->advertising & ADVERTISED_10baseT_Half)
  1581. adv |= PHY_M_AN_10_HD;
  1582. /* Set Flow-control capabilities */
  1583. adv |= phy_pause_map[skge->flow_control];
  1584. } else {
  1585. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1586. adv |= PHY_M_AN_1000X_AFD;
  1587. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1588. adv |= PHY_M_AN_1000X_AHD;
  1589. adv |= fiber_pause_map[skge->flow_control];
  1590. }
  1591. /* Restart Auto-negotiation */
  1592. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1593. } else {
  1594. /* forced speed/duplex settings */
  1595. ct1000 = PHY_M_1000C_MSE;
  1596. if (skge->duplex == DUPLEX_FULL)
  1597. ctrl |= PHY_CT_DUP_MD;
  1598. switch (skge->speed) {
  1599. case SPEED_1000:
  1600. ctrl |= PHY_CT_SP1000;
  1601. break;
  1602. case SPEED_100:
  1603. ctrl |= PHY_CT_SP100;
  1604. break;
  1605. }
  1606. ctrl |= PHY_CT_RESET;
  1607. }
  1608. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1609. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1610. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1611. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1612. if (skge->autoneg == AUTONEG_ENABLE)
  1613. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1614. else
  1615. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1616. }
  1617. static void yukon_reset(struct skge_hw *hw, int port)
  1618. {
  1619. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1620. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1621. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1622. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1623. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1624. gma_write16(hw, port, GM_RX_CTRL,
  1625. gma_read16(hw, port, GM_RX_CTRL)
  1626. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1627. }
  1628. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1629. static int is_yukon_lite_a0(struct skge_hw *hw)
  1630. {
  1631. u32 reg;
  1632. int ret;
  1633. if (hw->chip_id != CHIP_ID_YUKON)
  1634. return 0;
  1635. reg = skge_read32(hw, B2_FAR);
  1636. skge_write8(hw, B2_FAR + 3, 0xff);
  1637. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1638. skge_write32(hw, B2_FAR, reg);
  1639. return ret;
  1640. }
  1641. static void yukon_mac_init(struct skge_hw *hw, int port)
  1642. {
  1643. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1644. int i;
  1645. u32 reg;
  1646. const u8 *addr = hw->dev[port]->dev_addr;
  1647. /* WA code for COMA mode -- set PHY reset */
  1648. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1649. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1650. reg = skge_read32(hw, B2_GP_IO);
  1651. reg |= GP_DIR_9 | GP_IO_9;
  1652. skge_write32(hw, B2_GP_IO, reg);
  1653. }
  1654. /* hard reset */
  1655. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1656. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1657. /* WA code for COMA mode -- clear PHY reset */
  1658. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1659. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1660. reg = skge_read32(hw, B2_GP_IO);
  1661. reg |= GP_DIR_9;
  1662. reg &= ~GP_IO_9;
  1663. skge_write32(hw, B2_GP_IO, reg);
  1664. }
  1665. /* Set hardware config mode */
  1666. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1667. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1668. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1669. /* Clear GMC reset */
  1670. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1671. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1672. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1673. if (skge->autoneg == AUTONEG_DISABLE) {
  1674. reg = GM_GPCR_AU_ALL_DIS;
  1675. gma_write16(hw, port, GM_GP_CTRL,
  1676. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1677. switch (skge->speed) {
  1678. case SPEED_1000:
  1679. reg &= ~GM_GPCR_SPEED_100;
  1680. reg |= GM_GPCR_SPEED_1000;
  1681. break;
  1682. case SPEED_100:
  1683. reg &= ~GM_GPCR_SPEED_1000;
  1684. reg |= GM_GPCR_SPEED_100;
  1685. break;
  1686. case SPEED_10:
  1687. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1688. break;
  1689. }
  1690. if (skge->duplex == DUPLEX_FULL)
  1691. reg |= GM_GPCR_DUP_FULL;
  1692. } else
  1693. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1694. switch (skge->flow_control) {
  1695. case FLOW_MODE_NONE:
  1696. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1697. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1698. break;
  1699. case FLOW_MODE_LOC_SEND:
  1700. /* disable Rx flow-control */
  1701. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1702. break;
  1703. case FLOW_MODE_SYMMETRIC:
  1704. case FLOW_MODE_SYM_OR_REM:
  1705. /* enable Tx & Rx flow-control */
  1706. break;
  1707. }
  1708. gma_write16(hw, port, GM_GP_CTRL, reg);
  1709. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1710. yukon_init(hw, port);
  1711. /* MIB clear */
  1712. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1713. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1714. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1715. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1716. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1717. /* transmit control */
  1718. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1719. /* receive control reg: unicast + multicast + no FCS */
  1720. gma_write16(hw, port, GM_RX_CTRL,
  1721. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1722. /* transmit flow control */
  1723. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1724. /* transmit parameter */
  1725. gma_write16(hw, port, GM_TX_PARAM,
  1726. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1727. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1728. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1729. /* serial mode register */
  1730. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1731. if (hw->dev[port]->mtu > 1500)
  1732. reg |= GM_SMOD_JUMBO_ENA;
  1733. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1734. /* physical address: used for pause frames */
  1735. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1736. /* virtual address for data */
  1737. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1738. /* enable interrupt mask for counter overflows */
  1739. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1740. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1741. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1742. /* Initialize Mac Fifo */
  1743. /* Configure Rx MAC FIFO */
  1744. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1745. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1746. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1747. if (is_yukon_lite_a0(hw))
  1748. reg &= ~GMF_RX_F_FL_ON;
  1749. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1750. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1751. /*
  1752. * because Pause Packet Truncation in GMAC is not working
  1753. * we have to increase the Flush Threshold to 64 bytes
  1754. * in order to flush pause packets in Rx FIFO on Yukon-1
  1755. */
  1756. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1757. /* Configure Tx MAC FIFO */
  1758. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1759. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1760. }
  1761. /* Go into power down mode */
  1762. static void yukon_suspend(struct skge_hw *hw, int port)
  1763. {
  1764. u16 ctrl;
  1765. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1766. ctrl |= PHY_M_PC_POL_R_DIS;
  1767. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1768. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1769. ctrl |= PHY_CT_RESET;
  1770. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1771. /* switch IEEE compatible power down mode on */
  1772. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1773. ctrl |= PHY_CT_PDOWN;
