huge_memory.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. /*
  24. * By default transparent hugepage support is enabled for all mappings
  25. * and khugepaged scans all mappings. Defrag is only invoked by
  26. * khugepaged hugepage allocations and by page faults inside
  27. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  28. * allocations.
  29. */
  30. unsigned long transparent_hugepage_flags __read_mostly =
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  32. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  33. #endif
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  35. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  36. #endif
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  39. /* default scan 8*512 pte (or vmas) every 30 second */
  40. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  41. static unsigned int khugepaged_pages_collapsed;
  42. static unsigned int khugepaged_full_scans;
  43. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  44. /* during fragmentation poll the hugepage allocator once every minute */
  45. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  46. static struct task_struct *khugepaged_thread __read_mostly;
  47. static DEFINE_MUTEX(khugepaged_mutex);
  48. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  49. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  50. /*
  51. * default collapse hugepages if there is at least one pte mapped like
  52. * it would have happened if the vma was large enough during page
  53. * fault.
  54. */
  55. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  56. static int khugepaged(void *none);
  57. static int mm_slots_hash_init(void);
  58. static int khugepaged_slab_init(void);
  59. static void khugepaged_slab_free(void);
  60. #define MM_SLOTS_HASH_HEADS 1024
  61. static struct hlist_head *mm_slots_hash __read_mostly;
  62. static struct kmem_cache *mm_slot_cache __read_mostly;
  63. /**
  64. * struct mm_slot - hash lookup from mm to mm_slot
  65. * @hash: hash collision list
  66. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  67. * @mm: the mm that this information is valid for
  68. */
  69. struct mm_slot {
  70. struct hlist_node hash;
  71. struct list_head mm_node;
  72. struct mm_struct *mm;
  73. };
  74. /**
  75. * struct khugepaged_scan - cursor for scanning
  76. * @mm_head: the head of the mm list to scan
  77. * @mm_slot: the current mm_slot we are scanning
  78. * @address: the next address inside that to be scanned
  79. *
  80. * There is only the one khugepaged_scan instance of this cursor structure.
  81. */
  82. struct khugepaged_scan {
  83. struct list_head mm_head;
  84. struct mm_slot *mm_slot;
  85. unsigned long address;
  86. };
  87. static struct khugepaged_scan khugepaged_scan = {
  88. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  89. };
  90. static int set_recommended_min_free_kbytes(void)
  91. {
  92. struct zone *zone;
  93. int nr_zones = 0;
  94. unsigned long recommended_min;
  95. extern int min_free_kbytes;
  96. if (!khugepaged_enabled())
  97. return 0;
  98. for_each_populated_zone(zone)
  99. nr_zones++;
  100. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  101. recommended_min = pageblock_nr_pages * nr_zones * 2;
  102. /*
  103. * Make sure that on average at least two pageblocks are almost free
  104. * of another type, one for a migratetype to fall back to and a
  105. * second to avoid subsequent fallbacks of other types There are 3
  106. * MIGRATE_TYPES we care about.
  107. */
  108. recommended_min += pageblock_nr_pages * nr_zones *
  109. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  110. /* don't ever allow to reserve more than 5% of the lowmem */
  111. recommended_min = min(recommended_min,
  112. (unsigned long) nr_free_buffer_pages() / 20);
  113. recommended_min <<= (PAGE_SHIFT-10);
  114. if (recommended_min > min_free_kbytes)
  115. min_free_kbytes = recommended_min;
  116. setup_per_zone_wmarks();
  117. return 0;
  118. }
  119. late_initcall(set_recommended_min_free_kbytes);
  120. static int start_khugepaged(void)
  121. {
  122. int err = 0;
  123. if (khugepaged_enabled()) {
  124. if (!khugepaged_thread)
  125. khugepaged_thread = kthread_run(khugepaged, NULL,
  126. "khugepaged");
  127. if (unlikely(IS_ERR(khugepaged_thread))) {
  128. printk(KERN_ERR
  129. "khugepaged: kthread_run(khugepaged) failed\n");
  130. err = PTR_ERR(khugepaged_thread);
  131. khugepaged_thread = NULL;
  132. }
  133. if (!list_empty(&khugepaged_scan.mm_head))
  134. wake_up_interruptible(&khugepaged_wait);
  135. set_recommended_min_free_kbytes();
  136. } else if (khugepaged_thread) {
  137. kthread_stop(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. return err;
  141. }
  142. #ifdef CONFIG_SYSFS
  143. static ssize_t double_flag_show(struct kobject *kobj,
  144. struct kobj_attribute *attr, char *buf,
  145. enum transparent_hugepage_flag enabled,
  146. enum transparent_hugepage_flag req_madv)
  147. {
  148. if (test_bit(enabled, &transparent_hugepage_flags)) {
  149. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  150. return sprintf(buf, "[always] madvise never\n");
  151. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  152. return sprintf(buf, "always [madvise] never\n");
  153. else
  154. return sprintf(buf, "always madvise [never]\n");
  155. }
  156. static ssize_t double_flag_store(struct kobject *kobj,
  157. struct kobj_attribute *attr,
  158. const char *buf, size_t count,
  159. enum transparent_hugepage_flag enabled,
  160. enum transparent_hugepage_flag req_madv)
  161. {
  162. if (!memcmp("always", buf,
  163. min(sizeof("always")-1, count))) {
  164. set_bit(enabled, &transparent_hugepage_flags);
  165. clear_bit(req_madv, &transparent_hugepage_flags);
  166. } else if (!memcmp("madvise", buf,
  167. min(sizeof("madvise")-1, count))) {
  168. clear_bit(enabled, &transparent_hugepage_flags);
  169. set_bit(req_madv, &transparent_hugepage_flags);
  170. } else if (!memcmp("never", buf,
  171. min(sizeof("never")-1, count))) {
  172. clear_bit(enabled, &transparent_hugepage_flags);
  173. clear_bit(req_madv, &transparent_hugepage_flags);
  174. } else
  175. return -EINVAL;
  176. return count;
  177. }
  178. static ssize_t enabled_show(struct kobject *kobj,
  179. struct kobj_attribute *attr, char *buf)
  180. {
  181. return double_flag_show(kobj, attr, buf,
  182. TRANSPARENT_HUGEPAGE_FLAG,
  183. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  184. }
  185. static ssize_t enabled_store(struct kobject *kobj,
  186. struct kobj_attribute *attr,
  187. const char *buf, size_t count)
  188. {
  189. ssize_t ret;
  190. ret = double_flag_store(kobj, attr, buf, count,
  191. TRANSPARENT_HUGEPAGE_FLAG,
  192. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  193. if (ret > 0) {
  194. int err;
  195. mutex_lock(&khugepaged_mutex);
  196. err = start_khugepaged();
  197. mutex_unlock(&khugepaged_mutex);
  198. if (err)
  199. ret = err;
  200. }
  201. return ret;
  202. }
  203. static struct kobj_attribute enabled_attr =
  204. __ATTR(enabled, 0644, enabled_show, enabled_store);
  205. static ssize_t single_flag_show(struct kobject *kobj,
  206. struct kobj_attribute *attr, char *buf,
  207. enum transparent_hugepage_flag flag)
  208. {
  209. return sprintf(buf, "%d\n",
  210. !!test_bit(flag, &transparent_hugepage_flags));
  211. }
  212. static ssize_t single_flag_store(struct kobject *kobj,
  213. struct kobj_attribute *attr,
  214. const char *buf, size_t count,
  215. enum transparent_hugepage_flag flag)
  216. {
  217. unsigned long value;
  218. int ret;
  219. ret = kstrtoul(buf, 10, &value);
  220. if (ret < 0)
  221. return ret;
  222. if (value > 1)
  223. return -EINVAL;
  224. if (value)
  225. set_bit(flag, &transparent_hugepage_flags);
  226. else
  227. clear_bit(flag, &transparent_hugepage_flags);
  228. return count;
  229. }
  230. /*
  231. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  232. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  233. * memory just to allocate one more hugepage.
