ll_rw_blk.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/config.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/bio.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/highmem.h>
  19. #include <linux/mm.h>
  20. #include <linux/kernel_stat.h>
  21. #include <linux/string.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  24. #include <linux/completion.h>
  25. #include <linux/slab.h>
  26. #include <linux/swap.h>
  27. #include <linux/writeback.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. /*
  31. * for max sense size
  32. */
  33. #include <scsi/scsi_cmnd.h>
  34. static void blk_unplug_work(void *data);
  35. static void blk_unplug_timeout(unsigned long data);
  36. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  37. static void init_request_from_bio(struct request *req, struct bio *bio);
  38. static int __make_request(request_queue_t *q, struct bio *bio);
  39. /*
  40. * For the allocated request tables
  41. */
  42. static kmem_cache_t *request_cachep;
  43. /*
  44. * For queue allocation
  45. */
  46. static kmem_cache_t *requestq_cachep;
  47. /*
  48. * For io context allocations
  49. */
  50. static kmem_cache_t *iocontext_cachep;
  51. static wait_queue_head_t congestion_wqh[2] = {
  52. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  53. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  54. };
  55. /*
  56. * Controlling structure to kblockd
  57. */
  58. static struct workqueue_struct *kblockd_workqueue;
  59. unsigned long blk_max_low_pfn, blk_max_pfn;
  60. EXPORT_SYMBOL(blk_max_low_pfn);
  61. EXPORT_SYMBOL(blk_max_pfn);
  62. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  63. /* Amount of time in which a process may batch requests */
  64. #define BLK_BATCH_TIME (HZ/50UL)
  65. /* Number of requests a "batching" process may submit */
  66. #define BLK_BATCH_REQ 32
  67. /*
  68. * Return the threshold (number of used requests) at which the queue is
  69. * considered to be congested. It include a little hysteresis to keep the
  70. * context switch rate down.
  71. */
  72. static inline int queue_congestion_on_threshold(struct request_queue *q)
  73. {
  74. return q->nr_congestion_on;
  75. }
  76. /*
  77. * The threshold at which a queue is considered to be uncongested
  78. */
  79. static inline int queue_congestion_off_threshold(struct request_queue *q)
  80. {
  81. return q->nr_congestion_off;
  82. }
  83. static void blk_queue_congestion_threshold(struct request_queue *q)
  84. {
  85. int nr;
  86. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  87. if (nr > q->nr_requests)
  88. nr = q->nr_requests;
  89. q->nr_congestion_on = nr;
  90. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  91. if (nr < 1)
  92. nr = 1;
  93. q->nr_congestion_off = nr;
  94. }
  95. /*
  96. * A queue has just exitted congestion. Note this in the global counter of
  97. * congested queues, and wake up anyone who was waiting for requests to be
  98. * put back.
  99. */
  100. static void clear_queue_congested(request_queue_t *q, int rw)
  101. {
  102. enum bdi_state bit;
  103. wait_queue_head_t *wqh = &congestion_wqh[rw];
  104. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  105. clear_bit(bit, &q->backing_dev_info.state);
  106. smp_mb__after_clear_bit();
  107. if (waitqueue_active(wqh))
  108. wake_up(wqh);
  109. }
  110. /*
  111. * A queue has just entered congestion. Flag that in the queue's VM-visible
  112. * state flags and increment the global gounter of congested queues.
  113. */
  114. static void set_queue_congested(request_queue_t *q, int rw)
  115. {
  116. enum bdi_state bit;
  117. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  118. set_bit(bit, &q->backing_dev_info.state);
  119. }
  120. /**
  121. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  122. * @bdev: device
  123. *
  124. * Locates the passed device's request queue and returns the address of its
  125. * backing_dev_info
  126. *
  127. * Will return NULL if the request queue cannot be located.
  128. */
  129. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  130. {
  131. struct backing_dev_info *ret = NULL;
  132. request_queue_t *q = bdev_get_queue(bdev);
  133. if (q)
  134. ret = &q->backing_dev_info;
  135. return ret;
  136. }
  137. EXPORT_SYMBOL(blk_get_backing_dev_info);
  138. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  139. {
  140. q->activity_fn = fn;
  141. q->activity_data = data;
  142. }
  143. EXPORT_SYMBOL(blk_queue_activity_fn);
  144. /**
  145. * blk_queue_prep_rq - set a prepare_request function for queue
  146. * @q: queue
  147. * @pfn: prepare_request function
  148. *
  149. * It's possible for a queue to register a prepare_request callback which
  150. * is invoked before the request is handed to the request_fn. The goal of
  151. * the function is to prepare a request for I/O, it can be used to build a
  152. * cdb from the request data for instance.
  153. *
  154. */
  155. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  156. {
  157. q->prep_rq_fn = pfn;
  158. }
  159. EXPORT_SYMBOL(blk_queue_prep_rq);
  160. /**
  161. * blk_queue_merge_bvec - set a merge_bvec function for queue
  162. * @q: queue
  163. * @mbfn: merge_bvec_fn
  164. *
  165. * Usually queues have static limitations on the max sectors or segments that
  166. * we can put in a request. Stacking drivers may have some settings that
  167. * are dynamic, and thus we have to query the queue whether it is ok to
  168. * add a new bio_vec to a bio at a given offset or not. If the block device
  169. * has such limitations, it needs to register a merge_bvec_fn to control
  170. * the size of bio's sent to it. Note that a block device *must* allow a
  171. * single page to be added to an empty bio. The block device driver may want
  172. * to use the bio_split() function to deal with these bio's. By default
  173. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  174. * honored.
  175. */
  176. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  177. {
  178. q->merge_bvec_fn = mbfn;
  179. }
  180. EXPORT_SYMBOL(blk_queue_merge_bvec);
  181. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  182. {
  183. q->softirq_done_fn = fn;
  184. }
  185. EXPORT_SYMBOL(blk_queue_softirq_done);
  186. /**
  187. * blk_queue_make_request - define an alternate make_request function for a device
  188. * @q: the request queue for the device to be affected
  189. * @mfn: the alternate make_request function
  190. *
  191. * Description:
  192. * The normal way for &struct bios to be passed to a device
  193. * driver is for them to be collected into requests on a request
  194. * queue, and then to allow the device driver to select requests
  195. * off that queue when it is ready. This works well for many block
  196. * devices. However some block devices (typically virtual devices
  197. * such as md or lvm) do not benefit from the processing on the
  198. * request queue, and are served best by having the requests passed
  199. * directly to them. This can be achieved by providing a function
  200. * to blk_queue_make_request().
  201. *
  202. * Caveat:
  203. * The driver that does this *must* be able to deal appropriately
  204. * with buffers in "highmemory". This can be accomplished by either calling
  205. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  206. * blk_queue_bounce() to create a buffer in normal memory.
  207. **/
  208. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  209. {
  210. /*
  211. * set defaults
  212. */
  213. q->nr_requests = BLKDEV_MAX_RQ;
  214. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  215. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  216. q->make_request_fn = mfn;
  217. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  218. q->backing_dev_info.state = 0;
  219. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  220. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  221. blk_queue_hardsect_size(q, 512);
  222. blk_queue_dma_alignment(q, 511);
  223. blk_queue_congestion_threshold(q);
  224. q->nr_batching = BLK_BATCH_REQ;
  225. q->unplug_thresh = 4; /* hmm */
  226. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  227. if (q->unplug_delay == 0)
  228. q->unplug_delay = 1;
  229. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  230. q->unplug_timer.function = blk_unplug_timeout;
  231. q->unplug_timer.data = (unsigned long)q;
  232. /*
  233. * by default assume old behaviour and bounce for any highmem page
  234. */
  235. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  236. blk_queue_activity_fn(q, NULL, NULL);
  237. }
  238. EXPORT_SYMBOL(blk_queue_make_request);
  239. static inline void rq_init(request_queue_t *q, struct request *rq)
  240. {
  241. INIT_LIST_HEAD(&rq->queuelist);
  242. INIT_LIST_HEAD(&rq->donelist);
  243. rq->errors = 0;
  244. rq->rq_status = RQ_ACTIVE;
  245. rq->bio = rq->biotail = NULL;
  246. rq->ioprio = 0;
  247. rq->buffer = NULL;
  248. rq->ref_count = 1;
  249. rq->q = q;
  250. rq->waiting = NULL;
  251. rq->special = NULL;
  252. rq->data_len = 0;
  253. rq->data = NULL;
  254. rq->nr_phys_segments = 0;
  255. rq->sense = NULL;
  256. rq->end_io = NULL;
  257. rq->end_io_data = NULL;
  258. rq->completion_data = NULL;
  259. }
  260. /**
  261. * blk_queue_ordered - does this queue support ordered writes
  262. * @q: the request queue
  263. * @ordered: one of QUEUE_ORDERED_*
  264. *
  265. * Description:
  266. * For journalled file systems, doing ordered writes on a commit
  267. * block instead of explicitly doing wait_on_buffer (which is bad
  268. * for performance) can be a big win. Block drivers supporting this
  269. * feature should call this function and indicate so.
  270. *
  271. **/
  272. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  273. prepare_flush_fn *prepare_flush_fn)
  274. {
  275. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  276. prepare_flush_fn == NULL) {
  277. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  278. return -EINVAL;
  279. }
  280. if (ordered != QUEUE_ORDERED_NONE &&
  281. ordered != QUEUE_ORDERED_DRAIN &&
  282. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  283. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  284. ordered != QUEUE_ORDERED_TAG &&
  285. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  286. ordered != QUEUE_ORDERED_TAG_FUA) {
  287. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  288. return -EINVAL;
  289. }
  290. q->ordered = ordered;
  291. q->next_ordered = ordered;
  292. q->prepare_flush_fn = prepare_flush_fn;
  293. return 0;
  294. }
  295. EXPORT_SYMBOL(blk_queue_ordered);
  296. /**
  297. * blk_queue_issue_flush_fn - set function for issuing a flush
  298. * @q: the request queue
  299. * @iff: the function to be called issuing the flush
  300. *
  301. * Description:
  302. * If a driver supports issuing a flush command, the support is notified
  303. * to the block layer by defining it through this call.
  304. *
  305. **/
  306. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  307. {
  308. q->issue_flush_fn = iff;
  309. }
  310. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  311. /*
  312. * Cache flushing for ordered writes handling
  313. */
  314. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  315. {
  316. if (!q->ordseq)
  317. return 0;
  318. return 1 << ffz(q->ordseq);
  319. }
  320. unsigned blk_ordered_req_seq(struct request *rq)
  321. {
  322. request_queue_t *q = rq->q;
  323. BUG_ON(q->ordseq == 0);
  324. if (rq == &q->pre_flush_rq)
  325. return QUEUE_ORDSEQ_PREFLUSH;
  326. if (rq == &q->bar_rq)
  327. return QUEUE_ORDSEQ_BAR;
  328. if (rq == &q->post_flush_rq)
  329. return QUEUE_ORDSEQ_POSTFLUSH;
  330. if ((rq->flags & REQ_ORDERED_COLOR) ==
  331. (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
  332. return QUEUE_ORDSEQ_DRAIN;
  333. else
  334. return QUEUE_ORDSEQ_DONE;
  335. }
  336. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  337. {
  338. struct request *rq;
  339. int uptodate;
  340. if (error && !q->orderr)
  341. q->orderr = error;
  342. BUG_ON(q->ordseq & seq);
  343. q->ordseq |= seq;
  344. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  345. return;
  346. /*
  347. * Okay, sequence complete.
  348. */
  349. rq = q->orig_bar_rq;
  350. uptodate = q->orderr ? q->orderr : 1;
  351. q->ordseq = 0;
  352. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  353. end_that_request_last(rq, uptodate);
  354. }
  355. static void pre_flush_end_io(struct request *rq, int error)
  356. {
  357. elv_completed_request(rq->q, rq);
  358. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  359. }
  360. static void bar_end_io(struct request *rq, int error)
  361. {
  362. elv_completed_request(rq->q, rq);
  363. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  364. }
  365. static void post_flush_end_io(struct request *rq, int error)
  366. {
  367. elv_completed_request(rq->q, rq);
  368. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  369. }
  370. static void queue_flush(request_queue_t *q, unsigned which)
  371. {
  372. struct request *rq;
  373. rq_end_io_fn *end_io;
  374. if (which == QUEUE_ORDERED_PREFLUSH) {
  375. rq = &q->pre_flush_rq;
  376. end_io = pre_flush_end_io;
  377. } else {
  378. rq = &q->post_flush_rq;
  379. end_io = post_flush_end_io;
  380. }
  381. rq_init(q, rq);
  382. rq->flags = REQ_HARDBARRIER;
  383. rq->elevator_private = NULL;
  384. rq->rq_disk = q->bar_rq.rq_disk;
  385. rq->rl = NULL;
  386. rq->end_io = end_io;
  387. q->prepare_flush_fn(q, rq);
  388. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  389. }
  390. static inline struct request *start_ordered(request_queue_t *q,
  391. struct request *rq)
  392. {
  393. q->bi_size = 0;
  394. q->orderr = 0;
  395. q->ordered = q->next_ordered;
  396. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  397. /*
  398. * Prep proxy barrier request.
  399. */
  400. blkdev_dequeue_request(rq);
  401. q->orig_bar_rq = rq;
  402. rq = &q->bar_rq;
  403. rq_init(q, rq);
  404. rq->flags = bio_data_dir(q->orig_bar_rq->bio);
  405. rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  406. rq->elevator_private = NULL;
  407. rq->rl = NULL;
  408. init_request_from_bio(rq, q->orig_bar_rq->bio);
  409. rq->end_io = bar_end_io;
  410. /*
  411. * Queue ordered sequence. As we stack them at the head, we
  412. * need to queue in reverse order. Note that we rely on that
  413. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  414. * request gets inbetween ordered sequence.