  1774. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1775. }
  1776. static void yukon_stop(struct skge_port *skge)
  1777. {
  1778. struct skge_hw *hw = skge->hw;
  1779. int port = skge->port;
  1780. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1781. yukon_reset(hw, port);
  1782. gma_write16(hw, port, GM_GP_CTRL,
  1783. gma_read16(hw, port, GM_GP_CTRL)
  1784. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1785. gma_read16(hw, port, GM_GP_CTRL);
  1786. yukon_suspend(hw, port);
  1787. /* set GPHY Control reset */
  1788. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1789. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1790. }
  1791. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1792. {
  1793. struct skge_hw *hw = skge->hw;
  1794. int port = skge->port;
  1795. int i;
  1796. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1797. | gma_read32(hw, port, GM_TXO_OK_LO);
  1798. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1799. | gma_read32(hw, port, GM_RXO_OK_LO);
  1800. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1801. data[i] = gma_read32(hw, port,
  1802. skge_stats[i].gma_offset);
  1803. }
  1804. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1805. {
  1806. struct net_device *dev = hw->dev[port];
  1807. struct skge_port *skge = netdev_priv(dev);
  1808. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1809. if (netif_msg_intr(skge))
  1810. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1811. dev->name, status);
  1812. if (status & GM_IS_RX_FF_OR) {
  1813. ++skge->net_stats.rx_fifo_errors;
  1814. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1815. }
  1816. if (status & GM_IS_TX_FF_UR) {
  1817. ++skge->net_stats.tx_fifo_errors;
  1818. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1819. }
  1820. }
  1821. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1822. {
  1823. switch (aux & PHY_M_PS_SPEED_MSK) {
  1824. case PHY_M_PS_SPEED_1000:
  1825. return SPEED_1000;
  1826. case PHY_M_PS_SPEED_100:
  1827. return SPEED_100;
  1828. default:
  1829. return SPEED_10;
  1830. }
  1831. }
  1832. static void yukon_link_up(struct skge_port *skge)
  1833. {
  1834. struct skge_hw *hw = skge->hw;
  1835. int port = skge->port;
  1836. u16 reg;
  1837. /* Enable Transmit FIFO Underrun */
  1838. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1839. reg = gma_read16(hw, port, GM_GP_CTRL);
  1840. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1841. reg |= GM_GPCR_DUP_FULL;
  1842. /* enable Rx/Tx */
  1843. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1844. gma_write16(hw, port, GM_GP_CTRL, reg);
  1845. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1846. skge_link_up(skge);
  1847. }
  1848. static void yukon_link_down(struct skge_port *skge)
  1849. {
  1850. struct skge_hw *hw = skge->hw;
  1851. int port = skge->port;
  1852. u16 ctrl;
  1853. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1854. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1855. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1856. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1857. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1858. ctrl |= PHY_M_AN_ASP;
  1859. /* restore Asymmetric Pause bit */
  1860. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1861. }
  1862. skge_link_down(skge);
  1863. yukon_init(hw, port);
  1864. }
  1865. static void yukon_phy_intr(struct skge_port *skge)
  1866. {
  1867. struct skge_hw *hw = skge->hw;
  1868. int port = skge->port;
  1869. const char *reason = NULL;
  1870. u16 istatus, phystat;
  1871. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1872. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1873. if (netif_msg_intr(skge))
  1874. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1875. skge->netdev->name, istatus, phystat);
  1876. if (istatus & PHY_M_IS_AN_COMPL) {
  1877. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1878. & PHY_M_AN_RF) {
  1879. reason = "remote fault";
  1880. goto failed;
  1881. }
  1882. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1883. reason = "master/slave fault";
  1884. goto failed;
  1885. }
  1886. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1887. reason = "speed/duplex";
  1888. goto failed;
  1889. }
  1890. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1891. ? DUPLEX_FULL : DUPLEX_HALF;
  1892. skge->speed = yukon_speed(hw, phystat);
  1893. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1894. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1895. case PHY_M_PS_PAUSE_MSK:
  1896. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1897. break;
  1898. case PHY_M_PS_RX_P_EN:
  1899. skge->flow_status = FLOW_STAT_REM_SEND;
  1900. break;
  1901. case PHY_M_PS_TX_P_EN:
  1902. skge->flow_status = FLOW_STAT_LOC_SEND;
  1903. break;
  1904. default:
  1905. skge->flow_status = FLOW_STAT_NONE;
  1906. }
  1907. if (skge->flow_status == FLOW_STAT_NONE ||
  1908. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1909. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1910. else
  1911. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1912. yukon_link_up(skge);
  1913. return;
  1914. }
  1915. if (istatus & PHY_M_IS_LSP_CHANGE)
  1916. skge->speed = yukon_speed(hw, phystat);
  1917. if (istatus & PHY_M_IS_DUP_CHANGE)
  1918. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1919. if (istatus & PHY_M_IS_LST_CHANGE) {
  1920. if (phystat & PHY_M_PS_LINK_UP)
  1921. yukon_link_up(skge);
  1922. else
  1923. yukon_link_down(skge);
  1924. }
  1925. return;
  1926. failed:
  1927. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1928. skge->netdev->name, reason);
  1929. /* XXX restart autonegotiation? */
  1930. }
  1931. static void skge_phy_reset(struct skge_port *skge)
  1932. {
  1933. struct skge_hw *hw = skge->hw;
  1934. int port = skge->port;
  1935. struct net_device *dev = hw->dev[port];
  1936. netif_stop_queue(skge->netdev);
  1937. netif_carrier_off(skge->netdev);
  1938. spin_lock_bh(&hw->phy_lock);
  1939. if (hw->chip_id == CHIP_ID_GENESIS) {
  1940. genesis_reset(hw, port);
  1941. genesis_mac_init(hw, port);
  1942. } else {
  1943. yukon_reset(hw, port);
  1944. yukon_init(hw, port);
  1945. }
  1946. spin_unlock_bh(&hw->phy_lock);
  1947. dev->set_multicast_list(dev);
  1948. }
  1949. /* Basic MII support */
  1950. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1951. {
  1952. struct mii_ioctl_data *data = if_mii(ifr);
  1953. struct skge_port *skge = netdev_priv(dev);
  1954. struct skge_hw *hw = skge->hw;
  1955. int err = -EOPNOTSUPP;
  1956. if (!netif_running(dev))
  1957. return -ENODEV; /* Phy still in reset */
  1958. switch(cmd) {
  1959. case SIOCGMIIPHY:
  1960. data->phy_id = hw->phy_addr;
  1961. /* fallthru */
  1962. case SIOCGMIIREG: {
  1963. u16 val = 0;
  1964. spin_lock_bh(&hw->phy_lock);
  1965. if (hw->chip_id == CHIP_ID_GENESIS)
  1966. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1967. else
  1968. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1969. spin_unlock_bh(&hw->phy_lock);
  1970. data->val_out = val;
  1971. break;
  1972. }
  1973. case SIOCSMIIREG:
  1974. if (!capable(CAP_NET_ADMIN))
  1975. return -EPERM;
  1976. spin_lock_bh(&hw->phy_lock);
  1977. if (hw->chip_id == CHIP_ID_GENESIS)
  1978. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1979. data->val_in);
  1980. else
  1981. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1982. data->val_in);
  1983. spin_unlock_bh(&hw->phy_lock);
  1984. break;
  1985. }
  1986. return err;
  1987. }
  1988. /* Assign Ram Buffer allocation to queue */
  1989. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, u32 space)
  1990. {
  1991. u32 end;
  1992. /* convert from K bytes to qwords used for hw register */
  1993. start *= 1024/8;
  1994. space *= 1024/8;
  1995. end = start + space - 1;