  234. */
  235. static ssize_t defrag_show(struct kobject *kobj,
  236. struct kobj_attribute *attr, char *buf)
  237. {
  238. return double_flag_show(kobj, attr, buf,
  239. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  240. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  241. }
  242. static ssize_t defrag_store(struct kobject *kobj,
  243. struct kobj_attribute *attr,
  244. const char *buf, size_t count)
  245. {
  246. return double_flag_store(kobj, attr, buf, count,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  249. }
  250. static struct kobj_attribute defrag_attr =
  251. __ATTR(defrag, 0644, defrag_show, defrag_store);
  252. #ifdef CONFIG_DEBUG_VM
  253. static ssize_t debug_cow_show(struct kobject *kobj,
  254. struct kobj_attribute *attr, char *buf)
  255. {
  256. return single_flag_show(kobj, attr, buf,
  257. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  258. }
  259. static ssize_t debug_cow_store(struct kobject *kobj,
  260. struct kobj_attribute *attr,
  261. const char *buf, size_t count)
  262. {
  263. return single_flag_store(kobj, attr, buf, count,
  264. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  265. }
  266. static struct kobj_attribute debug_cow_attr =
  267. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  268. #endif /* CONFIG_DEBUG_VM */
  269. static struct attribute *hugepage_attr[] = {
  270. &enabled_attr.attr,
  271. &defrag_attr.attr,
  272. #ifdef CONFIG_DEBUG_VM
  273. &debug_cow_attr.attr,
  274. #endif
  275. NULL,
  276. };
  277. static struct attribute_group hugepage_attr_group = {
  278. .attrs = hugepage_attr,
  279. };
  280. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  281. struct kobj_attribute *attr,
  282. char *buf)
  283. {
  284. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  285. }
  286. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  287. struct kobj_attribute *attr,
  288. const char *buf, size_t count)
  289. {
  290. unsigned long msecs;
  291. int err;
  292. err = strict_strtoul(buf, 10, &msecs);
  293. if (err || msecs > UINT_MAX)
  294. return -EINVAL;
  295. khugepaged_scan_sleep_millisecs = msecs;
  296. wake_up_interruptible(&khugepaged_wait);
  297. return count;
  298. }
  299. static struct kobj_attribute scan_sleep_millisecs_attr =
  300. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  301. scan_sleep_millisecs_store);
  302. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  303. struct kobj_attribute *attr,
  304. char *buf)
  305. {
  306. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  307. }
  308. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  309. struct kobj_attribute *attr,
  310. const char *buf, size_t count)
  311. {
  312. unsigned long msecs;
  313. int err;
  314. err = strict_strtoul(buf, 10, &msecs);
  315. if (err || msecs > UINT_MAX)
  316. return -EINVAL;
  317. khugepaged_alloc_sleep_millisecs = msecs;
  318. wake_up_interruptible(&khugepaged_wait);
  319. return count;
  320. }
  321. static struct kobj_attribute alloc_sleep_millisecs_attr =
  322. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  323. alloc_sleep_millisecs_store);
  324. static ssize_t pages_to_scan_show(struct kobject *kobj,
  325. struct kobj_attribute *attr,
  326. char *buf)
  327. {
  328. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  329. }
  330. static ssize_t pages_to_scan_store(struct kobject *kobj,
  331. struct kobj_attribute *attr,
  332. const char *buf, size_t count)
  333. {
  334. int err;
  335. unsigned long pages;
  336. err = strict_strtoul(buf, 10, &pages);
  337. if (err || !pages || pages > UINT_MAX)
  338. return -EINVAL;
  339. khugepaged_pages_to_scan = pages;
  340. return count;
  341. }
  342. static struct kobj_attribute pages_to_scan_attr =
  343. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  344. pages_to_scan_store);
  345. static ssize_t pages_collapsed_show(struct kobject *kobj,
  346. struct kobj_attribute *attr,
  347. char *buf)
  348. {
  349. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  350. }
  351. static struct kobj_attribute pages_collapsed_attr =
  352. __ATTR_RO(pages_collapsed);
  353. static ssize_t full_scans_show(struct kobject *kobj,
  354. struct kobj_attribute *attr,
  355. char *buf)
  356. {
  357. return sprintf(buf, "%u\n", khugepaged_full_scans);
  358. }
  359. static struct kobj_attribute full_scans_attr =
  360. __ATTR_RO(full_scans);
  361. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  362. struct kobj_attribute *attr, char *buf)
  363. {
  364. return single_flag_show(kobj, attr, buf,
  365. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  366. }
  367. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  368. struct kobj_attribute *attr,
  369. const char *buf, size_t count)
  370. {
  371. return single_flag_store(kobj, attr, buf, count,
  372. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  373. }
  374. static struct kobj_attribute khugepaged_defrag_attr =
  375. __ATTR(defrag, 0644, khugepaged_defrag_show,
  376. khugepaged_defrag_store);
  377. /*
  378. * max_ptes_none controls if khugepaged should collapse hugepages over
  379. * any unmapped ptes in turn potentially increasing the memory
  380. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  381. * reduce the available free memory in the system as it
  382. * runs. Increasing max_ptes_none will instead potentially reduce the
  383. * free memory in the system during the khugepaged scan.
  384. */
  385. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  386. struct kobj_attribute *attr,
  387. char *buf)
  388. {
  389. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  390. }
  391. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  392. struct kobj_attribute *attr,
  393. const char *buf, size_t count)
  394. {
  395. int err;
  396. unsigned long max_ptes_none;
  397. err = strict_strtoul(buf, 10, &max_ptes_none);
  398. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  399. return -EINVAL;
  400. khugepaged_max_ptes_none = max_ptes_none;
  401. return count;
  402. }
  403. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  404. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  405. khugepaged_max_ptes_none_store);
  406. static struct attribute *khugepaged_attr[] = {
  407. &khugepaged_defrag_attr.attr,
  408. &khugepaged_max_ptes_none_attr.attr,
  409. &pages_to_scan_attr.attr,
  410. &pages_collapsed_attr.attr,
  411. &full_scans_attr.attr,
  412. &scan_sleep_millisecs_attr.attr,
  413. &alloc_sleep_millisecs_attr.attr,
  414. NULL,
  415. };
  416. static struct attribute_group khugepaged_attr_group = {
  417. .attrs = khugepaged_attr,
  418. .name = "khugepaged",
  419. };
  420. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  421. {
  422. int err;
  423. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  424. if (unlikely(!*hugepage_kobj)) {
  425. printk(KERN_ERR "hugepage: failed kobject create\n");
  426. return -ENOMEM;
  427. }
  428. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  429. if (err) {
  430. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  431. goto delete_obj;
  432. }
  433. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  434. if (err) {
  435. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  436. goto remove_hp_group;
  437. }
  438. return 0;
  439. remove_hp_group:
  440. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  441. delete_obj:
  442. kobject_put(*hugepage_kobj);
  443. return err;
  444. }
  445. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  446. {
  447. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  448. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  449. kobject_put(hugepage_kobj);
  450. }
  451. #else
  452. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  453. {
  454. return 0;
  455. }
  456. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  457. {
  458. }
  459. #endif /* CONFIG_SYSFS */
  460. static int __init hugepage_init(void)
  461. {
  462. int err;
  463. struct kobject *hugepage_kobj;
  464. if (!has_transparent_hugepage()) {
  465. transparent_hugepage_flags = 0;
  466. return -EINVAL;
  467. }
  468. err = hugepage_init_sysfs(&hugepage_kobj);
  469. if (err)
  470. return err;
  471. err = khugepaged_slab_init();
  472. if (err)
  473. goto out;
  474. err = mm_slots_hash_init();
  475. if (err) {
  476. khugepaged_slab_free();
  477. goto out;
  478. }
  479. /*
  480. * By default disable transparent hugepages on smaller systems,
  481. * where the extra memory used could hurt more than TLB overhead
  482. * is likely to save. The admin can still enable it through /sys.
  483. */
  484. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  485. transparent_hugepage_flags = 0;
  486. start_khugepaged();
  487. return 0;
  488. out:
  489. hugepage_exit_sysfs(hugepage_kobj);
  490. return err;
  491. }
  492. module_init(hugepage_init)
  493. static int __init setup_transparent_hugepage(char *str)
  494. {
  495. int ret = 0;
  496. if (!str)
  497. goto out;
  498. if (!strcmp(str, "always")) {
  499. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  500. &transparent_hugepage_flags);
  501. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  502. &transparent_hugepage_flags);
  503. ret = 1;
  504. } else if (!strcmp(str, "madvise")) {
  505. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  506. &transparent_hugepage_flags);
  507. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  508. &transparent_hugepage_flags);
  509. ret = 1;
  510. } else if (!strcmp(str, "never")) {
  511. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  512. &transparent_hugepage_flags);
  513. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  514. &transparent_hugepage_flags);
  515. ret = 1;
  516. }
  517. out:
  518. if (!ret)
  519. printk(KERN_WARNING
  520. "transparent_hugepage= cannot parse, ignored\n");
  521. return ret;
  522. }
  523. __setup("transparent_hugepage=", setup_transparent_hugepage);
  524. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  525. {
  526. if (likely(vma->vm_flags & VM_WRITE))
  527. pmd = pmd_mkwrite(pmd);
  528. return pmd;
  529. }
  530. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  531. {
  532. pmd_t entry;
  533. entry = mk_pmd(page, vma->vm_page_prot);
  534. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  535. entry = pmd_mkhuge(entry);
  536. return entry;
  537. }
  538. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  539. struct vm_area_struct *vma,
  540. unsigned long haddr, pmd_t *pmd,
  541. struct page *page)
  542. {
  543. pgtable_t pgtable;
  544. VM_BUG_ON(!PageCompound(page));
  545. pgtable = pte_alloc_one(mm, haddr);
  546. if (unlikely(!pgtable))
  547. return VM_FAULT_OOM;
  548. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  549. __SetPageUptodate(page);
  550. spin_lock(&mm->page_table_lock);
  551. if (unlikely(!pmd_none(*pmd))) {
  552. spin_unlock(&mm->page_table_lock);
  553. mem_cgroup_uncharge_page(page);
  554. put_page(page);
  555. pte_free(mm, pgtable);
  556. } else {
  557. pmd_t entry;
  558. entry = mk_huge_pmd(page, vma);
  559. /*
  560. * The spinlocking to take the lru_lock inside
  561. * page_add_new_anon_rmap() acts as a full memory
  562. * barrier to be sure clear_huge_page writes become
  563. * visible after the set_pmd_at() write.