  415. */
  416. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  417. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  418. else
  419. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  420. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  421. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  422. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  423. rq = &q->pre_flush_rq;
  424. } else
  425. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  426. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  427. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  428. else
  429. rq = NULL;
  430. return rq;
  431. }
  432. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  433. {
  434. struct request *rq = *rqp, *allowed_rq;
  435. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  436. if (!q->ordseq) {
  437. if (!is_barrier)
  438. return 1;
  439. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  440. *rqp = start_ordered(q, rq);
  441. return 1;
  442. } else {
  443. /*
  444. * This can happen when the queue switches to
  445. * ORDERED_NONE while this request is on it.
  446. */
  447. blkdev_dequeue_request(rq);
  448. end_that_request_first(rq, -EOPNOTSUPP,
  449. rq->hard_nr_sectors);
  450. end_that_request_last(rq, -EOPNOTSUPP);
  451. *rqp = NULL;
  452. return 0;
  453. }
  454. }
  455. if (q->ordered & QUEUE_ORDERED_TAG) {
  456. if (is_barrier && rq != &q->bar_rq)
  457. *rqp = NULL;
  458. return 1;
  459. }
  460. switch (blk_ordered_cur_seq(q)) {
  461. case QUEUE_ORDSEQ_PREFLUSH:
  462. allowed_rq = &q->pre_flush_rq;
  463. break;
  464. case QUEUE_ORDSEQ_BAR:
  465. allowed_rq = &q->bar_rq;
  466. break;
  467. case QUEUE_ORDSEQ_POSTFLUSH:
  468. allowed_rq = &q->post_flush_rq;
  469. break;
  470. default:
  471. allowed_rq = NULL;
  472. break;
  473. }
  474. if (rq != allowed_rq &&
  475. (blk_fs_request(rq) || rq == &q->pre_flush_rq ||
  476. rq == &q->post_flush_rq))
  477. *rqp = NULL;
  478. return 1;
  479. }
  480. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  481. {
  482. request_queue_t *q = bio->bi_private;
  483. struct bio_vec *bvec;
  484. int i;
  485. /*
  486. * This is dry run, restore bio_sector and size. We'll finish
  487. * this request again with the original bi_end_io after an
  488. * error occurs or post flush is complete.
  489. */
  490. q->bi_size += bytes;
  491. if (bio->bi_size)
  492. return 1;
  493. /* Rewind bvec's */
  494. bio->bi_idx = 0;
  495. bio_for_each_segment(bvec, bio, i) {
  496. bvec->bv_len += bvec->bv_offset;
  497. bvec->bv_offset = 0;
  498. }
  499. /* Reset bio */
  500. set_bit(BIO_UPTODATE, &bio->bi_flags);
  501. bio->bi_size = q->bi_size;
  502. bio->bi_sector -= (q->bi_size >> 9);
  503. q->bi_size = 0;
  504. return 0;
  505. }
  506. static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
  507. unsigned int nbytes, int error)
  508. {
  509. request_queue_t *q = rq->q;
  510. bio_end_io_t *endio;
  511. void *private;
  512. if (&q->bar_rq != rq)
  513. return 0;
  514. /*
  515. * Okay, this is the barrier request in progress, dry finish it.
  516. */
  517. if (error && !q->orderr)
  518. q->orderr = error;
  519. endio = bio->bi_end_io;
  520. private = bio->bi_private;
  521. bio->bi_end_io = flush_dry_bio_endio;
  522. bio->bi_private = q;
  523. bio_endio(bio, nbytes, error);
  524. bio->bi_end_io = endio;
  525. bio->bi_private = private;
  526. return 1;
  527. }
  528. /**
  529. * blk_queue_bounce_limit - set bounce buffer limit for queue
  530. * @q: the request queue for the device
  531. * @dma_addr: bus address limit
  532. *
  533. * Description:
  534. * Different hardware can have different requirements as to what pages
  535. * it can do I/O directly to. A low level driver can call
  536. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  537. * buffers for doing I/O to pages residing above @page. By default
  538. * the block layer sets this to the highest numbered "low" memory page.
  539. **/
  540. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  541. {
  542. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  543. /*
  544. * set appropriate bounce gfp mask -- unfortunately we don't have a
  545. * full 4GB zone, so we have to resort to low memory for any bounces.
  546. * ISA has its own < 16MB zone.
  547. */
  548. if (bounce_pfn < blk_max_low_pfn) {
  549. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  550. init_emergency_isa_pool();
  551. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  552. } else
  553. q->bounce_gfp = GFP_NOIO;
  554. q->bounce_pfn = bounce_pfn;
  555. }
  556. EXPORT_SYMBOL(blk_queue_bounce_limit);
  557. /**
  558. * blk_queue_max_sectors - set max sectors for a request for this queue
  559. * @q: the request queue for the device
  560. * @max_sectors: max sectors in the usual 512b unit
  561. *
  562. * Description:
  563. * Enables a low level driver to set an upper limit on the size of
  564. * received requests.
  565. **/
  566. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  567. {
  568. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  569. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  570. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  571. }
  572. if (BLK_DEF_MAX_SECTORS > max_sectors)
  573. q->max_hw_sectors = q->max_sectors = max_sectors;
  574. else {
  575. q->max_sectors = BLK_DEF_MAX_SECTORS;
  576. q->max_hw_sectors = max_sectors;
  577. }
  578. }
  579. EXPORT_SYMBOL(blk_queue_max_sectors);
  580. /**
  581. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  582. * @q: the request queue for the device
  583. * @max_segments: max number of segments
  584. *
  585. * Description:
  586. * Enables a low level driver to set an upper limit on the number of
  587. * physical data segments in a request. This would be the largest sized
  588. * scatter list the driver could handle.
  589. **/
  590. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  591. {
  592. if (!max_segments) {
  593. max_segments = 1;
  594. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  595. }
  596. q->max_phys_segments = max_segments;
  597. }
  598. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  599. /**
  600. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  601. * @q: the request queue for the device
  602. * @max_segments: max number of segments
  603. *
  604. * Description:
  605. * Enables a low level driver to set an upper limit on the number of
  606. * hw data segments in a request. This would be the largest number of
  607. * address/length pairs the host adapter can actually give as once
  608. * to the device.
  609. **/
  610. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  611. {
  612. if (!max_segments) {
  613. max_segments = 1;
  614. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  615. }
  616. q->max_hw_segments = max_segments;
  617. }
  618. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  619. /**
  620. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  621. * @q: the request queue for the device
  622. * @max_size: max size of segment in bytes
  623. *
  624. * Description:
  625. * Enables a low level driver to set an upper limit on the size of a
  626. * coalesced segment
  627. **/
  628. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  629. {
  630. if (max_size < PAGE_CACHE_SIZE) {
  631. max_size = PAGE_CACHE_SIZE;
  632. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  633. }
  634. q->max_segment_size = max_size;
  635. }
  636. EXPORT_SYMBOL(blk_queue_max_segment_size);
  637. /**
  638. * blk_queue_hardsect_size - set hardware sector size for the queue
  639. * @q: the request queue for the device
  640. * @size: the hardware sector size, in bytes
  641. *
  642. * Description:
  643. * This should typically be set to the lowest possible sector size
  644. * that the hardware can operate on (possible without reverting to
  645. * even internal read-modify-write operations). Usually the default
  646. * of 512 covers most hardware.
  647. **/
  648. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  649. {
  650. q->hardsect_size = size;
  651. }
  652. EXPORT_SYMBOL(blk_queue_hardsect_size);
  653. /*
  654. * Returns the minimum that is _not_ zero, unless both are zero.
  655. */
  656. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  657. /**
  658. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  659. * @t: the stacking driver (top)
  660. * @b: the underlying device (bottom)
  661. **/
  662. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  663. {
  664. /* zero is "infinity" */
  665. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  666. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  667. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  668. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  669. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  670. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  671. }
  672. EXPORT_SYMBOL(blk_queue_stack_limits);
  673. /**
  674. * blk_queue_segment_boundary - set boundary rules for segment merging
  675. * @q: the request queue for the device
  676. * @mask: the memory boundary mask
  677. **/
  678. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  679. {
  680. if (mask < PAGE_CACHE_SIZE - 1) {
  681. mask = PAGE_CACHE_SIZE - 1;
  682. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  683. }
  684. q->seg_boundary_mask = mask;
  685. }
  686. EXPORT_SYMBOL(blk_queue_segment_boundary);
  687. /**
  688. * blk_queue_dma_alignment - set dma length and memory alignment
  689. * @q: the request queue for the device
  690. * @mask: alignment mask
  691. *
  692. * description:
  693. * set required memory and length aligment for direct dma transactions.
  694. * this is used when buiding direct io requests for the queue.
  695. *
  696. **/
  697. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  698. {
  699. q->dma_alignment = mask;
  700. }
  701. EXPORT_SYMBOL(blk_queue_dma_alignment);
  702. /**
  703. * blk_queue_find_tag - find a request by its tag and queue
  704. * @q: The request queue for the device
  705. * @tag: The tag of the request
  706. *
  707. * Notes:
  708. * Should be used when a device returns a tag and you want to match
  709. * it with a request.
  710. *
  711. * no locks need be held.
  712. **/
  713. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  714. {
  715. struct blk_queue_tag *bqt = q->queue_tags;
  716. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  717. return NULL;
  718. return bqt->tag_index[tag];
  719. }
  720. EXPORT_SYMBOL(blk_queue_find_tag);
  721. /**
  722. * __blk_queue_free_tags - release tag maintenance info
  723. * @q: the request queue for the device
  724. *
  725. * Notes:
  726. * blk_cleanup_queue() will take care of calling this function, if tagging
  727. * has been used. So there's no need to call this directly.
  728. **/
  729. static void __blk_queue_free_tags(request_queue_t *q)
  730. {
  731. struct blk_queue_tag *bqt = q->queue_tags;
  732. if (!bqt)
  733. return;
  734. if (atomic_dec_and_test(&bqt->refcnt)) {
  735. BUG_ON(bqt->busy);
  736. BUG_ON(!list_empty(&bqt->busy_list));
  737. kfree(bqt->tag_index);
  738. bqt->tag_index = NULL;
  739. kfree(bqt->tag_map);
  740. bqt->tag_map = NULL;
  741. kfree(bqt);
  742. }
  743. q->queue_tags = NULL;
  744. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  745. }
  746. /**
  747. * blk_queue_free_tags - release tag maintenance info
  748. * @q: the request queue for the device
  749. *
  750. * Notes:
  751. * This is used to disabled tagged queuing to a device, yet leave
  752. * queue in function.
  753. **/
  754. void blk_queue_free_tags(request_queue_t *q)
  755. {
  756. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  757. }
  758. EXPORT_SYMBOL(blk_queue_free_tags);
  759. static int
  760. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  761. {
  762. struct request **tag_index;
  763. unsigned long *tag_map;
  764. int nr_ulongs;
  765. if (depth > q->nr_requests * 2) {
  766. depth = q->nr_requests * 2;
  767. printk(KERN_ERR "%s: adjusted depth to %d\n",
  768. __FUNCTION__, depth);
  769. }
  770. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  771. if (!tag_index)
  772. goto fail;
  773. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  774. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  775. if (!tag_map)
  776. goto fail;
  777. memset(tag_index, 0, depth * sizeof(struct request *));
  778. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  779. tags->real_max_depth = depth;
  780. tags->max_depth = depth;
  781. tags->tag_index = tag_index;
  782. tags->tag_map = tag_map;
  783. return 0;
  784. fail:
  785. kfree(tag_index);
  786. return -ENOMEM;
  787. }
  788. /**
  789. * blk_queue_init_tags - initialize the queue tag info
  790. * @q: the request queue for the device
  791. * @depth: the maximum queue depth supported
  792. * @tags: the tag to use
  793. **/
  794. int blk_queue_init_tags(request_queue_t *q, int depth,
  795. struct blk_queue_tag *tags)
  796. {
  797. int rc;
  798. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  799. if (!tags && !q->queue_tags) {
  800. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  801. if (!tags)
  802. goto fail;
  803. if (init_tag_map(q, tags, depth))
  804. goto fail;
  805. INIT_LIST_HEAD(&tags->busy_list);
  806. tags->busy = 0;
  807. atomic_set(&tags->refcnt, 1);
  808. } else if (q->queue_tags) {
  809. if ((rc = blk_queue_resize_tags(q, depth)))
  810. return rc;
  811. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  812. return 0;
  813. } else
  814. atomic_inc(&tags->refcnt);
  815. /*
  816. * assign it, all done
  817. */
  818. q->queue_tags = tags;
  819. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  820. return 0;
  821. fail:
  822. kfree(tags);
  823. return -ENOMEM;
  824. }
  825. EXPORT_SYMBOL(blk_queue_init_tags);
  826. /**
  827. * blk_queue_resize_tags - change the queueing depth
  828. * @q: the request queue for the device
  829. * @new_depth: the new max command queueing depth
  830. *
  831. * Notes:
  832. * Must be called with the queue lock held.
  833. **/
  834. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  835. {
  836. struct blk_queue_tag *bqt = q->queue_tags;
  837. struct request **tag_index;
  838. unsigned long *tag_map;
  839. int max_depth, nr_ulongs;
  840. if (!bqt)
  841. return -ENXIO;
  842. /*
  843. * if we already have large enough real_max_depth. just
  844. * adjust max_depth. *NOTE* as requests with tag value
  845. * between new_depth and real_max_depth can be in-flight, tag
  846. * map can not be shrunk blindly here.
  847. */
  848. if (new_depth <= bqt->real_max_depth) {
  849. bqt->max_depth = new_depth;
  850. return 0;
  851. }
  852. /*
  853. * save the old state info, so we can copy it back
  854. */
  855. tag_index = bqt->tag_index;
  856. tag_map = bqt->tag_map;
  857. max_depth = bqt->real_max_depth;
  858. if (init_tag_map(q, bqt, new_depth))
  859. return -ENOMEM;
  860. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  861. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  862. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  863. kfree(tag_index);
  864. kfree(tag_map);
  865. return 0;
  866. }
  867. EXPORT_SYMBOL(blk_queue_resize_tags);
  868. /**
  869. * blk_queue_end_tag - end tag operations for a request
  870. * @q: the request queue for the device
  871. * @rq: the request that has completed
  872. *
  873. * Description:
  874. * Typically called when end_that_request_first() returns 0, meaning
  875. * all transfers have been done for a request. It's important to call
  876. * this function before end_that_request_last(), as that will put the
  877. * request back on the free list thus corrupting the internal tag list.