  1996. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1997. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1998. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1999. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2000. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2001. if (q == Q_R1 || q == Q_R2) {
  2002. u32 tp = space - space/4;
  2003. /* Set thresholds on receive queue's */
  2004. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  2005. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  2006. } else if (hw->chip_id != CHIP_ID_GENESIS)
  2007. /* Genesis Tx Fifo is too small for normal store/forward */
  2008. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2009. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2010. }
  2011. /* Setup Bus Memory Interface */
  2012. static void skge_qset(struct skge_port *skge, u16 q,
  2013. const struct skge_element *e)
  2014. {
  2015. struct skge_hw *hw = skge->hw;
  2016. u32 watermark = 0x600;
  2017. u64 base = skge->dma + (e->desc - skge->mem);
  2018. /* optimization to reduce window on 32bit/33mhz */
  2019. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2020. watermark /= 2;
  2021. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2022. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2023. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2024. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2025. }
  2026. static int skge_up(struct net_device *dev)
  2027. {
  2028. struct skge_port *skge = netdev_priv(dev);
  2029. struct skge_hw *hw = skge->hw;
  2030. int port = skge->port;
  2031. u32 ramaddr, ramsize, rxspace;
  2032. size_t rx_size, tx_size;
  2033. int err;
  2034. if (!is_valid_ether_addr(dev->dev_addr))
  2035. return -EINVAL;
  2036. if (netif_msg_ifup(skge))
  2037. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2038. if (dev->mtu > RX_BUF_SIZE)
  2039. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2040. else
  2041. skge->rx_buf_size = RX_BUF_SIZE;
  2042. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2043. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2044. skge->mem_size = tx_size + rx_size;
  2045. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2046. if (!skge->mem)
  2047. return -ENOMEM;
  2048. BUG_ON(skge->dma & 7);
  2049. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2050. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2051. err = -EINVAL;
  2052. goto free_pci_mem;
  2053. }
  2054. memset(skge->mem, 0, skge->mem_size);
  2055. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2056. if (err)
  2057. goto free_pci_mem;
  2058. err = skge_rx_fill(dev);
  2059. if (err)
  2060. goto free_rx_ring;
  2061. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2062. skge->dma + rx_size);
  2063. if (err)
  2064. goto free_rx_ring;
  2065. /* Initialize MAC */
  2066. spin_lock_bh(&hw->phy_lock);
  2067. if (hw->chip_id == CHIP_ID_GENESIS)
  2068. genesis_mac_init(hw, port);
  2069. else
  2070. yukon_mac_init(hw, port);
  2071. spin_unlock_bh(&hw->phy_lock);
  2072. /* Configure RAMbuffers */
  2073. ramsize = (hw->ram_size - hw->ram_offset) / hw->ports;
  2074. ramaddr = hw->ram_offset + port * ramsize;
  2075. rxspace = 8 + (2*(ramsize - 16))/3;
  2076. skge_ramset(hw, rxqaddr[port], ramaddr, rxspace);
  2077. skge_ramset(hw, txqaddr[port], ramaddr + rxspace, ramsize - rxspace);
  2078. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2079. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2080. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2081. /* Start receiver BMU */
  2082. wmb();
  2083. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2084. skge_led(skge, LED_MODE_ON);
  2085. spin_lock_irq(&hw->hw_lock);
  2086. hw->intr_mask |= portmask[port];
  2087. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2088. spin_unlock_irq(&hw->hw_lock);
  2089. napi_enable(&skge->napi);
  2090. return 0;
  2091. free_rx_ring:
  2092. skge_rx_clean(skge);
  2093. kfree(skge->rx_ring.start);
  2094. free_pci_mem:
  2095. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2096. skge->mem = NULL;
  2097. return err;
  2098. }
  2099. /* stop receiver */
  2100. static void skge_rx_stop(struct skge_hw *hw, int port)
  2101. {
  2102. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2103. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2104. RB_RST_SET|RB_DIS_OP_MD);
  2105. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2106. }
  2107. static int skge_down(struct net_device *dev)
  2108. {
  2109. struct skge_port *skge = netdev_priv(dev);
  2110. struct skge_hw *hw = skge->hw;
  2111. int port = skge->port;
  2112. if (skge->mem == NULL)
  2113. return 0;
  2114. if (netif_msg_ifdown(skge))
  2115. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2116. netif_stop_queue(dev);
  2117. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2118. del_timer_sync(&skge->link_timer);
  2119. napi_disable(&skge->napi);
  2120. netif_carrier_off(dev);
  2121. spin_lock_irq(&hw->hw_lock);
  2122. hw->intr_mask &= ~portmask[port];
  2123. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2124. spin_unlock_irq(&hw->hw_lock);
  2125. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2126. if (hw->chip_id == CHIP_ID_GENESIS)
  2127. genesis_stop(skge);
  2128. else
  2129. yukon_stop(skge);
  2130. /* Stop transmitter */
  2131. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2132. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2133. RB_RST_SET|RB_DIS_OP_MD);
  2134. /* Disable Force Sync bit and Enable Alloc bit */
  2135. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2136. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2137. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2138. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2139. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2140. /* Reset PCI FIFO */
  2141. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2142. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2143. /* Reset the RAM Buffer async Tx queue */
  2144. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2145. skge_rx_stop(hw, port);
  2146. if (hw->chip_id == CHIP_ID_GENESIS) {
  2147. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2148. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2149. } else {
  2150. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2151. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2152. }
  2153. skge_led(skge, LED_MODE_OFF);
  2154. netif_tx_lock_bh(dev);
  2155. skge_tx_clean(dev);
  2156. netif_tx_unlock_bh(dev);
  2157. skge_rx_clean(skge);
  2158. kfree(skge->rx_ring.start);
  2159. kfree(skge->tx_ring.start);
  2160. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2161. skge->mem = NULL;
  2162. return 0;
  2163. }
  2164. static inline int skge_avail(const struct skge_ring *ring)
  2165. {
  2166. smp_mb();
  2167. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2168. + (ring->to_clean - ring->to_use) - 1;
  2169. }
  2170. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2171. {
  2172. struct skge_port *skge = netdev_priv(dev);
  2173. struct skge_hw *hw = skge->hw;
  2174. struct skge_element *e;
  2175. struct skge_tx_desc *td;
  2176. int i;
  2177. u32 control, len;
  2178. u64 map;
  2179. if (skb_padto(skb, ETH_ZLEN))
  2180. return NETDEV_TX_OK;
  2181. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2182. return NETDEV_TX_BUSY;
  2183. e = skge->tx_ring.to_use;
  2184. td = e->desc;
  2185. BUG_ON(td->control & BMU_OWN);
  2186. e->skb = skb;
  2187. len = skb_headlen(skb);
  2188. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2189. pci_unmap_addr_set(e, mapaddr, map);
  2190. pci_unmap_len_set(e, maplen, len);
  2191. td->dma_lo = map;
  2192. td->dma_hi = map >> 32;
  2193. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2194. const int offset = skb_transport_offset(skb);
  2195. /* This seems backwards, but it is what the sk98lin
  2196. * does. Looks like hardware is wrong?
