mmzone.h 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coalesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. enum {
  34. MIGRATE_UNMOVABLE,
  35. MIGRATE_RECLAIMABLE,
  36. MIGRATE_MOVABLE,
  37. MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
  38. MIGRATE_RESERVE = MIGRATE_PCPTYPES,
  39. #ifdef CONFIG_CMA
  40. /*
  41. * MIGRATE_CMA migration type is designed to mimic the way
  42. * ZONE_MOVABLE works. Only movable pages can be allocated
  43. * from MIGRATE_CMA pageblocks and page allocator never
  44. * implicitly change migration type of MIGRATE_CMA pageblock.
  45. *
  46. * The way to use it is to change migratetype of a range of
  47. * pageblocks to MIGRATE_CMA which can be done by
  48. * __free_pageblock_cma() function. What is important though
  49. * is that a range of pageblocks must be aligned to
  50. * MAX_ORDER_NR_PAGES should biggest page be bigger then
  51. * a single pageblock.
  52. */
  53. MIGRATE_CMA,
  54. #endif
  55. MIGRATE_ISOLATE, /* can't allocate from here */
  56. MIGRATE_TYPES
  57. };
  58. #ifdef CONFIG_CMA
  59. # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  60. #else
  61. # define is_migrate_cma(migratetype) false
  62. #endif
  63. #define for_each_migratetype_order(order, type) \
  64. for (order = 0; order < MAX_ORDER; order++) \
  65. for (type = 0; type < MIGRATE_TYPES; type++)
  66. extern int page_group_by_mobility_disabled;
  67. static inline int get_pageblock_migratetype(struct page *page)
  68. {
  69. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  70. }
  71. struct free_area {
  72. struct list_head free_list[MIGRATE_TYPES];
  73. unsigned long nr_free;
  74. };
  75. struct pglist_data;
  76. /*
  77. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  78. * So add a wild amount of padding here to ensure that they fall into separate
  79. * cachelines. There are very few zone structures in the machine, so space
  80. * consumption is not a concern here.
  81. */
  82. #if defined(CONFIG_SMP)
  83. struct zone_padding {
  84. char x[0];
  85. } ____cacheline_internodealigned_in_smp;
  86. #define ZONE_PADDING(name) struct zone_padding name;
  87. #else
  88. #define ZONE_PADDING(name)
  89. #endif
  90. enum zone_stat_item {
  91. /* First 128 byte cacheline (assuming 64 bit words) */
  92. NR_FREE_PAGES,
  93. NR_LRU_BASE,
  94. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  95. NR_ACTIVE_ANON, /* " " " " " */
  96. NR_INACTIVE_FILE, /* " " " " " */
  97. NR_ACTIVE_FILE, /* " " " " " */
  98. NR_UNEVICTABLE, /* " " " " " */
  99. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  100. NR_ANON_PAGES, /* Mapped anonymous pages */
  101. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  102. only modified from process context */
  103. NR_FILE_PAGES,
  104. NR_FILE_DIRTY,
  105. NR_WRITEBACK,
  106. NR_SLAB_RECLAIMABLE,
  107. NR_SLAB_UNRECLAIMABLE,
  108. NR_PAGETABLE, /* used for pagetables */
  109. NR_KERNEL_STACK,
  110. /* Second 128 byte cacheline */
  111. NR_UNSTABLE_NFS, /* NFS unstable pages */
  112. NR_BOUNCE,
  113. NR_VMSCAN_WRITE,
  114. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  115. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  116. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  117. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  118. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  119. NR_DIRTIED, /* page dirtyings since bootup */
  120. NR_WRITTEN, /* page writings since bootup */
  121. #ifdef CONFIG_NUMA
  122. NUMA_HIT, /* allocated in intended node */
  123. NUMA_MISS, /* allocated in non intended node */
  124. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  125. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  126. NUMA_LOCAL, /* allocation from local node */
  127. NUMA_OTHER, /* allocation from other node */
  128. #endif
  129. NR_ANON_TRANSPARENT_HUGEPAGES,
  130. NR_FREE_CMA_PAGES,
  131. NR_VM_ZONE_STAT_ITEMS };
  132. /*
  133. * We do arithmetic on the LRU lists in various places in the code,
  134. * so it is important to keep the active lists LRU_ACTIVE higher in
  135. * the array than the corresponding inactive lists, and to keep
  136. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  137. *
  138. * This has to be kept in sync with the statistics in zone_stat_item
  139. * above and the descriptions in vmstat_text in mm/vmstat.c
  140. */
  141. #define LRU_BASE 0
  142. #define LRU_ACTIVE 1
  143. #define LRU_FILE 2
  144. enum lru_list {
  145. LRU_INACTIVE_ANON = LRU_BASE,
  146. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  147. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  148. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  149. LRU_UNEVICTABLE,
  150. NR_LRU_LISTS
  151. };
  152. #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
  153. #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
  154. static inline int is_file_lru(enum lru_list lru)
  155. {
  156. return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
  157. }
  158. static inline int is_active_lru(enum lru_list lru)
  159. {
  160. return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
  161. }
  162. static inline int is_unevictable_lru(enum lru_list lru)
  163. {
  164. return (lru == LRU_UNEVICTABLE);
  165. }
  166. struct zone_reclaim_stat {
  167. /*
  168. * The pageout code in vmscan.c keeps track of how many of the
  169. * mem/swap backed and file backed pages are referenced.