  878. *
  879. * Notes:
  880. * queue lock must be held.
  881. **/
  882. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  883. {
  884. struct blk_queue_tag *bqt = q->queue_tags;
  885. int tag = rq->tag;
  886. BUG_ON(tag == -1);
  887. if (unlikely(tag >= bqt->real_max_depth))
  888. /*
  889. * This can happen after tag depth has been reduced.
  890. * FIXME: how about a warning or info message here?
  891. */
  892. return;
  893. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  894. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  895. __FUNCTION__, tag);
  896. return;
  897. }
  898. list_del_init(&rq->queuelist);
  899. rq->flags &= ~REQ_QUEUED;
  900. rq->tag = -1;
  901. if (unlikely(bqt->tag_index[tag] == NULL))
  902. printk(KERN_ERR "%s: tag %d is missing\n",
  903. __FUNCTION__, tag);
  904. bqt->tag_index[tag] = NULL;
  905. bqt->busy--;
  906. }
  907. EXPORT_SYMBOL(blk_queue_end_tag);
  908. /**
  909. * blk_queue_start_tag - find a free tag and assign it
  910. * @q: the request queue for the device
  911. * @rq: the block request that needs tagging
  912. *
  913. * Description:
  914. * This can either be used as a stand-alone helper, or possibly be
  915. * assigned as the queue &prep_rq_fn (in which case &struct request
  916. * automagically gets a tag assigned). Note that this function
  917. * assumes that any type of request can be queued! if this is not
  918. * true for your device, you must check the request type before
  919. * calling this function. The request will also be removed from
  920. * the request queue, so it's the drivers responsibility to readd
  921. * it if it should need to be restarted for some reason.
  922. *
  923. * Notes:
  924. * queue lock must be held.
  925. **/
  926. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  927. {
  928. struct blk_queue_tag *bqt = q->queue_tags;
  929. int tag;
  930. if (unlikely((rq->flags & REQ_QUEUED))) {
  931. printk(KERN_ERR
  932. "%s: request %p for device [%s] already tagged %d",
  933. __FUNCTION__, rq,
  934. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  935. BUG();
  936. }
  937. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  938. if (tag >= bqt->max_depth)
  939. return 1;
  940. __set_bit(tag, bqt->tag_map);
  941. rq->flags |= REQ_QUEUED;
  942. rq->tag = tag;
  943. bqt->tag_index[tag] = rq;
  944. blkdev_dequeue_request(rq);
  945. list_add(&rq->queuelist, &bqt->busy_list);
  946. bqt->busy++;
  947. return 0;
  948. }
  949. EXPORT_SYMBOL(blk_queue_start_tag);
  950. /**
  951. * blk_queue_invalidate_tags - invalidate all pending tags
  952. * @q: the request queue for the device
  953. *
  954. * Description:
  955. * Hardware conditions may dictate a need to stop all pending requests.
  956. * In this case, we will safely clear the block side of the tag queue and
  957. * readd all requests to the request queue in the right order.
  958. *
  959. * Notes:
  960. * queue lock must be held.
  961. **/
  962. void blk_queue_invalidate_tags(request_queue_t *q)
  963. {
  964. struct blk_queue_tag *bqt = q->queue_tags;
  965. struct list_head *tmp, *n;
  966. struct request *rq;
  967. list_for_each_safe(tmp, n, &bqt->busy_list) {
  968. rq = list_entry_rq(tmp);
  969. if (rq->tag == -1) {
  970. printk(KERN_ERR
  971. "%s: bad tag found on list\n", __FUNCTION__);
  972. list_del_init(&rq->queuelist);
  973. rq->flags &= ~REQ_QUEUED;
  974. } else
  975. blk_queue_end_tag(q, rq);
  976. rq->flags &= ~REQ_STARTED;
  977. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  978. }
  979. }
  980. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  981. static const char * const rq_flags[] = {
  982. "REQ_RW",
  983. "REQ_FAILFAST",
  984. "REQ_SORTED",
  985. "REQ_SOFTBARRIER",
  986. "REQ_HARDBARRIER",
  987. "REQ_FUA",
  988. "REQ_CMD",
  989. "REQ_NOMERGE",
  990. "REQ_STARTED",
  991. "REQ_DONTPREP",
  992. "REQ_QUEUED",
  993. "REQ_ELVPRIV",
  994. "REQ_PC",
  995. "REQ_BLOCK_PC",
  996. "REQ_SENSE",
  997. "REQ_FAILED",
  998. "REQ_QUIET",
  999. "REQ_SPECIAL",
  1000. "REQ_DRIVE_CMD",
  1001. "REQ_DRIVE_TASK",
  1002. "REQ_DRIVE_TASKFILE",
  1003. "REQ_PREEMPT",
  1004. "REQ_PM_SUSPEND",
  1005. "REQ_PM_RESUME",
  1006. "REQ_PM_SHUTDOWN",
  1007. "REQ_ORDERED_COLOR",
  1008. };
  1009. void blk_dump_rq_flags(struct request *rq, char *msg)
  1010. {
  1011. int bit;
  1012. printk("%s: dev %s: flags = ", msg,
  1013. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  1014. bit = 0;
  1015. do {
  1016. if (rq->flags & (1 << bit))
  1017. printk("%s ", rq_flags[bit]);
  1018. bit++;
  1019. } while (bit < __REQ_NR_BITS);
  1020. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1021. rq->nr_sectors,
  1022. rq->current_nr_sectors);
  1023. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1024. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  1025. printk("cdb: ");
  1026. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1027. printk("%02x ", rq->cmd[bit]);
  1028. printk("\n");
  1029. }
  1030. }
  1031. EXPORT_SYMBOL(blk_dump_rq_flags);
  1032. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1033. {
  1034. struct bio_vec *bv, *bvprv = NULL;
  1035. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1036. int high, highprv = 1;
  1037. if (unlikely(!bio->bi_io_vec))
  1038. return;
  1039. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1040. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1041. bio_for_each_segment(bv, bio, i) {
  1042. /*
  1043. * the trick here is making sure that a high page is never
  1044. * considered part of another segment, since that might
  1045. * change with the bounce page.
  1046. */
  1047. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1048. if (high || highprv)
  1049. goto new_hw_segment;
  1050. if (cluster) {
  1051. if (seg_size + bv->bv_len > q->max_segment_size)
  1052. goto new_segment;
  1053. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1054. goto new_segment;
  1055. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1056. goto new_segment;
  1057. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1058. goto new_hw_segment;
  1059. seg_size += bv->bv_len;
  1060. hw_seg_size += bv->bv_len;
  1061. bvprv = bv;
  1062. continue;
  1063. }
  1064. new_segment:
  1065. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1066. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1067. hw_seg_size += bv->bv_len;
  1068. } else {
  1069. new_hw_segment:
  1070. if (hw_seg_size > bio->bi_hw_front_size)
  1071. bio->bi_hw_front_size = hw_seg_size;
  1072. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1073. nr_hw_segs++;
  1074. }
  1075. nr_phys_segs++;
  1076. bvprv = bv;
  1077. seg_size = bv->bv_len;
  1078. highprv = high;
  1079. }
  1080. if (hw_seg_size > bio->bi_hw_back_size)
  1081. bio->bi_hw_back_size = hw_seg_size;
  1082. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1083. bio->bi_hw_front_size = hw_seg_size;
  1084. bio->bi_phys_segments = nr_phys_segs;
  1085. bio->bi_hw_segments = nr_hw_segs;
  1086. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1087. }
  1088. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1089. struct bio *nxt)
  1090. {
  1091. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1092. return 0;
  1093. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1094. return 0;
  1095. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1096. return 0;
  1097. /*
  1098. * bio and nxt are contigous in memory, check if the queue allows
  1099. * these two to be merged into one
  1100. */
  1101. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1102. return 1;
  1103. return 0;
  1104. }
  1105. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1106. struct bio *nxt)
  1107. {
  1108. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1109. blk_recount_segments(q, bio);
  1110. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1111. blk_recount_segments(q, nxt);
  1112. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1113. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1114. return 0;
  1115. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1116. return 0;
  1117. return 1;
  1118. }
  1119. /*
  1120. * map a request to scatterlist, return number of sg entries setup. Caller
  1121. * must make sure sg can hold rq->nr_phys_segments entries
  1122. */
  1123. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1124. {
  1125. struct bio_vec *bvec, *bvprv;
  1126. struct bio *bio;
  1127. int nsegs, i, cluster;
  1128. nsegs = 0;
  1129. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1130. /*
  1131. * for each bio in rq
  1132. */
  1133. bvprv = NULL;
  1134. rq_for_each_bio(bio, rq) {
  1135. /*
  1136. * for each segment in bio
  1137. */
  1138. bio_for_each_segment(bvec, bio, i) {
  1139. int nbytes = bvec->bv_len;
  1140. if (bvprv && cluster) {
  1141. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1142. goto new_segment;
  1143. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1144. goto new_segment;
  1145. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1146. goto new_segment;
  1147. sg[nsegs - 1].length += nbytes;
  1148. } else {
  1149. new_segment:
  1150. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1151. sg[nsegs].page = bvec->bv_page;
  1152. sg[nsegs].length = nbytes;
  1153. sg[nsegs].offset = bvec->bv_offset;
  1154. nsegs++;
  1155. }
  1156. bvprv = bvec;
  1157. } /* segments in bio */
  1158. } /* bios in rq */
  1159. return nsegs;
  1160. }
  1161. EXPORT_SYMBOL(blk_rq_map_sg);
  1162. /*
  1163. * the standard queue merge functions, can be overridden with device
  1164. * specific ones if so desired
  1165. */
  1166. static inline int ll_new_mergeable(request_queue_t *q,
  1167. struct request *req,
  1168. struct bio *bio)
  1169. {
  1170. int nr_phys_segs = bio_phys_segments(q, bio);
  1171. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1172. req->flags |= REQ_NOMERGE;
  1173. if (req == q->last_merge)
  1174. q->last_merge = NULL;
  1175. return 0;
  1176. }
  1177. /*
  1178. * A hw segment is just getting larger, bump just the phys
  1179. * counter.
  1180. */
  1181. req->nr_phys_segments += nr_phys_segs;
  1182. return 1;
  1183. }
  1184. static inline int ll_new_hw_segment(request_queue_t *q,
  1185. struct request *req,
  1186. struct bio *bio)
  1187. {
  1188. int nr_hw_segs = bio_hw_segments(q, bio);
  1189. int nr_phys_segs = bio_phys_segments(q, bio);
  1190. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1191. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1192. req->flags |= REQ_NOMERGE;
  1193. if (req == q->last_merge)
  1194. q->last_merge = NULL;
  1195. return 0;
  1196. }
  1197. /*
  1198. * This will form the start of a new hw segment. Bump both
  1199. * counters.
  1200. */
  1201. req->nr_hw_segments += nr_hw_segs;
  1202. req->nr_phys_segments += nr_phys_segs;
  1203. return 1;
  1204. }
  1205. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1206. struct bio *bio)
  1207. {
  1208. unsigned short max_sectors;
  1209. int len;
  1210. if (unlikely(blk_pc_request(req)))
  1211. max_sectors = q->max_hw_sectors;
  1212. else
  1213. max_sectors = q->max_sectors;
  1214. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1215. req->flags |= REQ_NOMERGE;
  1216. if (req == q->last_merge)
  1217. q->last_merge = NULL;
  1218. return 0;
  1219. }
  1220. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1221. blk_recount_segments(q, req->biotail);
  1222. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1223. blk_recount_segments(q, bio);
  1224. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1225. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1226. !BIOVEC_VIRT_OVERSIZE(len)) {
  1227. int mergeable = ll_new_mergeable(q, req, bio);
  1228. if (mergeable) {
  1229. if (req->nr_hw_segments == 1)
  1230. req->bio->bi_hw_front_size = len;
  1231. if (bio->bi_hw_segments == 1)
  1232. bio->bi_hw_back_size = len;
  1233. }
  1234. return mergeable;
  1235. }
  1236. return ll_new_hw_segment(q, req, bio);
  1237. }
  1238. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1239. struct bio *bio)
  1240. {
  1241. unsigned short max_sectors;
  1242. int len;
  1243. if (unlikely(blk_pc_request(req)))
  1244. max_sectors = q->max_hw_sectors;
  1245. else
  1246. max_sectors = q->max_sectors;
  1247. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1248. req->flags |= REQ_NOMERGE;
  1249. if (req == q->last_merge)
  1250. q->last_merge = NULL;
  1251. return 0;
  1252. }
  1253. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1254. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1255. blk_recount_segments(q, bio);
  1256. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1257. blk_recount_segments(q, req->bio);
  1258. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1259. !BIOVEC_VIRT_OVERSIZE(len)) {
  1260. int mergeable = ll_new_mergeable(q, req, bio);
  1261. if (mergeable) {
  1262. if (bio->bi_hw_segments == 1)
  1263. bio->bi_hw_front_size = len;
  1264. if (req->nr_hw_segments == 1)
  1265. req->biotail->bi_hw_back_size = len;
  1266. }
  1267. return mergeable;
  1268. }
  1269. return ll_new_hw_segment(q, req, bio);
  1270. }
  1271. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1272. struct request *next)
  1273. {
  1274. int total_phys_segments;
  1275. int total_hw_segments;
  1276. /*
  1277. * First check if the either of the requests are re-queued
  1278. * requests. Can't merge them if they are.
  1279. */
  1280. if (req->special || next->special)
  1281. return 0;
  1282. /*
  1283. * Will it become too large?
