mmu.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License, version 2, as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  17. */
  18. #include <linux/mman.h>
  19. #include <linux/kvm_host.h>
  20. #include <linux/io.h>
  21. #include <trace/events/kvm.h>
  22. #include <asm/pgalloc.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/kvm_arm.h>
  25. #include <asm/kvm_mmu.h>
  26. #include <asm/kvm_mmio.h>
  27. #include <asm/kvm_asm.h>
  28. #include <asm/kvm_emulate.h>
  29. #include "trace.h"
  30. extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
  31. static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  32. static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
  33. {
  34. kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
  35. }
  36. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  37. int min, int max)
  38. {
  39. void *page;
  40. BUG_ON(max > KVM_NR_MEM_OBJS);
  41. if (cache->nobjs >= min)
  42. return 0;
  43. while (cache->nobjs < max) {
  44. page = (void *)__get_free_page(PGALLOC_GFP);
  45. if (!page)
  46. return -ENOMEM;
  47. cache->objects[cache->nobjs++] = page;
  48. }
  49. return 0;
  50. }
  51. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  52. {
  53. while (mc->nobjs)
  54. free_page((unsigned long)mc->objects[--mc->nobjs]);
  55. }
  56. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  57. {
  58. void *p;
  59. BUG_ON(!mc || !mc->nobjs);
  60. p = mc->objects[--mc->nobjs];
  61. return p;
  62. }
  63. static void free_ptes(pmd_t *pmd, unsigned long addr)
  64. {
  65. pte_t *pte;
  66. unsigned int i;
  67. for (i = 0; i < PTRS_PER_PMD; i++, addr += PMD_SIZE) {
  68. if (!pmd_none(*pmd) && pmd_table(*pmd)) {
  69. pte = pte_offset_kernel(pmd, addr);
  70. pte_free_kernel(NULL, pte);
  71. }
  72. pmd++;
  73. }
  74. }
  75. static void free_hyp_pgd_entry(unsigned long addr)
  76. {
  77. pgd_t *pgd;
  78. pud_t *pud;
  79. pmd_t *pmd;
  80. unsigned long hyp_addr = KERN_TO_HYP(addr);
  81. pgd = hyp_pgd + pgd_index(hyp_addr);
  82. pud = pud_offset(pgd, hyp_addr);
  83. if (pud_none(*pud))
  84. return;
  85. BUG_ON(pud_bad(*pud));
  86. pmd = pmd_offset(pud, hyp_addr);
  87. free_ptes(pmd, addr);
  88. pmd_free(NULL, pmd);
  89. pud_clear(pud);
  90. }
  91. /**
  92. * free_hyp_pmds - free a Hyp-mode level-2 tables and child level-3 tables
  93. *
  94. * Assumes this is a page table used strictly in Hyp-mode and therefore contains
  95. * either mappings in the kernel memory area (above PAGE_OFFSET), or
  96. * device mappings in the vmalloc range (from VMALLOC_START to VMALLOC_END).
  97. */
  98. void free_hyp_pmds(void)
  99. {
  100. unsigned long addr;
  101. mutex_lock(&kvm_hyp_pgd_mutex);
  102. for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
  103. free_hyp_pgd_entry(addr);
  104. for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
  105. free_hyp_pgd_entry(addr);
  106. mutex_unlock(&kvm_hyp_pgd_mutex);
  107. }
  108. static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
  109. unsigned long end, unsigned long pfn,
  110. pgprot_t prot)
  111. {
  112. pte_t *pte;
  113. unsigned long addr;
  114. for (addr = start; addr < end; addr += PAGE_SIZE) {
  115. pte = pte_offset_kernel(pmd, addr);
  116. kvm_set_pte(pte, pfn_pte(pfn, prot));
  117. pfn++;
  118. }
  119. }
  120. static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
  121. unsigned long end, unsigned long pfn,
  122. pgprot_t prot)
  123. {
  124. pmd_t *pmd;
  125. pte_t *pte;
  126. unsigned long addr, next;
  127. for (addr = start; addr < end; addr = next) {
  128. pmd = pmd_offset(pud, addr);
  129. BUG_ON(pmd_sect(*pmd));
  130. if (pmd_none(*pmd)) {
  131. pte = pte_alloc_one_kernel(NULL, addr);
  132. if (!pte) {
  133. kvm_err("Cannot allocate Hyp pte\n");
  134. return -ENOMEM;
  135. }
  136. pmd_populate_kernel(NULL, pmd, pte);
  137. }
  138. next = pmd_addr_end(addr, end);
  139. create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
  140. pfn += (next - addr) >> PAGE_SHIFT;
  141. }
  142. return 0;
  143. }
  144. static int __create_hyp_mappings(pgd_t *pgdp,
  145. unsigned long start, unsigned long end,
  146. unsigned long pfn, pgprot_t prot)
  147. {
  148. pgd_t *pgd;
  149. pud_t *pud;
  150. pmd_t *pmd;
  151. unsigned long addr, next;
  152. int err = 0;
  153. if (start >= end)
  154. return -EINVAL;
  155. mutex_lock(&kvm_hyp_pgd_mutex);
  156. for (addr = start & PAGE_MASK; addr < end; addr = next) {
  157. pgd = pgdp + pgd_index(addr);
  158. pud = pud_offset(pgd, addr);
  159. if (pud_none_or_clear_bad(pud)) {
  160. pmd = pmd_alloc_one(NULL, addr);