  170. * The higher the rotated/scanned ratio, the more valuable
  171. * that cache is.
  172. *
  173. * The anon LRU stats live in [0], file LRU stats in [1]
  174. */
  175. unsigned long recent_rotated[2];
  176. unsigned long recent_scanned[2];
  177. };
  178. struct lruvec {
  179. struct list_head lists[NR_LRU_LISTS];
  180. struct zone_reclaim_stat reclaim_stat;
  181. #ifdef CONFIG_MEMCG
  182. struct zone *zone;
  183. #endif
  184. };
  185. /* Mask used at gathering information at once (see memcontrol.c) */
  186. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  187. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  188. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  189. /* Isolate clean file */
  190. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
  191. /* Isolate unmapped file */
  192. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
  193. /* Isolate for asynchronous migration */
  194. #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
  195. /* Isolate unevictable pages */
  196. #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
  197. /* LRU Isolation modes. */
  198. typedef unsigned __bitwise__ isolate_mode_t;
  199. enum zone_watermarks {
  200. WMARK_MIN,
  201. WMARK_LOW,
  202. WMARK_HIGH,
  203. NR_WMARK
  204. };
  205. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  206. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  207. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  208. struct per_cpu_pages {
  209. int count; /* number of pages in the list */
  210. int high; /* high watermark, emptying needed */
  211. int batch; /* chunk size for buddy add/remove */
  212. /* Lists of pages, one per migrate type stored on the pcp-lists */
  213. struct list_head lists[MIGRATE_PCPTYPES];
  214. };
  215. struct per_cpu_pageset {
  216. struct per_cpu_pages pcp;
  217. #ifdef CONFIG_NUMA
  218. s8 expire;
  219. #endif
  220. #ifdef CONFIG_SMP
  221. s8 stat_threshold;
  222. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  223. #endif
  224. };
  225. #endif /* !__GENERATING_BOUNDS.H */
  226. enum zone_type {
  227. #ifdef CONFIG_ZONE_DMA
  228. /*
  229. * ZONE_DMA is used when there are devices that are not able
  230. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  231. * carve out the portion of memory that is needed for these devices.
  232. * The range is arch specific.
  233. *
  234. * Some examples
  235. *
  236. * Architecture Limit
  237. * ---------------------------
  238. * parisc, ia64, sparc <4G
  239. * s390 <2G
  240. * arm Various
  241. * alpha Unlimited or 0-16MB.
  242. *
  243. * i386, x86_64 and multiple other arches
  244. * <16M.
  245. */
  246. ZONE_DMA,
  247. #endif
  248. #ifdef CONFIG_ZONE_DMA32
  249. /*
  250. * x86_64 needs two ZONE_DMAs because it supports devices that are
  251. * only able to do DMA to the lower 16M but also 32 bit devices that
  252. * can only do DMA areas below 4G.
  253. */
  254. ZONE_DMA32,
  255. #endif
  256. /*
  257. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  258. * performed on pages in ZONE_NORMAL if the DMA devices support
  259. * transfers to all addressable memory.
  260. */
  261. ZONE_NORMAL,
  262. #ifdef CONFIG_HIGHMEM
  263. /*
  264. * A memory area that is only addressable by the kernel through
  265. * mapping portions into its own address space. This is for example
  266. * used by i386 to allow the kernel to address the memory beyond
  267. * 900MB. The kernel will set up special mappings (page
  268. * table entries on i386) for each page that the kernel needs to
  269. * access.