  1284. */
  1285. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1286. return 0;
  1287. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1288. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1289. total_phys_segments--;
  1290. if (total_phys_segments > q->max_phys_segments)
  1291. return 0;
  1292. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1293. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1294. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1295. /*
  1296. * propagate the combined length to the end of the requests
  1297. */
  1298. if (req->nr_hw_segments == 1)
  1299. req->bio->bi_hw_front_size = len;
  1300. if (next->nr_hw_segments == 1)
  1301. next->biotail->bi_hw_back_size = len;
  1302. total_hw_segments--;
  1303. }
  1304. if (total_hw_segments > q->max_hw_segments)
  1305. return 0;
  1306. /* Merge is OK... */
  1307. req->nr_phys_segments = total_phys_segments;
  1308. req->nr_hw_segments = total_hw_segments;
  1309. return 1;
  1310. }
  1311. /*
  1312. * "plug" the device if there are no outstanding requests: this will
  1313. * force the transfer to start only after we have put all the requests
  1314. * on the list.
  1315. *
  1316. * This is called with interrupts off and no requests on the queue and
  1317. * with the queue lock held.
  1318. */
  1319. void blk_plug_device(request_queue_t *q)
  1320. {
  1321. WARN_ON(!irqs_disabled());
  1322. /*
  1323. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1324. * which will restart the queueing
  1325. */
  1326. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1327. return;
  1328. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1329. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1330. }
  1331. EXPORT_SYMBOL(blk_plug_device);
  1332. /*
  1333. * remove the queue from the plugged list, if present. called with
  1334. * queue lock held and interrupts disabled.
  1335. */
  1336. int blk_remove_plug(request_queue_t *q)
  1337. {
  1338. WARN_ON(!irqs_disabled());
  1339. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1340. return 0;
  1341. del_timer(&q->unplug_timer);
  1342. return 1;
  1343. }
  1344. EXPORT_SYMBOL(blk_remove_plug);
  1345. /*
  1346. * remove the plug and let it rip..
  1347. */
  1348. void __generic_unplug_device(request_queue_t *q)
  1349. {
  1350. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1351. return;
  1352. if (!blk_remove_plug(q))
  1353. return;
  1354. q->request_fn(q);
  1355. }
  1356. EXPORT_SYMBOL(__generic_unplug_device);
  1357. /**
  1358. * generic_unplug_device - fire a request queue
  1359. * @q: The &request_queue_t in question
  1360. *
  1361. * Description:
  1362. * Linux uses plugging to build bigger requests queues before letting
  1363. * the device have at them. If a queue is plugged, the I/O scheduler
  1364. * is still adding and merging requests on the queue. Once the queue
  1365. * gets unplugged, the request_fn defined for the queue is invoked and
  1366. * transfers started.
  1367. **/
  1368. void generic_unplug_device(request_queue_t *q)
  1369. {
  1370. spin_lock_irq(q->queue_lock);
  1371. __generic_unplug_device(q);
  1372. spin_unlock_irq(q->queue_lock);
  1373. }
  1374. EXPORT_SYMBOL(generic_unplug_device);
  1375. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1376. struct page *page)
  1377. {
  1378. request_queue_t *q = bdi->unplug_io_data;
  1379. /*
  1380. * devices don't necessarily have an ->unplug_fn defined
  1381. */
  1382. if (q->unplug_fn)
  1383. q->unplug_fn(q);
  1384. }
  1385. static void blk_unplug_work(void *data)
  1386. {
  1387. request_queue_t *q = data;
  1388. q->unplug_fn(q);
  1389. }
  1390. static void blk_unplug_timeout(unsigned long data)
  1391. {
  1392. request_queue_t *q = (request_queue_t *)data;
  1393. kblockd_schedule_work(&q->unplug_work);
  1394. }
  1395. /**
  1396. * blk_start_queue - restart a previously stopped queue
  1397. * @q: The &request_queue_t in question
  1398. *
  1399. * Description:
  1400. * blk_start_queue() will clear the stop flag on the queue, and call
  1401. * the request_fn for the queue if it was in a stopped state when
  1402. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1403. **/
  1404. void blk_start_queue(request_queue_t *q)
  1405. {
  1406. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1407. /*
  1408. * one level of recursion is ok and is much faster than kicking
  1409. * the unplug handling
  1410. */
  1411. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1412. q->request_fn(q);
  1413. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1414. } else {
  1415. blk_plug_device(q);
  1416. kblockd_schedule_work(&q->unplug_work);
  1417. }
  1418. }
  1419. EXPORT_SYMBOL(blk_start_queue);
  1420. /**
  1421. * blk_stop_queue - stop a queue
  1422. * @q: The &request_queue_t in question
  1423. *
  1424. * Description:
  1425. * The Linux block layer assumes that a block driver will consume all
  1426. * entries on the request queue when the request_fn strategy is called.
  1427. * Often this will not happen, because of hardware limitations (queue
  1428. * depth settings). If a device driver gets a 'queue full' response,
  1429. * or if it simply chooses not to queue more I/O at one point, it can
  1430. * call this function to prevent the request_fn from being called until
  1431. * the driver has signalled it's ready to go again. This happens by calling
  1432. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1433. **/
  1434. void blk_stop_queue(request_queue_t *q)
  1435. {
  1436. blk_remove_plug(q);
  1437. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1438. }
  1439. EXPORT_SYMBOL(blk_stop_queue);
  1440. /**
  1441. * blk_sync_queue - cancel any pending callbacks on a queue
  1442. * @q: the queue
  1443. *
  1444. * Description:
  1445. * The block layer may perform asynchronous callback activity
  1446. * on a queue, such as calling the unplug function after a timeout.
  1447. * A block device may call blk_sync_queue to ensure that any
  1448. * such activity is cancelled, thus allowing it to release resources
  1449. * the the callbacks might use. The caller must already have made sure
  1450. * that its ->make_request_fn will not re-add plugging prior to calling
  1451. * this function.
  1452. *
  1453. */
  1454. void blk_sync_queue(struct request_queue *q)
  1455. {
  1456. del_timer_sync(&q->unplug_timer);
  1457. kblockd_flush();
  1458. }
  1459. EXPORT_SYMBOL(blk_sync_queue);
  1460. /**
  1461. * blk_run_queue - run a single device queue
  1462. * @q: The queue to run
  1463. */
  1464. void blk_run_queue(struct request_queue *q)
  1465. {
  1466. unsigned long flags;
  1467. spin_lock_irqsave(q->queue_lock, flags);
  1468. blk_remove_plug(q);
  1469. if (!elv_queue_empty(q))
  1470. q->request_fn(q);
  1471. spin_unlock_irqrestore(q->queue_lock, flags);
  1472. }
  1473. EXPORT_SYMBOL(blk_run_queue);
  1474. /**
  1475. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1476. * @q: the request queue to be released
  1477. *
  1478. * Description:
  1479. * blk_cleanup_queue is the pair to blk_init_queue() or
  1480. * blk_queue_make_request(). It should be called when a request queue is
  1481. * being released; typically when a block device is being de-registered.
  1482. * Currently, its primary task it to free all the &struct request
  1483. * structures that were allocated to the queue and the queue itself.
  1484. *
  1485. * Caveat:
  1486. * Hopefully the low level driver will have finished any
  1487. * outstanding requests first...
  1488. **/
  1489. void blk_cleanup_queue(request_queue_t * q)
  1490. {
  1491. struct request_list *rl = &q->rq;
  1492. if (!atomic_dec_and_test(&q->refcnt))
  1493. return;
  1494. if (q->elevator)
  1495. elevator_exit(q->elevator);
  1496. blk_sync_queue(q);
  1497. if (rl->rq_pool)
  1498. mempool_destroy(rl->rq_pool);
  1499. if (q->queue_tags)
  1500. __blk_queue_free_tags(q);
  1501. kmem_cache_free(requestq_cachep, q);
  1502. }
  1503. EXPORT_SYMBOL(blk_cleanup_queue);
  1504. static int blk_init_free_list(request_queue_t *q)
  1505. {
  1506. struct request_list *rl = &q->rq;
  1507. rl->count[READ] = rl->count[WRITE] = 0;
  1508. rl->starved[READ] = rl->starved[WRITE] = 0;
  1509. rl->elvpriv = 0;
  1510. init_waitqueue_head(&rl->wait[READ]);
  1511. init_waitqueue_head(&rl->wait[WRITE]);
  1512. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1513. mempool_free_slab, request_cachep, q->node);
  1514. if (!rl->rq_pool)
  1515. return -ENOMEM;
  1516. return 0;
  1517. }
  1518. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1519. {
  1520. return blk_alloc_queue_node(gfp_mask, -1);
  1521. }
  1522. EXPORT_SYMBOL(blk_alloc_queue);
  1523. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1524. {
  1525. request_queue_t *q;
  1526. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1527. if (!q)
  1528. return NULL;
  1529. memset(q, 0, sizeof(*q));
  1530. init_timer(&q->unplug_timer);
  1531. atomic_set(&q->refcnt, 1);
  1532. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1533. q->backing_dev_info.unplug_io_data = q;
  1534. return q;
  1535. }
  1536. EXPORT_SYMBOL(blk_alloc_queue_node);
  1537. /**
  1538. * blk_init_queue - prepare a request queue for use with a block device
  1539. * @rfn: The function to be called to process requests that have been
  1540. * placed on the queue.
  1541. * @lock: Request queue spin lock
  1542. *
  1543. * Description:
  1544. * If a block device wishes to use the standard request handling procedures,
  1545. * which sorts requests and coalesces adjacent requests, then it must
  1546. * call blk_init_queue(). The function @rfn will be called when there
  1547. * are requests on the queue that need to be processed. If the device
  1548. * supports plugging, then @rfn may not be called immediately when requests
  1549. * are available on the queue, but may be called at some time later instead.
  1550. * Plugged queues are generally unplugged when a buffer belonging to one
  1551. * of the requests on the queue is needed, or due to memory pressure.
  1552. *
  1553. * @rfn is not required, or even expected, to remove all requests off the
  1554. * queue, but only as many as it can handle at a time. If it does leave
  1555. * requests on the queue, it is responsible for arranging that the requests
  1556. * get dealt with eventually.
  1557. *
  1558. * The queue spin lock must be held while manipulating the requests on the
  1559. * request queue.
  1560. *
  1561. * Function returns a pointer to the initialized request queue, or NULL if
  1562. * it didn't succeed.
  1563. *
  1564. * Note:
  1565. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1566. * when the block device is deactivated (such as at module unload).
  1567. **/
  1568. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1569. {
  1570. return blk_init_queue_node(rfn, lock, -1);
  1571. }
  1572. EXPORT_SYMBOL(blk_init_queue);
  1573. request_queue_t *
  1574. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1575. {
  1576. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1577. if (!q)
  1578. return NULL;
  1579. q->node = node_id;
  1580. if (blk_init_free_list(q))
  1581. goto out_init;
  1582. /*
  1583. * if caller didn't supply a lock, they get per-queue locking with
  1584. * our embedded lock
  1585. */
  1586. if (!lock) {
  1587. spin_lock_init(&q->__queue_lock);
  1588. lock = &q->__queue_lock;
  1589. }
  1590. q->request_fn = rfn;
  1591. q->back_merge_fn = ll_back_merge_fn;
  1592. q->front_merge_fn = ll_front_merge_fn;
  1593. q->merge_requests_fn = ll_merge_requests_fn;
  1594. q->prep_rq_fn = NULL;
  1595. q->unplug_fn = generic_unplug_device;
  1596. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1597. q->queue_lock = lock;
  1598. blk_queue_segment_boundary(q, 0xffffffff);
  1599. blk_queue_make_request(q, __make_request);
  1600. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1601. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1602. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1603. /*
  1604. * all done
  1605. */
  1606. if (!elevator_init(q, NULL)) {
  1607. blk_queue_congestion_threshold(q);
  1608. return q;
  1609. }
  1610. blk_cleanup_queue(q);
  1611. out_init:
  1612. kmem_cache_free(requestq_cachep, q);
  1613. return NULL;
  1614. }
  1615. EXPORT_SYMBOL(blk_init_queue_node);
  1616. int blk_get_queue(request_queue_t *q)
  1617. {
  1618. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1619. atomic_inc(&q->refcnt);
  1620. return 0;
  1621. }
  1622. return 1;
  1623. }
  1624. EXPORT_SYMBOL(blk_get_queue);
  1625. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1626. {
  1627. if (rq->flags & REQ_ELVPRIV)
  1628. elv_put_request(q, rq);
  1629. mempool_free(rq, q->rq.rq_pool);
  1630. }
  1631. static inline struct request *
  1632. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1633. int priv, gfp_t gfp_mask)
  1634. {
  1635. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1636. if (!rq)
  1637. return NULL;
  1638. /*
  1639. * first three bits are identical in rq->flags and bio->bi_rw,
  1640. * see bio.h and blkdev.h
  1641. */
  1642. rq->flags = rw;
  1643. if (priv) {
  1644. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1645. mempool_free(rq, q->rq.rq_pool);
  1646. return NULL;
  1647. }
  1648. rq->flags |= REQ_ELVPRIV;
  1649. }
  1650. return rq;
  1651. }
  1652. /*
  1653. * ioc_batching returns true if the ioc is a valid batching request and
  1654. * should be given priority access to a request.
  1655. */
  1656. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1657. {
  1658. if (!ioc)
  1659. return 0;
  1660. /*
  1661. * Make sure the process is able to allocate at least 1 request
  1662. * even if the batch times out, otherwise we could theoretically
  1663. * lose wakeups.
  1664. */
  1665. return ioc->nr_batch_requests == q->nr_batching ||
  1666. (ioc->nr_batch_requests > 0
  1667. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1668. }
  1669. /*
  1670. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1671. * will cause the process to be a "batcher" on all queues in the system. This
  1672. * is the behaviour we want though - once it gets a wakeup it should be given
  1673. * a nice run.
