ste_dma40.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <plat/ste_dma40.h>
  16. #include "ste_dma40_ll.h"
  17. #define D40_NAME "dma40"
  18. #define D40_PHY_CHAN -1
  19. /* For masking out/in 2 bit channel positions */
  20. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  21. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  22. /* Maximum iterations taken before giving up suspending a channel */
  23. #define D40_SUSPEND_MAX_IT 500
  24. /* Hardware requirement on LCLA alignment */
  25. #define LCLA_ALIGNMENT 0x40000
  26. /* Max number of links per event group */
  27. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  28. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  29. /* Attempts before giving up to trying to get pages that are aligned */
  30. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  31. /* Bit markings for allocation map */
  32. #define D40_ALLOC_FREE (1 << 31)
  33. #define D40_ALLOC_PHY (1 << 30)
  34. #define D40_ALLOC_LOG_FREE 0
  35. /* Hardware designer of the block */
  36. #define D40_HW_DESIGNER 0x8
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @dma_addr: DMA address, if mapped
  58. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  59. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  60. * one buffer to one buffer.
  61. */
  62. struct d40_lli_pool {
  63. void *base;
  64. int size;
  65. dma_addr_t dma_addr;
  66. /* Space for dst and src, plus an extra for padding */
  67. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  68. };
  69. /**
  70. * struct d40_desc - A descriptor is one DMA job.
  71. *
  72. * @lli_phy: LLI settings for physical channel. Both src and dst=
  73. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  74. * lli_len equals one.
  75. * @lli_log: Same as above but for logical channels.
  76. * @lli_pool: The pool with two entries pre-allocated.
  77. * @lli_len: Number of llis of current descriptor.
  78. * @lli_current: Number of transfered llis.
  79. * @lcla_alloc: Number of LCLA entries allocated.
  80. * @txd: DMA engine struct. Used for among other things for communication
  81. * during a transfer.
  82. * @node: List entry.
  83. * @is_in_client_list: true if the client owns this descriptor.
  84. * the previous one.
  85. *
  86. * This descriptor is used for both logical and physical transfers.
  87. */
  88. struct d40_desc {
  89. /* LLI physical */
  90. struct d40_phy_lli_bidir lli_phy;
  91. /* LLI logical */
  92. struct d40_log_lli_bidir lli_log;
  93. struct d40_lli_pool lli_pool;
  94. int lli_len;
  95. int lli_current;
  96. int lcla_alloc;
  97. struct dma_async_tx_descriptor txd;
  98. struct list_head node;
  99. bool is_in_client_list;
  100. };
  101. /**
  102. * struct d40_lcla_pool - LCLA pool settings and data.
  103. *
  104. * @base: The virtual address of LCLA. 18 bit aligned.
  105. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  106. * This pointer is only there for clean-up on error.
  107. * @pages: The number of pages needed for all physical channels.
  108. * Only used later for clean-up on error
  109. * @lock: Lock to protect the content in this struct.
  110. * @alloc_map: big map over which LCLA entry is own by which job.
  111. */
  112. struct d40_lcla_pool {
  113. void *base;
  114. dma_addr_t dma_addr;
  115. void *base_unaligned;
  116. int pages;
  117. spinlock_t lock;
  118. struct d40_desc **alloc_map;
  119. };
  120. /**
  121. * struct d40_phy_res - struct for handling eventlines mapped to physical
  122. * channels.
  123. *
  124. * @lock: A lock protection this entity.
  125. * @num: The physical channel number of this entity.
  126. * @allocated_src: Bit mapped to show which src event line's are mapped to
  127. * this physical channel. Can also be free or physically allocated.
  128. * @allocated_dst: Same as for src but is dst.
  129. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  130. * event line number.
  131. */
  132. struct d40_phy_res {
  133. spinlock_t lock;
  134. int num;
  135. u32 allocated_src;
  136. u32 allocated_dst;
  137. };
  138. struct d40_base;
  139. /**
  140. * struct d40_chan - Struct that describes a channel.
  141. *
  142. * @lock: A spinlock to protect this struct.
  143. * @log_num: The logical number, if any of this channel.
  144. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  145. * current cookie.
  146. * @pending_tx: The number of pending transfers. Used between interrupt handler
  147. * and tasklet.
  148. * @busy: Set to true when transfer is ongoing on this channel.
