mem.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /*
  2. * Copyright (C) 2000 - 2003 Jeff Dike (jdike@addtoit.com)
  3. * Licensed under the GPL
  4. */
  5. #include "linux/stddef.h"
  6. #include "linux/kernel.h"
  7. #include "linux/mm.h"
  8. #include "linux/bootmem.h"
  9. #include "linux/swap.h"
  10. #include "linux/highmem.h"
  11. #include "linux/gfp.h"
  12. #include "asm/page.h"
  13. #include "asm/fixmap.h"
  14. #include "asm/pgalloc.h"
  15. #include "user_util.h"
  16. #include "kern_util.h"
  17. #include "kern.h"
  18. #include "mem_user.h"
  19. #include "uml_uaccess.h"
  20. #include "os.h"
  21. #include "linux/types.h"
  22. #include "linux/string.h"
  23. #include "init.h"
  24. #include "kern_constants.h"
  25. /* Changed during early boot */
  26. unsigned long *empty_zero_page = NULL;
  27. unsigned long *empty_bad_page = NULL;
  28. pgd_t swapper_pg_dir[PTRS_PER_PGD];
  29. unsigned long long highmem;
  30. int kmalloc_ok = 0;
  31. static unsigned long brk_end;
  32. void unmap_physmem(void)
  33. {
  34. os_unmap_memory((void *) brk_end, uml_reserved - brk_end);
  35. }
  36. static void map_cb(void *unused)
  37. {
  38. map_memory(brk_end, __pa(brk_end), uml_reserved - brk_end, 1, 1, 0);
  39. }
  40. #ifdef CONFIG_HIGHMEM
  41. static void setup_highmem(unsigned long highmem_start,
  42. unsigned long highmem_len)
  43. {
  44. struct page *page;
  45. unsigned long highmem_pfn;
  46. int i;
  47. highmem_pfn = __pa(highmem_start) >> PAGE_SHIFT;
  48. for(i = 0; i < highmem_len >> PAGE_SHIFT; i++){
  49. page = &mem_map[highmem_pfn + i];
  50. ClearPageReserved(page);
  51. init_page_count(page);
  52. __free_page(page);
  53. }
  54. }
  55. #endif
  56. void mem_init(void)
  57. {
  58. max_low_pfn = (high_physmem - uml_physmem) >> PAGE_SHIFT;
  59. /* clear the zero-page */
  60. memset((void *) empty_zero_page, 0, PAGE_SIZE);
  61. /* Map in the area just after the brk now that kmalloc is about
  62. * to be turned on.
  63. */
  64. brk_end = (unsigned long) UML_ROUND_UP(sbrk(0));
  65. map_cb(NULL);
  66. initial_thread_cb(map_cb, NULL);
  67. free_bootmem(__pa(brk_end), uml_reserved - brk_end);
  68. uml_reserved = brk_end;
  69. /* this will put all low memory onto the freelists */
  70. totalram_pages = free_all_bootmem();
  71. #ifdef CONFIG_HIGHMEM
  72. totalhigh_pages = highmem >> PAGE_SHIFT;
  73. totalram_pages += totalhigh_pages;
  74. #endif
  75. num_physpages = totalram_pages;
  76. max_pfn = totalram_pages;
  77. printk(KERN_INFO "Memory: %luk available\n",
  78. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10));
  79. kmalloc_ok = 1;
  80. #ifdef CONFIG_HIGHMEM
  81. setup_highmem(end_iomem, highmem);
  82. #endif
  83. }
  84. /*
  85. * Create a page table and place a pointer to it in a middle page
  86. * directory entry.