  1674. */
  1675. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1676. {
  1677. if (!ioc || ioc_batching(q, ioc))
  1678. return;
  1679. ioc->nr_batch_requests = q->nr_batching;
  1680. ioc->last_waited = jiffies;
  1681. }
  1682. static void __freed_request(request_queue_t *q, int rw)
  1683. {
  1684. struct request_list *rl = &q->rq;
  1685. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1686. clear_queue_congested(q, rw);
  1687. if (rl->count[rw] + 1 <= q->nr_requests) {
  1688. if (waitqueue_active(&rl->wait[rw]))
  1689. wake_up(&rl->wait[rw]);
  1690. blk_clear_queue_full(q, rw);
  1691. }
  1692. }
  1693. /*
  1694. * A request has just been released. Account for it, update the full and
  1695. * congestion status, wake up any waiters. Called under q->queue_lock.
  1696. */
  1697. static void freed_request(request_queue_t *q, int rw, int priv)
  1698. {
  1699. struct request_list *rl = &q->rq;
  1700. rl->count[rw]--;
  1701. if (priv)
  1702. rl->elvpriv--;
  1703. __freed_request(q, rw);
  1704. if (unlikely(rl->starved[rw ^ 1]))
  1705. __freed_request(q, rw ^ 1);
  1706. }
  1707. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1708. /*
  1709. * Get a free request, queue_lock must be held.
  1710. * Returns NULL on failure, with queue_lock held.
  1711. * Returns !NULL on success, with queue_lock *not held*.
  1712. */
  1713. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1714. gfp_t gfp_mask)
  1715. {
  1716. struct request *rq = NULL;
  1717. struct request_list *rl = &q->rq;
  1718. struct io_context *ioc = NULL;
  1719. int may_queue, priv;
  1720. may_queue = elv_may_queue(q, rw, bio);
  1721. if (may_queue == ELV_MQUEUE_NO)
  1722. goto rq_starved;
  1723. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1724. if (rl->count[rw]+1 >= q->nr_requests) {
  1725. ioc = current_io_context(GFP_ATOMIC);
  1726. /*
  1727. * The queue will fill after this allocation, so set
  1728. * it as full, and mark this process as "batching".
  1729. * This process will be allowed to complete a batch of
  1730. * requests, others will be blocked.
  1731. */
  1732. if (!blk_queue_full(q, rw)) {
  1733. ioc_set_batching(q, ioc);
  1734. blk_set_queue_full(q, rw);
  1735. } else {
  1736. if (may_queue != ELV_MQUEUE_MUST
  1737. && !ioc_batching(q, ioc)) {
  1738. /*
  1739. * The queue is full and the allocating
  1740. * process is not a "batcher", and not
  1741. * exempted by the IO scheduler
  1742. */
  1743. goto out;
  1744. }
  1745. }
  1746. }
  1747. set_queue_congested(q, rw);
  1748. }
  1749. /*
  1750. * Only allow batching queuers to allocate up to 50% over the defined
  1751. * limit of requests, otherwise we could have thousands of requests
  1752. * allocated with any setting of ->nr_requests
  1753. */
  1754. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1755. goto out;
  1756. rl->count[rw]++;
  1757. rl->starved[rw] = 0;
  1758. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1759. if (priv)
  1760. rl->elvpriv++;
  1761. spin_unlock_irq(q->queue_lock);
  1762. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1763. if (unlikely(!rq)) {
  1764. /*
  1765. * Allocation failed presumably due to memory. Undo anything
  1766. * we might have messed up.
  1767. *
  1768. * Allocating task should really be put onto the front of the
  1769. * wait queue, but this is pretty rare.
  1770. */
  1771. spin_lock_irq(q->queue_lock);
  1772. freed_request(q, rw, priv);
  1773. /*
  1774. * in the very unlikely event that allocation failed and no
  1775. * requests for this direction was pending, mark us starved
  1776. * so that freeing of a request in the other direction will
  1777. * notice us. another possible fix would be to split the
  1778. * rq mempool into READ and WRITE
  1779. */
  1780. rq_starved:
  1781. if (unlikely(rl->count[rw] == 0))
  1782. rl->starved[rw] = 1;
  1783. goto out;
  1784. }
  1785. /*
  1786. * ioc may be NULL here, and ioc_batching will be false. That's
  1787. * OK, if the queue is under the request limit then requests need
  1788. * not count toward the nr_batch_requests limit. There will always
  1789. * be some limit enforced by BLK_BATCH_TIME.
  1790. */
  1791. if (ioc_batching(q, ioc))
  1792. ioc->nr_batch_requests--;
  1793. rq_init(q, rq);
  1794. rq->rl = rl;
  1795. out:
  1796. return rq;
  1797. }
  1798. /*
  1799. * No available requests for this queue, unplug the device and wait for some
  1800. * requests to become available.
  1801. *
  1802. * Called with q->queue_lock held, and returns with it unlocked.
  1803. */
  1804. static struct request *get_request_wait(request_queue_t *q, int rw,
  1805. struct bio *bio)
  1806. {
  1807. struct request *rq;
  1808. rq = get_request(q, rw, bio, GFP_NOIO);
  1809. while (!rq) {
  1810. DEFINE_WAIT(wait);
  1811. struct request_list *rl = &q->rq;
  1812. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1813. TASK_UNINTERRUPTIBLE);
  1814. rq = get_request(q, rw, bio, GFP_NOIO);
  1815. if (!rq) {
  1816. struct io_context *ioc;
  1817. __generic_unplug_device(q);
  1818. spin_unlock_irq(q->queue_lock);
  1819. io_schedule();
  1820. /*
  1821. * After sleeping, we become a "batching" process and
  1822. * will be able to allocate at least one request, and
  1823. * up to a big batch of them for a small period time.
  1824. * See ioc_batching, ioc_set_batching
  1825. */
  1826. ioc = current_io_context(GFP_NOIO);
  1827. ioc_set_batching(q, ioc);
  1828. spin_lock_irq(q->queue_lock);
  1829. }
  1830. finish_wait(&rl->wait[rw], &wait);
  1831. }
  1832. return rq;
  1833. }
  1834. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1835. {
  1836. struct request *rq;
  1837. BUG_ON(rw != READ && rw != WRITE);
  1838. spin_lock_irq(q->queue_lock);
  1839. if (gfp_mask & __GFP_WAIT) {
  1840. rq = get_request_wait(q, rw, NULL);
  1841. } else {
  1842. rq = get_request(q, rw, NULL, gfp_mask);
  1843. if (!rq)
  1844. spin_unlock_irq(q->queue_lock);
  1845. }
  1846. /* q->queue_lock is unlocked at this point */
  1847. return rq;
  1848. }
  1849. EXPORT_SYMBOL(blk_get_request);
  1850. /**
  1851. * blk_requeue_request - put a request back on queue
  1852. * @q: request queue where request should be inserted
  1853. * @rq: request to be inserted
  1854. *
  1855. * Description:
  1856. * Drivers often keep queueing requests until the hardware cannot accept
  1857. * more, when that condition happens we need to put the request back
  1858. * on the queue. Must be called with queue lock held.
  1859. */
  1860. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1861. {
  1862. if (blk_rq_tagged(rq))
  1863. blk_queue_end_tag(q, rq);
  1864. elv_requeue_request(q, rq);
  1865. }
  1866. EXPORT_SYMBOL(blk_requeue_request);
  1867. /**
  1868. * blk_insert_request - insert a special request in to a request queue
  1869. * @q: request queue where request should be inserted
  1870. * @rq: request to be inserted
  1871. * @at_head: insert request at head or tail of queue
  1872. * @data: private data
  1873. *
  1874. * Description:
  1875. * Many block devices need to execute commands asynchronously, so they don't
  1876. * block the whole kernel from preemption during request execution. This is
  1877. * accomplished normally by inserting aritficial requests tagged as
  1878. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1879. * scheduled for actual execution by the request queue.
  1880. *
  1881. * We have the option of inserting the head or the tail of the queue.
  1882. * Typically we use the tail for new ioctls and so forth. We use the head
  1883. * of the queue for things like a QUEUE_FULL message from a device, or a
  1884. * host that is unable to accept a particular command.
  1885. */
  1886. void blk_insert_request(request_queue_t *q, struct request *rq,
  1887. int at_head, void *data)
  1888. {
  1889. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1890. unsigned long flags;
  1891. /*
  1892. * tell I/O scheduler that this isn't a regular read/write (ie it
  1893. * must not attempt merges on this) and that it acts as a soft
  1894. * barrier
  1895. */
  1896. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1897. rq->special = data;
  1898. spin_lock_irqsave(q->queue_lock, flags);
  1899. /*
  1900. * If command is tagged, release the tag
  1901. */
  1902. if (blk_rq_tagged(rq))
  1903. blk_queue_end_tag(q, rq);
  1904. drive_stat_acct(rq, rq->nr_sectors, 1);
  1905. __elv_add_request(q, rq, where, 0);
  1906. if (blk_queue_plugged(q))
  1907. __generic_unplug_device(q);
  1908. else
  1909. q->request_fn(q);
  1910. spin_unlock_irqrestore(q->queue_lock, flags);
  1911. }
  1912. EXPORT_SYMBOL(blk_insert_request);
  1913. /**
  1914. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1915. * @q: request queue where request should be inserted
  1916. * @rq: request structure to fill
  1917. * @ubuf: the user buffer
  1918. * @len: length of user data
  1919. *
  1920. * Description:
  1921. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1922. * a kernel bounce buffer is used.
  1923. *
  1924. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1925. * still in process context.
  1926. *
  1927. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1928. * before being submitted to the device, as pages mapped may be out of
  1929. * reach. It's the callers responsibility to make sure this happens. The
  1930. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1931. * unmapping.
  1932. */
  1933. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1934. unsigned int len)
  1935. {
  1936. unsigned long uaddr;
  1937. struct bio *bio;
  1938. int reading;
  1939. if (len > (q->max_hw_sectors << 9))
  1940. return -EINVAL;
  1941. if (!len || !ubuf)
  1942. return -EINVAL;
  1943. reading = rq_data_dir(rq) == READ;
  1944. /*
  1945. * if alignment requirement is satisfied, map in user pages for
  1946. * direct dma. else, set up kernel bounce buffers
  1947. */
  1948. uaddr = (unsigned long) ubuf;
  1949. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1950. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1951. else
  1952. bio = bio_copy_user(q, uaddr, len, reading);
  1953. if (!IS_ERR(bio)) {
  1954. rq->bio = rq->biotail = bio;
  1955. blk_rq_bio_prep(q, rq, bio);
  1956. rq->buffer = rq->data = NULL;
  1957. rq->data_len = len;
  1958. return 0;
  1959. }
  1960. /*
  1961. * bio is the err-ptr
  1962. */
  1963. return PTR_ERR(bio);
  1964. }
  1965. EXPORT_SYMBOL(blk_rq_map_user);
  1966. /**
  1967. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  1968. * @q: request queue where request should be inserted
  1969. * @rq: request to map data to
  1970. * @iov: pointer to the iovec
  1971. * @iov_count: number of elements in the iovec
  1972. *
  1973. * Description:
  1974. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1975. * a kernel bounce buffer is used.
  1976. *
  1977. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1978. * still in process context.
  1979. *
  1980. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1981. * before being submitted to the device, as pages mapped may be out of
  1982. * reach. It's the callers responsibility to make sure this happens. The
  1983. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1984. * unmapping.
  1985. */
  1986. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  1987. struct sg_iovec *iov, int iov_count)
  1988. {
  1989. struct bio *bio;
  1990. if (!iov || iov_count <= 0)
  1991. return -EINVAL;
  1992. /* we don't allow misaligned data like bio_map_user() does. If the
  1993. * user is using sg, they're expected to know the alignment constraints
  1994. * and respect them accordingly */
  1995. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  1996. if (IS_ERR(bio))
  1997. return PTR_ERR(bio);
  1998. rq->bio = rq->biotail = bio;
  1999. blk_rq_bio_prep(q, rq, bio);
  2000. rq->buffer = rq->data = NULL;
  2001. rq->data_len = bio->bi_size;
  2002. return 0;
  2003. }
  2004. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2005. /**
  2006. * blk_rq_unmap_user - unmap a request with user data
  2007. * @bio: bio to be unmapped
  2008. * @ulen: length of user buffer
  2009. *
  2010. * Description:
  2011. * Unmap a bio previously mapped by blk_rq_map_user().
  2012. */
  2013. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  2014. {
  2015. int ret = 0;
  2016. if (bio) {
  2017. if (bio_flagged(bio, BIO_USER_MAPPED))
  2018. bio_unmap_user(bio);
  2019. else
  2020. ret = bio_uncopy_user(bio);
  2021. }
  2022. return 0;
  2023. }
  2024. EXPORT_SYMBOL(blk_rq_unmap_user);
  2025. /**
  2026. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2027. * @q: request queue where request should be inserted
  2028. * @rq: request to fill
  2029. * @kbuf: the kernel buffer
  2030. * @len: length of user data
  2031. * @gfp_mask: memory allocation flags
  2032. */
  2033. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2034. unsigned int len, gfp_t gfp_mask)
  2035. {
  2036. struct bio *bio;
  2037. if (len > (q->max_hw_sectors << 9))
  2038. return -EINVAL;
  2039. if (!len || !kbuf)
  2040. return -EINVAL;
  2041. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2042. if (IS_ERR(bio))
  2043. return PTR_ERR(bio);
  2044. if (rq_data_dir(rq) == WRITE)
  2045. bio->bi_rw |= (1 << BIO_RW);
  2046. rq->bio = rq->biotail = bio;
  2047. blk_rq_bio_prep(q, rq, bio);
  2048. rq->buffer = rq->data = NULL;
  2049. rq->data_len = len;
  2050. return 0;
  2051. }
  2052. EXPORT_SYMBOL(blk_rq_map_kern);
  2053. /**
  2054. * blk_execute_rq_nowait - insert a request into queue for execution
  2055. * @q: queue to insert the request in
  2056. * @bd_disk: matching gendisk
  2057. * @rq: request to insert
  2058. * @at_head: insert request at head or tail of queue
  2059. * @done: I/O completion handler
  2060. *
  2061. * Description:
  2062. * Insert a fully prepared request at the back of the io scheduler queue
  2063. * for execution. Don't wait for completion.
