falcon.c 78 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/i2c.h>
  16. #include <linux/i2c-algo-bit.h>
  17. #include "net_driver.h"
  18. #include "bitfield.h"
  19. #include "efx.h"
  20. #include "mac.h"
  21. #include "gmii.h"
  22. #include "spi.h"
  23. #include "falcon.h"
  24. #include "falcon_hwdefs.h"
  25. #include "falcon_io.h"
  26. #include "mdio_10g.h"
  27. #include "phy.h"
  28. #include "boards.h"
  29. #include "workarounds.h"
  30. /* Falcon hardware control.
  31. * Falcon is the internal codename for the SFC4000 controller that is
  32. * present in SFE400X evaluation boards
  33. */
  34. /**
  35. * struct falcon_nic_data - Falcon NIC state
  36. * @next_buffer_table: First available buffer table id
  37. * @pci_dev2: The secondary PCI device if present
  38. * @i2c_data: Operations and state for I2C bit-bashing algorithm
  39. */
  40. struct falcon_nic_data {
  41. unsigned next_buffer_table;
  42. struct pci_dev *pci_dev2;
  43. struct i2c_algo_bit_data i2c_data;
  44. };
  45. /**************************************************************************
  46. *
  47. * Configurable values
  48. *
  49. **************************************************************************
  50. */
  51. static int disable_dma_stats;
  52. /* This is set to 16 for a good reason. In summary, if larger than
  53. * 16, the descriptor cache holds more than a default socket
  54. * buffer's worth of packets (for UDP we can only have at most one
  55. * socket buffer's worth outstanding). This combined with the fact
  56. * that we only get 1 TX event per descriptor cache means the NIC
  57. * goes idle.
  58. */
  59. #define TX_DC_ENTRIES 16
  60. #define TX_DC_ENTRIES_ORDER 0
  61. #define TX_DC_BASE 0x130000
  62. #define RX_DC_ENTRIES 64
  63. #define RX_DC_ENTRIES_ORDER 2
  64. #define RX_DC_BASE 0x100000
  65. /* RX FIFO XOFF watermark
  66. *
  67. * When the amount of the RX FIFO increases used increases past this
  68. * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
  69. * This also has an effect on RX/TX arbitration
  70. */
  71. static int rx_xoff_thresh_bytes = -1;
  72. module_param(rx_xoff_thresh_bytes, int, 0644);
  73. MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
  74. /* RX FIFO XON watermark
  75. *
  76. * When the amount of the RX FIFO used decreases below this
  77. * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
  78. * This also has an effect on RX/TX arbitration
  79. */
  80. static int rx_xon_thresh_bytes = -1;
  81. module_param(rx_xon_thresh_bytes, int, 0644);
  82. MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
  83. /* TX descriptor ring size - min 512 max 4k */
  84. #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
  85. #define FALCON_TXD_RING_SIZE 1024
  86. #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
  87. /* RX descriptor ring size - min 512 max 4k */
  88. #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
  89. #define FALCON_RXD_RING_SIZE 1024
  90. #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
  91. /* Event queue size - max 32k */
  92. #define FALCON_EVQ_ORDER EVQ_SIZE_4K
  93. #define FALCON_EVQ_SIZE 4096
  94. #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
  95. /* Max number of internal errors. After this resets will not be performed */
  96. #define FALCON_MAX_INT_ERRORS 4
  97. /* Maximum period that we wait for flush events. If the flush event
  98. * doesn't arrive in this period of time then we check if the queue
  99. * was disabled anyway. */
  100. #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
  101. /**************************************************************************
  102. *
  103. * Falcon constants
  104. *
  105. **************************************************************************
  106. */
  107. /* DMA address mask */
  108. #define FALCON_DMA_MASK DMA_BIT_MASK(46)
  109. /* TX DMA length mask (13-bit) */
  110. #define FALCON_TX_DMA_MASK (4096 - 1)
  111. /* Size and alignment of special buffers (4KB) */
  112. #define FALCON_BUF_SIZE 4096
  113. /* Dummy SRAM size code */
  114. #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
  115. /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
  116. #define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
  117. #define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
  118. #define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
  119. #define PCI_EXP_LNKSTA_LNK_WID 0x3f0
  120. #define PCI_EXP_LNKSTA_LNK_WID_LBN 4
  121. #define FALCON_IS_DUAL_FUNC(efx) \
  122. (falcon_rev(efx) < FALCON_REV_B0)
  123. /**************************************************************************
  124. *
  125. * Falcon hardware access
  126. *
  127. **************************************************************************/
  128. /* Read the current event from the event queue */
  129. static inline efx_qword_t *falcon_event(struct efx_channel *channel,
  130. unsigned int index)
  131. {
  132. return (((efx_qword_t *) (channel->eventq.addr)) + index);
  133. }
  134. /* See if an event is present
  135. *
  136. * We check both the high and low dword of the event for all ones. We
  137. * wrote all ones when we cleared the event, and no valid event can
  138. * have all ones in either its high or low dwords. This approach is
  139. * robust against reordering.
  140. *
  141. * Note that using a single 64-bit comparison is incorrect; even
  142. * though the CPU read will be atomic, the DMA write may not be.
  143. */
  144. static inline int falcon_event_present(efx_qword_t *event)
  145. {
  146. return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  147. EFX_DWORD_IS_ALL_ONES(event->dword[1])));
  148. }
  149. /**************************************************************************
  150. *
  151. * I2C bus - this is a bit-bashing interface using GPIO pins
  152. * Note that it uses the output enables to tristate the outputs
  153. * SDA is the data pin and SCL is the clock
  154. *
  155. **************************************************************************
  156. */
  157. static void falcon_setsda(void *data, int state)
  158. {
  159. struct efx_nic *efx = (struct efx_nic *)data;
  160. efx_oword_t reg;
  161. falcon_read(efx, &reg, GPIO_CTL_REG_KER);
  162. EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
  163. falcon_write(efx, &reg, GPIO_CTL_REG_KER);
  164. }
  165. static void falcon_setscl(void *data, int state)
  166. {
  167. struct efx_nic *efx = (struct efx_nic *)data;
  168. efx_oword_t reg;
  169. falcon_read(efx, &reg, GPIO_CTL_REG_KER);
  170. EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
  171. falcon_write(efx, &reg, GPIO_CTL_REG_KER);
  172. }
  173. static int falcon_getsda(void *data)
  174. {
  175. struct efx_nic *efx = (struct efx_nic *)data;
  176. efx_oword_t reg;
  177. falcon_read(efx, &reg, GPIO_CTL_REG_KER);
  178. return EFX_OWORD_FIELD(reg, GPIO3_IN);
  179. }
  180. static int falcon_getscl(void *data)
  181. {
  182. struct efx_nic *efx = (struct efx_nic *)data;
  183. efx_oword_t reg;
  184. falcon_read(efx, &reg, GPIO_CTL_REG_KER);
  185. return EFX_OWORD_FIELD(reg, GPIO0_IN);
  186. }
  187. static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
  188. .setsda = falcon_setsda,
  189. .setscl = falcon_setscl,
  190. .getsda = falcon_getsda,
  191. .getscl = falcon_getscl,
  192. .udelay = 5,
  193. /* Wait up to 50 ms for slave to let us pull SCL high */
  194. .timeout = DIV_ROUND_UP(HZ, 20),
  195. };
  196. /**************************************************************************
  197. *
  198. * Falcon special buffer handling
  199. * Special buffers are used for event queues and the TX and RX
  200. * descriptor rings.
  201. *
  202. *************************************************************************/
  203. /*
  204. * Initialise a Falcon special buffer
  205. *
  206. * This will define a buffer (previously allocated via
  207. * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
  208. * it to be used for event queues, descriptor rings etc.
  209. */
  210. static int
  211. falcon_init_special_buffer(struct efx_nic *efx,
  212. struct efx_special_buffer *buffer)
  213. {
  214. efx_qword_t buf_desc;
  215. int index;
  216. dma_addr_t dma_addr;
  217. int i;
  218. EFX_BUG_ON_PARANOID(!buffer->addr);
  219. /* Write buffer descriptors to NIC */
  220. for (i = 0; i < buffer->entries; i++) {
  221. index = buffer->index + i;
  222. dma_addr = buffer->dma_addr + (i * 4096);
  223. EFX_LOG(efx, "mapping special buffer %d at %llx\n",
  224. index, (unsigned long long)dma_addr);
  225. EFX_POPULATE_QWORD_4(buf_desc,
  226. IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
  227. BUF_ADR_REGION, 0,
  228. BUF_ADR_FBUF, (dma_addr >> 12),
  229. BUF_OWNER_ID_FBUF, 0);
  230. falcon_write_sram(efx, &buf_desc, index);
  231. }
  232. return 0;
  233. }
  234. /* Unmaps a buffer from Falcon and clears the buffer table entries */
  235. static void
  236. falcon_fini_special_buffer(struct efx_nic *efx,
  237. struct efx_special_buffer *buffer)
  238. {
  239. efx_oword_t buf_tbl_upd;
  240. unsigned int start = buffer->index;
  241. unsigned int end = (buffer->index + buffer->entries - 1);
  242. if (!buffer->entries)
  243. return;
  244. EFX_LOG(efx, "unmapping special buffers %d-%d\n",
  245. buffer->index, buffer->index + buffer->entries - 1);
  246. EFX_POPULATE_OWORD_4(buf_tbl_upd,
  247. BUF_UPD_CMD, 0,
  248. BUF_CLR_CMD, 1,
  249. BUF_CLR_END_ID, end,
  250. BUF_CLR_START_ID, start);
  251. falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
  252. }
  253. /*
  254. * Allocate a new Falcon special buffer
  255. *
  256. * This allocates memory for a new buffer, clears it and allocates a
  257. * new buffer ID range. It does not write into Falcon's buffer table.
  258. *
  259. * This call will allocate 4KB buffers, since Falcon can't use 8KB
  260. * buffers for event queues and descriptor rings.