  2197. */
  2198. if (ipip_hdr(skb)->protocol == IPPROTO_UDP
  2199. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2200. control = BMU_TCP_CHECK;
  2201. else
  2202. control = BMU_UDP_CHECK;
  2203. td->csum_offs = 0;
  2204. td->csum_start = offset;
  2205. td->csum_write = offset + skb->csum_offset;
  2206. } else
  2207. control = BMU_CHECK;
  2208. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2209. control |= BMU_EOF| BMU_IRQ_EOF;
  2210. else {
  2211. struct skge_tx_desc *tf = td;
  2212. control |= BMU_STFWD;
  2213. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2214. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2215. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2216. frag->size, PCI_DMA_TODEVICE);
  2217. e = e->next;
  2218. e->skb = skb;
  2219. tf = e->desc;
  2220. BUG_ON(tf->control & BMU_OWN);
  2221. tf->dma_lo = map;
  2222. tf->dma_hi = (u64) map >> 32;
  2223. pci_unmap_addr_set(e, mapaddr, map);
  2224. pci_unmap_len_set(e, maplen, frag->size);
  2225. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2226. }
  2227. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2228. }
  2229. /* Make sure all the descriptors written */
  2230. wmb();
  2231. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2232. wmb();
  2233. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2234. if (unlikely(netif_msg_tx_queued(skge)))
  2235. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2236. dev->name, e - skge->tx_ring.start, skb->len);
  2237. skge->tx_ring.to_use = e->next;
  2238. smp_wmb();
  2239. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2240. pr_debug("%s: transmit queue full\n", dev->name);
  2241. netif_stop_queue(dev);
  2242. }
  2243. dev->trans_start = jiffies;
  2244. return NETDEV_TX_OK;
  2245. }
  2246. /* Free resources associated with this reing element */
  2247. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2248. u32 control)
  2249. {
  2250. struct pci_dev *pdev = skge->hw->pdev;
  2251. /* skb header vs. fragment */
  2252. if (control & BMU_STF)
  2253. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2254. pci_unmap_len(e, maplen),
  2255. PCI_DMA_TODEVICE);
  2256. else
  2257. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2258. pci_unmap_len(e, maplen),
  2259. PCI_DMA_TODEVICE);
  2260. if (control & BMU_EOF) {
  2261. if (unlikely(netif_msg_tx_done(skge)))
  2262. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2263. skge->netdev->name, e - skge->tx_ring.start);
  2264. dev_kfree_skb(e->skb);
  2265. }
  2266. }
  2267. /* Free all buffers in transmit ring */
  2268. static void skge_tx_clean(struct net_device *dev)
  2269. {
  2270. struct skge_port *skge = netdev_priv(dev);
  2271. struct skge_element *e;
  2272. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2273. struct skge_tx_desc *td = e->desc;
  2274. skge_tx_free(skge, e, td->control);
  2275. td->control = 0;
  2276. }
  2277. skge->tx_ring.to_clean = e;
  2278. netif_wake_queue(dev);
  2279. }
  2280. static void skge_tx_timeout(struct net_device *dev)
  2281. {
  2282. struct skge_port *skge = netdev_priv(dev);
  2283. if (netif_msg_timer(skge))
  2284. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2285. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2286. skge_tx_clean(dev);
  2287. }
  2288. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2289. {
  2290. struct skge_port *skge = netdev_priv(dev);
  2291. struct skge_hw *hw = skge->hw;
  2292. int port = skge->port;
  2293. int err;
  2294. u16 ctl, reg;
  2295. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2296. return -EINVAL;
  2297. if (!netif_running(dev)) {
  2298. dev->mtu = new_mtu;
  2299. return 0;
  2300. }
  2301. skge_write32(hw, B0_IMSK, 0);
  2302. dev->trans_start = jiffies; /* prevent tx timeout */
  2303. netif_stop_queue(dev);
  2304. napi_disable(&skge->napi);
  2305. ctl = gma_read16(hw, port, GM_GP_CTRL);
  2306. gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  2307. skge_rx_clean(skge);
  2308. skge_rx_stop(hw, port);
  2309. dev->mtu = new_mtu;
  2310. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  2311. if (new_mtu > 1500)
  2312. reg |= GM_SMOD_JUMBO_ENA;
  2313. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  2314. skge_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD);
  2315. err = skge_rx_fill(dev);
  2316. wmb();
  2317. if (!err)
  2318. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2319. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2320. if (err)
  2321. dev_close(dev);
  2322. else {
  2323. gma_write16(hw, port, GM_GP_CTRL, ctl);
  2324. napi_enable(&skge->napi);
  2325. netif_wake_queue(dev);
  2326. }
  2327. return err;
  2328. }
  2329. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2330. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2331. {
  2332. u32 crc, bit;
  2333. crc = ether_crc_le(ETH_ALEN, addr);
  2334. bit = ~crc & 0x3f;
  2335. filter[bit/8] |= 1 << (bit%8);
  2336. }
  2337. static void genesis_set_multicast(struct net_device *dev)
  2338. {
  2339. struct skge_port *skge = netdev_priv(dev);
  2340. struct skge_hw *hw = skge->hw;
  2341. int port = skge->port;
  2342. int i, count = dev->mc_count;
  2343. struct dev_mc_list *list = dev->mc_list;
  2344. u32 mode;
  2345. u8 filter[8];
  2346. mode = xm_read32(hw, port, XM_MODE);
  2347. mode |= XM_MD_ENA_HASH;
  2348. if (dev->flags & IFF_PROMISC)
  2349. mode |= XM_MD_ENA_PROM;
  2350. else
  2351. mode &= ~XM_MD_ENA_PROM;
  2352. if (dev->flags & IFF_ALLMULTI)
  2353. memset(filter, 0xff, sizeof(filter));
  2354. else {
  2355. memset(filter, 0, sizeof(filter));
  2356. if (skge->flow_status == FLOW_STAT_REM_SEND
  2357. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2358. genesis_add_filter(filter, pause_mc_addr);
  2359. for (i = 0; list && i < count; i++, list = list->next)
  2360. genesis_add_filter(filter, list->dmi_addr);
  2361. }
  2362. xm_write32(hw, port, XM_MODE, mode);
  2363. xm_outhash(hw, port, XM_HSM, filter);
  2364. }
  2365. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2366. {
  2367. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2368. filter[bit/8] |= 1 << (bit%8);
  2369. }
  2370. static void yukon_set_multicast(struct net_device *dev)
  2371. {
  2372. struct skge_port *skge = netdev_priv(dev);
  2373. struct skge_hw *hw = skge->hw;
  2374. int port = skge->port;
  2375. struct dev_mc_list *list = dev->mc_list;
  2376. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2377. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2378. u16 reg;
  2379. u8 filter[8];
  2380. memset(filter, 0, sizeof(filter));
  2381. reg = gma_read16(hw, port, GM_RX_CTRL);
  2382. reg |= GM_RXCR_UCF_ENA;
  2383. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2384. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2385. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2386. memset(filter, 0xff, sizeof(filter));
  2387. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2388. reg &= ~GM_RXCR_MCF_ENA;
  2389. else {
  2390. int i;
  2391. reg |= GM_RXCR_MCF_ENA;
  2392. if (rx_pause)
  2393. yukon_add_filter(filter, pause_mc_addr);
  2394. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2395. yukon_add_filter(filter, list->dmi_addr);
  2396. }
  2397. gma_write16(hw, port, GM_MC_ADDR_H1,
  2398. (u16)filter[0] | ((u16)filter[1] << 8));
  2399. gma_write16(hw, port, GM_MC_ADDR_H2,
  2400. (u16)filter[2] | ((u16)filter[3] << 8));
  2401. gma_write16(hw, port, GM_MC_ADDR_H3,
  2402. (u16)filter[4] | ((u16)filter[5] << 8));
  2403. gma_write16(hw, port, GM_MC_ADDR_H4,
  2404. (u16)filter[6] | ((u16)filter[7] << 8));
  2405. gma_write16(hw, port, GM_RX_CTRL, reg);
  2406. }
  2407. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2408. {
  2409. if (hw->chip_id == CHIP_ID_GENESIS)
  2410. return status >> XMR_FS_LEN_SHIFT;
  2411. else
  2412. return status >> GMR_FS_LEN_SHIFT;
  2413. }
  2414. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2415. {
  2416. if (hw->chip_id == CHIP_ID_GENESIS)
  2417. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2418. else
  2419. return (status & GMR_FS_ANY_ERR) ||
  2420. (status & GMR_FS_RX_OK) == 0;
  2421. }
  2422. /* Get receive buffer from descriptor.