  564. */
  565. page_add_new_anon_rmap(page, vma, haddr);
  566. set_pmd_at(mm, haddr, pmd, entry);
  567. pgtable_trans_huge_deposit(mm, pgtable);
  568. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  569. mm->nr_ptes++;
  570. spin_unlock(&mm->page_table_lock);
  571. }
  572. return 0;
  573. }
  574. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  575. {
  576. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  577. }
  578. static inline struct page *alloc_hugepage_vma(int defrag,
  579. struct vm_area_struct *vma,
  580. unsigned long haddr, int nd,
  581. gfp_t extra_gfp)
  582. {
  583. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  584. HPAGE_PMD_ORDER, vma, haddr, nd);
  585. }
  586. #ifndef CONFIG_NUMA
  587. static inline struct page *alloc_hugepage(int defrag)
  588. {
  589. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  590. HPAGE_PMD_ORDER);
  591. }
  592. #endif
  593. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  594. unsigned long address, pmd_t *pmd,
  595. unsigned int flags)
  596. {
  597. struct page *page;
  598. unsigned long haddr = address & HPAGE_PMD_MASK;
  599. pte_t *pte;
  600. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  601. if (unlikely(anon_vma_prepare(vma)))
  602. return VM_FAULT_OOM;
  603. if (unlikely(khugepaged_enter(vma)))
  604. return VM_FAULT_OOM;
  605. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  606. vma, haddr, numa_node_id(), 0);
  607. if (unlikely(!page)) {
  608. count_vm_event(THP_FAULT_FALLBACK);
  609. goto out;
  610. }
  611. count_vm_event(THP_FAULT_ALLOC);
  612. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  613. put_page(page);
  614. goto out;
  615. }
  616. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  617. page))) {
  618. mem_cgroup_uncharge_page(page);
  619. put_page(page);
  620. goto out;
  621. }
  622. return 0;
  623. }
  624. out:
  625. /*
  626. * Use __pte_alloc instead of pte_alloc_map, because we can't
  627. * run pte_offset_map on the pmd, if an huge pmd could
  628. * materialize from under us from a different thread.
  629. */
  630. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  631. return VM_FAULT_OOM;
  632. /* if an huge pmd materialized from under us just retry later */
  633. if (unlikely(pmd_trans_huge(*pmd)))
  634. return 0;
  635. /*
  636. * A regular pmd is established and it can't morph into a huge pmd
  637. * from under us anymore at this point because we hold the mmap_sem
  638. * read mode and khugepaged takes it in write mode. So now it's
  639. * safe to run pte_offset_map().
  640. */
  641. pte = pte_offset_map(pmd, address);
  642. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  643. }
  644. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  645. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  646. struct vm_area_struct *vma)
  647. {
  648. struct page *src_page;
  649. pmd_t pmd;
  650. pgtable_t pgtable;
  651. int ret;
  652. ret = -ENOMEM;
  653. pgtable = pte_alloc_one(dst_mm, addr);
  654. if (unlikely(!pgtable))
  655. goto out;
  656. spin_lock(&dst_mm->page_table_lock);
  657. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  658. ret = -EAGAIN;
  659. pmd = *src_pmd;
  660. if (unlikely(!pmd_trans_huge(pmd))) {
  661. pte_free(dst_mm, pgtable);
  662. goto out_unlock;
  663. }
  664. if (unlikely(pmd_trans_splitting(pmd))) {
  665. /* split huge page running from under us */
  666. spin_unlock(&src_mm->page_table_lock);
  667. spin_unlock(&dst_mm->page_table_lock);
  668. pte_free(dst_mm, pgtable);
  669. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  670. goto out;
  671. }
  672. src_page = pmd_page(pmd);
  673. VM_BUG_ON(!PageHead(src_page));
  674. get_page(src_page);
  675. page_dup_rmap(src_page);
  676. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  677. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  678. pmd = pmd_mkold(pmd_wrprotect(pmd));
  679. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  680. pgtable_trans_huge_deposit(dst_mm, pgtable);
  681. dst_mm->nr_ptes++;
  682. ret = 0;
  683. out_unlock:
  684. spin_unlock(&src_mm->page_table_lock);
  685. spin_unlock(&dst_mm->page_table_lock);
  686. out:
  687. return ret;
  688. }
  689. void huge_pmd_set_accessed(struct mm_struct *mm,
  690. struct vm_area_struct *vma,
  691. unsigned long address,
  692. pmd_t *pmd, pmd_t orig_pmd,
  693. int dirty)
  694. {
  695. pmd_t entry;
  696. unsigned long haddr;
  697. spin_lock(&mm->page_table_lock);
  698. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  699. goto unlock;
  700. entry = pmd_mkyoung(orig_pmd);
  701. haddr = address & HPAGE_PMD_MASK;
  702. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  703. update_mmu_cache_pmd(vma, address, pmd);
  704. unlock:
  705. spin_unlock(&mm->page_table_lock);
  706. }
  707. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  708. struct vm_area_struct *vma,
  709. unsigned long address,
  710. pmd_t *pmd, pmd_t orig_pmd,
  711. struct page *page,
  712. unsigned long haddr)
  713. {
  714. pgtable_t pgtable;
  715. pmd_t _pmd;
  716. int ret = 0, i;
  717. struct page **pages;
  718. unsigned long mmun_start; /* For mmu_notifiers */
  719. unsigned long mmun_end; /* For mmu_notifiers */
  720. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  721. GFP_KERNEL);
  722. if (unlikely(!pages)) {
  723. ret |= VM_FAULT_OOM;
  724. goto out;
  725. }
  726. for (i = 0; i < HPAGE_PMD_NR; i++) {
  727. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  728. __GFP_OTHER_NODE,
  729. vma, address, page_to_nid(page));
  730. if (unlikely(!pages[i] ||
  731. mem_cgroup_newpage_charge(pages[i], mm,
  732. GFP_KERNEL))) {
  733. if (pages[i])
  734. put_page(pages[i]);
  735. mem_cgroup_uncharge_start();
  736. while (--i >= 0) {
  737. mem_cgroup_uncharge_page(pages[i]);
  738. put_page(pages[i]);
  739. }
  740. mem_cgroup_uncharge_end();
  741. kfree(pages);
  742. ret |= VM_FAULT_OOM;
  743. goto out;
  744. }
  745. }
  746. for (i = 0; i < HPAGE_PMD_NR; i++) {
  747. copy_user_highpage(pages[i], page + i,
  748. haddr + PAGE_SIZE * i, vma);
  749. __SetPageUptodate(pages[i]);
  750. cond_resched();
  751. }
  752. mmun_start = haddr;
  753. mmun_end = haddr + HPAGE_PMD_SIZE;
  754. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  755. spin_lock(&mm->page_table_lock);
  756. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  757. goto out_free_pages;
  758. VM_BUG_ON(!PageHead(page));
  759. pmdp_clear_flush(vma, haddr, pmd);
  760. /* leave pmd empty until pte is filled */
  761. pgtable = pgtable_trans_huge_withdraw(mm);
  762. pmd_populate(mm, &_pmd, pgtable);
  763. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  764. pte_t *pte, entry;
  765. entry = mk_pte(pages[i], vma->vm_page_prot);
  766. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  767. page_add_new_anon_rmap(pages[i], vma, haddr);
  768. pte = pte_offset_map(&_pmd, haddr);
  769. VM_BUG_ON(!pte_none(*pte));
  770. set_pte_at(mm, haddr, pte, entry);
  771. pte_unmap(pte);
  772. }
  773. kfree(pages);
  774. smp_wmb(); /* make pte visible before pmd */
  775. pmd_populate(mm, pmd, pgtable);
  776. page_remove_rmap(page);
  777. spin_unlock(&mm->page_table_lock);
  778. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  779. ret |= VM_FAULT_WRITE;
  780. put_page(page);
  781. out:
  782. return ret;
  783. out_free_pages:
  784. spin_unlock(&mm->page_table_lock);
  785. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  786. mem_cgroup_uncharge_start();
  787. for (i = 0; i < HPAGE_PMD_NR; i++) {
  788. mem_cgroup_uncharge_page(pages[i]);
  789. put_page(pages[i]);
  790. }
  791. mem_cgroup_uncharge_end();
  792. kfree(pages);
  793. goto out;
  794. }
  795. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  796. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  797. {
  798. int ret = 0;
  799. struct page *page, *new_page;
  800. unsigned long haddr;
  801. unsigned long mmun_start; /* For mmu_notifiers */
  802. unsigned long mmun_end; /* For mmu_notifiers */
  803. VM_BUG_ON(!vma->anon_vma);
  804. spin_lock(&mm->page_table_lock);
  805. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  806. goto out_unlock;
  807. page = pmd_page(orig_pmd);
  808. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  809. haddr = address & HPAGE_PMD_MASK;
  810. if (page_mapcount(page) == 1) {
  811. pmd_t entry;
  812. entry = pmd_mkyoung(orig_pmd);
  813. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  814. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  815. update_mmu_cache_pmd(vma, address, pmd);
  816. ret |= VM_FAULT_WRITE;
  817. goto out_unlock;
  818. }
  819. get_page(page);
  820. spin_unlock(&mm->page_table_lock);
  821. if (transparent_hugepage_enabled(vma) &&
  822. !transparent_hugepage_debug_cow())
  823. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  824. vma, haddr, numa_node_id(), 0);
  825. else
  826. new_page = NULL;
  827. if (unlikely(!new_page)) {
  828. count_vm_event(THP_FAULT_FALLBACK);
  829. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  830. pmd, orig_pmd, page, haddr);
  831. if (ret & VM_FAULT_OOM)
  832. split_huge_page(page);
  833. put_page(page);
  834. goto out;
  835. }
  836. count_vm_event(THP_FAULT_ALLOC);
  837. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  838. put_page(new_page);
  839. split_huge_page(page);
  840. put_page(page);
  841. ret |= VM_FAULT_OOM;
  842. goto out;
  843. }
  844. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  845. __SetPageUptodate(new_page);
  846. mmun_start = haddr;
  847. mmun_end = haddr + HPAGE_PMD_SIZE;
  848. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  849. spin_lock(&mm->page_table_lock);
  850. put_page(page);
  851. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  852. spin_unlock(&mm->page_table_lock);
  853. mem_cgroup_uncharge_page(new_page);
  854. put_page(new_page);
  855. goto out_mn;
  856. } else {
  857. pmd_t entry;
  858. VM_BUG_ON(!PageHead(page));
  859. entry = mk_huge_pmd(new_page, vma);
  860. pmdp_clear_flush(vma, haddr, pmd);
  861. page_add_new_anon_rmap(new_page, vma, haddr);
  862. set_pmd_at(mm, haddr, pmd, entry);
  863. update_mmu_cache_pmd(vma, address, pmd);
  864. page_remove_rmap(page);
  865. put_page(page);
  866. ret |= VM_FAULT_WRITE;
  867. }
  868. spin_unlock(&mm->page_table_lock);
  869. out_mn:
  870. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  871. out:
  872. return ret;
  873. out_unlock:
  874. spin_unlock(&mm->page_table_lock);
  875. return ret;
  876. }
  877. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  878. unsigned long addr,
  879. pmd_t *pmd,
  880. unsigned int flags)
  881. {
  882. struct mm_struct *mm = vma->vm_mm;
  883. struct page *page = NULL;
  884. assert_spin_locked(&mm->page_table_lock);
  885. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  886. goto out;
  887. page = pmd_page(*pmd);
  888. VM_BUG_ON(!PageHead(page));
  889. if (flags & FOLL_TOUCH) {
  890. pmd_t _pmd;
  891. /*
  892. * We should set the dirty bit only for FOLL_WRITE but
  893. * for now the dirty bit in the pmd is meaningless.