  149. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  150. * point is NULL, then the channel is not allocated.
  151. * @chan: DMA engine handle.
  152. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  153. * transfer and call client callback.
  154. * @client: Cliented owned descriptor list.
  155. * @active: Active descriptor.
  156. * @queue: Queued jobs.
  157. * @dma_cfg: The client configuration of this dma channel.
  158. * @configured: whether the dma_cfg configuration is valid
  159. * @base: Pointer to the device instance struct.
  160. * @src_def_cfg: Default cfg register setting for src.
  161. * @dst_def_cfg: Default cfg register setting for dst.
  162. * @log_def: Default logical channel settings.
  163. * @lcla: Space for one dst src pair for logical channel transfers.
  164. * @lcpa: Pointer to dst and src lcpa settings.
  165. *
  166. * This struct can either "be" a logical or a physical channel.
  167. */
  168. struct d40_chan {
  169. spinlock_t lock;
  170. int log_num;
  171. /* ID of the most recent completed transfer */
  172. int completed;
  173. int pending_tx;
  174. bool busy;
  175. struct d40_phy_res *phy_chan;
  176. struct dma_chan chan;
  177. struct tasklet_struct tasklet;
  178. struct list_head client;
  179. struct list_head active;
  180. struct list_head queue;
  181. struct stedma40_chan_cfg dma_cfg;
  182. bool configured;
  183. struct d40_base *base;
  184. /* Default register configurations */
  185. u32 src_def_cfg;
  186. u32 dst_def_cfg;
  187. struct d40_def_lcsp log_def;
  188. struct d40_log_lli_full *lcpa;
  189. /* Runtime reconfiguration */
  190. dma_addr_t runtime_addr;
  191. enum dma_data_direction runtime_direction;
  192. };
  193. /**
  194. * struct d40_base - The big global struct, one for each probe'd instance.
  195. *
  196. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  197. * @execmd_lock: Lock for execute command usage since several channels share
  198. * the same physical register.
  199. * @dev: The device structure.
  200. * @virtbase: The virtual base address of the DMA's register.
  201. * @rev: silicon revision detected.
  202. * @clk: Pointer to the DMA clock structure.
  203. * @phy_start: Physical memory start of the DMA registers.
  204. * @phy_size: Size of the DMA register map.
  205. * @irq: The IRQ number.
  206. * @num_phy_chans: The number of physical channels. Read from HW. This
  207. * is the number of available channels for this driver, not counting "Secure
  208. * mode" allocated physical channels.
  209. * @num_log_chans: The number of logical channels. Calculated from
  210. * num_phy_chans.
  211. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  212. * @dma_slave: dma_device channels that can do only do slave transfers.
  213. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  214. * @log_chans: Room for all possible logical channels in system.
  215. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  216. * to log_chans entries.
  217. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  218. * to phy_chans entries.
  219. * @plat_data: Pointer to provided platform_data which is the driver
  220. * configuration.
  221. * @phy_res: Vector containing all physical channels.
  222. * @lcla_pool: lcla pool settings and data.
  223. * @lcpa_base: The virtual mapped address of LCPA.
  224. * @phy_lcpa: The physical address of the LCPA.
  225. * @lcpa_size: The size of the LCPA area.
  226. * @desc_slab: cache for descriptors.
  227. */
  228. struct d40_base {
  229. spinlock_t interrupt_lock;
  230. spinlock_t execmd_lock;
  231. struct device *dev;
  232. void __iomem *virtbase;
  233. u8 rev:4;
  234. struct clk *clk;
  235. phys_addr_t phy_start;
  236. resource_size_t phy_size;
  237. int irq;
  238. int num_phy_chans;
  239. int num_log_chans;
  240. struct dma_device dma_both;
  241. struct dma_device dma_slave;
  242. struct dma_device dma_memcpy;
  243. struct d40_chan *phy_chans;
  244. struct d40_chan *log_chans;
  245. struct d40_chan **lookup_log_chans;
  246. struct d40_chan **lookup_phy_chans;
  247. struct stedma40_platform_data *plat_data;
  248. /* Physical half channels */
  249. struct d40_phy_res *phy_res;
  250. struct d40_lcla_pool lcla_pool;
  251. void *lcpa_base;
  252. dma_addr_t phy_lcpa;
  253. resource_size_t lcpa_size;
  254. struct kmem_cache *desc_slab;
  255. };
  256. /**
  257. * struct d40_interrupt_lookup - lookup table for interrupt handler
  258. *
  259. * @src: Interrupt mask register.