  161. if (!pmd) {
  162. kvm_err("Cannot allocate Hyp pmd\n");
  163. err = -ENOMEM;
  164. goto out;
  165. }
  166. pud_populate(NULL, pud, pmd);
  167. }
  168. next = pgd_addr_end(addr, end);
  169. err = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
  170. if (err)
  171. goto out;
  172. pfn += (next - addr) >> PAGE_SHIFT;
  173. }
  174. out:
  175. mutex_unlock(&kvm_hyp_pgd_mutex);
  176. return err;
  177. }
  178. /**
  179. * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
  180. * @from: The virtual kernel start address of the range
  181. * @to: The virtual kernel end address of the range (exclusive)
  182. *
  183. * The same virtual address as the kernel virtual address is also used
  184. * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
  185. * physical pages.
  186. *
  187. * Note: Wrapping around zero in the "to" address is not supported.
  188. */
  189. int create_hyp_mappings(void *from, void *to)
  190. {
  191. unsigned long phys_addr = virt_to_phys(from);
  192. unsigned long start = KERN_TO_HYP((unsigned long)from);
  193. unsigned long end = KERN_TO_HYP((unsigned long)to);
  194. /* Check for a valid kernel memory mapping */
  195. if (!virt_addr_valid(from) || !virt_addr_valid(to - 1))
  196. return -EINVAL;
  197. return __create_hyp_mappings(hyp_pgd, start, end,
  198. __phys_to_pfn(phys_addr), PAGE_HYP);
  199. }
  200. /**
  201. * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
  202. * @from: The kernel start VA of the range
  203. * @to: The kernel end VA of the range (exclusive)
  204. * @phys_addr: The physical start address which gets mapped
  205. *
  206. * The resulting HYP VA is the same as the kernel VA, modulo
  207. * HYP_PAGE_OFFSET.
  208. */
  209. int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
  210. {
  211. unsigned long start = KERN_TO_HYP((unsigned long)from);
  212. unsigned long end = KERN_TO_HYP((unsigned long)to);
  213. /* Check for a valid kernel IO mapping */
  214. if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
  215. return -EINVAL;
  216. return __create_hyp_mappings(hyp_pgd, start, end,
  217. __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
  218. }
  219. /**
  220. * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
  221. * @kvm: The KVM struct pointer for the VM.
  222. *
  223. * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
  224. * support either full 40-bit input addresses or limited to 32-bit input
  225. * addresses). Clears the allocated pages.
  226. *
  227. * Note we don't need locking here as this is only called when the VM is
  228. * created, which can only be done once.
  229. */
  230. int kvm_alloc_stage2_pgd(struct kvm *kvm)
  231. {
  232. pgd_t *pgd;
  233. if (kvm->arch.pgd != NULL) {
  234. kvm_err("kvm_arch already initialized?\n");
  235. return -EINVAL;
  236. }
  237. pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
  238. if (!pgd)
  239. return -ENOMEM;
  240. /* stage-2 pgd must be aligned to its size */
  241. VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1));
  242. memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
  243. kvm_clean_pgd(pgd);
  244. kvm->arch.pgd = pgd;
  245. return 0;
  246. }
  247. static void clear_pud_entry(pud_t *pud)
  248. {
  249. pmd_t *pmd_table = pmd_offset(pud, 0);
  250. pud_clear(pud);
  251. pmd_free(NULL, pmd_table);
  252. put_page(virt_to_page(pud));
  253. }
  254. static void clear_pmd_entry(pmd_t *pmd)
  255. {
  256. pte_t *pte_table = pte_offset_kernel(pmd, 0);
  257. pmd_clear(pmd);
  258. pte_free_kernel(NULL, pte_table);
  259. put_page(virt_to_page(pmd));
  260. }
  261. static bool pmd_empty(pmd_t *pmd)
  262. {
  263. struct page *pmd_page = virt_to_page(pmd);
  264. return page_count(pmd_page) == 1;
  265. }
  266. static void clear_pte_entry(pte_t *pte)
  267. {
  268. if (pte_present(*pte)) {
  269. kvm_set_pte(pte, __pte(0));
  270. put_page(virt_to_page(pte));
  271. }
  272. }
  273. static bool pte_empty(pte_t *pte)
  274. {
  275. struct page *pte_page = virt_to_page(pte);
  276. return page_count(pte_page) == 1;
  277. }
  278. /**
  279. * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
  280. * @kvm: The VM pointer
  281. * @start: The intermediate physical base address of the range to unmap
  282. * @size: The size of the area to unmap
  283. *
  284. * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
  285. * be called while holding mmu_lock (unless for freeing the stage2 pgd before
  286. * destroying the VM), otherwise another faulting VCPU may come in and mess
  287. * with things behind our backs.