  261. */
  262. static int falcon_alloc_special_buffer(struct efx_nic *efx,
  263. struct efx_special_buffer *buffer,
  264. unsigned int len)
  265. {
  266. struct falcon_nic_data *nic_data = efx->nic_data;
  267. len = ALIGN(len, FALCON_BUF_SIZE);
  268. buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
  269. &buffer->dma_addr);
  270. if (!buffer->addr)
  271. return -ENOMEM;
  272. buffer->len = len;
  273. buffer->entries = len / FALCON_BUF_SIZE;
  274. BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
  275. /* All zeros is a potentially valid event so memset to 0xff */
  276. memset(buffer->addr, 0xff, len);
  277. /* Select new buffer ID */
  278. buffer->index = nic_data->next_buffer_table;
  279. nic_data->next_buffer_table += buffer->entries;
  280. EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
  281. "(virt %p phys %lx)\n", buffer->index,
  282. buffer->index + buffer->entries - 1,
  283. (unsigned long long)buffer->dma_addr, len,
  284. buffer->addr, virt_to_phys(buffer->addr));
  285. return 0;
  286. }
  287. static void falcon_free_special_buffer(struct efx_nic *efx,
  288. struct efx_special_buffer *buffer)
  289. {
  290. if (!buffer->addr)
  291. return;
  292. EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
  293. "(virt %p phys %lx)\n", buffer->index,
  294. buffer->index + buffer->entries - 1,
  295. (unsigned long long)buffer->dma_addr, buffer->len,
  296. buffer->addr, virt_to_phys(buffer->addr));
  297. pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
  298. buffer->dma_addr);
  299. buffer->addr = NULL;
  300. buffer->entries = 0;
  301. }
  302. /**************************************************************************
  303. *
  304. * Falcon generic buffer handling
  305. * These buffers are used for interrupt status and MAC stats
  306. *
  307. **************************************************************************/
  308. static int falcon_alloc_buffer(struct efx_nic *efx,
  309. struct efx_buffer *buffer, unsigned int len)
  310. {
  311. buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
  312. &buffer->dma_addr);
  313. if (!buffer->addr)
  314. return -ENOMEM;
  315. buffer->len = len;
  316. memset(buffer->addr, 0, len);
  317. return 0;
  318. }
  319. static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
  320. {
  321. if (buffer->addr) {
  322. pci_free_consistent(efx->pci_dev, buffer->len,
  323. buffer->addr, buffer->dma_addr);
  324. buffer->addr = NULL;
  325. }
  326. }
  327. /**************************************************************************
  328. *
  329. * Falcon TX path
  330. *
  331. **************************************************************************/
  332. /* Returns a pointer to the specified transmit descriptor in the TX
  333. * descriptor queue belonging to the specified channel.
  334. */
  335. static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
  336. unsigned int index)
  337. {
  338. return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
  339. }
  340. /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
  341. static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
  342. {
  343. unsigned write_ptr;
  344. efx_dword_t reg;
  345. write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
  346. EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
  347. falcon_writel_page(tx_queue->efx, &reg,
  348. TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
  349. }
  350. /* For each entry inserted into the software descriptor ring, create a
  351. * descriptor in the hardware TX descriptor ring (in host memory), and
  352. * write a doorbell.
  353. */
  354. void falcon_push_buffers(struct efx_tx_queue *tx_queue)
  355. {
  356. struct efx_tx_buffer *buffer;
  357. efx_qword_t *txd;
  358. unsigned write_ptr;
  359. BUG_ON(tx_queue->write_count == tx_queue->insert_count);
  360. do {
  361. write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
  362. buffer = &tx_queue->buffer[write_ptr];
  363. txd = falcon_tx_desc(tx_queue, write_ptr);
  364. ++tx_queue->write_count;
  365. /* Create TX descriptor ring entry */
  366. EFX_POPULATE_QWORD_5(*txd,
  367. TX_KER_PORT, 0,
  368. TX_KER_CONT, buffer->continuation,
  369. TX_KER_BYTE_CNT, buffer->len,
  370. TX_KER_BUF_REGION, 0,
  371. TX_KER_BUF_ADR, buffer->dma_addr);
  372. } while (tx_queue->write_count != tx_queue->insert_count);
  373. wmb(); /* Ensure descriptors are written before they are fetched */
  374. falcon_notify_tx_desc(tx_queue);
  375. }
  376. /* Allocate hardware resources for a TX queue */
  377. int falcon_probe_tx(struct efx_tx_queue *tx_queue)
  378. {
  379. struct efx_nic *efx = tx_queue->efx;
  380. return falcon_alloc_special_buffer(efx, &tx_queue->txd,
  381. FALCON_TXD_RING_SIZE *
  382. sizeof(efx_qword_t));
  383. }
  384. int falcon_init_tx(struct efx_tx_queue *tx_queue)
  385. {
  386. efx_oword_t tx_desc_ptr;
  387. struct efx_nic *efx = tx_queue->efx;
  388. int rc;
  389. /* Pin TX descriptor ring */
  390. rc = falcon_init_special_buffer(efx, &tx_queue->txd);
  391. if (rc)
  392. return rc;
  393. /* Push TX descriptor ring to card */
  394. EFX_POPULATE_OWORD_10(tx_desc_ptr,
  395. TX_DESCQ_EN, 1,
  396. TX_ISCSI_DDIG_EN, 0,
  397. TX_ISCSI_HDIG_EN, 0,
  398. TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
  399. TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
  400. TX_DESCQ_OWNER_ID, 0,
  401. TX_DESCQ_LABEL, tx_queue->queue,
  402. TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
  403. TX_DESCQ_TYPE, 0,
  404. TX_NON_IP_DROP_DIS_B0, 1);
  405. if (falcon_rev(efx) >= FALCON_REV_B0) {
  406. int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
  407. EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
  408. EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
  409. }
  410. falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
  411. tx_queue->queue);
  412. if (falcon_rev(efx) < FALCON_REV_B0) {
  413. efx_oword_t reg;
  414. /* Only 128 bits in this register */
  415. BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
  416. falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
  417. if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
  418. clear_bit_le(tx_queue->queue, (void *)&reg);
  419. else
  420. set_bit_le(tx_queue->queue, (void *)&reg);
  421. falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
  422. }
  423. return 0;
  424. }
  425. static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
  426. {
  427. struct efx_nic *efx = tx_queue->efx;
  428. struct efx_channel *channel = &efx->channel[0];
  429. efx_oword_t tx_flush_descq;
  430. unsigned int read_ptr, i;
  431. /* Post a flush command */
  432. EFX_POPULATE_OWORD_2(tx_flush_descq,
  433. TX_FLUSH_DESCQ_CMD, 1,
  434. TX_FLUSH_DESCQ, tx_queue->queue);
  435. falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
  436. msleep(FALCON_FLUSH_TIMEOUT);
  437. if (EFX_WORKAROUND_7803(efx))
  438. return 0;
  439. /* Look for a flush completed event */
  440. read_ptr = channel->eventq_read_ptr;
  441. for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
  442. efx_qword_t *event = falcon_event(channel, read_ptr);
  443. int ev_code, ev_sub_code, ev_queue;
  444. if (!falcon_event_present(event))
  445. break;
  446. ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
  447. ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
  448. ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
  449. if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
  450. (ev_queue == tx_queue->queue)) {
  451. EFX_LOG(efx, "tx queue %d flush command succesful\n",
  452. tx_queue->queue);
  453. return 0;
  454. }
  455. read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
  456. }
  457. if (EFX_WORKAROUND_11557(efx)) {
  458. efx_oword_t reg;
  459. int enabled;
  460. falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
  461. tx_queue->queue);
  462. enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
  463. if (!enabled) {
  464. EFX_LOG(efx, "tx queue %d disabled without a "
  465. "flush event seen\n", tx_queue->queue);
  466. return 0;
  467. }
  468. }
  469. EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
  470. return -ETIMEDOUT;
  471. }
  472. void falcon_fini_tx(struct efx_tx_queue *tx_queue)
  473. {
  474. struct efx_nic *efx = tx_queue->efx;
  475. efx_oword_t tx_desc_ptr;
  476. /* Stop the hardware using the queue */
  477. if (falcon_flush_tx_queue(tx_queue))
  478. EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
  479. /* Remove TX descriptor ring from card */
  480. EFX_ZERO_OWORD(tx_desc_ptr);
  481. falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
  482. tx_queue->queue);
  483. /* Unpin TX descriptor ring */
  484. falcon_fini_special_buffer(efx, &tx_queue->txd);
  485. }
  486. /* Free buffers backing TX queue */
  487. void falcon_remove_tx(struct efx_tx_queue *tx_queue)
  488. {
  489. falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
  490. }
  491. /**************************************************************************
  492. *
  493. * Falcon RX path
  494. *
  495. **************************************************************************/
  496. /* Returns a pointer to the specified descriptor in the RX descriptor queue */
  497. static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
  498. unsigned int index)
  499. {
  500. return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
  501. }
  502. /* This creates an entry in the RX descriptor queue */
  503. static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
  504. unsigned index)
  505. {
  506. struct efx_rx_buffer *rx_buf;
  507. efx_qword_t *rxd;
  508. rxd = falcon_rx_desc(rx_queue, index);
  509. rx_buf = efx_rx_buffer(rx_queue, index);
  510. EFX_POPULATE_QWORD_3(*rxd,
  511. RX_KER_BUF_SIZE,
  512. rx_buf->len -
  513. rx_queue->efx->type->rx_buffer_padding,
  514. RX_KER_BUF_REGION, 0,
  515. RX_KER_BUF_ADR, rx_buf->dma_addr);
  516. }
  517. /* This writes to the RX_DESC_WPTR register for the specified receive
  518. * descriptor ring.
  519. */
  520. void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
  521. {
  522. efx_dword_t reg;
  523. unsigned write_ptr;
  524. while (rx_queue->notified_count != rx_queue->added_count) {
  525. falcon_build_rx_desc(rx_queue,
  526. rx_queue->notified_count &
  527. FALCON_RXD_RING_MASK);
  528. ++rx_queue->notified_count;
  529. }
  530. wmb();
  531. write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
  532. EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
  533. falcon_writel_page(rx_queue->efx, &reg,
  534. RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
  535. }
  536. int falcon_probe_rx(struct efx_rx_queue *rx_queue)
  537. {
  538. struct efx_nic *efx = rx_queue->efx;
  539. return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
  540. FALCON_RXD_RING_SIZE *
  541. sizeof(efx_qword_t));
  542. }
  543. int falcon_init_rx(struct efx_rx_queue *rx_queue)
  544. {
  545. efx_oword_t rx_desc_ptr;
  546. struct efx_nic *efx = rx_queue->efx;
  547. int rc;
  548. int is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
  549. int iscsi_digest_en = is_b0;
  550. EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
  551. rx_queue->queue, rx_queue->rxd.index,
  552. rx_queue->rxd.index + rx_queue->rxd.entries - 1);
  553. /* Pin RX descriptor ring */
  554. rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
  555. if (rc)
  556. return rc;
  557. /* Push RX descriptor ring to card */
  558. EFX_POPULATE_OWORD_10(rx_desc_ptr,
  559. RX_ISCSI_DDIG_EN, iscsi_digest_en,
  560. RX_ISCSI_HDIG_EN, iscsi_digest_en,
  561. RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
  562. RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
  563. RX_DESCQ_OWNER_ID, 0,
  564. RX_DESCQ_LABEL, rx_queue->queue,
  565. RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
  566. RX_DESCQ_TYPE, 0 /* kernel queue */ ,
  567. /* For >=B0 this is scatter so disable */
  568. RX_DESCQ_JUMBO, !is_b0,
  569. RX_DESCQ_EN, 1);
  570. falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  571. rx_queue->queue);
  572. return 0;
  573. }
  574. static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
  575. {
  576. struct efx_nic *efx = rx_queue->efx;
  577. struct efx_channel *channel = &efx->channel[0];
  578. unsigned int read_ptr, i;
  579. efx_oword_t rx_flush_descq;
  580. /* Post a flush command */
  581. EFX_POPULATE_OWORD_2(rx_flush_descq,
  582. RX_FLUSH_DESCQ_CMD, 1,
  583. RX_FLUSH_DESCQ, rx_queue->queue);
  584. falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
  585. msleep(FALCON_FLUSH_TIMEOUT);
  586. if (EFX_WORKAROUND_7803(efx))
  587. return 0;
  588. /* Look for a flush completed event */
  589. read_ptr = channel->eventq_read_ptr;
  590. for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
  591. efx_qword_t *event = falcon_event(channel, read_ptr);
  592. int ev_code, ev_sub_code, ev_queue, ev_failed;
  593. if (!falcon_event_present(event))
  594. break;
  595. ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
  596. ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
  597. ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
  598. ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
  599. if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
  600. (ev_queue == rx_queue->queue)) {
  601. if (ev_failed) {
  602. EFX_INFO(efx, "rx queue %d flush command "
  603. "failed\n", rx_queue->queue);
  604. return -EAGAIN;
  605. } else {
  606. EFX_LOG(efx, "rx queue %d flush command "
  607. "succesful\n", rx_queue->queue);
  608. return 0;
  609. }
  610. }
  611. read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
  612. }
  613. if (EFX_WORKAROUND_11557(efx)) {
  614. efx_oword_t reg;
  615. int enabled;
  616. falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
  617. rx_queue->queue);
  618. enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
  619. if (!enabled) {
  620. EFX_LOG(efx, "rx queue %d disabled without a "
  621. "flush event seen\n", rx_queue->queue);
  622. return 0;
  623. }
  624. }
  625. EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
  626. return -ETIMEDOUT;
  627. }
  628. void falcon_fini_rx(struct efx_rx_queue *rx_queue)
  629. {
  630. efx_oword_t rx_desc_ptr;
  631. struct efx_nic *efx = rx_queue->efx;
  632. int i, rc;
  633. /* Try and flush the rx queue. This may need to be repeated */
  634. for (i = 0; i < 5; i++) {
  635. rc = falcon_flush_rx_queue(rx_queue);
  636. if (rc == -EAGAIN)
  637. continue;
  638. break;
  639. }
  640. if (rc) {
  641. EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
  642. efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
  643. }
  644. /* Remove RX descriptor ring from card */
  645. EFX_ZERO_OWORD(rx_desc_ptr);
  646. falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  647. rx_queue->queue);
  648. /* Unpin RX descriptor ring */
  649. falcon_fini_special_buffer(efx, &rx_queue->rxd);
  650. }
  651. /* Free buffers backing RX queue */
  652. void falcon_remove_rx(struct efx_rx_queue *rx_queue)
  653. {
  654. falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
  655. }
  656. /**************************************************************************
  657. *
  658. * Falcon event queue processing
  659. * Event queues are processed by per-channel tasklets.