  2064. */
  2065. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2066. struct request *rq, int at_head,
  2067. rq_end_io_fn *done)
  2068. {
  2069. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2070. rq->rq_disk = bd_disk;
  2071. rq->flags |= REQ_NOMERGE;
  2072. rq->end_io = done;
  2073. elv_add_request(q, rq, where, 1);
  2074. generic_unplug_device(q);
  2075. }
  2076. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2077. /**
  2078. * blk_execute_rq - insert a request into queue for execution
  2079. * @q: queue to insert the request in
  2080. * @bd_disk: matching gendisk
  2081. * @rq: request to insert
  2082. * @at_head: insert request at head or tail of queue
  2083. *
  2084. * Description:
  2085. * Insert a fully prepared request at the back of the io scheduler queue
  2086. * for execution and wait for completion.
  2087. */
  2088. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2089. struct request *rq, int at_head)
  2090. {
  2091. DECLARE_COMPLETION(wait);
  2092. char sense[SCSI_SENSE_BUFFERSIZE];
  2093. int err = 0;
  2094. /*
  2095. * we need an extra reference to the request, so we can look at
  2096. * it after io completion
  2097. */
  2098. rq->ref_count++;
  2099. if (!rq->sense) {
  2100. memset(sense, 0, sizeof(sense));
  2101. rq->sense = sense;
  2102. rq->sense_len = 0;
  2103. }
  2104. rq->waiting = &wait;
  2105. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2106. wait_for_completion(&wait);
  2107. rq->waiting = NULL;
  2108. if (rq->errors)
  2109. err = -EIO;
  2110. return err;
  2111. }
  2112. EXPORT_SYMBOL(blk_execute_rq);
  2113. /**
  2114. * blkdev_issue_flush - queue a flush
  2115. * @bdev: blockdev to issue flush for
  2116. * @error_sector: error sector
  2117. *
  2118. * Description:
  2119. * Issue a flush for the block device in question. Caller can supply
  2120. * room for storing the error offset in case of a flush error, if they
  2121. * wish to. Caller must run wait_for_completion() on its own.
  2122. */
  2123. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2124. {
  2125. request_queue_t *q;
  2126. if (bdev->bd_disk == NULL)
  2127. return -ENXIO;
  2128. q = bdev_get_queue(bdev);
  2129. if (!q)
  2130. return -ENXIO;
  2131. if (!q->issue_flush_fn)
  2132. return -EOPNOTSUPP;
  2133. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2134. }
  2135. EXPORT_SYMBOL(blkdev_issue_flush);
  2136. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2137. {
  2138. int rw = rq_data_dir(rq);
  2139. if (!blk_fs_request(rq) || !rq->rq_disk)
  2140. return;
  2141. if (!new_io) {
  2142. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2143. } else {
  2144. disk_round_stats(rq->rq_disk);
  2145. rq->rq_disk->in_flight++;
  2146. }
  2147. }
  2148. /*
  2149. * add-request adds a request to the linked list.
  2150. * queue lock is held and interrupts disabled, as we muck with the
  2151. * request queue list.
  2152. */
  2153. static inline void add_request(request_queue_t * q, struct request * req)
  2154. {
  2155. drive_stat_acct(req, req->nr_sectors, 1);
  2156. if (q->activity_fn)
  2157. q->activity_fn(q->activity_data, rq_data_dir(req));
  2158. /*
  2159. * elevator indicated where it wants this request to be
  2160. * inserted at elevator_merge time
  2161. */
  2162. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2163. }
  2164. /*
  2165. * disk_round_stats() - Round off the performance stats on a struct
  2166. * disk_stats.
  2167. *
  2168. * The average IO queue length and utilisation statistics are maintained
  2169. * by observing the current state of the queue length and the amount of
  2170. * time it has been in this state for.
  2171. *
  2172. * Normally, that accounting is done on IO completion, but that can result
  2173. * in more than a second's worth of IO being accounted for within any one
  2174. * second, leading to >100% utilisation. To deal with that, we call this
  2175. * function to do a round-off before returning the results when reading
  2176. * /proc/diskstats. This accounts immediately for all queue usage up to
  2177. * the current jiffies and restarts the counters again.
  2178. */
  2179. void disk_round_stats(struct gendisk *disk)
  2180. {
  2181. unsigned long now = jiffies;
  2182. if (now == disk->stamp)
  2183. return;
  2184. if (disk->in_flight) {
  2185. __disk_stat_add(disk, time_in_queue,
  2186. disk->in_flight * (now - disk->stamp));
  2187. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2188. }
  2189. disk->stamp = now;
  2190. }
  2191. /*
  2192. * queue lock must be held
  2193. */
  2194. void __blk_put_request(request_queue_t *q, struct request *req)
  2195. {
  2196. struct request_list *rl = req->rl;
  2197. if (unlikely(!q))
  2198. return;
  2199. if (unlikely(--req->ref_count))
  2200. return;
  2201. elv_completed_request(q, req);
  2202. req->rq_status = RQ_INACTIVE;
  2203. req->rl = NULL;
  2204. /*
  2205. * Request may not have originated from ll_rw_blk. if not,
  2206. * it didn't come out of our reserved rq pools
  2207. */
  2208. if (rl) {
  2209. int rw = rq_data_dir(req);
  2210. int priv = req->flags & REQ_ELVPRIV;
  2211. BUG_ON(!list_empty(&req->queuelist));
  2212. blk_free_request(q, req);
  2213. freed_request(q, rw, priv);
  2214. }
  2215. }
  2216. EXPORT_SYMBOL_GPL(__blk_put_request);
  2217. void blk_put_request(struct request *req)
  2218. {
  2219. unsigned long flags;
  2220. request_queue_t *q = req->q;
  2221. /*
  2222. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2223. * following if (q) test.
  2224. */
  2225. if (q) {
  2226. spin_lock_irqsave(q->queue_lock, flags);
  2227. __blk_put_request(q, req);
  2228. spin_unlock_irqrestore(q->queue_lock, flags);
  2229. }
  2230. }
  2231. EXPORT_SYMBOL(blk_put_request);
  2232. /**
  2233. * blk_end_sync_rq - executes a completion event on a request
  2234. * @rq: request to complete
  2235. */
  2236. void blk_end_sync_rq(struct request *rq, int error)
  2237. {
  2238. struct completion *waiting = rq->waiting;
  2239. rq->waiting = NULL;
  2240. __blk_put_request(rq->q, rq);
  2241. /*
  2242. * complete last, if this is a stack request the process (and thus
  2243. * the rq pointer) could be invalid right after this complete()
  2244. */
  2245. complete(waiting);
  2246. }
  2247. EXPORT_SYMBOL(blk_end_sync_rq);
  2248. /**
  2249. * blk_congestion_wait - wait for a queue to become uncongested
  2250. * @rw: READ or WRITE
  2251. * @timeout: timeout in jiffies
  2252. *
  2253. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2254. * If no queues are congested then just wait for the next request to be
  2255. * returned.
  2256. */
  2257. long blk_congestion_wait(int rw, long timeout)
  2258. {
  2259. long ret;
  2260. DEFINE_WAIT(wait);
  2261. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2262. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2263. ret = io_schedule_timeout(timeout);
  2264. finish_wait(wqh, &wait);
  2265. return ret;
  2266. }
  2267. EXPORT_SYMBOL(blk_congestion_wait);
  2268. /*
  2269. * Has to be called with the request spinlock acquired
  2270. */
  2271. static int attempt_merge(request_queue_t *q, struct request *req,
  2272. struct request *next)
  2273. {
  2274. if (!rq_mergeable(req) || !rq_mergeable(next))
  2275. return 0;
  2276. /*
  2277. * not contigious
  2278. */
  2279. if (req->sector + req->nr_sectors != next->sector)
  2280. return 0;
  2281. if (rq_data_dir(req) != rq_data_dir(next)
  2282. || req->rq_disk != next->rq_disk
  2283. || next->waiting || next->special)
  2284. return 0;
  2285. /*
  2286. * If we are allowed to merge, then append bio list
  2287. * from next to rq and release next. merge_requests_fn
  2288. * will have updated segment counts, update sector
  2289. * counts here.
  2290. */
  2291. if (!q->merge_requests_fn(q, req, next))
  2292. return 0;
  2293. /*
  2294. * At this point we have either done a back merge
  2295. * or front merge. We need the smaller start_time of
  2296. * the merged requests to be the current request
  2297. * for accounting purposes.
  2298. */
  2299. if (time_after(req->start_time, next->start_time))
  2300. req->start_time = next->start_time;
  2301. req->biotail->bi_next = next->bio;
  2302. req->biotail = next->biotail;
  2303. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2304. elv_merge_requests(q, req, next);
  2305. if (req->rq_disk) {
  2306. disk_round_stats(req->rq_disk);
  2307. req->rq_disk->in_flight--;
  2308. }
  2309. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2310. __blk_put_request(q, next);
  2311. return 1;
  2312. }
  2313. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2314. {
  2315. struct request *next = elv_latter_request(q, rq);
  2316. if (next)
  2317. return attempt_merge(q, rq, next);
  2318. return 0;
  2319. }
  2320. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2321. {
  2322. struct request *prev = elv_former_request(q, rq);
  2323. if (prev)
  2324. return attempt_merge(q, prev, rq);
  2325. return 0;
  2326. }
  2327. static void init_request_from_bio(struct request *req, struct bio *bio)
  2328. {
  2329. req->flags |= REQ_CMD;
  2330. /*
  2331. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2332. */
  2333. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2334. req->flags |= REQ_FAILFAST;
  2335. /*
  2336. * REQ_BARRIER implies no merging, but lets make it explicit
  2337. */
  2338. if (unlikely(bio_barrier(bio)))
  2339. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2340. req->errors = 0;
  2341. req->hard_sector = req->sector = bio->bi_sector;
  2342. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2343. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2344. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2345. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2346. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2347. req->waiting = NULL;
  2348. req->bio = req->biotail = bio;
  2349. req->ioprio = bio_prio(bio);
  2350. req->rq_disk = bio->bi_bdev->bd_disk;
  2351. req->start_time = jiffies;
  2352. }
  2353. static int __make_request(request_queue_t *q, struct bio *bio)
  2354. {
  2355. struct request *req;
  2356. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2357. unsigned short prio;
  2358. sector_t sector;
  2359. sector = bio->bi_sector;
  2360. nr_sectors = bio_sectors(bio);
  2361. cur_nr_sectors = bio_cur_sectors(bio);
  2362. prio = bio_prio(bio);
  2363. rw = bio_data_dir(bio);
  2364. sync = bio_sync(bio);
  2365. /*
  2366. * low level driver can indicate that it wants pages above a
  2367. * certain limit bounced to low memory (ie for highmem, or even
  2368. * ISA dma in theory)
  2369. */
  2370. blk_queue_bounce(q, &bio);
  2371. spin_lock_prefetch(q->queue_lock);
  2372. barrier = bio_barrier(bio);
  2373. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2374. err = -EOPNOTSUPP;
  2375. goto end_io;
  2376. }
  2377. spin_lock_irq(q->queue_lock);
  2378. if (unlikely(barrier) || elv_queue_empty(q))
  2379. goto get_rq;
  2380. el_ret = elv_merge(q, &req, bio);
  2381. switch (el_ret) {
  2382. case ELEVATOR_BACK_MERGE:
  2383. BUG_ON(!rq_mergeable(req));
  2384. if (!q->back_merge_fn(q, req, bio))
  2385. break;
  2386. req->biotail->bi_next = bio;
  2387. req->biotail = bio;
  2388. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2389. req->ioprio = ioprio_best(req->ioprio, prio);
  2390. drive_stat_acct(req, nr_sectors, 0);
  2391. if (!attempt_back_merge(q, req))
  2392. elv_merged_request(q, req);
  2393. goto out;
  2394. case ELEVATOR_FRONT_MERGE:
  2395. BUG_ON(!rq_mergeable(req));
  2396. if (!q->front_merge_fn(q, req, bio))
  2397. break;
  2398. bio->bi_next = req->bio;
  2399. req->bio = bio;
  2400. /*
  2401. * may not be valid. if the low level driver said
  2402. * it didn't need a bounce buffer then it better
  2403. * not touch req->buffer either...
  2404. */
  2405. req->buffer = bio_data(bio);
  2406. req->current_nr_sectors = cur_nr_sectors;
  2407. req->hard_cur_sectors = cur_nr_sectors;
  2408. req->sector = req->hard_sector = sector;
  2409. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2410. req->ioprio = ioprio_best(req->ioprio, prio);
  2411. drive_stat_acct(req, nr_sectors, 0);
  2412. if (!attempt_front_merge(q, req))
  2413. elv_merged_request(q, req);
  2414. goto out;
  2415. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2416. default:
  2417. ;
  2418. }
  2419. get_rq:
  2420. /*
  2421. * Grab a free request. This is might sleep but can not fail.
  2422. * Returns with the queue unlocked.
  2423. */
  2424. req = get_request_wait(q, rw, bio);
  2425. /*
  2426. * After dropping the lock and possibly sleeping here, our request
  2427. * may now be mergeable after it had proven unmergeable (above).
  2428. * We don't worry about that case for efficiency. It won't happen
  2429. * often, and the elevators are able to handle it.