  260. * @clr: Interrupt clear register.
  261. * @is_error: true if this is an error interrupt.
  262. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  263. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  264. */
  265. struct d40_interrupt_lookup {
  266. u32 src;
  267. u32 clr;
  268. bool is_error;
  269. int offset;
  270. };
  271. /**
  272. * struct d40_reg_val - simple lookup struct
  273. *
  274. * @reg: The register.
  275. * @val: The value that belongs to the register in reg.
  276. */
  277. struct d40_reg_val {
  278. unsigned int reg;
  279. unsigned int val;
  280. };
  281. static struct device *chan2dev(struct d40_chan *d40c)
  282. {
  283. return &d40c->chan.dev->device;
  284. }
  285. static bool chan_is_physical(struct d40_chan *chan)
  286. {
  287. return chan->log_num == D40_PHY_CHAN;
  288. }
  289. static bool chan_is_logical(struct d40_chan *chan)
  290. {
  291. return !chan_is_physical(chan);
  292. }
  293. static void __iomem *chan_base(struct d40_chan *chan)
  294. {
  295. return chan->base->virtbase + D40_DREG_PCBASE +
  296. chan->phy_chan->num * D40_DREG_PCDELTA;
  297. }
  298. #define d40_err(dev, format, arg...) \
  299. dev_err(dev, "[%s] " format, __func__, ## arg)
  300. #define chan_err(d40c, format, arg...) \
  301. d40_err(chan2dev(d40c), format, ## arg)
  302. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  303. int lli_len)
  304. {
  305. bool is_log = chan_is_logical(d40c);
  306. u32 align;
  307. void *base;
  308. if (is_log)
  309. align = sizeof(struct d40_log_lli);
  310. else
  311. align = sizeof(struct d40_phy_lli);
  312. if (lli_len == 1) {
  313. base = d40d->lli_pool.pre_alloc_lli;
  314. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  315. d40d->lli_pool.base = NULL;
  316. } else {
  317. d40d->lli_pool.size = lli_len * 2 * align;
  318. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  319. d40d->lli_pool.base = base;
  320. if (d40d->lli_pool.base == NULL)
  321. return -ENOMEM;
  322. }
  323. if (is_log) {
  324. d40d->lli_log.src = PTR_ALIGN(base, align);
  325. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  326. d40d->lli_pool.dma_addr = 0;
  327. } else {
  328. d40d->lli_phy.src = PTR_ALIGN(base, align);
  329. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  330. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  331. d40d->lli_phy.src,
  332. d40d->lli_pool.size,
  333. DMA_TO_DEVICE);
  334. if (dma_mapping_error(d40c->base->dev,
  335. d40d->lli_pool.dma_addr)) {
  336. kfree(d40d->lli_pool.base);
  337. d40d->lli_pool.base = NULL;
  338. d40d->lli_pool.dma_addr = 0;
  339. return -ENOMEM;
  340. }
  341. }
  342. return 0;
  343. }
  344. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  345. {
  346. if (d40d->lli_pool.dma_addr)
  347. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  348. d40d->lli_pool.size, DMA_TO_DEVICE);
  349. kfree(d40d->lli_pool.base);
  350. d40d->lli_pool.base = NULL;
  351. d40d->lli_pool.size = 0;
  352. d40d->lli_log.src = NULL;
  353. d40d->lli_log.dst = NULL;
  354. d40d->lli_phy.src = NULL;
  355. d40d->lli_phy.dst = NULL;
  356. }
  357. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  358. struct d40_desc *d40d)
  359. {
  360. unsigned long flags;
  361. int i;
  362. int ret = -EINVAL;
  363. int p;
  364. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  365. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  366. /*
  367. * Allocate both src and dst at the same time, therefore the half
  368. * start on 1 since 0 can't be used since zero is used as end marker.