  894. * And if the dirty bit will become meaningful and
  895. * we'll only set it with FOLL_WRITE, an atomic
  896. * set_bit will be required on the pmd to set the
  897. * young bit, instead of the current set_pmd_at.
  898. */
  899. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  900. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  901. }
  902. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  903. if (page->mapping && trylock_page(page)) {
  904. lru_add_drain();
  905. if (page->mapping)
  906. mlock_vma_page(page);
  907. unlock_page(page);
  908. }
  909. }
  910. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  911. VM_BUG_ON(!PageCompound(page));
  912. if (flags & FOLL_GET)
  913. get_page_foll(page);
  914. out:
  915. return page;
  916. }
  917. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  918. pmd_t *pmd, unsigned long addr)
  919. {
  920. int ret = 0;
  921. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  922. struct page *page;
  923. pgtable_t pgtable;
  924. pmd_t orig_pmd;
  925. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  926. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  927. page = pmd_page(orig_pmd);
  928. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  929. page_remove_rmap(page);
  930. VM_BUG_ON(page_mapcount(page) < 0);
  931. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  932. VM_BUG_ON(!PageHead(page));
  933. tlb->mm->nr_ptes--;
  934. spin_unlock(&tlb->mm->page_table_lock);
  935. tlb_remove_page(tlb, page);
  936. pte_free(tlb->mm, pgtable);
  937. ret = 1;
  938. }
  939. return ret;
  940. }
  941. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  942. unsigned long addr, unsigned long end,
  943. unsigned char *vec)
  944. {
  945. int ret = 0;
  946. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  947. /*
  948. * All logical pages in the range are present
  949. * if backed by a huge page.
  950. */
  951. spin_unlock(&vma->vm_mm->page_table_lock);
  952. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  953. ret = 1;
  954. }
  955. return ret;
  956. }
  957. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  958. unsigned long old_addr,
  959. unsigned long new_addr, unsigned long old_end,
  960. pmd_t *old_pmd, pmd_t *new_pmd)
  961. {
  962. int ret = 0;
  963. pmd_t pmd;
  964. struct mm_struct *mm = vma->vm_mm;
  965. if ((old_addr & ~HPAGE_PMD_MASK) ||
  966. (new_addr & ~HPAGE_PMD_MASK) ||
  967. old_end - old_addr < HPAGE_PMD_SIZE ||
  968. (new_vma->vm_flags & VM_NOHUGEPAGE))
  969. goto out;
  970. /*
  971. * The destination pmd shouldn't be established, free_pgtables()
  972. * should have release it.
  973. */
  974. if (WARN_ON(!pmd_none(*new_pmd))) {
  975. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  976. goto out;
  977. }
  978. ret = __pmd_trans_huge_lock(old_pmd, vma);
  979. if (ret == 1) {
  980. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  981. VM_BUG_ON(!pmd_none(*new_pmd));
  982. set_pmd_at(mm, new_addr, new_pmd, pmd);
  983. spin_unlock(&mm->page_table_lock);
  984. }
  985. out:
  986. return ret;
  987. }
  988. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  989. unsigned long addr, pgprot_t newprot)
  990. {
  991. struct mm_struct *mm = vma->vm_mm;
  992. int ret = 0;
  993. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  994. pmd_t entry;
  995. entry = pmdp_get_and_clear(mm, addr, pmd);
  996. entry = pmd_modify(entry, newprot);
  997. set_pmd_at(mm, addr, pmd, entry);
  998. spin_unlock(&vma->vm_mm->page_table_lock);
  999. ret = 1;
  1000. }
  1001. return ret;
  1002. }
  1003. /*
  1004. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1005. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1006. *
  1007. * Note that if it returns 1, this routine returns without unlocking page
  1008. * table locks. So callers must unlock them.
  1009. */
  1010. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1011. {
  1012. spin_lock(&vma->vm_mm->page_table_lock);
  1013. if (likely(pmd_trans_huge(*pmd))) {
  1014. if (unlikely(pmd_trans_splitting(*pmd))) {
  1015. spin_unlock(&vma->vm_mm->page_table_lock);
  1016. wait_split_huge_page(vma->anon_vma, pmd);
  1017. return -1;
  1018. } else {
  1019. /* Thp mapped by 'pmd' is stable, so we can
  1020. * handle it as it is. */
  1021. return 1;
  1022. }
  1023. }
  1024. spin_unlock(&vma->vm_mm->page_table_lock);
  1025. return 0;
  1026. }
  1027. pmd_t *page_check_address_pmd(struct page *page,
  1028. struct mm_struct *mm,
  1029. unsigned long address,
  1030. enum page_check_address_pmd_flag flag)
  1031. {
  1032. pmd_t *pmd, *ret = NULL;
  1033. if (address & ~HPAGE_PMD_MASK)
  1034. goto out;
  1035. pmd = mm_find_pmd(mm, address);
  1036. if (!pmd)
  1037. goto out;
  1038. if (pmd_none(*pmd))
  1039. goto out;
  1040. if (pmd_page(*pmd) != page)
  1041. goto out;
  1042. /*
  1043. * split_vma() may create temporary aliased mappings. There is
  1044. * no risk as long as all huge pmd are found and have their
  1045. * splitting bit set before __split_huge_page_refcount
  1046. * runs. Finding the same huge pmd more than once during the
  1047. * same rmap walk is not a problem.
  1048. */
  1049. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1050. pmd_trans_splitting(*pmd))
  1051. goto out;
  1052. if (pmd_trans_huge(*pmd)) {
  1053. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1054. !pmd_trans_splitting(*pmd));
  1055. ret = pmd;
  1056. }
  1057. out:
  1058. return ret;
  1059. }
  1060. static int __split_huge_page_splitting(struct page *page,
  1061. struct vm_area_struct *vma,
  1062. unsigned long address)
  1063. {
  1064. struct mm_struct *mm = vma->vm_mm;
  1065. pmd_t *pmd;
  1066. int ret = 0;
  1067. /* For mmu_notifiers */
  1068. const unsigned long mmun_start = address;
  1069. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1070. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1071. spin_lock(&mm->page_table_lock);
  1072. pmd = page_check_address_pmd(page, mm, address,
  1073. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1074. if (pmd) {
  1075. /*
  1076. * We can't temporarily set the pmd to null in order
  1077. * to split it, the pmd must remain marked huge at all
  1078. * times or the VM won't take the pmd_trans_huge paths
  1079. * and it won't wait on the anon_vma->root->mutex to
  1080. * serialize against split_huge_page*.
  1081. */
  1082. pmdp_splitting_flush(vma, address, pmd);
  1083. ret = 1;
  1084. }
  1085. spin_unlock(&mm->page_table_lock);
  1086. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1087. return ret;
  1088. }
  1089. static void __split_huge_page_refcount(struct page *page)
  1090. {
  1091. int i;
  1092. struct zone *zone = page_zone(page);
  1093. struct lruvec *lruvec;
  1094. int tail_count = 0;
  1095. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1096. spin_lock_irq(&zone->lru_lock);
  1097. lruvec = mem_cgroup_page_lruvec(page, zone);
  1098. compound_lock(page);
  1099. /* complete memcg works before add pages to LRU */
  1100. mem_cgroup_split_huge_fixup(page);
  1101. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1102. struct page *page_tail = page + i;
  1103. /* tail_page->_mapcount cannot change */
  1104. BUG_ON(page_mapcount(page_tail) < 0);
  1105. tail_count += page_mapcount(page_tail);
  1106. /* check for overflow */
  1107. BUG_ON(tail_count < 0);
  1108. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1109. /*
  1110. * tail_page->_count is zero and not changing from
  1111. * under us. But get_page_unless_zero() may be running
  1112. * from under us on the tail_page. If we used
  1113. * atomic_set() below instead of atomic_add(), we
  1114. * would then run atomic_set() concurrently with
  1115. * get_page_unless_zero(), and atomic_set() is
  1116. * implemented in C not using locked ops. spin_unlock
  1117. * on x86 sometime uses locked ops because of PPro
  1118. * errata 66, 92, so unless somebody can guarantee
  1119. * atomic_set() here would be safe on all archs (and
  1120. * not only on x86), it's safer to use atomic_add().