  87. */
  88. static void __init one_page_table_init(pmd_t *pmd)
  89. {
  90. if (pmd_none(*pmd)) {
  91. pte_t *pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
  92. set_pmd(pmd, __pmd(_KERNPG_TABLE +
  93. (unsigned long) __pa(pte)));
  94. if (pte != pte_offset_kernel(pmd, 0))
  95. BUG();
  96. }
  97. }
  98. static void __init one_md_table_init(pud_t *pud)
  99. {
  100. #ifdef CONFIG_3_LEVEL_PGTABLES
  101. pmd_t *pmd_table = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
  102. set_pud(pud, __pud(_KERNPG_TABLE + (unsigned long) __pa(pmd_table)));
  103. if (pmd_table != pmd_offset(pud, 0))
  104. BUG();
  105. #endif
  106. }
  107. static void __init fixrange_init(unsigned long start, unsigned long end,
  108. pgd_t *pgd_base)
  109. {
  110. pgd_t *pgd;
  111. pud_t *pud;
  112. pmd_t *pmd;
  113. int i, j;
  114. unsigned long vaddr;
  115. vaddr = start;
  116. i = pgd_index(vaddr);
  117. j = pmd_index(vaddr);
  118. pgd = pgd_base + i;
  119. for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
  120. pud = pud_offset(pgd, vaddr);
  121. if (pud_none(*pud))
  122. one_md_table_init(pud);
  123. pmd = pmd_offset(pud, vaddr);
  124. for (; (j < PTRS_PER_PMD) && (vaddr != end); pmd++, j++) {
  125. one_page_table_init(pmd);
  126. vaddr += PMD_SIZE;
  127. }
  128. j = 0;
  129. }
  130. }
  131. #ifdef CONFIG_HIGHMEM
  132. pte_t *kmap_pte;
  133. pgprot_t kmap_prot;
  134. #define kmap_get_fixmap_pte(vaddr) \
  135. pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), (vaddr)),\
  136. (vaddr)), (vaddr))
  137. static void __init kmap_init(void)
  138. {
  139. unsigned long kmap_vstart;
  140. /* cache the first kmap pte */
  141. kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
  142. kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
  143. kmap_prot = PAGE_KERNEL;
  144. }
  145. static void init_highmem(void)
  146. {
  147. pgd_t *pgd;
  148. pud_t *pud;
  149. pmd_t *pmd;
  150. pte_t *pte;
  151. unsigned long vaddr;
  152. /*
  153. * Permanent kmaps:
  154. */
  155. vaddr = PKMAP_BASE;
  156. fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, swapper_pg_dir);
  157. pgd = swapper_pg_dir + pgd_index(vaddr);
  158. pud = pud_offset(pgd, vaddr);
  159. pmd = pmd_offset(pud, vaddr);
  160. pte = pte_offset_kernel(pmd, vaddr);
  161. pkmap_page_table = pte;
  162. kmap_init();
  163. }
  164. #endif /* CONFIG_HIGHMEM */
  165. static void __init fixaddr_user_init( void)
  166. {
  167. #ifdef CONFIG_ARCH_REUSE_HOST_VSYSCALL_AREA
  168. long size = FIXADDR_USER_END - FIXADDR_USER_START;
  169. pgd_t *pgd;
  170. pud_t *pud;
  171. pmd_t *pmd;
  172. pte_t *pte;
  173. unsigned long paddr, vaddr = FIXADDR_USER_START;
  174. if ( ! size )
  175. return;
  176. fixrange_init( FIXADDR_USER_START, FIXADDR_USER_END, swapper_pg_dir);
  177. paddr = (unsigned long)alloc_bootmem_low_pages( size);
  178. memcpy( (void *)paddr, (void *)FIXADDR_USER_START, size);
  179. paddr = __pa(paddr);
  180. for ( ; size > 0; size-=PAGE_SIZE, vaddr+=PAGE_SIZE, paddr+=PAGE_SIZE){
  181. pgd = swapper_pg_dir + pgd_index(vaddr);
  182. pud = pud_offset(pgd, vaddr);
  183. pmd = pmd_offset(pud, vaddr);
  184. pte = pte_offset_kernel(pmd, vaddr);
  185. pte_set_val( (*pte), paddr, PAGE_READONLY);
  186. }
  187. #endif
  188. }
  189. void paging_init(void)
  190. {
  191. unsigned long zones_size[MAX_NR_ZONES], vaddr;
  192. int i;
  193. empty_zero_page = (unsigned long *) alloc_bootmem_low_pages(PAGE_SIZE);
  194. empty_bad_page = (unsigned long *) alloc_bootmem_low_pages(PAGE_SIZE);
  195. for(i = 0; i < ARRAY_SIZE(zones_size); i++)
  196. zones_size[i] = 0;
  197. zones_size[ZONE_NORMAL] = (end_iomem >> PAGE_SHIFT) -