  270. */
  271. ZONE_HIGHMEM,
  272. #endif
  273. ZONE_MOVABLE,
  274. __MAX_NR_ZONES
  275. };
  276. #ifndef __GENERATING_BOUNDS_H
  277. /*
  278. * When a memory allocation must conform to specific limitations (such
  279. * as being suitable for DMA) the caller will pass in hints to the
  280. * allocator in the gfp_mask, in the zone modifier bits. These bits
  281. * are used to select a priority ordered list of memory zones which
  282. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  283. */
  284. #if MAX_NR_ZONES < 2
  285. #define ZONES_SHIFT 0
  286. #elif MAX_NR_ZONES <= 2
  287. #define ZONES_SHIFT 1
  288. #elif MAX_NR_ZONES <= 4
  289. #define ZONES_SHIFT 2
  290. #else
  291. #error ZONES_SHIFT -- too many zones configured adjust calculation
  292. #endif
  293. struct zone {
  294. /* Fields commonly accessed by the page allocator */
  295. /* zone watermarks, access with *_wmark_pages(zone) macros */
  296. unsigned long watermark[NR_WMARK];
  297. /*
  298. * When free pages are below this point, additional steps are taken
  299. * when reading the number of free pages to avoid per-cpu counter
  300. * drift allowing watermarks to be breached
  301. */
  302. unsigned long percpu_drift_mark;
  303. /*
  304. * We don't know if the memory that we're going to allocate will be freeable
  305. * or/and it will be released eventually, so to avoid totally wasting several
  306. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  307. * to run OOM on the lower zones despite there's tons of freeable ram
  308. * on the higher zones). This array is recalculated at runtime if the
  309. * sysctl_lowmem_reserve_ratio sysctl changes.
  310. */
  311. unsigned long lowmem_reserve[MAX_NR_ZONES];
  312. /*
  313. * This is a per-zone reserve of pages that should not be
  314. * considered dirtyable memory.
  315. */
  316. unsigned long dirty_balance_reserve;
  317. #ifdef CONFIG_NUMA
  318. int node;
  319. /*
  320. * zone reclaim becomes active if more unmapped pages exist.
  321. */
  322. unsigned long min_unmapped_pages;
  323. unsigned long min_slab_pages;
  324. #endif
  325. struct per_cpu_pageset __percpu *pageset;
  326. /*
  327. * free areas of different sizes
  328. */
  329. spinlock_t lock;
  330. int all_unreclaimable; /* All pages pinned */
  331. #if defined CONFIG_COMPACTION || defined CONFIG_CMA
  332. /* Set to true when the PG_migrate_skip bits should be cleared */
  333. bool compact_blockskip_flush;
  334. /* pfns where compaction scanners should start */
  335. unsigned long compact_cached_free_pfn;
  336. unsigned long compact_cached_migrate_pfn;
  337. #endif
  338. #ifdef CONFIG_MEMORY_HOTPLUG
  339. /* see spanned/present_pages for more description */
  340. seqlock_t span_seqlock;
  341. #endif
  342. struct free_area free_area[MAX_ORDER];
  343. #ifndef CONFIG_SPARSEMEM
  344. /*
  345. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  346. * In SPARSEMEM, this map is stored in struct mem_section
  347. */
  348. unsigned long *pageblock_flags;
  349. #endif /* CONFIG_SPARSEMEM */
  350. #ifdef CONFIG_COMPACTION
  351. /*
  352. * On compaction failure, 1<<compact_defer_shift compactions
  353. * are skipped before trying again. The number attempted since
  354. * last failure is tracked with compact_considered.
  355. */
  356. unsigned int compact_considered;
  357. unsigned int compact_defer_shift;
  358. int compact_order_failed;
  359. #endif
  360. ZONE_PADDING(_pad1_)
  361. /* Fields commonly accessed by the page reclaim scanner */
  362. spinlock_t lru_lock;
  363. struct lruvec lruvec;
  364. unsigned long pages_scanned; /* since last reclaim */
  365. unsigned long flags; /* zone flags, see below */
  366. /* Zone statistics */
  367. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  368. /*
  369. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  370. * this zone's LRU. Maintained by the pageout code.
  371. */
  372. unsigned int inactive_ratio;
  373. ZONE_PADDING(_pad2_)
  374. /* Rarely used or read-mostly fields */
  375. /*
  376. * wait_table -- the array holding the hash table
  377. * wait_table_hash_nr_entries -- the size of the hash table array
  378. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  379. *
  380. * The purpose of all these is to keep track of the people
  381. * waiting for a page to become available and make them
  382. * runnable again when possible. The trouble is that this
  383. * consumes a lot of space, especially when so few things
  384. * wait on pages at a given time. So instead of using
  385. * per-page waitqueues, we use a waitqueue hash table.
  386. *
  387. * The bucket discipline is to sleep on the same queue when
  388. * colliding and wake all in that wait queue when removing.
  389. * When something wakes, it must check to be sure its page is
  390. * truly available, a la thundering herd. The cost of a
  391. * collision is great, but given the expected load of the
  392. * table, they should be so rare as to be outweighed by the
  393. * benefits from the saved space.