  1121. */
  1122. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1123. &page_tail->_count);
  1124. /* after clearing PageTail the gup refcount can be released */
  1125. smp_mb();
  1126. /*
  1127. * retain hwpoison flag of the poisoned tail page:
  1128. * fix for the unsuitable process killed on Guest Machine(KVM)
  1129. * by the memory-failure.
  1130. */
  1131. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1132. page_tail->flags |= (page->flags &
  1133. ((1L << PG_referenced) |
  1134. (1L << PG_swapbacked) |
  1135. (1L << PG_mlocked) |
  1136. (1L << PG_uptodate)));
  1137. page_tail->flags |= (1L << PG_dirty);
  1138. /* clear PageTail before overwriting first_page */
  1139. smp_wmb();
  1140. /*
  1141. * __split_huge_page_splitting() already set the
  1142. * splitting bit in all pmd that could map this
  1143. * hugepage, that will ensure no CPU can alter the
  1144. * mapcount on the head page. The mapcount is only
  1145. * accounted in the head page and it has to be
  1146. * transferred to all tail pages in the below code. So
  1147. * for this code to be safe, the split the mapcount
  1148. * can't change. But that doesn't mean userland can't
  1149. * keep changing and reading the page contents while
  1150. * we transfer the mapcount, so the pmd splitting
  1151. * status is achieved setting a reserved bit in the
  1152. * pmd, not by clearing the present bit.
  1153. */
  1154. page_tail->_mapcount = page->_mapcount;
  1155. BUG_ON(page_tail->mapping);
  1156. page_tail->mapping = page->mapping;
  1157. page_tail->index = page->index + i;
  1158. BUG_ON(!PageAnon(page_tail));
  1159. BUG_ON(!PageUptodate(page_tail));
  1160. BUG_ON(!PageDirty(page_tail));
  1161. BUG_ON(!PageSwapBacked(page_tail));
  1162. lru_add_page_tail(page, page_tail, lruvec);
  1163. }
  1164. atomic_sub(tail_count, &page->_count);
  1165. BUG_ON(atomic_read(&page->_count) <= 0);
  1166. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1167. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1168. ClearPageCompound(page);
  1169. compound_unlock(page);
  1170. spin_unlock_irq(&zone->lru_lock);
  1171. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1172. struct page *page_tail = page + i;
  1173. BUG_ON(page_count(page_tail) <= 0);
  1174. /*
  1175. * Tail pages may be freed if there wasn't any mapping
  1176. * like if add_to_swap() is running on a lru page that
  1177. * had its mapping zapped. And freeing these pages
  1178. * requires taking the lru_lock so we do the put_page
  1179. * of the tail pages after the split is complete.
  1180. */
  1181. put_page(page_tail);
  1182. }
  1183. /*
  1184. * Only the head page (now become a regular page) is required
  1185. * to be pinned by the caller.
  1186. */
  1187. BUG_ON(page_count(page) <= 0);
  1188. }
  1189. static int __split_huge_page_map(struct page *page,
  1190. struct vm_area_struct *vma,
  1191. unsigned long address)
  1192. {
  1193. struct mm_struct *mm = vma->vm_mm;
  1194. pmd_t *pmd, _pmd;
  1195. int ret = 0, i;
  1196. pgtable_t pgtable;
  1197. unsigned long haddr;
  1198. spin_lock(&mm->page_table_lock);
  1199. pmd = page_check_address_pmd(page, mm, address,
  1200. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1201. if (pmd) {
  1202. pgtable = pgtable_trans_huge_withdraw(mm);
  1203. pmd_populate(mm, &_pmd, pgtable);
  1204. haddr = address;
  1205. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1206. pte_t *pte, entry;
  1207. BUG_ON(PageCompound(page+i));
  1208. entry = mk_pte(page + i, vma->vm_page_prot);
  1209. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1210. if (!pmd_write(*pmd))
  1211. entry = pte_wrprotect(entry);
  1212. else
  1213. BUG_ON(page_mapcount(page) != 1);
  1214. if (!pmd_young(*pmd))
  1215. entry = pte_mkold(entry);
  1216. pte = pte_offset_map(&_pmd, haddr);
  1217. BUG_ON(!pte_none(*pte));
  1218. set_pte_at(mm, haddr, pte, entry);
  1219. pte_unmap(pte);
  1220. }
  1221. smp_wmb(); /* make pte visible before pmd */
  1222. /*
  1223. * Up to this point the pmd is present and huge and
  1224. * userland has the whole access to the hugepage
  1225. * during the split (which happens in place). If we
  1226. * overwrite the pmd with the not-huge version
  1227. * pointing to the pte here (which of course we could
  1228. * if all CPUs were bug free), userland could trigger
  1229. * a small page size TLB miss on the small sized TLB
  1230. * while the hugepage TLB entry is still established
  1231. * in the huge TLB. Some CPU doesn't like that. See
  1232. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1233. * Erratum 383 on page 93. Intel should be safe but is
  1234. * also warns that it's only safe if the permission
  1235. * and cache attributes of the two entries loaded in
  1236. * the two TLB is identical (which should be the case
  1237. * here). But it is generally safer to never allow
  1238. * small and huge TLB entries for the same virtual
  1239. * address to be loaded simultaneously. So instead of
  1240. * doing "pmd_populate(); flush_tlb_range();" we first
  1241. * mark the current pmd notpresent (atomically because
  1242. * here the pmd_trans_huge and pmd_trans_splitting
  1243. * must remain set at all times on the pmd until the
  1244. * split is complete for this pmd), then we flush the
  1245. * SMP TLB and finally we write the non-huge version
  1246. * of the pmd entry with pmd_populate.
  1247. */
  1248. pmdp_invalidate(vma, address, pmd);
  1249. pmd_populate(mm, pmd, pgtable);
  1250. ret = 1;
  1251. }
  1252. spin_unlock(&mm->page_table_lock);
  1253. return ret;
  1254. }
  1255. /* must be called with anon_vma->root->mutex hold */
  1256. static void __split_huge_page(struct page *page,
  1257. struct anon_vma *anon_vma)
  1258. {
  1259. int mapcount, mapcount2;
  1260. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1261. struct anon_vma_chain *avc;
  1262. BUG_ON(!PageHead(page));
  1263. BUG_ON(PageTail(page));
  1264. mapcount = 0;
  1265. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1266. struct vm_area_struct *vma = avc->vma;
  1267. unsigned long addr = vma_address(page, vma);
  1268. BUG_ON(is_vma_temporary_stack(vma));
  1269. mapcount += __split_huge_page_splitting(page, vma, addr);
  1270. }
  1271. /*
  1272. * It is critical that new vmas are added to the tail of the
  1273. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1274. * and establishes a child pmd before
  1275. * __split_huge_page_splitting() freezes the parent pmd (so if
  1276. * we fail to prevent copy_huge_pmd() from running until the
  1277. * whole __split_huge_page() is complete), we will still see
  1278. * the newly established pmd of the child later during the
  1279. * walk, to be able to set it as pmd_trans_splitting too.
  1280. */
  1281. if (mapcount != page_mapcount(page))
  1282. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1283. mapcount, page_mapcount(page));
  1284. BUG_ON(mapcount != page_mapcount(page));
  1285. __split_huge_page_refcount(page);
  1286. mapcount2 = 0;
  1287. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1288. struct vm_area_struct *vma = avc->vma;
  1289. unsigned long addr = vma_address(page, vma);
  1290. BUG_ON(is_vma_temporary_stack(vma));
  1291. mapcount2 += __split_huge_page_map(page, vma, addr);
  1292. }
  1293. if (mapcount != mapcount2)
  1294. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1295. mapcount, mapcount2, page_mapcount(page));
  1296. BUG_ON(mapcount != mapcount2);
  1297. }
  1298. int split_huge_page(struct page *page)
  1299. {
  1300. struct anon_vma *anon_vma;
  1301. int ret = 1;
  1302. BUG_ON(!PageAnon(page));
  1303. anon_vma = page_lock_anon_vma(page);
  1304. if (!anon_vma)
  1305. goto out;
  1306. ret = 0;
  1307. if (!PageCompound(page))
  1308. goto out_unlock;
  1309. BUG_ON(!PageSwapBacked(page));
  1310. __split_huge_page(page, anon_vma);
  1311. count_vm_event(THP_SPLIT);
  1312. BUG_ON(PageCompound(page));
  1313. out_unlock:
  1314. page_unlock_anon_vma(anon_vma);
  1315. out:
  1316. return ret;
  1317. }
  1318. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1319. int hugepage_madvise(struct vm_area_struct *vma,
  1320. unsigned long *vm_flags, int advice)
  1321. {
  1322. struct mm_struct *mm = vma->vm_mm;
  1323. switch (advice) {
  1324. case MADV_HUGEPAGE:
  1325. /*
  1326. * Be somewhat over-protective like KSM for now!