  198. (uml_physmem >> PAGE_SHIFT);
  199. #ifdef CONFIG_HIGHMEM
  200. zones_size[ZONE_HIGHMEM] = highmem >> PAGE_SHIFT;
  201. #endif
  202. free_area_init(zones_size);
  203. /*
  204. * Fixed mappings, only the page table structure has to be
  205. * created - mappings will be set by set_fixmap():
  206. */
  207. vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
  208. fixrange_init(vaddr, FIXADDR_TOP, swapper_pg_dir);
  209. fixaddr_user_init();
  210. #ifdef CONFIG_HIGHMEM
  211. init_highmem();
  212. #endif
  213. }
  214. struct page *arch_validate(struct page *page, gfp_t mask, int order)
  215. {
  216. unsigned long addr, zero = 0;
  217. int i;
  218. again:
  219. if(page == NULL)
  220. return page;
  221. if(PageHighMem(page))
  222. return page;
  223. addr = (unsigned long) page_address(page);
  224. for(i = 0; i < (1 << order); i++){
  225. current->thread.fault_addr = (void *) addr;
  226. if(__do_copy_to_user((void __user *) addr, &zero,
  227. sizeof(zero),
  228. &current->thread.fault_addr,
  229. &current->thread.fault_catcher)){
  230. if(!(mask & __GFP_WAIT))
  231. return NULL;
  232. else break;
  233. }
  234. addr += PAGE_SIZE;
  235. }
  236. if(i == (1 << order))
  237. return page;
  238. page = alloc_pages(mask, order);
  239. goto again;
  240. }
  241. /* This can't do anything because nothing in the kernel image can be freed
  242. * since it's not in kernel physical memory.
  243. */
  244. void free_initmem(void)
  245. {
  246. }
  247. #ifdef CONFIG_BLK_DEV_INITRD
  248. void free_initrd_mem(unsigned long start, unsigned long end)
  249. {
  250. if (start < end)
  251. printk ("Freeing initrd memory: %ldk freed\n",
  252. (end - start) >> 10);
  253. for (; start < end; start += PAGE_SIZE) {
  254. ClearPageReserved(virt_to_page(start));
  255. init_page_count(virt_to_page(start));
  256. free_page(start);
  257. totalram_pages++;
  258. }
  259. }
  260. #endif
  261. void show_mem(void)
  262. {
  263. int pfn, total = 0, reserved = 0;
  264. int shared = 0, cached = 0;
  265. int highmem = 0;
  266. struct page *page;
  267. printk("Mem-info:\n");
  268. show_free_areas();
  269. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  270. pfn = max_mapnr;
  271. while(pfn-- > 0) {
  272. page = pfn_to_page(pfn);
  273. total++;
  274. if(PageHighMem(page))
  275. highmem++;
  276. if(PageReserved(page))
  277. reserved++;
  278. else if(PageSwapCache(page))
  279. cached++;
  280. else if(page_count(page))
  281. shared += page_count(page) - 1;
  282. }
  283. printk("%d pages of RAM\n", total);
  284. printk("%d pages of HIGHMEM\n", highmem);
  285. printk("%d reserved pages\n", reserved);
  286. printk("%d pages shared\n", shared);
  287. printk("%d pages swap cached\n", cached);
  288. }
  289. /*
  290. * Allocate and free page tables.
  291. */
  292. pgd_t *pgd_alloc(struct mm_struct *mm)
  293. {
  294. pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL);
  295. if (pgd) {
  296. memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
  297. memcpy(pgd + USER_PTRS_PER_PGD,
  298. swapper_pg_dir + USER_PTRS_PER_PGD,
  299. (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
  300. }
  301. return pgd;
  302. }
  303. void pgd_free(pgd_t *pgd)
  304. {
  305. free_page((unsigned long) pgd);
  306. }
  307. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  308. {
  309. pte_t *pte;
  310. pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  311. return pte;
  312. }
  313. struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
  314. {
  315. struct page *pte;
  316. pte = alloc_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  317. return pte;
  318. }