  660. *
  661. **************************************************************************/
  662. /* Update a channel's event queue's read pointer (RPTR) register
  663. *
  664. * This writes the EVQ_RPTR_REG register for the specified channel's
  665. * event queue.
  666. *
  667. * Note that EVQ_RPTR_REG contains the index of the "last read" event,
  668. * whereas channel->eventq_read_ptr contains the index of the "next to
  669. * read" event.
  670. */
  671. void falcon_eventq_read_ack(struct efx_channel *channel)
  672. {
  673. efx_dword_t reg;
  674. struct efx_nic *efx = channel->efx;
  675. EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
  676. falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
  677. channel->evqnum);
  678. }
  679. /* Use HW to insert a SW defined event */
  680. void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
  681. {
  682. efx_oword_t drv_ev_reg;
  683. EFX_POPULATE_OWORD_2(drv_ev_reg,
  684. DRV_EV_QID, channel->evqnum,
  685. DRV_EV_DATA,
  686. EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
  687. falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
  688. }
  689. /* Handle a transmit completion event
  690. *
  691. * Falcon batches TX completion events; the message we receive is of
  692. * the form "complete all TX events up to this index".
  693. */
  694. static inline void falcon_handle_tx_event(struct efx_channel *channel,
  695. efx_qword_t *event)
  696. {
  697. unsigned int tx_ev_desc_ptr;
  698. unsigned int tx_ev_q_label;
  699. struct efx_tx_queue *tx_queue;
  700. struct efx_nic *efx = channel->efx;
  701. if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
  702. /* Transmit completion */
  703. tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
  704. tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
  705. tx_queue = &efx->tx_queue[tx_ev_q_label];
  706. efx_xmit_done(tx_queue, tx_ev_desc_ptr);
  707. } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
  708. /* Rewrite the FIFO write pointer */
  709. tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
  710. tx_queue = &efx->tx_queue[tx_ev_q_label];
  711. if (efx_dev_registered(efx))
  712. netif_tx_lock(efx->net_dev);
  713. falcon_notify_tx_desc(tx_queue);
  714. if (efx_dev_registered(efx))
  715. netif_tx_unlock(efx->net_dev);
  716. } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
  717. EFX_WORKAROUND_10727(efx)) {
  718. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  719. } else {
  720. EFX_ERR(efx, "channel %d unexpected TX event "
  721. EFX_QWORD_FMT"\n", channel->channel,
  722. EFX_QWORD_VAL(*event));
  723. }
  724. }
  725. /* Check received packet's destination MAC address. */
  726. static int check_dest_mac(struct efx_rx_queue *rx_queue,
  727. const efx_qword_t *event)
  728. {
  729. struct efx_rx_buffer *rx_buf;
  730. struct efx_nic *efx = rx_queue->efx;
  731. int rx_ev_desc_ptr;
  732. struct ethhdr *eh;
  733. if (efx->promiscuous)
  734. return 1;
  735. rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
  736. rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr);
  737. eh = (struct ethhdr *)rx_buf->data;
  738. if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN))
  739. return 0;
  740. return 1;
  741. }
  742. /* Detect errors included in the rx_evt_pkt_ok bit. */
  743. static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
  744. const efx_qword_t *event,
  745. unsigned *rx_ev_pkt_ok,
  746. int *discard, int byte_count)
  747. {
  748. struct efx_nic *efx = rx_queue->efx;
  749. unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
  750. unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
  751. unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
  752. unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
  753. unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
  754. int snap, non_ip;
  755. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
  756. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
  757. rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
  758. rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
  759. rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
  760. RX_EV_BUF_OWNER_ID_ERR);
  761. rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
  762. rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
  763. RX_EV_IP_HDR_CHKSUM_ERR);
  764. rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
  765. RX_EV_TCP_UDP_CHKSUM_ERR);
  766. rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
  767. rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
  768. rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
  769. 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
  770. rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
  771. /* Every error apart from tobe_disc and pause_frm */
  772. rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
  773. rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
  774. rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
  775. snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) ||
  776. (rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE);
  777. non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE);
  778. /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the
  779. * length field of an LLC frame, which sets TOBE_DISC. We could set
  780. * PASS_LEN_ERR, but we want the MAC to filter out short frames (to
  781. * protect the RX block).
  782. *
  783. * bug5475 - LLC/SNAP: Falcon identifies SNAP packets.
  784. * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag.
  785. * LLC can't encapsulate IP, so by definition
  786. * these packets are NON_IP.
  787. *
  788. * Unicast mismatch will also cause TOBE_DISC, so the driver needs
  789. * to check this.
  790. */
  791. if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) {
  792. /* If all the other flags are zero then we can state the
  793. * entire packet is ok, which will flag to the kernel not
  794. * to recalculate checksums.
  795. */
  796. if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm))
  797. *rx_ev_pkt_ok = 1;
  798. rx_ev_tobe_disc = 0;
  799. /* TOBE_DISC is set for unicast mismatch. But given that
  800. * we can't trust TOBE_DISC here, we must validate the dest
  801. * MAC address ourselves.
  802. */
  803. if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event))
  804. rx_ev_tobe_disc = 1;
  805. }
  806. /* Count errors that are not in MAC stats. */
  807. if (rx_ev_frm_trunc)
  808. ++rx_queue->channel->n_rx_frm_trunc;
  809. else if (rx_ev_tobe_disc)
  810. ++rx_queue->channel->n_rx_tobe_disc;
  811. else if (rx_ev_ip_hdr_chksum_err)
  812. ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
  813. else if (rx_ev_tcp_udp_chksum_err)
  814. ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
  815. if (rx_ev_ip_frag_err)
  816. ++rx_queue->channel->n_rx_ip_frag_err;
  817. /* The frame must be discarded if any of these are true. */
  818. *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
  819. rx_ev_tobe_disc | rx_ev_pause_frm);
  820. /* TOBE_DISC is expected on unicast mismatches; don't print out an
  821. * error message. FRM_TRUNC indicates RXDP dropped the packet due
  822. * to a FIFO overflow.
  823. */
  824. #ifdef EFX_ENABLE_DEBUG
  825. if (rx_ev_other_err) {
  826. EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
  827. EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n",
  828. rx_queue->queue, EFX_QWORD_VAL(*event),
  829. rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
  830. rx_ev_ip_hdr_chksum_err ?
  831. " [IP_HDR_CHKSUM_ERR]" : "",
  832. rx_ev_tcp_udp_chksum_err ?
  833. " [TCP_UDP_CHKSUM_ERR]" : "",
  834. rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
  835. rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
  836. rx_ev_drib_nib ? " [DRIB_NIB]" : "",
  837. rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
  838. rx_ev_pause_frm ? " [PAUSE]" : "",
  839. snap ? " [SNAP/LLC]" : "");
  840. }
  841. #endif
  842. if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
  843. efx->phy_type == PHY_TYPE_10XPRESS))
  844. tenxpress_crc_err(efx);
  845. }
  846. /* Handle receive events that are not in-order. */
  847. static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
  848. unsigned index)
  849. {
  850. struct efx_nic *efx = rx_queue->efx;
  851. unsigned expected, dropped;
  852. expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
  853. dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
  854. FALCON_RXD_RING_MASK);
  855. EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
  856. dropped, index, expected);
  857. efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
  858. RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
  859. }
  860. /* Handle a packet received event
  861. *
  862. * Falcon silicon gives a "discard" flag if it's a unicast packet with the
  863. * wrong destination address
  864. * Also "is multicast" and "matches multicast filter" flags can be used to
  865. * discard non-matching multicast packets.
  866. */
  867. static inline int falcon_handle_rx_event(struct efx_channel *channel,
  868. const efx_qword_t *event)
  869. {
  870. unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
  871. unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
  872. unsigned expected_ptr;
  873. int discard = 0, checksummed;
  874. struct efx_rx_queue *rx_queue;
  875. struct efx_nic *efx = channel->efx;
  876. /* Basic packet information */
  877. rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
  878. rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
  879. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
  880. WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
  881. WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
  882. rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
  883. rx_queue = &efx->rx_queue[rx_ev_q_label];
  884. rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
  885. expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
  886. if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
  887. falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
  888. return rx_ev_q_label;
  889. }
  890. if (likely(rx_ev_pkt_ok)) {
  891. /* If packet is marked as OK and packet type is TCP/IPv4 or
  892. * UDP/IPv4, then we can rely on the hardware checksum.