  1327. */
  1328. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1329. return -EINVAL;
  1330. if (mm->def_flags & VM_NOHUGEPAGE)
  1331. return -EINVAL;
  1332. *vm_flags &= ~VM_NOHUGEPAGE;
  1333. *vm_flags |= VM_HUGEPAGE;
  1334. /*
  1335. * If the vma become good for khugepaged to scan,
  1336. * register it here without waiting a page fault that
  1337. * may not happen any time soon.
  1338. */
  1339. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1340. return -ENOMEM;
  1341. break;
  1342. case MADV_NOHUGEPAGE:
  1343. /*
  1344. * Be somewhat over-protective like KSM for now!
  1345. */
  1346. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1347. return -EINVAL;
  1348. *vm_flags &= ~VM_HUGEPAGE;
  1349. *vm_flags |= VM_NOHUGEPAGE;
  1350. /*
  1351. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1352. * this vma even if we leave the mm registered in khugepaged if
  1353. * it got registered before VM_NOHUGEPAGE was set.
  1354. */
  1355. break;
  1356. }
  1357. return 0;
  1358. }
  1359. static int __init khugepaged_slab_init(void)
  1360. {
  1361. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1362. sizeof(struct mm_slot),
  1363. __alignof__(struct mm_slot), 0, NULL);
  1364. if (!mm_slot_cache)
  1365. return -ENOMEM;
  1366. return 0;
  1367. }
  1368. static void __init khugepaged_slab_free(void)
  1369. {
  1370. kmem_cache_destroy(mm_slot_cache);
  1371. mm_slot_cache = NULL;
  1372. }
  1373. static inline struct mm_slot *alloc_mm_slot(void)
  1374. {
  1375. if (!mm_slot_cache) /* initialization failed */
  1376. return NULL;
  1377. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1378. }
  1379. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1380. {
  1381. kmem_cache_free(mm_slot_cache, mm_slot);
  1382. }
  1383. static int __init mm_slots_hash_init(void)
  1384. {
  1385. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1386. GFP_KERNEL);
  1387. if (!mm_slots_hash)
  1388. return -ENOMEM;
  1389. return 0;
  1390. }
  1391. #if 0
  1392. static void __init mm_slots_hash_free(void)
  1393. {
  1394. kfree(mm_slots_hash);
  1395. mm_slots_hash = NULL;
  1396. }
  1397. #endif
  1398. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1399. {
  1400. struct mm_slot *mm_slot;
  1401. struct hlist_head *bucket;
  1402. struct hlist_node *node;
  1403. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1404. % MM_SLOTS_HASH_HEADS];
  1405. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1406. if (mm == mm_slot->mm)
  1407. return mm_slot;
  1408. }
  1409. return NULL;
  1410. }
  1411. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1412. struct mm_slot *mm_slot)
  1413. {
  1414. struct hlist_head *bucket;
  1415. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1416. % MM_SLOTS_HASH_HEADS];
  1417. mm_slot->mm = mm;
  1418. hlist_add_head(&mm_slot->hash, bucket);
  1419. }
  1420. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1421. {
  1422. return atomic_read(&mm->mm_users) == 0;
  1423. }
  1424. int __khugepaged_enter(struct mm_struct *mm)
  1425. {
  1426. struct mm_slot *mm_slot;
  1427. int wakeup;
  1428. mm_slot = alloc_mm_slot();
  1429. if (!mm_slot)
  1430. return -ENOMEM;
  1431. /* __khugepaged_exit() must not run from under us */
  1432. VM_BUG_ON(khugepaged_test_exit(mm));
  1433. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1434. free_mm_slot(mm_slot);
  1435. return 0;
  1436. }
  1437. spin_lock(&khugepaged_mm_lock);
  1438. insert_to_mm_slots_hash(mm, mm_slot);
  1439. /*
  1440. * Insert just behind the scanning cursor, to let the area settle
  1441. * down a little.
  1442. */
  1443. wakeup = list_empty(&khugepaged_scan.mm_head);
  1444. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1445. spin_unlock(&khugepaged_mm_lock);
  1446. atomic_inc(&mm->mm_count);
  1447. if (wakeup)
  1448. wake_up_interruptible(&khugepaged_wait);
  1449. return 0;
  1450. }
  1451. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1452. {
  1453. unsigned long hstart, hend;
  1454. if (!vma->anon_vma)
  1455. /*
  1456. * Not yet faulted in so we will register later in the
  1457. * page fault if needed.
  1458. */
  1459. return 0;
  1460. if (vma->vm_ops)
  1461. /* khugepaged not yet working on file or special mappings */
  1462. return 0;
  1463. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1464. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1465. hend = vma->vm_end & HPAGE_PMD_MASK;
  1466. if (hstart < hend)
  1467. return khugepaged_enter(vma);
  1468. return 0;
  1469. }
  1470. void __khugepaged_exit(struct mm_struct *mm)
  1471. {
  1472. struct mm_slot *mm_slot;
  1473. int free = 0;
  1474. spin_lock(&khugepaged_mm_lock);
  1475. mm_slot = get_mm_slot(mm);
  1476. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1477. hlist_del(&mm_slot->hash);
  1478. list_del(&mm_slot->mm_node);
  1479. free = 1;
  1480. }
  1481. spin_unlock(&khugepaged_mm_lock);
  1482. if (free) {
  1483. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1484. free_mm_slot(mm_slot);
  1485. mmdrop(mm);
  1486. } else if (mm_slot) {
  1487. /*
  1488. * This is required to serialize against
  1489. * khugepaged_test_exit() (which is guaranteed to run
  1490. * under mmap sem read mode). Stop here (after we
  1491. * return all pagetables will be destroyed) until
  1492. * khugepaged has finished working on the pagetables
  1493. * under the mmap_sem.
  1494. */
  1495. down_write(&mm->mmap_sem);
  1496. up_write(&mm->mmap_sem);
  1497. }
  1498. }
  1499. static void release_pte_page(struct page *page)
  1500. {
  1501. /* 0 stands for page_is_file_cache(page) == false */
  1502. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1503. unlock_page(page);
  1504. putback_lru_page(page);
  1505. }
  1506. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1507. {
  1508. while (--_pte >= pte) {
  1509. pte_t pteval = *_pte;
  1510. if (!pte_none(pteval))
  1511. release_pte_page(pte_page(pteval));
  1512. }
  1513. }
  1514. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1515. unsigned long address,
  1516. pte_t *pte)
  1517. {
  1518. struct page *page;
  1519. pte_t *_pte;
  1520. int referenced = 0, none = 0;
  1521. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1522. _pte++, address += PAGE_SIZE) {
  1523. pte_t pteval = *_pte;
  1524. if (pte_none(pteval)) {
  1525. if (++none <= khugepaged_max_ptes_none)
  1526. continue;
  1527. else
  1528. goto out;
  1529. }
  1530. if (!pte_present(pteval) || !pte_write(pteval))
  1531. goto out;
  1532. page = vm_normal_page(vma, address, pteval);
  1533. if (unlikely(!page))
  1534. goto out;
  1535. VM_BUG_ON(PageCompound(page));
  1536. BUG_ON(!PageAnon(page));
  1537. VM_BUG_ON(!PageSwapBacked(page));
  1538. /* cannot use mapcount: can't collapse if there's a gup pin */
  1539. if (page_count(page) != 1)
  1540. goto out;
  1541. /*
  1542. * We can do it before isolate_lru_page because the
  1543. * page can't be freed from under us. NOTE: PG_lock
  1544. * is needed to serialize against split_huge_page
  1545. * when invoked from the VM.
  1546. */
  1547. if (!trylock_page(page))
  1548. goto out;
  1549. /*
  1550. * Isolate the page to avoid collapsing an hugepage
  1551. * currently in use by the VM.
  1552. */
  1553. if (isolate_lru_page(page)) {
  1554. unlock_page(page);
  1555. goto out;
  1556. }
  1557. /* 0 stands for page_is_file_cache(page) == false */
  1558. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1559. VM_BUG_ON(!PageLocked(page));
  1560. VM_BUG_ON(PageLRU(page));
  1561. /* If there is no mapped pte young don't collapse the page */
  1562. if (pte_young(pteval) || PageReferenced(page) ||
  1563. mmu_notifier_test_young(vma->vm_mm, address))
  1564. referenced = 1;
  1565. }
  1566. if (likely(referenced))
  1567. return 1;
  1568. out:
  1569. release_pte_pages(pte, _pte);
  1570. return 0;
  1571. }
  1572. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1573. struct vm_area_struct *vma,
  1574. unsigned long address,
  1575. spinlock_t *ptl)
  1576. {
  1577. pte_t *_pte;
  1578. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1579. pte_t pteval = *_pte;
  1580. struct page *src_page;
  1581. if (pte_none(pteval)) {
  1582. clear_user_highpage(page, address);
  1583. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1584. } else {
  1585. src_page = pte_page(pteval);
  1586. copy_user_highpage(page, src_page, address, vma);
  1587. VM_BUG_ON(page_mapcount(src_page) != 1);
  1588. release_pte_page(src_page);
  1589. /*
  1590. * ptl mostly unnecessary, but preempt has to
  1591. * be disabled to update the per-cpu stats
  1592. * inside page_remove_rmap().