  288. */
  289. static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
  290. {
  291. pgd_t *pgd;
  292. pud_t *pud;
  293. pmd_t *pmd;
  294. pte_t *pte;
  295. phys_addr_t addr = start, end = start + size;
  296. u64 range;
  297. while (addr < end) {
  298. pgd = kvm->arch.pgd + pgd_index(addr);
  299. pud = pud_offset(pgd, addr);
  300. if (pud_none(*pud)) {
  301. addr += PUD_SIZE;
  302. continue;
  303. }
  304. pmd = pmd_offset(pud, addr);
  305. if (pmd_none(*pmd)) {
  306. addr += PMD_SIZE;
  307. continue;
  308. }
  309. pte = pte_offset_kernel(pmd, addr);
  310. clear_pte_entry(pte);
  311. range = PAGE_SIZE;
  312. /* If we emptied the pte, walk back up the ladder */
  313. if (pte_empty(pte)) {
  314. clear_pmd_entry(pmd);
  315. range = PMD_SIZE;
  316. if (pmd_empty(pmd)) {
  317. clear_pud_entry(pud);
  318. range = PUD_SIZE;
  319. }
  320. }
  321. addr += range;
  322. }
  323. }
  324. /**
  325. * kvm_free_stage2_pgd - free all stage-2 tables
  326. * @kvm: The KVM struct pointer for the VM.
  327. *
  328. * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
  329. * underlying level-2 and level-3 tables before freeing the actual level-1 table
  330. * and setting the struct pointer to NULL.
  331. *
  332. * Note we don't need locking here as this is only called when the VM is
  333. * destroyed, which can only be done once.
  334. */
  335. void kvm_free_stage2_pgd(struct kvm *kvm)
  336. {
  337. if (kvm->arch.pgd == NULL)
  338. return;
  339. unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
  340. free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
  341. kvm->arch.pgd = NULL;
  342. }
  343. static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
  344. phys_addr_t addr, const pte_t *new_pte, bool iomap)
  345. {
  346. pgd_t *pgd;
  347. pud_t *pud;
  348. pmd_t *pmd;
  349. pte_t *pte, old_pte;
  350. /* Create 2nd stage page table mapping - Level 1 */
  351. pgd = kvm->arch.pgd + pgd_index(addr);
  352. pud = pud_offset(pgd, addr);
  353. if (pud_none(*pud)) {
  354. if (!cache)
  355. return 0; /* ignore calls from kvm_set_spte_hva */
  356. pmd = mmu_memory_cache_alloc(cache);
  357. pud_populate(NULL, pud, pmd);
  358. get_page(virt_to_page(pud));
  359. }
  360. pmd = pmd_offset(pud, addr);
  361. /* Create 2nd stage page table mapping - Level 2 */
  362. if (pmd_none(*pmd)) {
  363. if (!cache)
  364. return 0; /* ignore calls from kvm_set_spte_hva */
  365. pte = mmu_memory_cache_alloc(cache);
  366. kvm_clean_pte(pte);
  367. pmd_populate_kernel(NULL, pmd, pte);
  368. get_page(virt_to_page(pmd));
  369. }
  370. pte = pte_offset_kernel(pmd, addr);
  371. if (iomap && pte_present(*pte))
  372. return -EFAULT;
  373. /* Create 2nd stage page table mapping - Level 3 */
  374. old_pte = *pte;
  375. kvm_set_pte(pte, *new_pte);
  376. if (pte_present(old_pte))
  377. kvm_tlb_flush_vmid_ipa(kvm, addr);
  378. else
  379. get_page(virt_to_page(pte));
  380. return 0;
  381. }
  382. /**
  383. * kvm_phys_addr_ioremap - map a device range to guest IPA
  384. *
  385. * @kvm: The KVM pointer
  386. * @guest_ipa: The IPA at which to insert the mapping
  387. * @pa: The physical address of the device
  388. * @size: The size of the mapping
  389. */
  390. int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
  391. phys_addr_t pa, unsigned long size)
  392. {
  393. phys_addr_t addr, end;
  394. int ret = 0;
  395. unsigned long pfn;
  396. struct kvm_mmu_memory_cache cache = { 0, };
  397. end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
  398. pfn = __phys_to_pfn(pa);
  399. for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
  400. pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
  401. kvm_set_s2pte_writable(&pte);
  402. ret = mmu_topup_memory_cache(&cache, 2, 2);
  403. if (ret)
  404. goto out;
  405. spin_lock(&kvm->mmu_lock);
  406. ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
  407. spin_unlock(&kvm->mmu_lock);
  408. if (ret)
  409. goto out;
  410. pfn++;
  411. }
  412. out:
  413. mmu_free_memory_cache(&cache);
  414. return ret;