  394. *
  395. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  396. * primary users of these fields, and in mm/page_alloc.c
  397. * free_area_init_core() performs the initialization of them.
  398. */
  399. wait_queue_head_t * wait_table;
  400. unsigned long wait_table_hash_nr_entries;
  401. unsigned long wait_table_bits;
  402. /*
  403. * Discontig memory support fields.
  404. */
  405. struct pglist_data *zone_pgdat;
  406. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  407. unsigned long zone_start_pfn;
  408. /*
  409. * zone_start_pfn, spanned_pages and present_pages are all
  410. * protected by span_seqlock. It is a seqlock because it has
  411. * to be read outside of zone->lock, and it is done in the main
  412. * allocator path. But, it is written quite infrequently.
  413. *
  414. * The lock is declared along with zone->lock because it is
  415. * frequently read in proximity to zone->lock. It's good to
  416. * give them a chance of being in the same cacheline.
  417. */
  418. unsigned long spanned_pages; /* total size, including holes */
  419. unsigned long present_pages; /* amount of memory (excluding holes) */
  420. /*
  421. * rarely used fields:
  422. */
  423. const char *name;
  424. #ifdef CONFIG_MEMORY_ISOLATION
  425. /*
  426. * the number of MIGRATE_ISOLATE *pageblock*.
  427. * We need this for free page counting. Look at zone_watermark_ok_safe.
  428. * It's protected by zone->lock
  429. */
  430. int nr_pageblock_isolate;
  431. #endif
  432. } ____cacheline_internodealigned_in_smp;
  433. typedef enum {
  434. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  435. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  436. ZONE_CONGESTED, /* zone has many dirty pages backed by
  437. * a congested BDI
  438. */
  439. } zone_flags_t;
  440. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  441. {
  442. set_bit(flag, &zone->flags);
  443. }
  444. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  445. {
  446. return test_and_set_bit(flag, &zone->flags);
  447. }
  448. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  449. {
  450. clear_bit(flag, &zone->flags);
  451. }
  452. static inline int zone_is_reclaim_congested(const struct zone *zone)
  453. {
  454. return test_bit(ZONE_CONGESTED, &zone->flags);
  455. }
  456. static inline int zone_is_reclaim_locked(const struct zone *zone)
  457. {
  458. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  459. }
  460. static inline int zone_is_oom_locked(const struct zone *zone)
  461. {
  462. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  463. }
  464. /*
  465. * The "priority" of VM scanning is how much of the queues we will scan in one
  466. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  467. * queues ("queue_length >> 12") during an aging round.
  468. */
  469. #define DEF_PRIORITY 12
  470. /* Maximum number of zones on a zonelist */
  471. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  472. #ifdef CONFIG_NUMA
  473. /*
  474. * The NUMA zonelists are doubled because we need zonelists that restrict the
  475. * allocations to a single node for GFP_THISNODE.
  476. *
  477. * [0] : Zonelist with fallback
  478. * [1] : No fallback (GFP_THISNODE)
  479. */
  480. #define MAX_ZONELISTS 2
  481. /*
  482. * We cache key information from each zonelist for smaller cache
  483. * footprint when scanning for free pages in get_page_from_freelist().
  484. *
  485. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  486. * up short of free memory since the last time (last_fullzone_zap)
  487. * we zero'd fullzones.
  488. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  489. * id, so that we can efficiently evaluate whether that node is
  490. * set in the current tasks mems_allowed.
  491. *
  492. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  493. * indexed by a zones offset in the zonelist zones[] array.
  494. *
  495. * The get_page_from_freelist() routine does two scans. During the
  496. * first scan, we skip zones whose corresponding bit in 'fullzones'
  497. * is set or whose corresponding node in current->mems_allowed (which
  498. * comes from cpusets) is not set. During the second scan, we bypass
  499. * this zonelist_cache, to ensure we look methodically at each zone.
  500. *
  501. * Once per second, we zero out (zap) fullzones, forcing us to
  502. * reconsider nodes that might have regained more free memory.
  503. * The field last_full_zap is the time we last zapped fullzones.
  504. *
  505. * This mechanism reduces the amount of time we waste repeatedly
  506. * reexaming zones for free memory when they just came up low on
  507. * memory momentarilly ago.
  508. *
  509. * The zonelist_cache struct members logically belong in struct
  510. * zonelist. However, the mempolicy zonelists constructed for
  511. * MPOL_BIND are intentionally variable length (and usually much
  512. * shorter). A general purpose mechanism for handling structs with
  513. * multiple variable length members is more mechanism than we want
  514. * here. We resort to some special case hackery instead.