  893. */
  894. checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
  895. } else {
  896. falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
  897. &discard, rx_ev_byte_cnt);
  898. checksummed = 0;
  899. }
  900. /* Detect multicast packets that didn't match the filter */
  901. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
  902. if (rx_ev_mcast_pkt) {
  903. unsigned int rx_ev_mcast_hash_match =
  904. EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
  905. if (unlikely(!rx_ev_mcast_hash_match))
  906. discard = 1;
  907. }
  908. /* Handle received packet */
  909. efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
  910. checksummed, discard);
  911. return rx_ev_q_label;
  912. }
  913. /* Global events are basically PHY events */
  914. static void falcon_handle_global_event(struct efx_channel *channel,
  915. efx_qword_t *event)
  916. {
  917. struct efx_nic *efx = channel->efx;
  918. int is_phy_event = 0, handled = 0;
  919. /* Check for interrupt on either port. Some boards have a
  920. * single PHY wired to the interrupt line for port 1. */
  921. if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
  922. EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
  923. EFX_QWORD_FIELD(*event, XG_PHY_INTR))
  924. is_phy_event = 1;
  925. if ((falcon_rev(efx) >= FALCON_REV_B0) &&
  926. EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
  927. is_phy_event = 1;
  928. if (is_phy_event) {
  929. efx->phy_op->clear_interrupt(efx);
  930. queue_work(efx->workqueue, &efx->reconfigure_work);
  931. handled = 1;
  932. }
  933. if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
  934. EFX_ERR(efx, "channel %d seen global RX_RESET "
  935. "event. Resetting.\n", channel->channel);
  936. atomic_inc(&efx->rx_reset);
  937. efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
  938. RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
  939. handled = 1;
  940. }
  941. if (!handled)
  942. EFX_ERR(efx, "channel %d unknown global event "
  943. EFX_QWORD_FMT "\n", channel->channel,
  944. EFX_QWORD_VAL(*event));
  945. }
  946. static void falcon_handle_driver_event(struct efx_channel *channel,
  947. efx_qword_t *event)
  948. {
  949. struct efx_nic *efx = channel->efx;
  950. unsigned int ev_sub_code;
  951. unsigned int ev_sub_data;
  952. ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
  953. ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
  954. switch (ev_sub_code) {
  955. case TX_DESCQ_FLS_DONE_EV_DECODE:
  956. EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
  957. channel->channel, ev_sub_data);
  958. break;
  959. case RX_DESCQ_FLS_DONE_EV_DECODE:
  960. EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
  961. channel->channel, ev_sub_data);
  962. break;
  963. case EVQ_INIT_DONE_EV_DECODE:
  964. EFX_LOG(efx, "channel %d EVQ %d initialised\n",
  965. channel->channel, ev_sub_data);
  966. break;
  967. case SRM_UPD_DONE_EV_DECODE:
  968. EFX_TRACE(efx, "channel %d SRAM update done\n",
  969. channel->channel);
  970. break;
  971. case WAKE_UP_EV_DECODE:
  972. EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
  973. channel->channel, ev_sub_data);
  974. break;
  975. case TIMER_EV_DECODE:
  976. EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
  977. channel->channel, ev_sub_data);
  978. break;
  979. case RX_RECOVERY_EV_DECODE:
  980. EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
  981. "Resetting.\n", channel->channel);
  982. atomic_inc(&efx->rx_reset);
  983. efx_schedule_reset(efx,
  984. EFX_WORKAROUND_6555(efx) ?
  985. RESET_TYPE_RX_RECOVERY :
  986. RESET_TYPE_DISABLE);
  987. break;
  988. case RX_DSC_ERROR_EV_DECODE:
  989. EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
  990. " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
  991. efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
  992. break;
  993. case TX_DSC_ERROR_EV_DECODE:
  994. EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
  995. " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
  996. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  997. break;
  998. default:
  999. EFX_TRACE(efx, "channel %d unknown driver event code %d "
  1000. "data %04x\n", channel->channel, ev_sub_code,
  1001. ev_sub_data);
  1002. break;
  1003. }
  1004. }
  1005. int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
  1006. {
  1007. unsigned int read_ptr;
  1008. efx_qword_t event, *p_event;
  1009. int ev_code;
  1010. int rxq;
  1011. int rxdmaqs = 0;
  1012. read_ptr = channel->eventq_read_ptr;
  1013. do {
  1014. p_event = falcon_event(channel, read_ptr);
  1015. event = *p_event;
  1016. if (!falcon_event_present(&event))
  1017. /* End of events */
  1018. break;
  1019. EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
  1020. channel->channel, EFX_QWORD_VAL(event));
  1021. /* Clear this event by marking it all ones */
  1022. EFX_SET_QWORD(*p_event);
  1023. ev_code = EFX_QWORD_FIELD(event, EV_CODE);
  1024. switch (ev_code) {
  1025. case RX_IP_EV_DECODE:
  1026. rxq = falcon_handle_rx_event(channel, &event);
  1027. rxdmaqs |= (1 << rxq);
  1028. (*rx_quota)--;
  1029. break;
  1030. case TX_IP_EV_DECODE:
  1031. falcon_handle_tx_event(channel, &event);
  1032. break;
  1033. case DRV_GEN_EV_DECODE:
  1034. channel->eventq_magic
  1035. = EFX_QWORD_FIELD(event, EVQ_MAGIC);
  1036. EFX_LOG(channel->efx, "channel %d received generated "
  1037. "event "EFX_QWORD_FMT"\n", channel->channel,
  1038. EFX_QWORD_VAL(event));
  1039. break;
  1040. case GLOBAL_EV_DECODE:
  1041. falcon_handle_global_event(channel, &event);
  1042. break;
  1043. case DRIVER_EV_DECODE:
  1044. falcon_handle_driver_event(channel, &event);
  1045. break;
  1046. default:
  1047. EFX_ERR(channel->efx, "channel %d unknown event type %d"
  1048. " (data " EFX_QWORD_FMT ")\n", channel->channel,
  1049. ev_code, EFX_QWORD_VAL(event));
  1050. }
  1051. /* Increment read pointer */
  1052. read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
  1053. } while (*rx_quota);
  1054. channel->eventq_read_ptr = read_ptr;
  1055. return rxdmaqs;
  1056. }
  1057. void falcon_set_int_moderation(struct efx_channel *channel)
  1058. {
  1059. efx_dword_t timer_cmd;
  1060. struct efx_nic *efx = channel->efx;
  1061. /* Set timer register */
  1062. if (channel->irq_moderation) {
  1063. /* Round to resolution supported by hardware. The value we
  1064. * program is based at 0. So actual interrupt moderation
  1065. * achieved is ((x + 1) * res).
  1066. */
  1067. unsigned int res = 5;
  1068. channel->irq_moderation -= (channel->irq_moderation % res);
  1069. if (channel->irq_moderation < res)
  1070. channel->irq_moderation = res;
  1071. EFX_POPULATE_DWORD_2(timer_cmd,
  1072. TIMER_MODE, TIMER_MODE_INT_HLDOFF,
  1073. TIMER_VAL,
  1074. (channel->irq_moderation / res) - 1);
  1075. } else {
  1076. EFX_POPULATE_DWORD_2(timer_cmd,
  1077. TIMER_MODE, TIMER_MODE_DIS,
  1078. TIMER_VAL, 0);
  1079. }
  1080. falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
  1081. channel->evqnum);
  1082. }
  1083. /* Allocate buffer table entries for event queue */
  1084. int falcon_probe_eventq(struct efx_channel *channel)
  1085. {
  1086. struct efx_nic *efx = channel->efx;
  1087. unsigned int evq_size;
  1088. evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
  1089. return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
  1090. }
  1091. int falcon_init_eventq(struct efx_channel *channel)
  1092. {
  1093. efx_oword_t evq_ptr;
  1094. struct efx_nic *efx = channel->efx;
  1095. int rc;
  1096. EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
  1097. channel->channel, channel->eventq.index,
  1098. channel->eventq.index + channel->eventq.entries - 1);
  1099. /* Pin event queue buffer */
  1100. rc = falcon_init_special_buffer(efx, &channel->eventq);
  1101. if (rc)
  1102. return rc;
  1103. /* Fill event queue with all ones (i.e. empty events) */
  1104. memset(channel->eventq.addr, 0xff, channel->eventq.len);
  1105. /* Push event queue to card */
  1106. EFX_POPULATE_OWORD_3(evq_ptr,
  1107. EVQ_EN, 1,
  1108. EVQ_SIZE, FALCON_EVQ_ORDER,
  1109. EVQ_BUF_BASE_ID, channel->eventq.index);
  1110. falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
  1111. channel->evqnum);
  1112. falcon_set_int_moderation(channel);
  1113. return 0;
  1114. }
  1115. void falcon_fini_eventq(struct efx_channel *channel)
  1116. {
  1117. efx_oword_t eventq_ptr;
  1118. struct efx_nic *efx = channel->efx;
  1119. /* Remove event queue from card */
  1120. EFX_ZERO_OWORD(eventq_ptr);
  1121. falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
  1122. channel->evqnum);
  1123. /* Unpin event queue */
  1124. falcon_fini_special_buffer(efx, &channel->eventq);
  1125. }
  1126. /* Free buffers backing event queue */
  1127. void falcon_remove_eventq(struct efx_channel *channel)
  1128. {
  1129. falcon_free_special_buffer(channel->efx, &channel->eventq);
  1130. }
  1131. /* Generates a test event on the event queue. A subsequent call to
  1132. * process_eventq() should pick up the event and place the value of
  1133. * "magic" into channel->eventq_magic;
  1134. */
  1135. void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
  1136. {
  1137. efx_qword_t test_event;
  1138. EFX_POPULATE_QWORD_2(test_event,
  1139. EV_CODE, DRV_GEN_EV_DECODE,
  1140. EVQ_MAGIC, magic);
  1141. falcon_generate_event(channel, &test_event);
  1142. }
  1143. /**************************************************************************
  1144. *
  1145. * Falcon hardware interrupts
  1146. * The hardware interrupt handler does very little work; all the event
  1147. * queue processing is carried out by per-channel tasklets.
  1148. *
  1149. **************************************************************************/
  1150. /* Enable/disable/generate Falcon interrupts */
  1151. static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
  1152. int force)
  1153. {
  1154. efx_oword_t int_en_reg_ker;
  1155. EFX_POPULATE_OWORD_2(int_en_reg_ker,
  1156. KER_INT_KER, force,
  1157. DRV_INT_EN_KER, enabled);
  1158. falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
  1159. }
  1160. void falcon_enable_interrupts(struct efx_nic *efx)
  1161. {
  1162. efx_oword_t int_adr_reg_ker;
  1163. struct efx_channel *channel;
  1164. EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
  1165. wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
  1166. /* Program address */
  1167. EFX_POPULATE_OWORD_2(int_adr_reg_ker,
  1168. NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
  1169. INT_ADR_KER, efx->irq_status.dma_addr);
  1170. falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
  1171. /* Enable interrupts */
  1172. falcon_interrupts(efx, 1, 0);
  1173. /* Force processing of all the channels to get the EVQ RPTRs up to
  1174. date */
  1175. efx_for_each_channel_with_interrupt(channel, efx)
  1176. efx_schedule_channel(channel);
  1177. }
  1178. void falcon_disable_interrupts(struct efx_nic *efx)
  1179. {
  1180. /* Disable interrupts */
  1181. falcon_interrupts(efx, 0, 0);
  1182. }
  1183. /* Generate a Falcon test interrupt
  1184. * Interrupt must already have been enabled, otherwise nasty things
  1185. * may happen.