  415. }
  416. static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
  417. gfn_t gfn, struct kvm_memory_slot *memslot,
  418. unsigned long fault_status)
  419. {
  420. pte_t new_pte;
  421. pfn_t pfn;
  422. int ret;
  423. bool write_fault, writable;
  424. unsigned long mmu_seq;
  425. struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
  426. write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
  427. if (fault_status == FSC_PERM && !write_fault) {
  428. kvm_err("Unexpected L2 read permission error\n");
  429. return -EFAULT;
  430. }
  431. /* We need minimum second+third level pages */
  432. ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
  433. if (ret)
  434. return ret;
  435. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  436. /*
  437. * Ensure the read of mmu_notifier_seq happens before we call
  438. * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
  439. * the page we just got a reference to gets unmapped before we have a
  440. * chance to grab the mmu_lock, which ensure that if the page gets
  441. * unmapped afterwards, the call to kvm_unmap_hva will take it away
  442. * from us again properly. This smp_rmb() interacts with the smp_wmb()
  443. * in kvm_mmu_notifier_invalidate_<page|range_end>.
  444. */
  445. smp_rmb();
  446. pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
  447. if (is_error_pfn(pfn))
  448. return -EFAULT;
  449. new_pte = pfn_pte(pfn, PAGE_S2);
  450. coherent_icache_guest_page(vcpu->kvm, gfn);
  451. spin_lock(&vcpu->kvm->mmu_lock);
  452. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  453. goto out_unlock;
  454. if (writable) {
  455. kvm_set_s2pte_writable(&new_pte);
  456. kvm_set_pfn_dirty(pfn);
  457. }
  458. stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
  459. out_unlock:
  460. spin_unlock(&vcpu->kvm->mmu_lock);
  461. kvm_release_pfn_clean(pfn);
  462. return 0;
  463. }
  464. /**
  465. * kvm_handle_guest_abort - handles all 2nd stage aborts
  466. * @vcpu: the VCPU pointer
  467. * @run: the kvm_run structure
  468. *
  469. * Any abort that gets to the host is almost guaranteed to be caused by a
  470. * missing second stage translation table entry, which can mean that either the
  471. * guest simply needs more memory and we must allocate an appropriate page or it
  472. * can mean that the guest tried to access I/O memory, which is emulated by user
  473. * space. The distinction is based on the IPA causing the fault and whether this
  474. * memory region has been registered as standard RAM by user space.
  475. */
  476. int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
  477. {
  478. unsigned long fault_status;
  479. phys_addr_t fault_ipa;
  480. struct kvm_memory_slot *memslot;
  481. bool is_iabt;
  482. gfn_t gfn;
  483. int ret, idx;
  484. is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
  485. fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
  486. trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
  487. kvm_vcpu_get_hfar(vcpu), fault_ipa);
  488. /* Check the stage-2 fault is trans. fault or write fault */
  489. fault_status = kvm_vcpu_trap_get_fault(vcpu);
  490. if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
  491. kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
  492. kvm_vcpu_trap_get_class(vcpu), fault_status);
  493. return -EFAULT;
  494. }
  495. idx = srcu_read_lock(&vcpu->kvm->srcu);
  496. gfn = fault_ipa >> PAGE_SHIFT;
  497. if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
  498. if (is_iabt) {
  499. /* Prefetch Abort on I/O address */
  500. kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
  501. ret = 1;
  502. goto out_unlock;
  503. }
  504. if (fault_status != FSC_FAULT) {
  505. kvm_err("Unsupported fault status on io memory: %#lx\n",
  506. fault_status);
  507. ret = -EFAULT;
  508. goto out_unlock;
  509. }
  510. /*
  511. * The IPA is reported as [MAX:12], so we need to
  512. * complement it with the bottom 12 bits from the
  513. * faulting VA. This is always 12 bits, irrespective
  514. * of the page size.