  515. *
  516. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  517. * part because they are shorter), so we put the fixed length stuff
  518. * at the front of the zonelist struct, ending in a variable length
  519. * zones[], as is needed by MPOL_BIND.
  520. *
  521. * Then we put the optional zonelist cache on the end of the zonelist
  522. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  523. * the fixed length portion at the front of the struct. This pointer
  524. * both enables us to find the zonelist cache, and in the case of
  525. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  526. * to know that the zonelist cache is not there.
  527. *
  528. * The end result is that struct zonelists come in two flavors:
  529. * 1) The full, fixed length version, shown below, and
  530. * 2) The custom zonelists for MPOL_BIND.
  531. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  532. *
  533. * Even though there may be multiple CPU cores on a node modifying
  534. * fullzones or last_full_zap in the same zonelist_cache at the same
  535. * time, we don't lock it. This is just hint data - if it is wrong now
  536. * and then, the allocator will still function, perhaps a bit slower.
  537. */
  538. struct zonelist_cache {
  539. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  540. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  541. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  542. };
  543. #else
  544. #define MAX_ZONELISTS 1
  545. struct zonelist_cache;
  546. #endif
  547. /*
  548. * This struct contains information about a zone in a zonelist. It is stored
  549. * here to avoid dereferences into large structures and lookups of tables
  550. */
  551. struct zoneref {
  552. struct zone *zone; /* Pointer to actual zone */
  553. int zone_idx; /* zone_idx(zoneref->zone) */
  554. };
  555. /*
  556. * One allocation request operates on a zonelist. A zonelist
  557. * is a list of zones, the first one is the 'goal' of the
  558. * allocation, the other zones are fallback zones, in decreasing
  559. * priority.
  560. *
  561. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  562. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  563. * *
  564. * To speed the reading of the zonelist, the zonerefs contain the zone index
  565. * of the entry being read. Helper functions to access information given
  566. * a struct zoneref are
  567. *
  568. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  569. * zonelist_zone_idx() - Return the index of the zone for an entry
  570. * zonelist_node_idx() - Return the index of the node for an entry
  571. */
  572. struct zonelist {
  573. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  574. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  575. #ifdef CONFIG_NUMA
  576. struct zonelist_cache zlcache; // optional ...
  577. #endif
  578. };
  579. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  580. struct node_active_region {
  581. unsigned long start_pfn;
  582. unsigned long end_pfn;
  583. int nid;
  584. };
  585. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  586. #ifndef CONFIG_DISCONTIGMEM
  587. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  588. extern struct page *mem_map;
  589. #endif
  590. /*
  591. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  592. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  593. * zone denotes.
  594. *
  595. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  596. * it's memory layout.
  597. *
  598. * Memory statistics and page replacement data structures are maintained on a
  599. * per-zone basis.
  600. */
  601. struct bootmem_data;
  602. typedef struct pglist_data {
  603. struct zone node_zones[MAX_NR_ZONES];
  604. struct zonelist node_zonelists[MAX_ZONELISTS];
  605. int nr_zones;
  606. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  607. struct page *node_mem_map;
  608. #ifdef CONFIG_MEMCG
  609. struct page_cgroup *node_page_cgroup;
  610. #endif
  611. #endif
  612. #ifndef CONFIG_NO_BOOTMEM
  613. struct bootmem_data *bdata;
  614. #endif
  615. #ifdef CONFIG_MEMORY_HOTPLUG
  616. /*
  617. * Must be held any time you expect node_start_pfn, node_present_pages
  618. * or node_spanned_pages stay constant. Holding this will also
  619. * guarantee that any pfn_valid() stays that way.
  620. *
  621. * Nests above zone->lock and zone->size_seqlock.