  2430. */
  2431. init_request_from_bio(req, bio);
  2432. spin_lock_irq(q->queue_lock);
  2433. if (elv_queue_empty(q))
  2434. blk_plug_device(q);
  2435. add_request(q, req);
  2436. out:
  2437. if (sync)
  2438. __generic_unplug_device(q);
  2439. spin_unlock_irq(q->queue_lock);
  2440. return 0;
  2441. end_io:
  2442. bio_endio(bio, nr_sectors << 9, err);
  2443. return 0;
  2444. }
  2445. /*
  2446. * If bio->bi_dev is a partition, remap the location
  2447. */
  2448. static inline void blk_partition_remap(struct bio *bio)
  2449. {
  2450. struct block_device *bdev = bio->bi_bdev;
  2451. if (bdev != bdev->bd_contains) {
  2452. struct hd_struct *p = bdev->bd_part;
  2453. const int rw = bio_data_dir(bio);
  2454. p->sectors[rw] += bio_sectors(bio);
  2455. p->ios[rw]++;
  2456. bio->bi_sector += p->start_sect;
  2457. bio->bi_bdev = bdev->bd_contains;
  2458. }
  2459. }
  2460. static void handle_bad_sector(struct bio *bio)
  2461. {
  2462. char b[BDEVNAME_SIZE];
  2463. printk(KERN_INFO "attempt to access beyond end of device\n");
  2464. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2465. bdevname(bio->bi_bdev, b),
  2466. bio->bi_rw,
  2467. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2468. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2469. set_bit(BIO_EOF, &bio->bi_flags);
  2470. }
  2471. /**
  2472. * generic_make_request: hand a buffer to its device driver for I/O
  2473. * @bio: The bio describing the location in memory and on the device.
  2474. *
  2475. * generic_make_request() is used to make I/O requests of block
  2476. * devices. It is passed a &struct bio, which describes the I/O that needs
  2477. * to be done.
  2478. *
  2479. * generic_make_request() does not return any status. The
  2480. * success/failure status of the request, along with notification of
  2481. * completion, is delivered asynchronously through the bio->bi_end_io
  2482. * function described (one day) else where.
  2483. *
  2484. * The caller of generic_make_request must make sure that bi_io_vec
  2485. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2486. * set to describe the device address, and the
  2487. * bi_end_io and optionally bi_private are set to describe how
  2488. * completion notification should be signaled.
  2489. *
  2490. * generic_make_request and the drivers it calls may use bi_next if this
  2491. * bio happens to be merged with someone else, and may change bi_dev and
  2492. * bi_sector for remaps as it sees fit. So the values of these fields
  2493. * should NOT be depended on after the call to generic_make_request.
  2494. */
  2495. void generic_make_request(struct bio *bio)
  2496. {
  2497. request_queue_t *q;
  2498. sector_t maxsector;
  2499. int ret, nr_sectors = bio_sectors(bio);
  2500. might_sleep();
  2501. /* Test device or partition size, when known. */
  2502. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2503. if (maxsector) {
  2504. sector_t sector = bio->bi_sector;
  2505. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2506. /*
  2507. * This may well happen - the kernel calls bread()
  2508. * without checking the size of the device, e.g., when
  2509. * mounting a device.
  2510. */
  2511. handle_bad_sector(bio);
  2512. goto end_io;
  2513. }
  2514. }
  2515. /*
  2516. * Resolve the mapping until finished. (drivers are
  2517. * still free to implement/resolve their own stacking
  2518. * by explicitly returning 0)
  2519. *
  2520. * NOTE: we don't repeat the blk_size check for each new device.
  2521. * Stacking drivers are expected to know what they are doing.
  2522. */
  2523. do {
  2524. char b[BDEVNAME_SIZE];
  2525. q = bdev_get_queue(bio->bi_bdev);
  2526. if (!q) {
  2527. printk(KERN_ERR
  2528. "generic_make_request: Trying to access "
  2529. "nonexistent block-device %s (%Lu)\n",
  2530. bdevname(bio->bi_bdev, b),
  2531. (long long) bio->bi_sector);
  2532. end_io:
  2533. bio_endio(bio, bio->bi_size, -EIO);
  2534. break;
  2535. }
  2536. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2537. printk("bio too big device %s (%u > %u)\n",
  2538. bdevname(bio->bi_bdev, b),
  2539. bio_sectors(bio),
  2540. q->max_hw_sectors);
  2541. goto end_io;
  2542. }
  2543. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2544. goto end_io;
  2545. /*
  2546. * If this device has partitions, remap block n
  2547. * of partition p to block n+start(p) of the disk.
  2548. */
  2549. blk_partition_remap(bio);
  2550. ret = q->make_request_fn(q, bio);
  2551. } while (ret);
  2552. }
  2553. EXPORT_SYMBOL(generic_make_request);
  2554. /**
  2555. * submit_bio: submit a bio to the block device layer for I/O
  2556. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2557. * @bio: The &struct bio which describes the I/O
  2558. *
  2559. * submit_bio() is very similar in purpose to generic_make_request(), and
  2560. * uses that function to do most of the work. Both are fairly rough
  2561. * interfaces, @bio must be presetup and ready for I/O.
  2562. *
  2563. */
  2564. void submit_bio(int rw, struct bio *bio)
  2565. {
  2566. int count = bio_sectors(bio);
  2567. BIO_BUG_ON(!bio->bi_size);
  2568. BIO_BUG_ON(!bio->bi_io_vec);
  2569. bio->bi_rw |= rw;
  2570. if (rw & WRITE)
  2571. mod_page_state(pgpgout, count);
  2572. else
  2573. mod_page_state(pgpgin, count);
  2574. if (unlikely(block_dump)) {
  2575. char b[BDEVNAME_SIZE];
  2576. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2577. current->comm, current->pid,
  2578. (rw & WRITE) ? "WRITE" : "READ",
  2579. (unsigned long long)bio->bi_sector,
  2580. bdevname(bio->bi_bdev,b));
  2581. }
  2582. generic_make_request(bio);
  2583. }
  2584. EXPORT_SYMBOL(submit_bio);
  2585. static void blk_recalc_rq_segments(struct request *rq)
  2586. {
  2587. struct bio *bio, *prevbio = NULL;
  2588. int nr_phys_segs, nr_hw_segs;
  2589. unsigned int phys_size, hw_size;
  2590. request_queue_t *q = rq->q;
  2591. if (!rq->bio)
  2592. return;
  2593. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2594. rq_for_each_bio(bio, rq) {
  2595. /* Force bio hw/phys segs to be recalculated. */
  2596. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2597. nr_phys_segs += bio_phys_segments(q, bio);
  2598. nr_hw_segs += bio_hw_segments(q, bio);
  2599. if (prevbio) {
  2600. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2601. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2602. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2603. pseg <= q->max_segment_size) {
  2604. nr_phys_segs--;
  2605. phys_size += prevbio->bi_size + bio->bi_size;
  2606. } else
  2607. phys_size = 0;
  2608. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2609. hseg <= q->max_segment_size) {
  2610. nr_hw_segs--;
  2611. hw_size += prevbio->bi_size + bio->bi_size;
  2612. } else
  2613. hw_size = 0;
  2614. }
  2615. prevbio = bio;
  2616. }
  2617. rq->nr_phys_segments = nr_phys_segs;
  2618. rq->nr_hw_segments = nr_hw_segs;
  2619. }
  2620. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2621. {
  2622. if (blk_fs_request(rq)) {
  2623. rq->hard_sector += nsect;
  2624. rq->hard_nr_sectors -= nsect;
  2625. /*
  2626. * Move the I/O submission pointers ahead if required.
  2627. */
  2628. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2629. (rq->sector <= rq->hard_sector)) {
  2630. rq->sector = rq->hard_sector;
  2631. rq->nr_sectors = rq->hard_nr_sectors;
  2632. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2633. rq->current_nr_sectors = rq->hard_cur_sectors;
  2634. rq->buffer = bio_data(rq->bio);
  2635. }
  2636. /*
  2637. * if total number of sectors is less than the first segment
  2638. * size, something has gone terribly wrong
  2639. */
  2640. if (rq->nr_sectors < rq->current_nr_sectors) {
  2641. printk("blk: request botched\n");
  2642. rq->nr_sectors = rq->current_nr_sectors;
  2643. }
  2644. }
  2645. }
  2646. static int __end_that_request_first(struct request *req, int uptodate,
  2647. int nr_bytes)
  2648. {
  2649. int total_bytes, bio_nbytes, error, next_idx = 0;
  2650. struct bio *bio;
  2651. /*
  2652. * extend uptodate bool to allow < 0 value to be direct io error
  2653. */
  2654. error = 0;
  2655. if (end_io_error(uptodate))
  2656. error = !uptodate ? -EIO : uptodate;
  2657. /*
  2658. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2659. * sense key with us all the way through
  2660. */
  2661. if (!blk_pc_request(req))
  2662. req->errors = 0;
  2663. if (!uptodate) {
  2664. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2665. printk("end_request: I/O error, dev %s, sector %llu\n",
  2666. req->rq_disk ? req->rq_disk->disk_name : "?",
  2667. (unsigned long long)req->sector);
  2668. }
  2669. if (blk_fs_request(req) && req->rq_disk) {
  2670. const int rw = rq_data_dir(req);
  2671. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2672. }
  2673. total_bytes = bio_nbytes = 0;
  2674. while ((bio = req->bio) != NULL) {
  2675. int nbytes;
  2676. if (nr_bytes >= bio->bi_size) {
  2677. req->bio = bio->bi_next;
  2678. nbytes = bio->bi_size;
  2679. if (!ordered_bio_endio(req, bio, nbytes, error))
  2680. bio_endio(bio, nbytes, error);
  2681. next_idx = 0;
  2682. bio_nbytes = 0;
  2683. } else {
  2684. int idx = bio->bi_idx + next_idx;
  2685. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2686. blk_dump_rq_flags(req, "__end_that");
  2687. printk("%s: bio idx %d >= vcnt %d\n",
  2688. __FUNCTION__,
  2689. bio->bi_idx, bio->bi_vcnt);
  2690. break;
  2691. }
  2692. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2693. BIO_BUG_ON(nbytes > bio->bi_size);
  2694. /*
  2695. * not a complete bvec done
  2696. */
  2697. if (unlikely(nbytes > nr_bytes)) {
  2698. bio_nbytes += nr_bytes;
  2699. total_bytes += nr_bytes;
  2700. break;
  2701. }
  2702. /*
  2703. * advance to the next vector
  2704. */
  2705. next_idx++;
  2706. bio_nbytes += nbytes;
  2707. }
  2708. total_bytes += nbytes;
  2709. nr_bytes -= nbytes;
  2710. if ((bio = req->bio)) {
  2711. /*
  2712. * end more in this run, or just return 'not-done'
  2713. */
  2714. if (unlikely(nr_bytes <= 0))
  2715. break;
  2716. }
  2717. }
  2718. /*
  2719. * completely done
  2720. */
  2721. if (!req->bio)
  2722. return 0;
  2723. /*
  2724. * if the request wasn't completed, update state
  2725. */
  2726. if (bio_nbytes) {
  2727. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2728. bio_endio(bio, bio_nbytes, error);
  2729. bio->bi_idx += next_idx;
  2730. bio_iovec(bio)->bv_offset += nr_bytes;
  2731. bio_iovec(bio)->bv_len -= nr_bytes;
  2732. }
  2733. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2734. blk_recalc_rq_segments(req);
  2735. return 1;
  2736. }
  2737. /**
  2738. * end_that_request_first - end I/O on a request
  2739. * @req: the request being processed
  2740. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2741. * @nr_sectors: number of sectors to end I/O on
  2742. *
  2743. * Description:
  2744. * Ends I/O on a number of sectors attached to @req, and sets it up
  2745. * for the next range of segments (if any) in the cluster.
  2746. *
  2747. * Return:
  2748. * 0 - we are done with this request, call end_that_request_last()
  2749. * 1 - still buffers pending for this request
  2750. **/
  2751. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2752. {
  2753. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2754. }
  2755. EXPORT_SYMBOL(end_that_request_first);
  2756. /**
  2757. * end_that_request_chunk - end I/O on a request
  2758. * @req: the request being processed
  2759. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2760. * @nr_bytes: number of bytes to complete
  2761. *
  2762. * Description:
  2763. * Ends I/O on a number of bytes attached to @req, and sets it up
  2764. * for the next range of segments (if any). Like end_that_request_first(),
  2765. * but deals with bytes instead of sectors.
  2766. *
  2767. * Return:
  2768. * 0 - we are done with this request, call end_that_request_last()
  2769. * 1 - still buffers pending for this request
  2770. **/
  2771. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2772. {
  2773. return __end_that_request_first(req, uptodate, nr_bytes);
  2774. }
  2775. EXPORT_SYMBOL(end_that_request_chunk);
  2776. /*
  2777. * splice the completion data to a local structure and hand off to
  2778. * process_completion_queue() to complete the requests
  2779. */
  2780. static void blk_done_softirq(struct softirq_action *h)
  2781. {
  2782. struct list_head *cpu_list;
  2783. LIST_HEAD(local_list);
  2784. local_irq_disable();
  2785. cpu_list = &__get_cpu_var(blk_cpu_done);
  2786. list_splice_init(cpu_list, &local_list);
  2787. local_irq_enable();
  2788. while (!list_empty(&local_list)) {
  2789. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2790. list_del_init(&rq->donelist);
  2791. rq->q->softirq_done_fn(rq);
  2792. }
  2793. }
  2794. #ifdef CONFIG_HOTPLUG_CPU
  2795. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2796. void *hcpu)
  2797. {
  2798. /*
  2799. * If a CPU goes away, splice its entries to the current CPU
  2800. * and trigger a run of the softirq
  2801. */
  2802. if (action == CPU_DEAD) {
  2803. int cpu = (unsigned long) hcpu;
  2804. local_irq_disable();
  2805. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2806. &__get_cpu_var(blk_cpu_done));
  2807. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2808. local_irq_enable();
  2809. }
  2810. return NOTIFY_OK;
  2811. }
  2812. static struct notifier_block __devinitdata blk_cpu_notifier = {
  2813. .notifier_call = blk_cpu_notify,
  2814. };
  2815. #endif /* CONFIG_HOTPLUG_CPU */
  2816. /**
  2817. * blk_complete_request - end I/O on a request
  2818. * @req: the request being processed
  2819. *
  2820. * Description:
  2821. * Ends all I/O on a request. It does not handle partial completions,
  2822. * unless the driver actually implements this in its completionc callback
  2823. * through requeueing. Theh actual completion happens out-of-order,
  2824. * through a softirq handler. The user must have registered a completion
  2825. * callback through blk_queue_softirq_done().