  515. */
  516. fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
  517. ret = io_mem_abort(vcpu, run, fault_ipa);
  518. goto out_unlock;
  519. }
  520. memslot = gfn_to_memslot(vcpu->kvm, gfn);
  521. ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
  522. if (ret == 0)
  523. ret = 1;
  524. out_unlock:
  525. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  526. return ret;
  527. }
  528. static void handle_hva_to_gpa(struct kvm *kvm,
  529. unsigned long start,
  530. unsigned long end,
  531. void (*handler)(struct kvm *kvm,
  532. gpa_t gpa, void *data),
  533. void *data)
  534. {
  535. struct kvm_memslots *slots;
  536. struct kvm_memory_slot *memslot;
  537. slots = kvm_memslots(kvm);
  538. /* we only care about the pages that the guest sees */
  539. kvm_for_each_memslot(memslot, slots) {
  540. unsigned long hva_start, hva_end;
  541. gfn_t gfn, gfn_end;
  542. hva_start = max(start, memslot->userspace_addr);
  543. hva_end = min(end, memslot->userspace_addr +
  544. (memslot->npages << PAGE_SHIFT));
  545. if (hva_start >= hva_end)
  546. continue;
  547. /*
  548. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  549. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  550. */
  551. gfn = hva_to_gfn_memslot(hva_start, memslot);
  552. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  553. for (; gfn < gfn_end; ++gfn) {
  554. gpa_t gpa = gfn << PAGE_SHIFT;
  555. handler(kvm, gpa, data);
  556. }
  557. }
  558. }
  559. static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
  560. {
  561. unmap_stage2_range(kvm, gpa, PAGE_SIZE);
  562. kvm_tlb_flush_vmid_ipa(kvm, gpa);
  563. }
  564. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  565. {
  566. unsigned long end = hva + PAGE_SIZE;
  567. if (!kvm->arch.pgd)
  568. return 0;
  569. trace_kvm_unmap_hva(hva);
  570. handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
  571. return 0;
  572. }
  573. int kvm_unmap_hva_range(struct kvm *kvm,
  574. unsigned long start, unsigned long end)
  575. {
  576. if (!kvm->arch.pgd)
  577. return 0;
  578. trace_kvm_unmap_hva_range(start, end);
  579. handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
  580. return 0;
  581. }
  582. static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
  583. {
  584. pte_t *pte = (pte_t *)data;
  585. stage2_set_pte(kvm, NULL, gpa, pte, false);
  586. }
  587. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  588. {
  589. unsigned long end = hva + PAGE_SIZE;
  590. pte_t stage2_pte;
  591. if (!kvm->arch.pgd)
  592. return;
  593. trace_kvm_set_spte_hva(hva);
  594. stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
  595. handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
  596. }
  597. void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  598. {
  599. mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  600. }
  601. phys_addr_t kvm_mmu_get_httbr(void)
  602. {
  603. VM_BUG_ON(!virt_addr_valid(hyp_pgd));
  604. return virt_to_phys(hyp_pgd);
  605. }
  606. int kvm_mmu_init(void)
  607. {
  608. if (!hyp_pgd) {
  609. kvm_err("Hyp mode PGD not allocated\n");
  610. return -ENOMEM;
  611. }
  612. return 0;
  613. }
  614. /**
  615. * kvm_clear_idmap - remove all idmaps from the hyp pgd
  616. *
  617. * Free the underlying pmds for all pgds in range and clear the pgds (but
  618. * don't free them) afterwards.
  619. */
  620. void kvm_clear_hyp_idmap(void)
  621. {
  622. unsigned long addr, end;
  623. unsigned long next;
  624. pgd_t *pgd = hyp_pgd;
  625. pud_t *pud;
  626. pmd_t *pmd;
  627. addr = virt_to_phys(__hyp_idmap_text_start);
  628. end = virt_to_phys(__hyp_idmap_text_end);
  629. pgd += pgd_index(addr);
  630. do {
  631. next = pgd_addr_end(addr, end);
  632. if (pgd_none_or_clear_bad(pgd))
  633. continue;
  634. pud = pud_offset(pgd, addr);
  635. pmd = pmd_offset(pud, addr);
  636. pud_clear(pud);
  637. kvm_clean_pmd_entry(pmd);
  638. pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK));
  639. } while (pgd++, addr = next, addr < end);
  640. }