  1186. */
  1187. void falcon_generate_interrupt(struct efx_nic *efx)
  1188. {
  1189. falcon_interrupts(efx, 1, 1);
  1190. }
  1191. /* Acknowledge a legacy interrupt from Falcon
  1192. *
  1193. * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
  1194. *
  1195. * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
  1196. * BIU. Interrupt acknowledge is read sensitive so must write instead
  1197. * (then read to ensure the BIU collector is flushed)
  1198. *
  1199. * NB most hardware supports MSI interrupts
  1200. */
  1201. static inline void falcon_irq_ack_a1(struct efx_nic *efx)
  1202. {
  1203. efx_dword_t reg;
  1204. EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
  1205. falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
  1206. falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
  1207. }
  1208. /* Process a fatal interrupt
  1209. * Disable bus mastering ASAP and schedule a reset
  1210. */
  1211. static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
  1212. {
  1213. struct falcon_nic_data *nic_data = efx->nic_data;
  1214. efx_oword_t *int_ker = efx->irq_status.addr;
  1215. efx_oword_t fatal_intr;
  1216. int error, mem_perr;
  1217. static int n_int_errors;
  1218. falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
  1219. error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
  1220. EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
  1221. EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
  1222. EFX_OWORD_VAL(fatal_intr),
  1223. error ? "disabling bus mastering" : "no recognised error");
  1224. if (error == 0)
  1225. goto out;
  1226. /* If this is a memory parity error dump which blocks are offending */
  1227. mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
  1228. if (mem_perr) {
  1229. efx_oword_t reg;
  1230. falcon_read(efx, &reg, MEM_STAT_REG_KER);
  1231. EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
  1232. EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
  1233. }
  1234. /* Disable DMA bus mastering on both devices */
  1235. pci_disable_device(efx->pci_dev);
  1236. if (FALCON_IS_DUAL_FUNC(efx))
  1237. pci_disable_device(nic_data->pci_dev2);
  1238. if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
  1239. EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
  1240. efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
  1241. } else {
  1242. EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
  1243. "NIC will be disabled\n");
  1244. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  1245. }
  1246. out:
  1247. return IRQ_HANDLED;
  1248. }
  1249. /* Handle a legacy interrupt from Falcon
  1250. * Acknowledges the interrupt and schedule event queue processing.
  1251. */
  1252. static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
  1253. {
  1254. struct efx_nic *efx = dev_id;
  1255. efx_oword_t *int_ker = efx->irq_status.addr;
  1256. struct efx_channel *channel;
  1257. efx_dword_t reg;
  1258. u32 queues;
  1259. int syserr;
  1260. /* Read the ISR which also ACKs the interrupts */
  1261. falcon_readl(efx, &reg, INT_ISR0_B0);
  1262. queues = EFX_EXTRACT_DWORD(reg, 0, 31);
  1263. /* Check to see if we have a serious error condition */
  1264. syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
  1265. if (unlikely(syserr))
  1266. return falcon_fatal_interrupt(efx);
  1267. if (queues == 0)
  1268. return IRQ_NONE;
  1269. efx->last_irq_cpu = raw_smp_processor_id();
  1270. EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
  1271. irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
  1272. /* Schedule processing of any interrupting queues */
  1273. channel = &efx->channel[0];
  1274. while (queues) {
  1275. if (queues & 0x01)
  1276. efx_schedule_channel(channel);
  1277. channel++;
  1278. queues >>= 1;
  1279. }
  1280. return IRQ_HANDLED;
  1281. }
  1282. static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
  1283. {
  1284. struct efx_nic *efx = dev_id;
  1285. efx_oword_t *int_ker = efx->irq_status.addr;
  1286. struct efx_channel *channel;
  1287. int syserr;
  1288. int queues;
  1289. /* Check to see if this is our interrupt. If it isn't, we
  1290. * exit without having touched the hardware.
  1291. */
  1292. if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
  1293. EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
  1294. raw_smp_processor_id());
  1295. return IRQ_NONE;
  1296. }
  1297. efx->last_irq_cpu = raw_smp_processor_id();
  1298. EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
  1299. irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
  1300. /* Check to see if we have a serious error condition */
  1301. syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
  1302. if (unlikely(syserr))
  1303. return falcon_fatal_interrupt(efx);
  1304. /* Determine interrupting queues, clear interrupt status
  1305. * register and acknowledge the device interrupt.
  1306. */
  1307. BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
  1308. queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
  1309. EFX_ZERO_OWORD(*int_ker);
  1310. wmb(); /* Ensure the vector is cleared before interrupt ack */
  1311. falcon_irq_ack_a1(efx);
  1312. /* Schedule processing of any interrupting queues */
  1313. channel = &efx->channel[0];
  1314. while (queues) {
  1315. if (queues & 0x01)
  1316. efx_schedule_channel(channel);
  1317. channel++;
  1318. queues >>= 1;
  1319. }
  1320. return IRQ_HANDLED;
  1321. }
  1322. /* Handle an MSI interrupt from Falcon
  1323. *
  1324. * Handle an MSI hardware interrupt. This routine schedules event
  1325. * queue processing. No interrupt acknowledgement cycle is necessary.
  1326. * Also, we never need to check that the interrupt is for us, since
  1327. * MSI interrupts cannot be shared.
  1328. */
  1329. static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
  1330. {
  1331. struct efx_channel *channel = dev_id;
  1332. struct efx_nic *efx = channel->efx;
  1333. efx_oword_t *int_ker = efx->irq_status.addr;
  1334. int syserr;
  1335. efx->last_irq_cpu = raw_smp_processor_id();
  1336. EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
  1337. irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
  1338. /* Check to see if we have a serious error condition */
  1339. syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
  1340. if (unlikely(syserr))
  1341. return falcon_fatal_interrupt(efx);
  1342. /* Schedule processing of the channel */
  1343. efx_schedule_channel(channel);
  1344. return IRQ_HANDLED;
  1345. }
  1346. /* Setup RSS indirection table.
  1347. * This maps from the hash value of the packet to RXQ
  1348. */
  1349. static void falcon_setup_rss_indir_table(struct efx_nic *efx)
  1350. {
  1351. int i = 0;
  1352. unsigned long offset;
  1353. efx_dword_t dword;
  1354. if (falcon_rev(efx) < FALCON_REV_B0)
  1355. return;
  1356. for (offset = RX_RSS_INDIR_TBL_B0;
  1357. offset < RX_RSS_INDIR_TBL_B0 + 0x800;
  1358. offset += 0x10) {
  1359. EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
  1360. i % efx->rss_queues);
  1361. falcon_writel(efx, &dword, offset);
  1362. i++;
  1363. }
  1364. }
  1365. /* Hook interrupt handler(s)
  1366. * Try MSI and then legacy interrupts.
  1367. */
  1368. int falcon_init_interrupt(struct efx_nic *efx)
  1369. {
  1370. struct efx_channel *channel;
  1371. int rc;
  1372. if (!EFX_INT_MODE_USE_MSI(efx)) {
  1373. irq_handler_t handler;
  1374. if (falcon_rev(efx) >= FALCON_REV_B0)
  1375. handler = falcon_legacy_interrupt_b0;
  1376. else
  1377. handler = falcon_legacy_interrupt_a1;
  1378. rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
  1379. efx->name, efx);
  1380. if (rc) {
  1381. EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
  1382. efx->pci_dev->irq);
  1383. goto fail1;
  1384. }
  1385. return 0;
  1386. }
  1387. /* Hook MSI or MSI-X interrupt */
  1388. efx_for_each_channel_with_interrupt(channel, efx) {
  1389. rc = request_irq(channel->irq, falcon_msi_interrupt,
  1390. IRQF_PROBE_SHARED, /* Not shared */
  1391. efx->name, channel);
  1392. if (rc) {
  1393. EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
  1394. goto fail2;
  1395. }
  1396. }
  1397. return 0;
  1398. fail2:
  1399. efx_for_each_channel_with_interrupt(channel, efx)
  1400. free_irq(channel->irq, channel);
  1401. fail1:
  1402. return rc;
  1403. }
  1404. void falcon_fini_interrupt(struct efx_nic *efx)
  1405. {
  1406. struct efx_channel *channel;
  1407. efx_oword_t reg;
  1408. /* Disable MSI/MSI-X interrupts */
  1409. efx_for_each_channel_with_interrupt(channel, efx) {
  1410. if (channel->irq)
  1411. free_irq(channel->irq, channel);
  1412. }
  1413. /* ACK legacy interrupt */
  1414. if (falcon_rev(efx) >= FALCON_REV_B0)
  1415. falcon_read(efx, &reg, INT_ISR0_B0);
  1416. else
  1417. falcon_irq_ack_a1(efx);
  1418. /* Disable legacy interrupt */
  1419. if (efx->legacy_irq)
  1420. free_irq(efx->legacy_irq, efx);
  1421. }
  1422. /**************************************************************************
  1423. *
  1424. * EEPROM/flash
  1425. *
  1426. **************************************************************************
  1427. */
  1428. #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
  1429. /* Wait for SPI command completion */
  1430. static int falcon_spi_wait(struct efx_nic *efx)
  1431. {
  1432. efx_oword_t reg;
  1433. int cmd_en, timer_active;
  1434. int count;
  1435. count = 0;
  1436. do {
  1437. falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
  1438. cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
  1439. timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
  1440. if (!cmd_en && !timer_active)
  1441. return 0;
  1442. udelay(10);
  1443. } while (++count < 10000); /* wait upto 100msec */
  1444. EFX_ERR(efx, "timed out waiting for SPI\n");
  1445. return -ETIMEDOUT;
  1446. }
  1447. static int
  1448. falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
  1449. unsigned int address, unsigned int addr_len,
  1450. void *data, unsigned int len)
  1451. {
  1452. efx_oword_t reg;
  1453. int rc;
  1454. BUG_ON(len > FALCON_SPI_MAX_LEN);
  1455. /* Check SPI not currently being accessed */
  1456. rc = falcon_spi_wait(efx);
  1457. if (rc)
  1458. return rc;
  1459. /* Program address register */
  1460. EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
  1461. falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
  1462. /* Issue read command */
  1463. EFX_POPULATE_OWORD_7(reg,
  1464. EE_SPI_HCMD_CMD_EN, 1,
  1465. EE_SPI_HCMD_SF_SEL, device_id,
  1466. EE_SPI_HCMD_DABCNT, len,
  1467. EE_SPI_HCMD_READ, EE_SPI_READ,
  1468. EE_SPI_HCMD_DUBCNT, 0,
  1469. EE_SPI_HCMD_ADBCNT, addr_len,
  1470. EE_SPI_HCMD_ENC, command);