  369. */
  370. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  371. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  372. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  373. d40d->lcla_alloc++;
  374. ret = i;
  375. break;
  376. }
  377. }
  378. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  379. return ret;
  380. }
  381. static int d40_lcla_free_all(struct d40_chan *d40c,
  382. struct d40_desc *d40d)
  383. {
  384. unsigned long flags;
  385. int i;
  386. int ret = -EINVAL;
  387. if (chan_is_physical(d40c))
  388. return 0;
  389. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  390. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  391. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  392. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  393. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  394. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  395. d40d->lcla_alloc--;
  396. if (d40d->lcla_alloc == 0) {
  397. ret = 0;
  398. break;
  399. }
  400. }
  401. }
  402. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  403. return ret;
  404. }
  405. static void d40_desc_remove(struct d40_desc *d40d)
  406. {
  407. list_del(&d40d->node);
  408. }
  409. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  410. {
  411. struct d40_desc *desc = NULL;
  412. if (!list_empty(&d40c->client)) {
  413. struct d40_desc *d;
  414. struct d40_desc *_d;
  415. list_for_each_entry_safe(d, _d, &d40c->client, node)
  416. if (async_tx_test_ack(&d->txd)) {
  417. d40_pool_lli_free(d40c, d);
  418. d40_desc_remove(d);
  419. desc = d;
  420. memset(desc, 0, sizeof(*desc));
  421. break;
  422. }
  423. }
  424. if (!desc)
  425. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  426. if (desc)
  427. INIT_LIST_HEAD(&desc->node);
  428. return desc;
  429. }
  430. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  431. {
  432. d40_pool_lli_free(d40c, d40d);
  433. d40_lcla_free_all(d40c, d40d);
  434. kmem_cache_free(d40c->base->desc_slab, d40d);
  435. }
  436. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  437. {
  438. list_add_tail(&desc->node, &d40c->active);
  439. }
  440. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  441. {
  442. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  443. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  444. void __iomem *base = chan_base(chan);
  445. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  446. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  447. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  448. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  449. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  450. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  451. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  452. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  453. }
  454. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  455. {
  456. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  457. struct d40_log_lli_bidir *lli = &desc->lli_log;
  458. int lli_current = desc->lli_current;
  459. int lli_len = desc->lli_len;
  460. int curr_lcla = -EINVAL;
  461. if (lli_len - lli_current > 1)
  462. curr_lcla = d40_lcla_alloc_one(chan, desc);
  463. d40_log_lli_lcpa_write(chan->lcpa,
  464. &lli->dst[lli_current],
  465. &lli->src[lli_current],
  466. curr_lcla);
  467. lli_current++;
  468. if (curr_lcla < 0)
  469. goto out;
  470. for (; lli_current < lli_len; lli_current++) {
  471. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  472. 8 * curr_lcla * 2;
  473. struct d40_log_lli *lcla = pool->base + lcla_offset;
  474. int next_lcla;
  475. if (lli_current + 1 < lli_len)
  476. next_lcla = d40_lcla_alloc_one(chan, desc);
  477. else
  478. next_lcla = -EINVAL;
  479. d40_log_lli_lcla_write(lcla,
  480. &lli->dst[lli_current],
  481. &lli->src[lli_current],
  482. next_lcla);
  483. dma_sync_single_range_for_device(chan->base->dev,
  484. pool->dma_addr, lcla_offset,
  485. 2 * sizeof(struct d40_log_lli),
  486. DMA_TO_DEVICE);
  487. curr_lcla = next_lcla;
  488. if (curr_lcla == -EINVAL) {
  489. lli_current++;
  490. break;
  491. }
  492. }
  493. out:
  494. desc->lli_current = lli_current;
  495. }
  496. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  497. {
  498. if (chan_is_physical(d40c)) {
  499. d40_phy_lli_load(d40c, d40d);
  500. d40d->lli_current = d40d->lli_len;
  501. } else
  502. d40_log_lli_to_lcxa(d40c, d40d);
  503. }
  504. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  505. {
  506. struct d40_desc *d;
  507. if (list_empty(&d40c->active))
  508. return NULL;
  509. d = list_first_entry(&d40c->active,
  510. struct d40_desc,
  511. node);
  512. return d;
  513. }