  622. */
  623. spinlock_t node_size_lock;
  624. #endif
  625. unsigned long node_start_pfn;
  626. unsigned long node_present_pages; /* total number of physical pages */
  627. unsigned long node_spanned_pages; /* total size of physical page
  628. range, including holes */
  629. int node_id;
  630. nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
  631. wait_queue_head_t kswapd_wait;
  632. wait_queue_head_t pfmemalloc_wait;
  633. struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
  634. int kswapd_max_order;
  635. enum zone_type classzone_idx;
  636. } pg_data_t;
  637. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  638. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  639. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  640. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  641. #else
  642. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  643. #endif
  644. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  645. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  646. #define node_end_pfn(nid) ({\
  647. pg_data_t *__pgdat = NODE_DATA(nid);\
  648. __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
  649. })
  650. #include <linux/memory_hotplug.h>
  651. extern struct mutex zonelists_mutex;
  652. void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
  653. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  654. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  655. int classzone_idx, int alloc_flags);
  656. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  657. int classzone_idx, int alloc_flags);
  658. enum memmap_context {
  659. MEMMAP_EARLY,
  660. MEMMAP_HOTPLUG,
  661. };
  662. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  663. unsigned long size,
  664. enum memmap_context context);
  665. extern void lruvec_init(struct lruvec *lruvec);
  666. static inline struct zone *lruvec_zone(struct lruvec *lruvec)
  667. {
  668. #ifdef CONFIG_MEMCG
  669. return lruvec->zone;
  670. #else
  671. return container_of(lruvec, struct zone, lruvec);
  672. #endif
  673. }
  674. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  675. void memory_present(int nid, unsigned long start, unsigned long end);
  676. #else
  677. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  678. #endif
  679. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  680. int local_memory_node(int node_id);
  681. #else
  682. static inline int local_memory_node(int node_id) { return node_id; };
  683. #endif
  684. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  685. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  686. #endif
  687. /*
  688. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  689. */
  690. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  691. static inline int populated_zone(struct zone *zone)
  692. {
  693. return (!!zone->present_pages);
  694. }
  695. extern int movable_zone;
  696. static inline int zone_movable_is_highmem(void)
  697. {
  698. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  699. return movable_zone == ZONE_HIGHMEM;
  700. #else
  701. return 0;
  702. #endif
  703. }
  704. static inline int is_highmem_idx(enum zone_type idx)
  705. {
  706. #ifdef CONFIG_HIGHMEM
  707. return (idx == ZONE_HIGHMEM ||
  708. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  709. #else
  710. return 0;
  711. #endif
  712. }
  713. static inline int is_normal_idx(enum zone_type idx)
  714. {
  715. return (idx == ZONE_NORMAL);
  716. }
  717. /**
  718. * is_highmem - helper function to quickly check if a struct zone is a
  719. * highmem zone or not. This is an attempt to keep references
  720. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  721. * @zone - pointer to struct zone variable
  722. */
  723. static inline int is_highmem(struct zone *zone)
  724. {
  725. #ifdef CONFIG_HIGHMEM
  726. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  727. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  728. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  729. zone_movable_is_highmem());
  730. #else
  731. return 0;
  732. #endif
  733. }
  734. static inline int is_normal(struct zone *zone)
  735. {
  736. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  737. }
  738. static inline int is_dma32(struct zone *zone)
  739. {
  740. #ifdef CONFIG_ZONE_DMA32
  741. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  742. #else
  743. return 0;
  744. #endif
  745. }
  746. static inline int is_dma(struct zone *zone)
  747. {
  748. #ifdef CONFIG_ZONE_DMA
  749. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  750. #else
  751. return 0;
  752. #endif
  753. }
  754. /* These two functions are used to setup the per zone pages min values */
  755. struct ctl_table;
  756. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  757. void __user *, size_t *, loff_t *);
  758. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  759. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  760. void __user *, size_t *, loff_t *);
  761. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  762. void __user *, size_t *, loff_t *);
  763. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  764. void __user *, size_t *, loff_t *);
  765. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  766. void __user *, size_t *, loff_t *);
  767. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  768. void __user *, size_t *, loff_t *);
  769. extern char numa_zonelist_order[];
  770. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  771. #ifndef CONFIG_NEED_MULTIPLE_NODES
  772. extern struct pglist_data contig_page_data;
  773. #define NODE_DATA(nid) (&contig_page_data)
  774. #define NODE_MEM_MAP(nid) mem_map
  775. #else /* CONFIG_NEED_MULTIPLE_NODES */
  776. #include <asm/mmzone.h>
  777. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  778. extern struct pglist_data *first_online_pgdat(void);
  779. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  780. extern struct zone *next_zone(struct zone *zone);
  781. /**
  782. * for_each_online_pgdat - helper macro to iterate over all online nodes
  783. * @pgdat - pointer to a pg_data_t variable
  784. */
  785. #define for_each_online_pgdat(pgdat) \
  786. for (pgdat = first_online_pgdat(); \
  787. pgdat; \
  788. pgdat = next_online_pgdat(pgdat))
  789. /**
  790. * for_each_zone - helper macro to iterate over all memory zones
  791. * @zone - pointer to struct zone variable
  792. *
  793. * The user only needs to declare the zone variable, for_each_zone
  794. * fills it in.