  2423. * Handles copy of small buffers and reallocation failures
  2424. */
  2425. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2426. struct skge_element *e,
  2427. u32 control, u32 status, u16 csum)
  2428. {
  2429. struct skge_port *skge = netdev_priv(dev);
  2430. struct sk_buff *skb;
  2431. u16 len = control & BMU_BBC;
  2432. if (unlikely(netif_msg_rx_status(skge)))
  2433. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2434. dev->name, e - skge->rx_ring.start,
  2435. status, len);
  2436. if (len > skge->rx_buf_size)
  2437. goto error;
  2438. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2439. goto error;
  2440. if (bad_phy_status(skge->hw, status))
  2441. goto error;
  2442. if (phy_length(skge->hw, status) != len)
  2443. goto error;
  2444. if (len < RX_COPY_THRESHOLD) {
  2445. skb = netdev_alloc_skb(dev, len + 2);
  2446. if (!skb)
  2447. goto resubmit;
  2448. skb_reserve(skb, 2);
  2449. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2450. pci_unmap_addr(e, mapaddr),
  2451. len, PCI_DMA_FROMDEVICE);
  2452. skb_copy_from_linear_data(e->skb, skb->data, len);
  2453. pci_dma_sync_single_for_device(skge->hw->pdev,
  2454. pci_unmap_addr(e, mapaddr),
  2455. len, PCI_DMA_FROMDEVICE);
  2456. skge_rx_reuse(e, skge->rx_buf_size);
  2457. } else {
  2458. struct sk_buff *nskb;
  2459. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2460. if (!nskb)
  2461. goto resubmit;
  2462. skb_reserve(nskb, NET_IP_ALIGN);
  2463. pci_unmap_single(skge->hw->pdev,
  2464. pci_unmap_addr(e, mapaddr),
  2465. pci_unmap_len(e, maplen),
  2466. PCI_DMA_FROMDEVICE);
  2467. skb = e->skb;
  2468. prefetch(skb->data);
  2469. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2470. }
  2471. skb_put(skb, len);
  2472. if (skge->rx_csum) {
  2473. skb->csum = csum;
  2474. skb->ip_summed = CHECKSUM_COMPLETE;
  2475. }
  2476. skb->protocol = eth_type_trans(skb, dev);
  2477. return skb;
  2478. error:
  2479. if (netif_msg_rx_err(skge))
  2480. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2481. dev->name, e - skge->rx_ring.start,
  2482. control, status);
  2483. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2484. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2485. skge->net_stats.rx_length_errors++;
  2486. if (status & XMR_FS_FRA_ERR)
  2487. skge->net_stats.rx_frame_errors++;
  2488. if (status & XMR_FS_FCS_ERR)
  2489. skge->net_stats.rx_crc_errors++;
  2490. } else {
  2491. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2492. skge->net_stats.rx_length_errors++;
  2493. if (status & GMR_FS_FRAGMENT)
  2494. skge->net_stats.rx_frame_errors++;
  2495. if (status & GMR_FS_CRC_ERR)
  2496. skge->net_stats.rx_crc_errors++;
  2497. }
  2498. resubmit:
  2499. skge_rx_reuse(e, skge->rx_buf_size);
  2500. return NULL;
  2501. }
  2502. /* Free all buffers in Tx ring which are no longer owned by device */
  2503. static void skge_tx_done(struct net_device *dev)
  2504. {
  2505. struct skge_port *skge = netdev_priv(dev);
  2506. struct skge_ring *ring = &skge->tx_ring;
  2507. struct skge_element *e;
  2508. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2509. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2510. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2511. if (control & BMU_OWN)
  2512. break;
  2513. skge_tx_free(skge, e, control);
  2514. }
  2515. skge->tx_ring.to_clean = e;
  2516. /* Can run lockless until we need to synchronize to restart queue. */
  2517. smp_mb();
  2518. if (unlikely(netif_queue_stopped(dev) &&
  2519. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2520. netif_tx_lock(dev);
  2521. if (unlikely(netif_queue_stopped(dev) &&
  2522. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2523. netif_wake_queue(dev);
  2524. }
  2525. netif_tx_unlock(dev);
  2526. }
  2527. }
  2528. static int skge_poll(struct napi_struct *napi, int to_do)
  2529. {
  2530. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2531. struct net_device *dev = skge->netdev;
  2532. struct skge_hw *hw = skge->hw;
  2533. struct skge_ring *ring = &skge->rx_ring;
  2534. struct skge_element *e;
  2535. int work_done = 0;
  2536. skge_tx_done(dev);
  2537. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2538. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2539. struct skge_rx_desc *rd = e->desc;
  2540. struct sk_buff *skb;
  2541. u32 control;
  2542. rmb();
  2543. control = rd->control;
  2544. if (control & BMU_OWN)
  2545. break;
  2546. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2547. if (likely(skb)) {
  2548. dev->last_rx = jiffies;
  2549. netif_receive_skb(skb);
  2550. ++work_done;
  2551. }
  2552. }
  2553. ring->to_clean = e;
  2554. /* restart receiver */
  2555. wmb();
  2556. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2557. if (work_done < to_do) {
  2558. spin_lock_irq(&hw->hw_lock);
  2559. __netif_rx_complete(dev, napi);
  2560. hw->intr_mask |= napimask[skge->port];
  2561. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2562. skge_read32(hw, B0_IMSK);
  2563. spin_unlock_irq(&hw->hw_lock);
  2564. }
  2565. return work_done;
  2566. }
  2567. /* Parity errors seem to happen when Genesis is connected to a switch
  2568. * with no other ports present. Heartbeat error??