  2826. **/
  2827. void blk_complete_request(struct request *req)
  2828. {
  2829. struct list_head *cpu_list;
  2830. unsigned long flags;
  2831. BUG_ON(!req->q->softirq_done_fn);
  2832. local_irq_save(flags);
  2833. cpu_list = &__get_cpu_var(blk_cpu_done);
  2834. list_add_tail(&req->donelist, cpu_list);
  2835. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2836. local_irq_restore(flags);
  2837. }
  2838. EXPORT_SYMBOL(blk_complete_request);
  2839. /*
  2840. * queue lock must be held
  2841. */
  2842. void end_that_request_last(struct request *req, int uptodate)
  2843. {
  2844. struct gendisk *disk = req->rq_disk;
  2845. int error;
  2846. /*
  2847. * extend uptodate bool to allow < 0 value to be direct io error
  2848. */
  2849. error = 0;
  2850. if (end_io_error(uptodate))
  2851. error = !uptodate ? -EIO : uptodate;
  2852. if (unlikely(laptop_mode) && blk_fs_request(req))
  2853. laptop_io_completion();
  2854. if (disk && blk_fs_request(req)) {
  2855. unsigned long duration = jiffies - req->start_time;
  2856. const int rw = rq_data_dir(req);
  2857. __disk_stat_inc(disk, ios[rw]);
  2858. __disk_stat_add(disk, ticks[rw], duration);
  2859. disk_round_stats(disk);
  2860. disk->in_flight--;
  2861. }
  2862. if (req->end_io)
  2863. req->end_io(req, error);
  2864. else
  2865. __blk_put_request(req->q, req);
  2866. }
  2867. EXPORT_SYMBOL(end_that_request_last);
  2868. void end_request(struct request *req, int uptodate)
  2869. {
  2870. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2871. add_disk_randomness(req->rq_disk);
  2872. blkdev_dequeue_request(req);
  2873. end_that_request_last(req, uptodate);
  2874. }
  2875. }
  2876. EXPORT_SYMBOL(end_request);
  2877. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2878. {
  2879. /* first three bits are identical in rq->flags and bio->bi_rw */
  2880. rq->flags |= (bio->bi_rw & 7);
  2881. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2882. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2883. rq->current_nr_sectors = bio_cur_sectors(bio);
  2884. rq->hard_cur_sectors = rq->current_nr_sectors;
  2885. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2886. rq->buffer = bio_data(bio);
  2887. rq->bio = rq->biotail = bio;
  2888. }
  2889. EXPORT_SYMBOL(blk_rq_bio_prep);
  2890. int kblockd_schedule_work(struct work_struct *work)
  2891. {
  2892. return queue_work(kblockd_workqueue, work);
  2893. }
  2894. EXPORT_SYMBOL(kblockd_schedule_work);
  2895. void kblockd_flush(void)
  2896. {
  2897. flush_workqueue(kblockd_workqueue);
  2898. }
  2899. EXPORT_SYMBOL(kblockd_flush);
  2900. int __init blk_dev_init(void)
  2901. {
  2902. int i;
  2903. kblockd_workqueue = create_workqueue("kblockd");
  2904. if (!kblockd_workqueue)
  2905. panic("Failed to create kblockd\n");
  2906. request_cachep = kmem_cache_create("blkdev_requests",
  2907. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2908. requestq_cachep = kmem_cache_create("blkdev_queue",
  2909. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2910. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2911. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2912. for (i = 0; i < NR_CPUS; i++)
  2913. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  2914. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  2915. #ifdef CONFIG_HOTPLUG_CPU
  2916. register_cpu_notifier(&blk_cpu_notifier);
  2917. #endif
  2918. blk_max_low_pfn = max_low_pfn;
  2919. blk_max_pfn = max_pfn;
  2920. return 0;
  2921. }
  2922. /*
  2923. * IO Context helper functions
  2924. */
  2925. void put_io_context(struct io_context *ioc)
  2926. {
  2927. if (ioc == NULL)
  2928. return;
  2929. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2930. if (atomic_dec_and_test(&ioc->refcount)) {
  2931. if (ioc->aic && ioc->aic->dtor)
  2932. ioc->aic->dtor(ioc->aic);
  2933. if (ioc->cic && ioc->cic->dtor)
  2934. ioc->cic->dtor(ioc->cic);
  2935. kmem_cache_free(iocontext_cachep, ioc);
  2936. }
  2937. }
  2938. EXPORT_SYMBOL(put_io_context);
  2939. /* Called by the exitting task */
  2940. void exit_io_context(void)
  2941. {
  2942. unsigned long flags;
  2943. struct io_context *ioc;
  2944. local_irq_save(flags);
  2945. task_lock(current);
  2946. ioc = current->io_context;
  2947. current->io_context = NULL;
  2948. ioc->task = NULL;
  2949. task_unlock(current);
  2950. local_irq_restore(flags);
  2951. if (ioc->aic && ioc->aic->exit)
  2952. ioc->aic->exit(ioc->aic);
  2953. if (ioc->cic && ioc->cic->exit)
  2954. ioc->cic->exit(ioc->cic);
  2955. put_io_context(ioc);
  2956. }
  2957. /*
  2958. * If the current task has no IO context then create one and initialise it.
  2959. * Otherwise, return its existing IO context.
  2960. *
  2961. * This returned IO context doesn't have a specifically elevated refcount,
  2962. * but since the current task itself holds a reference, the context can be
  2963. * used in general code, so long as it stays within `current` context.
  2964. */
  2965. struct io_context *current_io_context(gfp_t gfp_flags)
  2966. {
  2967. struct task_struct *tsk = current;
  2968. struct io_context *ret;
  2969. ret = tsk->io_context;
  2970. if (likely(ret))
  2971. return ret;
  2972. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2973. if (ret) {
  2974. atomic_set(&ret->refcount, 1);
  2975. ret->task = current;
  2976. ret->set_ioprio = NULL;
  2977. ret->last_waited = jiffies; /* doesn't matter... */
  2978. ret->nr_batch_requests = 0; /* because this is 0 */
  2979. ret->aic = NULL;
  2980. ret->cic = NULL;
  2981. tsk->io_context = ret;
  2982. }
  2983. return ret;
  2984. }
  2985. EXPORT_SYMBOL(current_io_context);
  2986. /*
  2987. * If the current task has no IO context then create one and initialise it.
  2988. * If it does have a context, take a ref on it.
  2989. *
  2990. * This is always called in the context of the task which submitted the I/O.
  2991. */
  2992. struct io_context *get_io_context(gfp_t gfp_flags)
  2993. {
  2994. struct io_context *ret;
  2995. ret = current_io_context(gfp_flags);
  2996. if (likely(ret))
  2997. atomic_inc(&ret->refcount);
  2998. return ret;
  2999. }
  3000. EXPORT_SYMBOL(get_io_context);
  3001. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3002. {
  3003. struct io_context *src = *psrc;
  3004. struct io_context *dst = *pdst;
  3005. if (src) {
  3006. BUG_ON(atomic_read(&src->refcount) == 0);
  3007. atomic_inc(&src->refcount);
  3008. put_io_context(dst);
  3009. *pdst = src;
  3010. }
  3011. }
  3012. EXPORT_SYMBOL(copy_io_context);
  3013. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3014. {
  3015. struct io_context *temp;
  3016. temp = *ioc1;
  3017. *ioc1 = *ioc2;
  3018. *ioc2 = temp;
  3019. }
  3020. EXPORT_SYMBOL(swap_io_context);
  3021. /*
  3022. * sysfs parts below
  3023. */
  3024. struct queue_sysfs_entry {
  3025. struct attribute attr;
  3026. ssize_t (*show)(struct request_queue *, char *);
  3027. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3028. };
  3029. static ssize_t
  3030. queue_var_show(unsigned int var, char *page)
  3031. {
  3032. return sprintf(page, "%d\n", var);
  3033. }
  3034. static ssize_t
  3035. queue_var_store(unsigned long *var, const char *page, size_t count)
  3036. {
  3037. char *p = (char *) page;
  3038. *var = simple_strtoul(p, &p, 10);
  3039. return count;
  3040. }
  3041. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3042. {
  3043. return queue_var_show(q->nr_requests, (page));
  3044. }
  3045. static ssize_t
  3046. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3047. {
  3048. struct request_list *rl = &q->rq;
  3049. int ret = queue_var_store(&q->nr_requests, page, count);
  3050. if (q->nr_requests < BLKDEV_MIN_RQ)
  3051. q->nr_requests = BLKDEV_MIN_RQ;
  3052. blk_queue_congestion_threshold(q);
  3053. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3054. set_queue_congested(q, READ);
  3055. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3056. clear_queue_congested(q, READ);
  3057. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3058. set_queue_congested(q, WRITE);
  3059. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3060. clear_queue_congested(q, WRITE);
  3061. if (rl->count[READ] >= q->nr_requests) {
  3062. blk_set_queue_full(q, READ);
  3063. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3064. blk_clear_queue_full(q, READ);
  3065. wake_up(&rl->wait[READ]);
  3066. }
  3067. if (rl->count[WRITE] >= q->nr_requests) {
  3068. blk_set_queue_full(q, WRITE);
  3069. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3070. blk_clear_queue_full(q, WRITE);
  3071. wake_up(&rl->wait[WRITE]);
  3072. }
  3073. return ret;
  3074. }
  3075. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3076. {
  3077. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3078. return queue_var_show(ra_kb, (page));
  3079. }
  3080. static ssize_t
  3081. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3082. {
  3083. unsigned long ra_kb;
  3084. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3085. spin_lock_irq(q->queue_lock);
  3086. if (ra_kb > (q->max_sectors >> 1))
  3087. ra_kb = (q->max_sectors >> 1);
  3088. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3089. spin_unlock_irq(q->queue_lock);
  3090. return ret;
  3091. }
  3092. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3093. {
  3094. int max_sectors_kb = q->max_sectors >> 1;
  3095. return queue_var_show(max_sectors_kb, (page));
  3096. }
  3097. static ssize_t
  3098. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3099. {
  3100. unsigned long max_sectors_kb,
  3101. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3102. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3103. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3104. int ra_kb;
  3105. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3106. return -EINVAL;
  3107. /*
  3108. * Take the queue lock to update the readahead and max_sectors
  3109. * values synchronously:
  3110. */
  3111. spin_lock_irq(q->queue_lock);
  3112. /*
  3113. * Trim readahead window as well, if necessary:
  3114. */
  3115. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3116. if (ra_kb > max_sectors_kb)
  3117. q->backing_dev_info.ra_pages =
  3118. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3119. q->max_sectors = max_sectors_kb << 1;
  3120. spin_unlock_irq(q->queue_lock);
  3121. return ret;
  3122. }
  3123. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3124. {
  3125. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3126. return queue_var_show(max_hw_sectors_kb, (page));
  3127. }
  3128. static struct queue_sysfs_entry queue_requests_entry = {
  3129. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3130. .show = queue_requests_show,
  3131. .store = queue_requests_store,
  3132. };
  3133. static struct queue_sysfs_entry queue_ra_entry = {
  3134. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3135. .show = queue_ra_show,
  3136. .store = queue_ra_store,
  3137. };
  3138. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3139. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3140. .show = queue_max_sectors_show,
  3141. .store = queue_max_sectors_store,
  3142. };
  3143. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3144. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3145. .show = queue_max_hw_sectors_show,
  3146. };
  3147. static struct queue_sysfs_entry queue_iosched_entry = {
  3148. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3149. .show = elv_iosched_show,
  3150. .store = elv_iosched_store,
  3151. };
  3152. static struct attribute *default_attrs[] = {
  3153. &queue_requests_entry.attr,
  3154. &queue_ra_entry.attr,
  3155. &queue_max_hw_sectors_entry.attr,
  3156. &queue_max_sectors_entry.attr,
  3157. &queue_iosched_entry.attr,
  3158. NULL,
  3159. };
  3160. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3161. static ssize_t
  3162. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3163. {
  3164. struct queue_sysfs_entry *entry = to_queue(attr);
  3165. struct request_queue *q;
  3166. q = container_of(kobj, struct request_queue, kobj);
  3167. if (!entry->show)
  3168. return -EIO;
  3169. return entry->show(q, page);
  3170. }
  3171. static ssize_t
  3172. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3173. const char *page, size_t length)
  3174. {
  3175. struct queue_sysfs_entry *entry = to_queue(attr);
  3176. struct request_queue *q;
  3177. q = container_of(kobj, struct request_queue, kobj);
  3178. if (!entry->store)
  3179. return -EIO;
  3180. return entry->store(q, page, length);
  3181. }
  3182. static struct sysfs_ops queue_sysfs_ops = {
  3183. .show = queue_attr_show,
  3184. .store = queue_attr_store,
  3185. };
  3186. static struct kobj_type queue_ktype = {
  3187. .sysfs_ops = &queue_sysfs_ops,
  3188. .default_attrs = default_attrs,
  3189. };
  3190. int blk_register_queue(struct gendisk *disk)
  3191. {
  3192. int ret;
  3193. request_queue_t *q = disk->queue;
  3194. if (!q || !q->request_fn)
  3195. return -ENXIO;
  3196. q->kobj.parent = kobject_get(&disk->kobj);
  3197. if (!q->kobj.parent)
  3198. return -EBUSY;
  3199. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3200. q->kobj.ktype = &queue_ktype;
  3201. ret = kobject_register(&q->kobj);
  3202. if (ret < 0)
  3203. return ret;
  3204. ret = elv_register_queue(q);
  3205. if (ret) {
  3206. kobject_unregister(&q->kobj);
  3207. return ret;
  3208. }
  3209. return 0;
  3210. }
  3211. void blk_unregister_queue(struct gendisk *disk)
  3212. {
  3213. request_queue_t *q = disk->queue;
  3214. if (q && q->request_fn) {
  3215. elv_unregister_queue(q);
  3216. kobject_unregister(&q->kobj);
  3217. kobject_put(&disk->kobj);
  3218. }
  3219. }