  795. */
  796. #define for_each_zone(zone) \
  797. for (zone = (first_online_pgdat())->node_zones; \
  798. zone; \
  799. zone = next_zone(zone))
  800. #define for_each_populated_zone(zone) \
  801. for (zone = (first_online_pgdat())->node_zones; \
  802. zone; \
  803. zone = next_zone(zone)) \
  804. if (!populated_zone(zone)) \
  805. ; /* do nothing */ \
  806. else
  807. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  808. {
  809. return zoneref->zone;
  810. }
  811. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  812. {
  813. return zoneref->zone_idx;
  814. }
  815. static inline int zonelist_node_idx(struct zoneref *zoneref)
  816. {
  817. #ifdef CONFIG_NUMA
  818. /* zone_to_nid not available in this context */
  819. return zoneref->zone->node;
  820. #else
  821. return 0;
  822. #endif /* CONFIG_NUMA */
  823. }
  824. /**
  825. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  826. * @z - The cursor used as a starting point for the search
  827. * @highest_zoneidx - The zone index of the highest zone to return
  828. * @nodes - An optional nodemask to filter the zonelist with
  829. * @zone - The first suitable zone found is returned via this parameter
  830. *
  831. * This function returns the next zone at or below a given zone index that is
  832. * within the allowed nodemask using a cursor as the starting point for the
  833. * search. The zoneref returned is a cursor that represents the current zone
  834. * being examined. It should be advanced by one before calling
  835. * next_zones_zonelist again.
  836. */
  837. struct zoneref *next_zones_zonelist(struct zoneref *z,
  838. enum zone_type highest_zoneidx,
  839. nodemask_t *nodes,
  840. struct zone **zone);
  841. /**
  842. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  843. * @zonelist - The zonelist to search for a suitable zone
  844. * @highest_zoneidx - The zone index of the highest zone to return
  845. * @nodes - An optional nodemask to filter the zonelist with
  846. * @zone - The first suitable zone found is returned via this parameter
  847. *
  848. * This function returns the first zone at or below a given zone index that is
  849. * within the allowed nodemask. The zoneref returned is a cursor that can be
  850. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  851. * one before calling.
  852. */
  853. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  854. enum zone_type highest_zoneidx,
  855. nodemask_t *nodes,
  856. struct zone **zone)
  857. {
  858. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  859. zone);
  860. }
  861. /**
  862. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  863. * @zone - The current zone in the iterator
  864. * @z - The current pointer within zonelist->zones being iterated
  865. * @zlist - The zonelist being iterated
  866. * @highidx - The zone index of the highest zone to return
  867. * @nodemask - Nodemask allowed by the allocator
  868. *
  869. * This iterator iterates though all zones at or below a given zone index and
  870. * within a given nodemask
  871. */
  872. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  873. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  874. zone; \
  875. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  876. /**
  877. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  878. * @zone - The current zone in the iterator
  879. * @z - The current pointer within zonelist->zones being iterated
  880. * @zlist - The zonelist being iterated
  881. * @highidx - The zone index of the highest zone to return
  882. *
  883. * This iterator iterates though all zones at or below a given zone index.
  884. */
  885. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  886. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  887. #ifdef CONFIG_SPARSEMEM
  888. #include <asm/sparsemem.h>
  889. #endif
  890. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  891. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  892. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  893. {
  894. return 0;
  895. }
  896. #endif
  897. #ifdef CONFIG_FLATMEM
  898. #define pfn_to_nid(pfn) (0)
  899. #endif
  900. #ifdef CONFIG_SPARSEMEM
  901. /*
  902. * SECTION_SHIFT #bits space required to store a section #
  903. *
  904. * PA_SECTION_SHIFT physical address to/from section number
  905. * PFN_SECTION_SHIFT pfn to/from section number
  906. */
  907. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  908. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  909. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  910. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  911. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  912. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  913. #define SECTION_BLOCKFLAGS_BITS \
  914. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  915. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  916. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  917. #endif
  918. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  919. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  920. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  921. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  922. struct page;
  923. struct page_cgroup;
  924. struct mem_section {
  925. /*
  926. * This is, logically, a pointer to an array of struct
  927. * pages. However, it is stored with some other magic.
  928. * (see sparse.c::sparse_init_one_section())
  929. *
  930. * Additionally during early boot we encode node id of
  931. * the location of the section here to guide allocation.
  932. * (see sparse.c::memory_present())
  933. *
  934. * Making it a UL at least makes someone do a cast
  935. * before using it wrong.
  936. */
  937. unsigned long section_mem_map;
  938. /* See declaration of similar field in struct zone */
  939. unsigned long *pageblock_flags;
  940. #ifdef CONFIG_MEMCG
  941. /*
  942. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  943. * section. (see memcontrol.h/page_cgroup.h about this.)