  1471. falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
  1472. /* Wait for read to complete */
  1473. rc = falcon_spi_wait(efx);
  1474. if (rc)
  1475. return rc;
  1476. /* Read data */
  1477. falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
  1478. memcpy(data, &reg, len);
  1479. return 0;
  1480. }
  1481. /**************************************************************************
  1482. *
  1483. * MAC wrapper
  1484. *
  1485. **************************************************************************
  1486. */
  1487. void falcon_drain_tx_fifo(struct efx_nic *efx)
  1488. {
  1489. efx_oword_t temp;
  1490. int count;
  1491. if ((falcon_rev(efx) < FALCON_REV_B0) ||
  1492. (efx->loopback_mode != LOOPBACK_NONE))
  1493. return;
  1494. falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
  1495. /* There is no point in draining more than once */
  1496. if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
  1497. return;
  1498. /* MAC stats will fail whilst the TX fifo is draining. Serialise
  1499. * the drain sequence with the statistics fetch */
  1500. spin_lock(&efx->stats_lock);
  1501. EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
  1502. falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
  1503. /* Reset the MAC and EM block. */
  1504. falcon_read(efx, &temp, GLB_CTL_REG_KER);
  1505. EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
  1506. EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
  1507. EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
  1508. falcon_write(efx, &temp, GLB_CTL_REG_KER);
  1509. count = 0;
  1510. while (1) {
  1511. falcon_read(efx, &temp, GLB_CTL_REG_KER);
  1512. if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
  1513. !EFX_OWORD_FIELD(temp, RST_XGRX) &&
  1514. !EFX_OWORD_FIELD(temp, RST_EM)) {
  1515. EFX_LOG(efx, "Completed MAC reset after %d loops\n",
  1516. count);
  1517. break;
  1518. }
  1519. if (count > 20) {
  1520. EFX_ERR(efx, "MAC reset failed\n");
  1521. break;
  1522. }
  1523. count++;
  1524. udelay(10);
  1525. }
  1526. spin_unlock(&efx->stats_lock);
  1527. /* If we've reset the EM block and the link is up, then
  1528. * we'll have to kick the XAUI link so the PHY can recover */
  1529. if (efx->link_up && EFX_WORKAROUND_5147(efx))
  1530. falcon_reset_xaui(efx);
  1531. }
  1532. void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
  1533. {
  1534. efx_oword_t temp;
  1535. if (falcon_rev(efx) < FALCON_REV_B0)
  1536. return;
  1537. /* Isolate the MAC -> RX */
  1538. falcon_read(efx, &temp, RX_CFG_REG_KER);
  1539. EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
  1540. falcon_write(efx, &temp, RX_CFG_REG_KER);
  1541. if (!efx->link_up)
  1542. falcon_drain_tx_fifo(efx);
  1543. }
  1544. void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
  1545. {
  1546. efx_oword_t reg;
  1547. int link_speed;
  1548. unsigned int tx_fc;
  1549. if (efx->link_options & GM_LPA_10000)
  1550. link_speed = 0x3;
  1551. else if (efx->link_options & GM_LPA_1000)
  1552. link_speed = 0x2;
  1553. else if (efx->link_options & GM_LPA_100)
  1554. link_speed = 0x1;
  1555. else
  1556. link_speed = 0x0;
  1557. /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
  1558. * as advertised. Disable to ensure packets are not
  1559. * indefinitely held and TX queue can be flushed at any point
  1560. * while the link is down. */
  1561. EFX_POPULATE_OWORD_5(reg,
  1562. MAC_XOFF_VAL, 0xffff /* max pause time */,
  1563. MAC_BCAD_ACPT, 1,
  1564. MAC_UC_PROM, efx->promiscuous,
  1565. MAC_LINK_STATUS, 1, /* always set */
  1566. MAC_SPEED, link_speed);
  1567. /* On B0, MAC backpressure can be disabled and packets get
  1568. * discarded. */
  1569. if (falcon_rev(efx) >= FALCON_REV_B0) {
  1570. EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
  1571. !efx->link_up);
  1572. }
  1573. falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
  1574. /* Restore the multicast hash registers. */
  1575. falcon_set_multicast_hash(efx);
  1576. /* Transmission of pause frames when RX crosses the threshold is
  1577. * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
  1578. * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
  1579. tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
  1580. falcon_read(efx, &reg, RX_CFG_REG_KER);
  1581. EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
  1582. /* Unisolate the MAC -> RX */
  1583. if (falcon_rev(efx) >= FALCON_REV_B0)
  1584. EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
  1585. falcon_write(efx, &reg, RX_CFG_REG_KER);
  1586. }
  1587. int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
  1588. {
  1589. efx_oword_t reg;
  1590. u32 *dma_done;
  1591. int i;
  1592. if (disable_dma_stats)
  1593. return 0;
  1594. /* Statistics fetch will fail if the MAC is in TX drain */
  1595. if (falcon_rev(efx) >= FALCON_REV_B0) {
  1596. efx_oword_t temp;
  1597. falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
  1598. if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
  1599. return 0;
  1600. }
  1601. dma_done = (efx->stats_buffer.addr + done_offset);
  1602. *dma_done = FALCON_STATS_NOT_DONE;
  1603. wmb(); /* ensure done flag is clear */
  1604. /* Initiate DMA transfer of stats */
  1605. EFX_POPULATE_OWORD_2(reg,
  1606. MAC_STAT_DMA_CMD, 1,
  1607. MAC_STAT_DMA_ADR,
  1608. efx->stats_buffer.dma_addr);
  1609. falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
  1610. /* Wait for transfer to complete */
  1611. for (i = 0; i < 400; i++) {
  1612. if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
  1613. return 0;
  1614. udelay(10);
  1615. }
  1616. EFX_ERR(efx, "timed out waiting for statistics\n");
  1617. return -ETIMEDOUT;
  1618. }
  1619. /**************************************************************************
  1620. *
  1621. * PHY access via GMII
  1622. *
  1623. **************************************************************************
  1624. */
  1625. /* Use the top bit of the MII PHY id to indicate the PHY type
  1626. * (1G/10G), with the remaining bits as the actual PHY id.
  1627. *
  1628. * This allows us to avoid leaking information from the mii_if_info
  1629. * structure into other data structures.
  1630. */
  1631. #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
  1632. #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
  1633. #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
  1634. #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
  1635. #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
  1636. /* Packing the clause 45 port and device fields into a single value */
  1637. #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
  1638. #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
  1639. #define MD_DEV_ADR_COMP_LBN 0
  1640. #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
  1641. /* Wait for GMII access to complete */
  1642. static int falcon_gmii_wait(struct efx_nic *efx)
  1643. {
  1644. efx_dword_t md_stat;
  1645. int count;
  1646. for (count = 0; count < 1000; count++) { /* wait upto 10ms */
  1647. falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
  1648. if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
  1649. if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
  1650. EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
  1651. EFX_ERR(efx, "error from GMII access "
  1652. EFX_DWORD_FMT"\n",
  1653. EFX_DWORD_VAL(md_stat));
  1654. return -EIO;
  1655. }
  1656. return 0;
  1657. }
  1658. udelay(10);
  1659. }
  1660. EFX_ERR(efx, "timed out waiting for GMII\n");
  1661. return -ETIMEDOUT;
  1662. }
  1663. /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
  1664. static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
  1665. int addr, int value)
  1666. {
  1667. struct efx_nic *efx = netdev_priv(net_dev);
  1668. unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
  1669. efx_oword_t reg;
  1670. /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
  1671. * chosen so that the only current user, Falcon, can take the
  1672. * packed value and use them directly.
  1673. * Fail to build if this assumption is broken.
  1674. */
  1675. BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
  1676. BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
  1677. BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
  1678. BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
  1679. if (phy_id2 == PHY_ADDR_INVALID)
  1680. return;
  1681. /* See falcon_mdio_read for an explanation. */
  1682. if (!(phy_id & FALCON_PHY_ID_10G)) {
  1683. int mmd = ffs(efx->phy_op->mmds) - 1;
  1684. EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
  1685. phy_id2 = mdio_clause45_pack(phy_id2, mmd)
  1686. & FALCON_PHY_ID_ID_MASK;
  1687. }
  1688. EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
  1689. addr, value);
  1690. spin_lock_bh(&efx->phy_lock);
  1691. /* Check MII not currently being accessed */
  1692. if (falcon_gmii_wait(efx) != 0)
  1693. goto out;
  1694. /* Write the address/ID register */
  1695. EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
  1696. falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
  1697. EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
  1698. falcon_write(efx, &reg, MD_ID_REG_KER);
  1699. /* Write data */
  1700. EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
  1701. falcon_write(efx, &reg, MD_TXD_REG_KER);
  1702. EFX_POPULATE_OWORD_2(reg,
  1703. MD_WRC, 1,
  1704. MD_GC, 0);
  1705. falcon_write(efx, &reg, MD_CS_REG_KER);
  1706. /* Wait for data to be written */
  1707. if (falcon_gmii_wait(efx) != 0) {
  1708. /* Abort the write operation */
  1709. EFX_POPULATE_OWORD_2(reg,
  1710. MD_WRC, 0,
  1711. MD_GC, 1);
  1712. falcon_write(efx, &reg, MD_CS_REG_KER);
  1713. udelay(10);
  1714. }
  1715. out:
  1716. spin_unlock_bh(&efx->phy_lock);
  1717. }
  1718. /* Reads a GMII register from a PHY connected to Falcon. If no value
  1719. * could be read, -1 will be returned. */
  1720. static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
  1721. {
  1722. struct efx_nic *efx = netdev_priv(net_dev);
  1723. unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
  1724. efx_oword_t reg;
  1725. int value = -1;
  1726. if (phy_addr == PHY_ADDR_INVALID)
  1727. return -1;
  1728. /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
  1729. * but the generic Linux code does not make any distinction or have
  1730. * any state for this.
  1731. * We spot the case where someone tried to talk 22 to a 45 PHY and
  1732. * redirect the request to the lowest numbered MMD as a clause45
  1733. * request. This is enough to allow simple queries like id and link
  1734. * state to succeed. TODO: We may need to do more in future.