  2569. */
  2570. static void skge_mac_parity(struct skge_hw *hw, int port)
  2571. {
  2572. struct net_device *dev = hw->dev[port];
  2573. if (dev) {
  2574. struct skge_port *skge = netdev_priv(dev);
  2575. ++skge->net_stats.tx_heartbeat_errors;
  2576. }
  2577. if (hw->chip_id == CHIP_ID_GENESIS)
  2578. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2579. MFF_CLR_PERR);
  2580. else
  2581. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2582. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2583. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2584. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2585. }
  2586. static void skge_mac_intr(struct skge_hw *hw, int port)
  2587. {
  2588. if (hw->chip_id == CHIP_ID_GENESIS)
  2589. genesis_mac_intr(hw, port);
  2590. else
  2591. yukon_mac_intr(hw, port);
  2592. }
  2593. /* Handle device specific framing and timeout interrupts */
  2594. static void skge_error_irq(struct skge_hw *hw)
  2595. {
  2596. struct pci_dev *pdev = hw->pdev;
  2597. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2598. if (hw->chip_id == CHIP_ID_GENESIS) {
  2599. /* clear xmac errors */
  2600. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2601. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2602. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2603. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2604. } else {
  2605. /* Timestamp (unused) overflow */
  2606. if (hwstatus & IS_IRQ_TIST_OV)
  2607. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2608. }
  2609. if (hwstatus & IS_RAM_RD_PAR) {
  2610. dev_err(&pdev->dev, "Ram read data parity error\n");
  2611. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2612. }
  2613. if (hwstatus & IS_RAM_WR_PAR) {
  2614. dev_err(&pdev->dev, "Ram write data parity error\n");
  2615. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2616. }
  2617. if (hwstatus & IS_M1_PAR_ERR)
  2618. skge_mac_parity(hw, 0);
  2619. if (hwstatus & IS_M2_PAR_ERR)
  2620. skge_mac_parity(hw, 1);
  2621. if (hwstatus & IS_R1_PAR_ERR) {
  2622. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2623. hw->dev[0]->name);
  2624. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2625. }
  2626. if (hwstatus & IS_R2_PAR_ERR) {
  2627. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2628. hw->dev[1]->name);
  2629. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2630. }
  2631. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2632. u16 pci_status, pci_cmd;
  2633. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2634. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2635. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2636. pci_cmd, pci_status);
  2637. /* Write the error bits back to clear them. */
  2638. pci_status &= PCI_STATUS_ERROR_BITS;
  2639. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2640. pci_write_config_word(pdev, PCI_COMMAND,
  2641. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2642. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2643. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2644. /* if error still set then just ignore it */
  2645. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2646. if (hwstatus & IS_IRQ_STAT) {
  2647. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2648. hw->intr_mask &= ~IS_HW_ERR;
  2649. }
  2650. }
  2651. }
  2652. /*
  2653. * Interrupt from PHY are handled in tasklet (softirq)
  2654. * because accessing phy registers requires spin wait which might
  2655. * cause excess interrupt latency.
  2656. */
  2657. static void skge_extirq(unsigned long arg)
  2658. {
  2659. struct skge_hw *hw = (struct skge_hw *) arg;
  2660. int port;
  2661. for (port = 0; port < hw->ports; port++) {
  2662. struct net_device *dev = hw->dev[port];
  2663. if (netif_running(dev)) {
  2664. struct skge_port *skge = netdev_priv(dev);
  2665. spin_lock(&hw->phy_lock);
  2666. if (hw->chip_id != CHIP_ID_GENESIS)
  2667. yukon_phy_intr(skge);
  2668. else if (hw->phy_type == SK_PHY_BCOM)
  2669. bcom_phy_intr(skge);
  2670. spin_unlock(&hw->phy_lock);
  2671. }
  2672. }
  2673. spin_lock_irq(&hw->hw_lock);
  2674. hw->intr_mask |= IS_EXT_REG;
  2675. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2676. skge_read32(hw, B0_IMSK);
  2677. spin_unlock_irq(&hw->hw_lock);
  2678. }
  2679. static irqreturn_t skge_intr(int irq, void *dev_id)
  2680. {
  2681. struct skge_hw *hw = dev_id;
  2682. u32 status;
  2683. int handled = 0;
  2684. spin_lock(&hw->hw_lock);
  2685. /* Reading this register masks IRQ */
  2686. status = skge_read32(hw, B0_SP_ISRC);
  2687. if (status == 0 || status == ~0)
  2688. goto out;
  2689. handled = 1;
  2690. status &= hw->intr_mask;
  2691. if (status & IS_EXT_REG) {
  2692. hw->intr_mask &= ~IS_EXT_REG;
  2693. tasklet_schedule(&hw->phy_task);
  2694. }
  2695. if (status & (IS_XA1_F|IS_R1_F)) {
  2696. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2697. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2698. netif_rx_schedule(hw->dev[0], &skge->napi);
  2699. }
  2700. if (status & IS_PA_TO_TX1)
  2701. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2702. if (status & IS_PA_TO_RX1) {
  2703. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2704. ++skge->net_stats.rx_over_errors;
  2705. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2706. }
  2707. if (status & IS_MAC1)
  2708. skge_mac_intr(hw, 0);
  2709. if (hw->dev[1]) {
  2710. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2711. if (status & (IS_XA2_F|IS_R2_F)) {
  2712. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2713. netif_rx_schedule(hw->dev[1], &skge->napi);
  2714. }
  2715. if (status & IS_PA_TO_RX2) {
  2716. ++skge->net_stats.rx_over_errors;
  2717. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2718. }
  2719. if (status & IS_PA_TO_TX2)
  2720. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2721. if (status & IS_MAC2)
  2722. skge_mac_intr(hw, 1);
  2723. }
  2724. if (status & IS_HW_ERR)
  2725. skge_error_irq(hw);
  2726. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2727. skge_read32(hw, B0_IMSK);
  2728. out:
  2729. spin_unlock(&hw->hw_lock);
  2730. return IRQ_RETVAL(handled);
  2731. }
  2732. #ifdef CONFIG_NET_POLL_CONTROLLER
  2733. static void skge_netpoll(struct net_device *dev)
  2734. {
  2735. struct skge_port *skge = netdev_priv(dev);
  2736. disable_irq(dev->irq);
  2737. skge_intr(dev->irq, skge->hw);
  2738. enable_irq(dev->irq);
  2739. }
  2740. #endif
  2741. static int skge_set_mac_address(struct net_device *dev, void *p)
  2742. {
  2743. struct skge_port *skge = netdev_priv(dev);
  2744. struct skge_hw *hw = skge->hw;
  2745. unsigned port = skge->port;
  2746. const struct sockaddr *addr = p;
  2747. u16 ctrl;
  2748. if (!is_valid_ether_addr(addr->sa_data))
  2749. return -EADDRNOTAVAIL;
  2750. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2751. if (!netif_running(dev)) {
  2752. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2753. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2754. } else {
  2755. /* disable Rx */
  2756. spin_lock_bh(&hw->phy_lock);
  2757. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2758. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2759. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2760. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2761. if (hw->chip_id == CHIP_ID_GENESIS)
  2762. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2763. else {
  2764. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2765. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2766. }
  2767. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2768. spin_unlock_bh(&hw->phy_lock);
  2769. }
  2770. return 0;
  2771. }
  2772. static const struct {
  2773. u8 id;
  2774. const char *name;
  2775. } skge_chips[] = {
  2776. { CHIP_ID_GENESIS, "Genesis" },
  2777. { CHIP_ID_YUKON, "Yukon" },