  944. */
  945. struct page_cgroup *page_cgroup;
  946. unsigned long pad;
  947. #endif
  948. };
  949. #ifdef CONFIG_SPARSEMEM_EXTREME
  950. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  951. #else
  952. #define SECTIONS_PER_ROOT 1
  953. #endif
  954. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  955. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  956. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  957. #ifdef CONFIG_SPARSEMEM_EXTREME
  958. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  959. #else
  960. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  961. #endif
  962. static inline struct mem_section *__nr_to_section(unsigned long nr)
  963. {
  964. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  965. return NULL;
  966. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  967. }
  968. extern int __section_nr(struct mem_section* ms);
  969. extern unsigned long usemap_size(void);
  970. /*
  971. * We use the lower bits of the mem_map pointer to store
  972. * a little bit of information. There should be at least
  973. * 3 bits here due to 32-bit alignment.
  974. */
  975. #define SECTION_MARKED_PRESENT (1UL<<0)
  976. #define SECTION_HAS_MEM_MAP (1UL<<1)
  977. #define SECTION_MAP_LAST_BIT (1UL<<2)
  978. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  979. #define SECTION_NID_SHIFT 2
  980. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  981. {
  982. unsigned long map = section->section_mem_map;
  983. map &= SECTION_MAP_MASK;
  984. return (struct page *)map;
  985. }
  986. static inline int present_section(struct mem_section *section)
  987. {
  988. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  989. }
  990. static inline int present_section_nr(unsigned long nr)
  991. {
  992. return present_section(__nr_to_section(nr));
  993. }
  994. static inline int valid_section(struct mem_section *section)
  995. {
  996. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  997. }
  998. static inline int valid_section_nr(unsigned long nr)
  999. {
  1000. return valid_section(__nr_to_section(nr));
  1001. }
  1002. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  1003. {
  1004. return __nr_to_section(pfn_to_section_nr(pfn));
  1005. }
  1006. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  1007. static inline int pfn_valid(unsigned long pfn)
  1008. {
  1009. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1010. return 0;
  1011. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1012. }
  1013. #endif
  1014. static inline int pfn_present(unsigned long pfn)
  1015. {
  1016. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  1017. return 0;
  1018. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  1019. }
  1020. /*
  1021. * These are _only_ used during initialisation, therefore they
  1022. * can use __initdata ... They could have names to indicate
  1023. * this restriction.
  1024. */
  1025. #ifdef CONFIG_NUMA
  1026. #define pfn_to_nid(pfn) \
  1027. ({ \
  1028. unsigned long __pfn_to_nid_pfn = (pfn); \
  1029. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  1030. })
  1031. #else
  1032. #define pfn_to_nid(pfn) (0)
  1033. #endif
  1034. #define early_pfn_valid(pfn) pfn_valid(pfn)
  1035. void sparse_init(void);
  1036. #else
  1037. #define sparse_init() do {} while (0)
  1038. #define sparse_index_init(_sec, _nid) do {} while (0)
  1039. #endif /* CONFIG_SPARSEMEM */
  1040. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1041. bool early_pfn_in_nid(unsigned long pfn, int nid);
  1042. #else
  1043. #define early_pfn_in_nid(pfn, nid) (1)
  1044. #endif
  1045. #ifndef early_pfn_valid
  1046. #define early_pfn_valid(pfn) (1)
  1047. #endif
  1048. void memory_present(int nid, unsigned long start, unsigned long end);
  1049. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  1050. /*
  1051. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  1052. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  1053. * pfn_valid_within() should be used in this case; we optimise this away
  1054. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1055. */
  1056. #ifdef CONFIG_HOLES_IN_ZONE
  1057. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1058. #else
  1059. #define pfn_valid_within(pfn) (1)
  1060. #endif
  1061. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1062. /*
  1063. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1064. * associated with it or not. In FLATMEM, it is expected that holes always
  1065. * have valid memmap as long as there is valid PFNs either side of the hole.
  1066. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1067. * entire section.
  1068. *
  1069. * However, an ARM, and maybe other embedded architectures in the future
  1070. * free memmap backing holes to save memory on the assumption the memmap is
  1071. * never used. The page_zone linkages are then broken even though pfn_valid()
  1072. * returns true. A walker of the full memmap must then do this additional
  1073. * check to ensure the memmap they are looking at is sane by making sure
  1074. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1075. * of the full memmap are extremely rare.
  1076. */
  1077. int memmap_valid_within(unsigned long pfn,
  1078. struct page *page, struct zone *zone);
  1079. #else
  1080. static inline int memmap_valid_within(unsigned long pfn,
  1081. struct page *page, struct zone *zone)
  1082. {
  1083. return 1;
  1084. }
  1085. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1086. #endif /* !__GENERATING_BOUNDS.H */
  1087. #endif /* !__ASSEMBLY__ */
  1088. #endif /* _LINUX_MMZONE_H */