  1735. */
  1736. if (!(phy_id & FALCON_PHY_ID_10G)) {
  1737. int mmd = ffs(efx->phy_op->mmds) - 1;
  1738. EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
  1739. phy_addr = mdio_clause45_pack(phy_addr, mmd)
  1740. & FALCON_PHY_ID_ID_MASK;
  1741. }
  1742. spin_lock_bh(&efx->phy_lock);
  1743. /* Check MII not currently being accessed */
  1744. if (falcon_gmii_wait(efx) != 0)
  1745. goto out;
  1746. EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
  1747. falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
  1748. EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
  1749. falcon_write(efx, &reg, MD_ID_REG_KER);
  1750. /* Request data to be read */
  1751. EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
  1752. falcon_write(efx, &reg, MD_CS_REG_KER);
  1753. /* Wait for data to become available */
  1754. value = falcon_gmii_wait(efx);
  1755. if (value == 0) {
  1756. falcon_read(efx, &reg, MD_RXD_REG_KER);
  1757. value = EFX_OWORD_FIELD(reg, MD_RXD);
  1758. EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
  1759. phy_id, addr, value);
  1760. } else {
  1761. /* Abort the read operation */
  1762. EFX_POPULATE_OWORD_2(reg,
  1763. MD_RIC, 0,
  1764. MD_GC, 1);
  1765. falcon_write(efx, &reg, MD_CS_REG_KER);
  1766. EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
  1767. "error %d\n", phy_id, addr, value);
  1768. }
  1769. out:
  1770. spin_unlock_bh(&efx->phy_lock);
  1771. return value;
  1772. }
  1773. static void falcon_init_mdio(struct mii_if_info *gmii)
  1774. {
  1775. gmii->mdio_read = falcon_mdio_read;
  1776. gmii->mdio_write = falcon_mdio_write;
  1777. gmii->phy_id_mask = FALCON_PHY_ID_MASK;
  1778. gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
  1779. }
  1780. static int falcon_probe_phy(struct efx_nic *efx)
  1781. {
  1782. switch (efx->phy_type) {
  1783. case PHY_TYPE_10XPRESS:
  1784. efx->phy_op = &falcon_tenxpress_phy_ops;
  1785. break;
  1786. case PHY_TYPE_XFP:
  1787. efx->phy_op = &falcon_xfp_phy_ops;
  1788. break;
  1789. default:
  1790. EFX_ERR(efx, "Unknown PHY type %d\n",
  1791. efx->phy_type);
  1792. return -1;
  1793. }
  1794. efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
  1795. return 0;
  1796. }
  1797. /* This call is responsible for hooking in the MAC and PHY operations */
  1798. int falcon_probe_port(struct efx_nic *efx)
  1799. {
  1800. int rc;
  1801. /* Hook in PHY operations table */
  1802. rc = falcon_probe_phy(efx);
  1803. if (rc)
  1804. return rc;
  1805. /* Set up GMII structure for PHY */
  1806. efx->mii.supports_gmii = 1;
  1807. falcon_init_mdio(&efx->mii);
  1808. /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
  1809. if (falcon_rev(efx) >= FALCON_REV_B0)
  1810. efx->flow_control = EFX_FC_RX | EFX_FC_TX;
  1811. else
  1812. efx->flow_control = EFX_FC_RX;
  1813. /* Allocate buffer for stats */
  1814. rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
  1815. FALCON_MAC_STATS_SIZE);
  1816. if (rc)
  1817. return rc;
  1818. EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
  1819. (unsigned long long)efx->stats_buffer.dma_addr,
  1820. efx->stats_buffer.addr,
  1821. virt_to_phys(efx->stats_buffer.addr));
  1822. return 0;
  1823. }
  1824. void falcon_remove_port(struct efx_nic *efx)
  1825. {
  1826. falcon_free_buffer(efx, &efx->stats_buffer);
  1827. }
  1828. /**************************************************************************
  1829. *
  1830. * Multicast filtering
  1831. *
  1832. **************************************************************************
  1833. */
  1834. void falcon_set_multicast_hash(struct efx_nic *efx)
  1835. {
  1836. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1837. /* Broadcast packets go through the multicast hash filter.
  1838. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1839. * so we always add bit 0xff to the mask.
  1840. */
  1841. set_bit_le(0xff, mc_hash->byte);
  1842. falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
  1843. falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
  1844. }
  1845. /**************************************************************************
  1846. *
  1847. * Device reset
  1848. *
  1849. **************************************************************************
  1850. */
  1851. /* Resets NIC to known state. This routine must be called in process
  1852. * context and is allowed to sleep. */
  1853. int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
  1854. {
  1855. struct falcon_nic_data *nic_data = efx->nic_data;
  1856. efx_oword_t glb_ctl_reg_ker;
  1857. int rc;
  1858. EFX_LOG(efx, "performing hardware reset (%d)\n", method);
  1859. /* Initiate device reset */
  1860. if (method == RESET_TYPE_WORLD) {
  1861. rc = pci_save_state(efx->pci_dev);
  1862. if (rc) {
  1863. EFX_ERR(efx, "failed to backup PCI state of primary "
  1864. "function prior to hardware reset\n");
  1865. goto fail1;
  1866. }
  1867. if (FALCON_IS_DUAL_FUNC(efx)) {
  1868. rc = pci_save_state(nic_data->pci_dev2);
  1869. if (rc) {
  1870. EFX_ERR(efx, "failed to backup PCI state of "
  1871. "secondary function prior to "
  1872. "hardware reset\n");
  1873. goto fail2;
  1874. }
  1875. }
  1876. EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
  1877. EXT_PHY_RST_DUR, 0x7,
  1878. SWRST, 1);
  1879. } else {
  1880. int reset_phy = (method == RESET_TYPE_INVISIBLE ?
  1881. EXCLUDE_FROM_RESET : 0);
  1882. EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
  1883. EXT_PHY_RST_CTL, reset_phy,
  1884. PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
  1885. PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
  1886. PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
  1887. EE_RST_CTL, EXCLUDE_FROM_RESET,
  1888. EXT_PHY_RST_DUR, 0x7 /* 10ms */,
  1889. SWRST, 1);
  1890. }
  1891. falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
  1892. EFX_LOG(efx, "waiting for hardware reset\n");
  1893. schedule_timeout_uninterruptible(HZ / 20);
  1894. /* Restore PCI configuration if needed */
  1895. if (method == RESET_TYPE_WORLD) {
  1896. if (FALCON_IS_DUAL_FUNC(efx)) {
  1897. rc = pci_restore_state(nic_data->pci_dev2);
  1898. if (rc) {
  1899. EFX_ERR(efx, "failed to restore PCI config for "
  1900. "the secondary function\n");
  1901. goto fail3;
  1902. }
  1903. }
  1904. rc = pci_restore_state(efx->pci_dev);
  1905. if (rc) {
  1906. EFX_ERR(efx, "failed to restore PCI config for the "
  1907. "primary function\n");
  1908. goto fail4;
  1909. }
  1910. EFX_LOG(efx, "successfully restored PCI config\n");
  1911. }
  1912. /* Assert that reset complete */
  1913. falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
  1914. if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
  1915. rc = -ETIMEDOUT;
  1916. EFX_ERR(efx, "timed out waiting for hardware reset\n");
  1917. goto fail5;
  1918. }
  1919. EFX_LOG(efx, "hardware reset complete\n");
  1920. return 0;
  1921. /* pci_save_state() and pci_restore_state() MUST be called in pairs */
  1922. fail2:
  1923. fail3:
  1924. pci_restore_state(efx->pci_dev);
  1925. fail1:
  1926. fail4:
  1927. fail5:
  1928. return rc;
  1929. }
  1930. /* Zeroes out the SRAM contents. This routine must be called in
  1931. * process context and is allowed to sleep.
  1932. */
  1933. static int falcon_reset_sram(struct efx_nic *efx)
  1934. {
  1935. efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
  1936. int count;
  1937. /* Set the SRAM wake/sleep GPIO appropriately. */
  1938. falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
  1939. EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
  1940. EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
  1941. falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
  1942. /* Initiate SRAM reset */
  1943. EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
  1944. SRAM_OOB_BT_INIT_EN, 1,
  1945. SRM_NUM_BANKS_AND_BANK_SIZE, 0);
  1946. falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
  1947. /* Wait for SRAM reset to complete */
  1948. count = 0;
  1949. do {
  1950. EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
  1951. /* SRAM reset is slow; expect around 16ms */
  1952. schedule_timeout_uninterruptible(HZ / 50);
  1953. /* Check for reset complete */
  1954. falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
  1955. if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
  1956. EFX_LOG(efx, "SRAM reset complete\n");
  1957. return 0;
  1958. }
  1959. } while (++count < 20); /* wait upto 0.4 sec */
  1960. EFX_ERR(efx, "timed out waiting for SRAM reset\n");
  1961. return -ETIMEDOUT;
  1962. }
  1963. /* Extract non-volatile configuration */
  1964. static int falcon_probe_nvconfig(struct efx_nic *efx)
  1965. {
  1966. struct falcon_nvconfig *nvconfig;
  1967. efx_oword_t nic_stat;
  1968. int device_id;
  1969. unsigned addr_len;
  1970. size_t offset, len;
  1971. int magic_num, struct_ver, board_rev;
  1972. int rc;
  1973. /* Find the boot device. */
  1974. falcon_read(efx, &nic_stat, NIC_STAT_REG);
  1975. if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
  1976. device_id = EE_SPI_FLASH;
  1977. addr_len = 3;
  1978. } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
  1979. device_id = EE_SPI_EEPROM;
  1980. addr_len = 2;
  1981. } else {
  1982. return -ENODEV;
  1983. }
  1984. nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
  1985. /* Read the whole configuration structure into memory. */
  1986. for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
  1987. len = min(sizeof(*nvconfig) - offset,
  1988. (size_t) FALCON_SPI_MAX_LEN);
  1989. rc = falcon_spi_read(efx, device_id, SPI_READ,
  1990. NVCONFIG_BASE + offset, addr_len,
  1991. (char *)nvconfig + offset, len);
  1992. if (rc)
  1993. goto out;
  1994. }
  1995. /* Read the MAC addresses */
  1996. memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
  1997. /* Read the board configuration. */
  1998. magic_num = le16_to_cpu(nvconfig->board_magic_num);
  1999. struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
  2000. if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
  2001. EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
  2002. "therefore using defaults\n", magic_num, struct_ver);
  2003. efx->phy_type = PHY_TYPE_NONE;
  2004. efx->mii.phy_id = PHY_ADDR_INVALID;
  2005. board_rev = 0;
  2006. } else {
  2007. struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
  2008. efx->phy_type = v2->port0_phy_type;
  2009. efx->mii.phy_id = v2->port0_phy_addr;
  2010. board_rev = le16_to_cpu(v2->board_revision);
  2011. }
  2012. EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
  2013. efx_set_board_info(efx, board_rev);
  2014. out:
  2015. kfree(nvconfig);
  2016. return rc;
  2017. }
  2018. /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
  2019. * count, port speed). Set workaround and feature flags accordingly.