  1593. */
  1594. spin_lock(ptl);
  1595. /*
  1596. * paravirt calls inside pte_clear here are
  1597. * superfluous.
  1598. */
  1599. pte_clear(vma->vm_mm, address, _pte);
  1600. page_remove_rmap(src_page);
  1601. spin_unlock(ptl);
  1602. free_page_and_swap_cache(src_page);
  1603. }
  1604. address += PAGE_SIZE;
  1605. page++;
  1606. }
  1607. }
  1608. static void khugepaged_alloc_sleep(void)
  1609. {
  1610. wait_event_freezable_timeout(khugepaged_wait, false,
  1611. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1612. }
  1613. #ifdef CONFIG_NUMA
  1614. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1615. {
  1616. if (IS_ERR(*hpage)) {
  1617. if (!*wait)
  1618. return false;
  1619. *wait = false;
  1620. *hpage = NULL;
  1621. khugepaged_alloc_sleep();
  1622. } else if (*hpage) {
  1623. put_page(*hpage);
  1624. *hpage = NULL;
  1625. }
  1626. return true;
  1627. }
  1628. static struct page
  1629. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1630. struct vm_area_struct *vma, unsigned long address,
  1631. int node)
  1632. {
  1633. VM_BUG_ON(*hpage);
  1634. /*
  1635. * Allocate the page while the vma is still valid and under
  1636. * the mmap_sem read mode so there is no memory allocation
  1637. * later when we take the mmap_sem in write mode. This is more
  1638. * friendly behavior (OTOH it may actually hide bugs) to
  1639. * filesystems in userland with daemons allocating memory in
  1640. * the userland I/O paths. Allocating memory with the
  1641. * mmap_sem in read mode is good idea also to allow greater
  1642. * scalability.
  1643. */
  1644. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1645. node, __GFP_OTHER_NODE);
  1646. /*
  1647. * After allocating the hugepage, release the mmap_sem read lock in
  1648. * preparation for taking it in write mode.
  1649. */
  1650. up_read(&mm->mmap_sem);
  1651. if (unlikely(!*hpage)) {
  1652. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1653. *hpage = ERR_PTR(-ENOMEM);
  1654. return NULL;
  1655. }
  1656. count_vm_event(THP_COLLAPSE_ALLOC);
  1657. return *hpage;
  1658. }
  1659. #else
  1660. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1661. {
  1662. struct page *hpage;
  1663. do {
  1664. hpage = alloc_hugepage(khugepaged_defrag());
  1665. if (!hpage) {
  1666. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1667. if (!*wait)
  1668. return NULL;
  1669. *wait = false;
  1670. khugepaged_alloc_sleep();
  1671. } else
  1672. count_vm_event(THP_COLLAPSE_ALLOC);
  1673. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1674. return hpage;
  1675. }
  1676. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1677. {
  1678. if (!*hpage)
  1679. *hpage = khugepaged_alloc_hugepage(wait);
  1680. if (unlikely(!*hpage))
  1681. return false;
  1682. return true;
  1683. }
  1684. static struct page
  1685. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1686. struct vm_area_struct *vma, unsigned long address,
  1687. int node)
  1688. {
  1689. up_read(&mm->mmap_sem);
  1690. VM_BUG_ON(!*hpage);
  1691. return *hpage;
  1692. }
  1693. #endif
  1694. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1695. {
  1696. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1697. (vma->vm_flags & VM_NOHUGEPAGE))
  1698. return false;
  1699. if (!vma->anon_vma || vma->vm_ops)
  1700. return false;
  1701. if (is_vma_temporary_stack(vma))
  1702. return false;
  1703. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1704. return true;
  1705. }
  1706. static void collapse_huge_page(struct mm_struct *mm,
  1707. unsigned long address,
  1708. struct page **hpage,
  1709. struct vm_area_struct *vma,
  1710. int node)
  1711. {
  1712. pmd_t *pmd, _pmd;
  1713. pte_t *pte;
  1714. pgtable_t pgtable;
  1715. struct page *new_page;
  1716. spinlock_t *ptl;
  1717. int isolated;
  1718. unsigned long hstart, hend;
  1719. unsigned long mmun_start; /* For mmu_notifiers */
  1720. unsigned long mmun_end; /* For mmu_notifiers */
  1721. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1722. /* release the mmap_sem read lock. */
  1723. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1724. if (!new_page)
  1725. return;
  1726. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1727. return;
  1728. /*
  1729. * Prevent all access to pagetables with the exception of
  1730. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1731. * handled by the anon_vma lock + PG_lock.
  1732. */
  1733. down_write(&mm->mmap_sem);
  1734. if (unlikely(khugepaged_test_exit(mm)))
  1735. goto out;
  1736. vma = find_vma(mm, address);
  1737. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1738. hend = vma->vm_end & HPAGE_PMD_MASK;
  1739. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1740. goto out;
  1741. if (!hugepage_vma_check(vma))
  1742. goto out;
  1743. pmd = mm_find_pmd(mm, address);
  1744. if (!pmd)
  1745. goto out;
  1746. if (pmd_trans_huge(*pmd))
  1747. goto out;
  1748. anon_vma_lock(vma->anon_vma);
  1749. pte = pte_offset_map(pmd, address);
  1750. ptl = pte_lockptr(mm, pmd);
  1751. mmun_start = address;
  1752. mmun_end = address + HPAGE_PMD_SIZE;
  1753. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1754. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1755. /*
  1756. * After this gup_fast can't run anymore. This also removes
  1757. * any huge TLB entry from the CPU so we won't allow
  1758. * huge and small TLB entries for the same virtual address
  1759. * to avoid the risk of CPU bugs in that area.
  1760. */
  1761. _pmd = pmdp_clear_flush(vma, address, pmd);
  1762. spin_unlock(&mm->page_table_lock);
  1763. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1764. spin_lock(ptl);
  1765. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1766. spin_unlock(ptl);
  1767. if (unlikely(!isolated)) {
  1768. pte_unmap(pte);
  1769. spin_lock(&mm->page_table_lock);
  1770. BUG_ON(!pmd_none(*pmd));
  1771. set_pmd_at(mm, address, pmd, _pmd);
  1772. spin_unlock(&mm->page_table_lock);
  1773. anon_vma_unlock(vma->anon_vma);
  1774. goto out;
  1775. }
  1776. /*
  1777. * All pages are isolated and locked so anon_vma rmap
  1778. * can't run anymore.
  1779. */
  1780. anon_vma_unlock(vma->anon_vma);
  1781. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1782. pte_unmap(pte);
  1783. __SetPageUptodate(new_page);
  1784. pgtable = pmd_pgtable(_pmd);
  1785. _pmd = mk_huge_pmd(new_page, vma);
  1786. /*
  1787. * spin_lock() below is not the equivalent of smp_wmb(), so
  1788. * this is needed to avoid the copy_huge_page writes to become
  1789. * visible after the set_pmd_at() write.
  1790. */
  1791. smp_wmb();
  1792. spin_lock(&mm->page_table_lock);
  1793. BUG_ON(!pmd_none(*pmd));
  1794. page_add_new_anon_rmap(new_page, vma, address);
  1795. set_pmd_at(mm, address, pmd, _pmd);
  1796. update_mmu_cache_pmd(vma, address, pmd);
  1797. pgtable_trans_huge_deposit(mm, pgtable);
  1798. spin_unlock(&mm->page_table_lock);
  1799. *hpage = NULL;
  1800. khugepaged_pages_collapsed++;
  1801. out_up_write:
  1802. up_write(&mm->mmap_sem);
  1803. return;
  1804. out:
  1805. mem_cgroup_uncharge_page(new_page);
  1806. goto out_up_write;
  1807. }
  1808. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1809. struct vm_area_struct *vma,
  1810. unsigned long address,
  1811. struct page **hpage)
  1812. {
  1813. pmd_t *pmd;
  1814. pte_t *pte, *_pte;
  1815. int ret = 0, referenced = 0, none = 0;
  1816. struct page *page;
  1817. unsigned long _address;
  1818. spinlock_t *ptl;
  1819. int node = -1;
  1820. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1821. pmd = mm_find_pmd(mm, address);
  1822. if (!pmd)
  1823. goto out;
  1824. if (pmd_trans_huge(*pmd))
  1825. goto out;
  1826. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1827. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1828. _pte++, _address += PAGE_SIZE) {
  1829. pte_t pteval = *_pte;
  1830. if (pte_none(pteval)) {
  1831. if (++none <= khugepaged_max_ptes_none)
  1832. continue;
  1833. else
  1834. goto out_unmap;
  1835. }
  1836. if (!pte_present(pteval) || !pte_write(pteval))
  1837. goto out_unmap;
  1838. page = vm_normal_page(vma, _address, pteval);
  1839. if (unlikely(!page))
  1840. goto out_unmap;
  1841. /*
  1842. * Chose the node of the first page. This could
  1843. * be more sophisticated and look at more pages,
  1844. * but isn't for now.