  2778. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2779. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2780. };
  2781. static const char *skge_board_name(const struct skge_hw *hw)
  2782. {
  2783. int i;
  2784. static char buf[16];
  2785. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2786. if (skge_chips[i].id == hw->chip_id)
  2787. return skge_chips[i].name;
  2788. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2789. return buf;
  2790. }
  2791. /*
  2792. * Setup the board data structure, but don't bring up
  2793. * the port(s)
  2794. */
  2795. static int skge_reset(struct skge_hw *hw)
  2796. {
  2797. u32 reg;
  2798. u16 ctst, pci_status;
  2799. u8 t8, mac_cfg, pmd_type;
  2800. int i;
  2801. ctst = skge_read16(hw, B0_CTST);
  2802. /* do a SW reset */
  2803. skge_write8(hw, B0_CTST, CS_RST_SET);
  2804. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2805. /* clear PCI errors, if any */
  2806. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2807. skge_write8(hw, B2_TST_CTRL2, 0);
  2808. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2809. pci_write_config_word(hw->pdev, PCI_STATUS,
  2810. pci_status | PCI_STATUS_ERROR_BITS);
  2811. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2812. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2813. /* restore CLK_RUN bits (for Yukon-Lite) */
  2814. skge_write16(hw, B0_CTST,
  2815. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2816. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2817. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2818. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2819. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2820. switch (hw->chip_id) {
  2821. case CHIP_ID_GENESIS:
  2822. switch (hw->phy_type) {
  2823. case SK_PHY_XMAC:
  2824. hw->phy_addr = PHY_ADDR_XMAC;
  2825. break;
  2826. case SK_PHY_BCOM:
  2827. hw->phy_addr = PHY_ADDR_BCOM;
  2828. break;
  2829. default:
  2830. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2831. hw->phy_type);
  2832. return -EOPNOTSUPP;
  2833. }
  2834. break;
  2835. case CHIP_ID_YUKON:
  2836. case CHIP_ID_YUKON_LITE:
  2837. case CHIP_ID_YUKON_LP:
  2838. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2839. hw->copper = 1;
  2840. hw->phy_addr = PHY_ADDR_MARV;
  2841. break;
  2842. default:
  2843. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2844. hw->chip_id);
  2845. return -EOPNOTSUPP;
  2846. }
  2847. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2848. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2849. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2850. /* read the adapters RAM size */
  2851. t8 = skge_read8(hw, B2_E_0);
  2852. if (hw->chip_id == CHIP_ID_GENESIS) {
  2853. if (t8 == 3) {
  2854. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2855. hw->ram_size = 1024;
  2856. hw->ram_offset = 512;
  2857. } else
  2858. hw->ram_size = t8 * 512;
  2859. } else /* Yukon */
  2860. hw->ram_size = t8 ? t8 * 4 : 128;
  2861. hw->intr_mask = IS_HW_ERR;
  2862. /* Use PHY IRQ for all but fiber based Genesis board */
  2863. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2864. hw->intr_mask |= IS_EXT_REG;
  2865. if (hw->chip_id == CHIP_ID_GENESIS)
  2866. genesis_init(hw);
  2867. else {
  2868. /* switch power to VCC (WA for VAUX problem) */
  2869. skge_write8(hw, B0_POWER_CTRL,
  2870. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2871. /* avoid boards with stuck Hardware error bits */
  2872. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2873. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2874. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2875. hw->intr_mask &= ~IS_HW_ERR;
  2876. }
  2877. /* Clear PHY COMA */
  2878. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2879. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2880. reg &= ~PCI_PHY_COMA;
  2881. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2882. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2883. for (i = 0; i < hw->ports; i++) {
  2884. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2885. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2886. }
  2887. }
  2888. /* turn off hardware timer (unused) */
  2889. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2890. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2891. skge_write8(hw, B0_LED, LED_STAT_ON);
  2892. /* enable the Tx Arbiters */
  2893. for (i = 0; i < hw->ports; i++)
  2894. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2895. /* Initialize ram interface */
  2896. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2897. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2898. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2899. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2900. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2901. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2902. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2903. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2904. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2905. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2906. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2907. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2908. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2909. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2910. /* Set interrupt moderation for Transmit only
  2911. * Receive interrupts avoided by NAPI
  2912. */
  2913. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2914. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2915. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2916. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2917. for (i = 0; i < hw->ports; i++) {
  2918. if (hw->chip_id == CHIP_ID_GENESIS)
  2919. genesis_reset(hw, i);
  2920. else
  2921. yukon_reset(hw, i);
  2922. }
  2923. return 0;
  2924. }
  2925. /* Initialize network device */
  2926. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2927. int highmem)
  2928. {
  2929. struct skge_port *skge;
  2930. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2931. if (!dev) {
  2932. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  2933. return NULL;
  2934. }
  2935. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2936. dev->open = skge_up;
  2937. dev->stop = skge_down;
  2938. dev->do_ioctl = skge_ioctl;
  2939. dev->hard_start_xmit = skge_xmit_frame;
  2940. dev->get_stats = skge_get_stats;
  2941. if (hw->chip_id == CHIP_ID_GENESIS)
  2942. dev->set_multicast_list = genesis_set_multicast;
  2943. else
  2944. dev->set_multicast_list = yukon_set_multicast;
  2945. dev->set_mac_address = skge_set_mac_address;
  2946. dev->change_mtu = skge_change_mtu;
  2947. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2948. dev->tx_timeout = skge_tx_timeout;
  2949. dev->watchdog_timeo = TX_WATCHDOG;
  2950. #ifdef CONFIG_NET_POLL_CONTROLLER
  2951. dev->poll_controller = skge_netpoll;
  2952. #endif
  2953. dev->irq = hw->pdev->irq;
  2954. if (highmem)
  2955. dev->features |= NETIF_F_HIGHDMA;
  2956. skge = netdev_priv(dev);
  2957. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  2958. skge->netdev = dev;
  2959. skge->hw = hw;
  2960. skge->msg_enable = netif_msg_init(debug, default_msg);
  2961. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2962. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2963. /* Auto speed and flow control */
  2964. skge->autoneg = AUTONEG_ENABLE;
  2965. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  2966. skge->duplex = -1;
  2967. skge->speed = -1;
  2968. skge->advertising = skge_supported_modes(hw);
  2969. if (pci_wake_enabled(hw->pdev))
  2970. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  2971. hw->dev[port] = dev;
  2972. skge->port = port;
  2973. /* Only used for Genesis XMAC */
  2974. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  2975. if (hw->chip_id != CHIP_ID_GENESIS) {
  2976. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2977. skge->rx_csum = 1;