  2020. */
  2021. static int falcon_probe_nic_variant(struct efx_nic *efx)
  2022. {
  2023. efx_oword_t altera_build;
  2024. falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
  2025. if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
  2026. EFX_ERR(efx, "Falcon FPGA not supported\n");
  2027. return -ENODEV;
  2028. }
  2029. switch (falcon_rev(efx)) {
  2030. case FALCON_REV_A0:
  2031. case 0xff:
  2032. EFX_ERR(efx, "Falcon rev A0 not supported\n");
  2033. return -ENODEV;
  2034. case FALCON_REV_A1:{
  2035. efx_oword_t nic_stat;
  2036. falcon_read(efx, &nic_stat, NIC_STAT_REG);
  2037. if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
  2038. EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
  2039. return -ENODEV;
  2040. }
  2041. if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
  2042. EFX_ERR(efx, "1G mode not supported\n");
  2043. return -ENODEV;
  2044. }
  2045. break;
  2046. }
  2047. case FALCON_REV_B0:
  2048. break;
  2049. default:
  2050. EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
  2051. return -ENODEV;
  2052. }
  2053. return 0;
  2054. }
  2055. int falcon_probe_nic(struct efx_nic *efx)
  2056. {
  2057. struct falcon_nic_data *nic_data;
  2058. int rc;
  2059. /* Allocate storage for hardware specific data */
  2060. nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
  2061. efx->nic_data = nic_data;
  2062. /* Determine number of ports etc. */
  2063. rc = falcon_probe_nic_variant(efx);
  2064. if (rc)
  2065. goto fail1;
  2066. /* Probe secondary function if expected */
  2067. if (FALCON_IS_DUAL_FUNC(efx)) {
  2068. struct pci_dev *dev = pci_dev_get(efx->pci_dev);
  2069. while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
  2070. dev))) {
  2071. if (dev->bus == efx->pci_dev->bus &&
  2072. dev->devfn == efx->pci_dev->devfn + 1) {
  2073. nic_data->pci_dev2 = dev;
  2074. break;
  2075. }
  2076. }
  2077. if (!nic_data->pci_dev2) {
  2078. EFX_ERR(efx, "failed to find secondary function\n");
  2079. rc = -ENODEV;
  2080. goto fail2;
  2081. }
  2082. }
  2083. /* Now we can reset the NIC */
  2084. rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
  2085. if (rc) {
  2086. EFX_ERR(efx, "failed to reset NIC\n");
  2087. goto fail3;
  2088. }
  2089. /* Allocate memory for INT_KER */
  2090. rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
  2091. if (rc)
  2092. goto fail4;
  2093. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  2094. EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
  2095. (unsigned long long)efx->irq_status.dma_addr,
  2096. efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
  2097. /* Read in the non-volatile configuration */
  2098. rc = falcon_probe_nvconfig(efx);
  2099. if (rc)
  2100. goto fail5;
  2101. /* Initialise I2C adapter */
  2102. efx->i2c_adap.owner = THIS_MODULE;
  2103. nic_data->i2c_data = falcon_i2c_bit_operations;
  2104. nic_data->i2c_data.data = efx;
  2105. efx->i2c_adap.algo_data = &nic_data->i2c_data;
  2106. efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
  2107. strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
  2108. rc = i2c_bit_add_bus(&efx->i2c_adap);
  2109. if (rc)
  2110. goto fail5;
  2111. return 0;
  2112. fail5:
  2113. falcon_free_buffer(efx, &efx->irq_status);
  2114. fail4:
  2115. fail3:
  2116. if (nic_data->pci_dev2) {
  2117. pci_dev_put(nic_data->pci_dev2);
  2118. nic_data->pci_dev2 = NULL;
  2119. }
  2120. fail2:
  2121. fail1:
  2122. kfree(efx->nic_data);
  2123. return rc;
  2124. }
  2125. /* This call performs hardware-specific global initialisation, such as
  2126. * defining the descriptor cache sizes and number of RSS channels.
  2127. * It does not set up any buffers, descriptor rings or event queues.
  2128. */
  2129. int falcon_init_nic(struct efx_nic *efx)
  2130. {
  2131. efx_oword_t temp;
  2132. unsigned thresh;
  2133. int rc;
  2134. /* Set up the address region register. This is only needed
  2135. * for the B0 FPGA, but since we are just pushing in the
  2136. * reset defaults this may as well be unconditional. */
  2137. EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
  2138. ADR_REGION1, (1 << 16),
  2139. ADR_REGION2, (2 << 16),
  2140. ADR_REGION3, (3 << 16));
  2141. falcon_write(efx, &temp, ADR_REGION_REG_KER);
  2142. /* Use on-chip SRAM */
  2143. falcon_read(efx, &temp, NIC_STAT_REG);
  2144. EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
  2145. falcon_write(efx, &temp, NIC_STAT_REG);
  2146. /* Set buffer table mode */
  2147. EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
  2148. falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
  2149. rc = falcon_reset_sram(efx);
  2150. if (rc)
  2151. return rc;
  2152. /* Set positions of descriptor caches in SRAM. */
  2153. EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
  2154. falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
  2155. EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
  2156. falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
  2157. /* Set TX descriptor cache size. */
  2158. BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
  2159. EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
  2160. falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
  2161. /* Set RX descriptor cache size. Set low watermark to size-8, as
  2162. * this allows most efficient prefetching.
  2163. */
  2164. BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
  2165. EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
  2166. falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
  2167. EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
  2168. falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
  2169. /* Clear the parity enables on the TX data fifos as
  2170. * they produce false parity errors because of timing issues
  2171. */
  2172. if (EFX_WORKAROUND_5129(efx)) {
  2173. falcon_read(efx, &temp, SPARE_REG_KER);
  2174. EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
  2175. falcon_write(efx, &temp, SPARE_REG_KER);
  2176. }
  2177. /* Enable all the genuinely fatal interrupts. (They are still
  2178. * masked by the overall interrupt mask, controlled by
  2179. * falcon_interrupts()).
  2180. *
  2181. * Note: All other fatal interrupts are enabled
  2182. */
  2183. EFX_POPULATE_OWORD_3(temp,
  2184. ILL_ADR_INT_KER_EN, 1,
  2185. RBUF_OWN_INT_KER_EN, 1,
  2186. TBUF_OWN_INT_KER_EN, 1);
  2187. EFX_INVERT_OWORD(temp);
  2188. falcon_write(efx, &temp, FATAL_INTR_REG_KER);
  2189. /* Set number of RSS queues for receive path. */
  2190. falcon_read(efx, &temp, RX_FILTER_CTL_REG);
  2191. if (falcon_rev(efx) >= FALCON_REV_B0)
  2192. EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
  2193. else
  2194. EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
  2195. if (EFX_WORKAROUND_7244(efx)) {
  2196. EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
  2197. EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
  2198. EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
  2199. EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
  2200. }
  2201. falcon_write(efx, &temp, RX_FILTER_CTL_REG);
  2202. falcon_setup_rss_indir_table(efx);
  2203. /* Setup RX. Wait for descriptor is broken and must
  2204. * be disabled. RXDP recovery shouldn't be needed, but is.
  2205. */
  2206. falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
  2207. EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
  2208. EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
  2209. if (EFX_WORKAROUND_5583(efx))
  2210. EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
  2211. falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
  2212. /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
  2213. * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
  2214. */
  2215. falcon_read(efx, &temp, TX_CFG2_REG_KER);
  2216. EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
  2217. EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
  2218. EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
  2219. EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
  2220. EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
  2221. /* Enable SW_EV to inherit in char driver - assume harmless here */
  2222. EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
  2223. /* Prefetch threshold 2 => fetch when descriptor cache half empty */
  2224. EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
  2225. /* Squash TX of packets of 16 bytes or less */
  2226. if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
  2227. EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
  2228. falcon_write(efx, &temp, TX_CFG2_REG_KER);
  2229. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  2230. * descriptors (which is bad).
  2231. */
  2232. falcon_read(efx, &temp, TX_CFG_REG_KER);
  2233. EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
  2234. falcon_write(efx, &temp, TX_CFG_REG_KER);
  2235. /* RX config */
  2236. falcon_read(efx, &temp, RX_CFG_REG_KER);
  2237. EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
  2238. if (EFX_WORKAROUND_7575(efx))
  2239. EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
  2240. (3 * 4096) / 32);
  2241. if (falcon_rev(efx) >= FALCON_REV_B0)
  2242. EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
  2243. /* RX FIFO flow control thresholds */
  2244. thresh = ((rx_xon_thresh_bytes >= 0) ?
  2245. rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
  2246. EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
  2247. thresh = ((rx_xoff_thresh_bytes >= 0) ?
  2248. rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
  2249. EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
  2250. /* RX control FIFO thresholds [32 entries] */
  2251. EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25);
  2252. EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20);
  2253. falcon_write(efx, &temp, RX_CFG_REG_KER);
  2254. /* Set destination of both TX and RX Flush events */
  2255. if (falcon_rev(efx) >= FALCON_REV_B0) {
  2256. EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
  2257. falcon_write(efx, &temp, DP_CTRL_REG);
  2258. }
  2259. return 0;
  2260. }
  2261. void falcon_remove_nic(struct efx_nic *efx)
  2262. {
  2263. struct falcon_nic_data *nic_data = efx->nic_data;
  2264. int rc;
  2265. rc = i2c_del_adapter(&efx->i2c_adap);
  2266. BUG_ON(rc);
  2267. falcon_free_buffer(efx, &efx->irq_status);
  2268. falcon_reset_hw(efx, RESET_TYPE_ALL);
  2269. /* Release the second function after the reset */
  2270. if (nic_data->pci_dev2) {
  2271. pci_dev_put(nic_data->pci_dev2);
  2272. nic_data->pci_dev2 = NULL;
  2273. }
  2274. /* Tear down the private nic state */
  2275. kfree(efx->nic_data);
  2276. efx->nic_data = NULL;
  2277. }
  2278. void falcon_update_nic_stats(struct efx_nic *efx)
  2279. {
  2280. efx_oword_t cnt;
  2281. falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
  2282. efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
  2283. }
  2284. /**************************************************************************
  2285. *
  2286. * Revision-dependent attributes used by efx.c
  2287. *
  2288. **************************************************************************
  2289. */
  2290. struct efx_nic_type falcon_a_nic_type = {
  2291. .mem_bar = 2,
  2292. .mem_map_size = 0x20000,
  2293. .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
  2294. .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
  2295. .buf_tbl_base = BUF_TBL_KER_A1,
  2296. .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
  2297. .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
  2298. .txd_ring_mask = FALCON_TXD_RING_MASK,
  2299. .rxd_ring_mask = FALCON_RXD_RING_MASK,
  2300. .evq_size = FALCON_EVQ_SIZE,
  2301. .max_dma_mask = FALCON_DMA_MASK,
  2302. .tx_dma_mask = FALCON_TX_DMA_MASK,
  2303. .bug5391_mask = 0xf,
  2304. .rx_xoff_thresh = 2048,
  2305. .rx_xon_thresh = 512,
  2306. .rx_buffer_padding = 0x24,
  2307. .max_interrupt_mode = EFX_INT_MODE_MSI,
  2308. .phys_addr_channels = 4,
  2309. };
  2310. struct efx_nic_type falcon_b_nic_type = {
  2311. .mem_bar = 2,
  2312. /* Map everything up to and including the RSS indirection
  2313. * table. Don't map MSI-X table, MSI-X PBA since Linux
  2314. * requires that they not be mapped. */
  2315. .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
  2316. .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
  2317. .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
  2318. .buf_tbl_base = BUF_TBL_KER_B0,
  2319. .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
  2320. .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
  2321. .txd_ring_mask = FALCON_TXD_RING_MASK,
  2322. .rxd_ring_mask = FALCON_RXD_RING_MASK,
  2323. .evq_size = FALCON_EVQ_SIZE,
  2324. .max_dma_mask = FALCON_DMA_MASK,
  2325. .tx_dma_mask = FALCON_TX_DMA_MASK,
  2326. .bug5391_mask = 0,
  2327. .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
  2328. .rx_xon_thresh = 27648, /* ~3*max MTU */
  2329. .rx_buffer_padding = 0,
  2330. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  2331. .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
  2332. * interrupt handler only supports 32
  2333. * channels */
  2334. };