  1845. */
  1846. if (node == -1)
  1847. node = page_to_nid(page);
  1848. VM_BUG_ON(PageCompound(page));
  1849. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1850. goto out_unmap;
  1851. /* cannot use mapcount: can't collapse if there's a gup pin */
  1852. if (page_count(page) != 1)
  1853. goto out_unmap;
  1854. if (pte_young(pteval) || PageReferenced(page) ||
  1855. mmu_notifier_test_young(vma->vm_mm, address))
  1856. referenced = 1;
  1857. }
  1858. if (referenced)
  1859. ret = 1;
  1860. out_unmap:
  1861. pte_unmap_unlock(pte, ptl);
  1862. if (ret)
  1863. /* collapse_huge_page will return with the mmap_sem released */
  1864. collapse_huge_page(mm, address, hpage, vma, node);
  1865. out:
  1866. return ret;
  1867. }
  1868. static void collect_mm_slot(struct mm_slot *mm_slot)
  1869. {
  1870. struct mm_struct *mm = mm_slot->mm;
  1871. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1872. if (khugepaged_test_exit(mm)) {
  1873. /* free mm_slot */
  1874. hlist_del(&mm_slot->hash);
  1875. list_del(&mm_slot->mm_node);
  1876. /*
  1877. * Not strictly needed because the mm exited already.
  1878. *
  1879. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1880. */
  1881. /* khugepaged_mm_lock actually not necessary for the below */
  1882. free_mm_slot(mm_slot);
  1883. mmdrop(mm);
  1884. }
  1885. }
  1886. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1887. struct page **hpage)
  1888. __releases(&khugepaged_mm_lock)
  1889. __acquires(&khugepaged_mm_lock)
  1890. {
  1891. struct mm_slot *mm_slot;
  1892. struct mm_struct *mm;
  1893. struct vm_area_struct *vma;
  1894. int progress = 0;
  1895. VM_BUG_ON(!pages);
  1896. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1897. if (khugepaged_scan.mm_slot)
  1898. mm_slot = khugepaged_scan.mm_slot;
  1899. else {
  1900. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1901. struct mm_slot, mm_node);
  1902. khugepaged_scan.address = 0;
  1903. khugepaged_scan.mm_slot = mm_slot;
  1904. }
  1905. spin_unlock(&khugepaged_mm_lock);
  1906. mm = mm_slot->mm;
  1907. down_read(&mm->mmap_sem);
  1908. if (unlikely(khugepaged_test_exit(mm)))
  1909. vma = NULL;
  1910. else
  1911. vma = find_vma(mm, khugepaged_scan.address);
  1912. progress++;
  1913. for (; vma; vma = vma->vm_next) {
  1914. unsigned long hstart, hend;
  1915. cond_resched();
  1916. if (unlikely(khugepaged_test_exit(mm))) {
  1917. progress++;
  1918. break;
  1919. }
  1920. if (!hugepage_vma_check(vma)) {
  1921. skip:
  1922. progress++;
  1923. continue;
  1924. }
  1925. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1926. hend = vma->vm_end & HPAGE_PMD_MASK;
  1927. if (hstart >= hend)
  1928. goto skip;
  1929. if (khugepaged_scan.address > hend)
  1930. goto skip;
  1931. if (khugepaged_scan.address < hstart)
  1932. khugepaged_scan.address = hstart;
  1933. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1934. while (khugepaged_scan.address < hend) {
  1935. int ret;
  1936. cond_resched();
  1937. if (unlikely(khugepaged_test_exit(mm)))
  1938. goto breakouterloop;
  1939. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1940. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1941. hend);
  1942. ret = khugepaged_scan_pmd(mm, vma,
  1943. khugepaged_scan.address,
  1944. hpage);
  1945. /* move to next address */
  1946. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1947. progress += HPAGE_PMD_NR;
  1948. if (ret)
  1949. /* we released mmap_sem so break loop */
  1950. goto breakouterloop_mmap_sem;
  1951. if (progress >= pages)
  1952. goto breakouterloop;
  1953. }
  1954. }
  1955. breakouterloop:
  1956. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1957. breakouterloop_mmap_sem:
  1958. spin_lock(&khugepaged_mm_lock);
  1959. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1960. /*
  1961. * Release the current mm_slot if this mm is about to die, or
  1962. * if we scanned all vmas of this mm.
  1963. */
  1964. if (khugepaged_test_exit(mm) || !vma) {
  1965. /*
  1966. * Make sure that if mm_users is reaching zero while
  1967. * khugepaged runs here, khugepaged_exit will find
  1968. * mm_slot not pointing to the exiting mm.
  1969. */
  1970. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1971. khugepaged_scan.mm_slot = list_entry(
  1972. mm_slot->mm_node.next,
  1973. struct mm_slot, mm_node);
  1974. khugepaged_scan.address = 0;
  1975. } else {
  1976. khugepaged_scan.mm_slot = NULL;
  1977. khugepaged_full_scans++;
  1978. }
  1979. collect_mm_slot(mm_slot);
  1980. }
  1981. return progress;
  1982. }
  1983. static int khugepaged_has_work(void)
  1984. {
  1985. return !list_empty(&khugepaged_scan.mm_head) &&
  1986. khugepaged_enabled();
  1987. }
  1988. static int khugepaged_wait_event(void)
  1989. {
  1990. return !list_empty(&khugepaged_scan.mm_head) ||
  1991. kthread_should_stop();
  1992. }
  1993. static void khugepaged_do_scan(void)
  1994. {
  1995. struct page *hpage = NULL;
  1996. unsigned int progress = 0, pass_through_head = 0;
  1997. unsigned int pages = khugepaged_pages_to_scan;
  1998. bool wait = true;
  1999. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2000. while (progress < pages) {
  2001. if (!khugepaged_prealloc_page(&hpage, &wait))
  2002. break;
  2003. cond_resched();
  2004. if (unlikely(kthread_should_stop() || freezing(current)))
  2005. break;
  2006. spin_lock(&khugepaged_mm_lock);
  2007. if (!khugepaged_scan.mm_slot)
  2008. pass_through_head++;
  2009. if (khugepaged_has_work() &&
  2010. pass_through_head < 2)
  2011. progress += khugepaged_scan_mm_slot(pages - progress,
  2012. &hpage);
  2013. else
  2014. progress = pages;
  2015. spin_unlock(&khugepaged_mm_lock);
  2016. }
  2017. if (!IS_ERR_OR_NULL(hpage))
  2018. put_page(hpage);
  2019. }
  2020. static void khugepaged_wait_work(void)
  2021. {
  2022. try_to_freeze();
  2023. if (khugepaged_has_work()) {
  2024. if (!khugepaged_scan_sleep_millisecs)
  2025. return;
  2026. wait_event_freezable_timeout(khugepaged_wait,
  2027. kthread_should_stop(),
  2028. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2029. return;
  2030. }
  2031. if (khugepaged_enabled())
  2032. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2033. }
  2034. static int khugepaged(void *none)
  2035. {
  2036. struct mm_slot *mm_slot;
  2037. set_freezable();
  2038. set_user_nice(current, 19);
  2039. while (!kthread_should_stop()) {
  2040. khugepaged_do_scan();
  2041. khugepaged_wait_work();
  2042. }
  2043. spin_lock(&khugepaged_mm_lock);
  2044. mm_slot = khugepaged_scan.mm_slot;
  2045. khugepaged_scan.mm_slot = NULL;
  2046. if (mm_slot)
  2047. collect_mm_slot(mm_slot);
  2048. spin_unlock(&khugepaged_mm_lock);
  2049. return 0;
  2050. }
  2051. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2052. {
  2053. struct page *page;
  2054. spin_lock(&mm->page_table_lock);
  2055. if (unlikely(!pmd_trans_huge(*pmd))) {
  2056. spin_unlock(&mm->page_table_lock);
  2057. return;
  2058. }
  2059. page = pmd_page(*pmd);
  2060. VM_BUG_ON(!page_count(page));
  2061. get_page(page);
  2062. spin_unlock(&mm->page_table_lock);
  2063. split_huge_page(page);
  2064. put_page(page);
  2065. BUG_ON(pmd_trans_huge(*pmd));
  2066. }
  2067. static void split_huge_page_address(struct mm_struct *mm,
  2068. unsigned long address)
  2069. {
  2070. pmd_t *pmd;
  2071. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2072. pmd = mm_find_pmd(mm, address);
  2073. if (!pmd)
  2074. return;
  2075. /*
  2076. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2077. * materialize from under us.
  2078. */
  2079. split_huge_page_pmd(mm, pmd);
  2080. }
  2081. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2082. unsigned long start,
  2083. unsigned long end,
  2084. long adjust_next)
  2085. {
  2086. /*
  2087. * If the new start address isn't hpage aligned and it could
  2088. * previously contain an hugepage: check if we need to split
  2089. * an huge pmd.
  2090. */
  2091. if (start & ~HPAGE_PMD_MASK &&
  2092. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2093. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2094. split_huge_page_address(vma->vm_mm, start);
  2095. /*
  2096. * If the new end address isn't hpage aligned and it could
  2097. * previously contain an hugepage: check if we need to split
  2098. * an huge pmd.
  2099. */
  2100. if (end & ~HPAGE_PMD_MASK &&
  2101. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2102. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2103. split_huge_page_address(vma->vm_mm, end);
  2104. /*
  2105. * If we're also updating the vma->vm_next->vm_start, if the new
  2106. * vm_next->vm_start isn't page aligned and it could previously
  2107. * contain an hugepage: check if we need to split an huge pmd.
  2108. */
  2109. if (adjust_next > 0) {
  2110. struct vm_area_struct *next = vma->vm_next;
  2111. unsigned long nstart = next->vm_start;
  2112. nstart += adjust_next << PAGE_SHIFT;
  2113. if (nstart & ~HPAGE_PMD_MASK &&
  2114. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2115. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2116. split_huge_page_address(next->vm_mm, nstart);
  2117. }
  2118. }