  2978. }
  2979. /* read the mac address */
  2980. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2981. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2982. /* device is off until link detection */
  2983. netif_carrier_off(dev);
  2984. netif_stop_queue(dev);
  2985. return dev;
  2986. }
  2987. static void __devinit skge_show_addr(struct net_device *dev)
  2988. {
  2989. const struct skge_port *skge = netdev_priv(dev);
  2990. DECLARE_MAC_BUF(mac);
  2991. if (netif_msg_probe(skge))
  2992. printk(KERN_INFO PFX "%s: addr %s\n",
  2993. dev->name, print_mac(mac, dev->dev_addr));
  2994. }
  2995. static int __devinit skge_probe(struct pci_dev *pdev,
  2996. const struct pci_device_id *ent)
  2997. {
  2998. struct net_device *dev, *dev1;
  2999. struct skge_hw *hw;
  3000. int err, using_dac = 0;
  3001. err = pci_enable_device(pdev);
  3002. if (err) {
  3003. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3004. goto err_out;
  3005. }
  3006. err = pci_request_regions(pdev, DRV_NAME);
  3007. if (err) {
  3008. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3009. goto err_out_disable_pdev;
  3010. }
  3011. pci_set_master(pdev);
  3012. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3013. using_dac = 1;
  3014. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3015. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3016. using_dac = 0;
  3017. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3018. }
  3019. if (err) {
  3020. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3021. goto err_out_free_regions;
  3022. }
  3023. #ifdef __BIG_ENDIAN
  3024. /* byte swap descriptors in hardware */
  3025. {
  3026. u32 reg;
  3027. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3028. reg |= PCI_REV_DESC;
  3029. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3030. }
  3031. #endif
  3032. err = -ENOMEM;
  3033. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  3034. if (!hw) {
  3035. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3036. goto err_out_free_regions;
  3037. }
  3038. hw->pdev = pdev;
  3039. spin_lock_init(&hw->hw_lock);
  3040. spin_lock_init(&hw->phy_lock);
  3041. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  3042. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3043. if (!hw->regs) {
  3044. dev_err(&pdev->dev, "cannot map device registers\n");
  3045. goto err_out_free_hw;
  3046. }
  3047. err = skge_reset(hw);
  3048. if (err)
  3049. goto err_out_iounmap;
  3050. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3051. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3052. skge_board_name(hw), hw->chip_rev);
  3053. dev = skge_devinit(hw, 0, using_dac);
  3054. if (!dev)
  3055. goto err_out_led_off;
  3056. /* Some motherboards are broken and has zero in ROM. */
  3057. if (!is_valid_ether_addr(dev->dev_addr))
  3058. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3059. err = register_netdev(dev);
  3060. if (err) {
  3061. dev_err(&pdev->dev, "cannot register net device\n");
  3062. goto err_out_free_netdev;
  3063. }
  3064. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  3065. if (err) {
  3066. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3067. dev->name, pdev->irq);
  3068. goto err_out_unregister;
  3069. }
  3070. skge_show_addr(dev);
  3071. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  3072. if (register_netdev(dev1) == 0)
  3073. skge_show_addr(dev1);
  3074. else {
  3075. /* Failure to register second port need not be fatal */
  3076. dev_warn(&pdev->dev, "register of second port failed\n");
  3077. hw->dev[1] = NULL;
  3078. free_netdev(dev1);
  3079. }
  3080. }
  3081. pci_set_drvdata(pdev, hw);
  3082. return 0;
  3083. err_out_unregister:
  3084. unregister_netdev(dev);
  3085. err_out_free_netdev:
  3086. free_netdev(dev);
  3087. err_out_led_off:
  3088. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3089. err_out_iounmap:
  3090. iounmap(hw->regs);
  3091. err_out_free_hw:
  3092. kfree(hw);
  3093. err_out_free_regions:
  3094. pci_release_regions(pdev);
  3095. err_out_disable_pdev:
  3096. pci_disable_device(pdev);
  3097. pci_set_drvdata(pdev, NULL);
  3098. err_out:
  3099. return err;
  3100. }
  3101. static void __devexit skge_remove(struct pci_dev *pdev)
  3102. {
  3103. struct skge_hw *hw = pci_get_drvdata(pdev);
  3104. struct net_device *dev0, *dev1;
  3105. if (!hw)
  3106. return;
  3107. flush_scheduled_work();
  3108. if ((dev1 = hw->dev[1]))
  3109. unregister_netdev(dev1);
  3110. dev0 = hw->dev[0];
  3111. unregister_netdev(dev0);
  3112. tasklet_disable(&hw->phy_task);
  3113. spin_lock_irq(&hw->hw_lock);
  3114. hw->intr_mask = 0;
  3115. skge_write32(hw, B0_IMSK, 0);
  3116. skge_read32(hw, B0_IMSK);
  3117. spin_unlock_irq(&hw->hw_lock);
  3118. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3119. skge_write8(hw, B0_CTST, CS_RST_SET);
  3120. free_irq(pdev->irq, hw);
  3121. pci_release_regions(pdev);
  3122. pci_disable_device(pdev);
  3123. if (dev1)
  3124. free_netdev(dev1);
  3125. free_netdev(dev0);
  3126. iounmap(hw->regs);
  3127. kfree(hw);
  3128. pci_set_drvdata(pdev, NULL);
  3129. }
  3130. #ifdef CONFIG_PM
  3131. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3132. {
  3133. struct skge_hw *hw = pci_get_drvdata(pdev);
  3134. int i, err, wol = 0;
  3135. if (!hw)
  3136. return 0;
  3137. err = pci_save_state(pdev);
  3138. if (err)
  3139. return err;
  3140. for (i = 0; i < hw->ports; i++) {
  3141. struct net_device *dev = hw->dev[i];
  3142. struct skge_port *skge = netdev_priv(dev);
  3143. if (netif_running(dev))
  3144. skge_down(dev);
  3145. if (skge->wol)
  3146. skge_wol_init(skge);
  3147. wol |= skge->wol;
  3148. }
  3149. skge_write32(hw, B0_IMSK, 0);
  3150. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3151. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3152. return 0;
  3153. }
  3154. static int skge_resume(struct pci_dev *pdev)
  3155. {
  3156. struct skge_hw *hw = pci_get_drvdata(pdev);
  3157. int i, err;
  3158. if (!hw)
  3159. return 0;
  3160. err = pci_set_power_state(pdev, PCI_D0);
  3161. if (err)
  3162. goto out;
  3163. err = pci_restore_state(pdev);
  3164. if (err)
  3165. goto out;
  3166. pci_enable_wake(pdev, PCI_D0, 0);
  3167. err = skge_reset(hw);
  3168. if (err)
  3169. goto out;
  3170. for (i = 0; i < hw->ports; i++) {
  3171. struct net_device *dev = hw->dev[i];
  3172. if (netif_running(dev)) {
  3173. err = skge_up(dev);
  3174. if (err) {
  3175. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3176. dev->name, err);
  3177. dev_close(dev);
  3178. goto out;
  3179. }
  3180. }
  3181. }
  3182. out:
  3183. return err;
  3184. }
  3185. #endif
  3186. static void skge_shutdown(struct pci_dev *pdev)
  3187. {
  3188. struct skge_hw *hw = pci_get_drvdata(pdev);
  3189. int i, wol = 0;
  3190. if (!hw)
  3191. return;
  3192. for (i = 0; i < hw->ports; i++) {
  3193. struct net_device *dev = hw->dev[i];
  3194. struct skge_port *skge = netdev_priv(dev);
  3195. if (skge->wol)
  3196. skge_wol_init(skge);
  3197. wol |= skge->wol;
  3198. }
  3199. pci_enable_wake(pdev, PCI_D3hot, wol);
  3200. pci_enable_wake(pdev, PCI_D3cold, wol);
  3201. pci_disable_device(pdev);
  3202. pci_set_power_state(pdev, PCI_D3hot);
  3203. }
  3204. static struct pci_driver skge_driver = {
  3205. .name = DRV_NAME,
  3206. .id_table = skge_id_table,
  3207. .probe = skge_probe,
  3208. .remove = __devexit_p(skge_remove),
  3209. #ifdef CONFIG_PM
  3210. .suspend = skge_suspend,
  3211. .resume = skge_resume,
  3212. #endif
  3213. .shutdown = skge_shutdown,
  3214. };
  3215. static int __init skge_init_module(void)
  3216. {
  3217. return pci_register_driver(&skge_driver);
  3218. }
  3219. static void __exit skge_cleanup_module(void)
  3220. {
  3221. pci_unregister_driver(&skge_driver);
  3222. }
  3223. module_init(skge_init_module);
  3224. module_exit(skge_cleanup_module);