  514. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  515. {
  516. list_add_tail(&desc->node, &d40c->queue);
  517. }
  518. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  519. {
  520. struct d40_desc *d;
  521. if (list_empty(&d40c->queue))
  522. return NULL;
  523. d = list_first_entry(&d40c->queue,
  524. struct d40_desc,
  525. node);
  526. return d;
  527. }
  528. static int d40_psize_2_burst_size(bool is_log, int psize)
  529. {
  530. if (is_log) {
  531. if (psize == STEDMA40_PSIZE_LOG_1)
  532. return 1;
  533. } else {
  534. if (psize == STEDMA40_PSIZE_PHY_1)
  535. return 1;
  536. }
  537. return 2 << psize;
  538. }
  539. /*
  540. * The dma only supports transmitting packages up to
  541. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  542. * dma elements required to send the entire sg list
  543. */
  544. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  545. {
  546. int dmalen;
  547. u32 max_w = max(data_width1, data_width2);
  548. u32 min_w = min(data_width1, data_width2);
  549. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  550. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  551. seg_max -= (1 << max_w);
  552. if (!IS_ALIGNED(size, 1 << max_w))
  553. return -EINVAL;
  554. if (size <= seg_max)
  555. dmalen = 1;
  556. else {
  557. dmalen = size / seg_max;
  558. if (dmalen * seg_max < size)
  559. dmalen++;
  560. }
  561. return dmalen;
  562. }
  563. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  564. u32 data_width1, u32 data_width2)
  565. {
  566. struct scatterlist *sg;
  567. int i;
  568. int len = 0;
  569. int ret;
  570. for_each_sg(sgl, sg, sg_len, i) {
  571. ret = d40_size_2_dmalen(sg_dma_len(sg),
  572. data_width1, data_width2);
  573. if (ret < 0)
  574. return ret;
  575. len += ret;
  576. }
  577. return len;
  578. }
  579. /* Support functions for logical channels */
  580. static int d40_channel_execute_command(struct d40_chan *d40c,
  581. enum d40_command command)
  582. {
  583. u32 status;
  584. int i;
  585. void __iomem *active_reg;
  586. int ret = 0;
  587. unsigned long flags;
  588. u32 wmask;
  589. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  590. if (d40c->phy_chan->num % 2 == 0)
  591. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  592. else
  593. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  594. if (command == D40_DMA_SUSPEND_REQ) {
  595. status = (readl(active_reg) &
  596. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  597. D40_CHAN_POS(d40c->phy_chan->num);
  598. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  599. goto done;
  600. }
  601. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  602. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  603. active_reg);
  604. if (command == D40_DMA_SUSPEND_REQ) {
  605. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  606. status = (readl(active_reg) &
  607. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  608. D40_CHAN_POS(d40c->phy_chan->num);
  609. cpu_relax();
  610. /*
  611. * Reduce the number of bus accesses while
  612. * waiting for the DMA to suspend.
  613. */
  614. udelay(3);
  615. if (status == D40_DMA_STOP ||
  616. status == D40_DMA_SUSPENDED)
  617. break;
  618. }
  619. if (i == D40_SUSPEND_MAX_IT) {
  620. chan_err(d40c,
  621. "unable to suspend the chl %d (log: %d) status %x\n",
  622. d40c->phy_chan->num, d40c->log_num,
  623. status);
  624. dump_stack();
  625. ret = -EBUSY;
  626. }
  627. }
  628. done:
  629. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  630. return ret;
  631. }
  632. static void d40_term_all(struct d40_chan *d40c)
  633. {
  634. struct d40_desc *d40d;
  635. /* Release active descriptors */
  636. while ((d40d = d40_first_active_get(d40c))) {
  637. d40_desc_remove(d40d);
  638. d40_desc_free(d40c, d40d);
  639. }
  640. /* Release queued descriptors waiting for transfer */
  641. while ((d40d = d40_first_queued(d40c))) {
  642. d40_desc_remove(d40d);
  643. d40_desc_free(d40c, d40d);
  644. }
  645. d40c->pending_tx = 0;
  646. d40c->busy = false;
  647. }
  648. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  649. u32 event, int reg)
  650. {
  651. void __iomem *addr = chan_base(d40c) + reg;
  652. int tries;
  653. if (!enable) {
  654. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  655. | ~D40_EVENTLINE_MASK(event), addr);
  656. return;
  657. }
  658. /*
  659. * The hardware sometimes doesn't register the enable when src and dst
  660. * event lines are active on the same logical channel. Retry to ensure
  661. * it does. Usually only one retry is sufficient.
  662. */
  663. tries = 100;
  664. while (--tries) {
  665. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  666. | ~D40_EVENTLINE_MASK(event), addr);
  667. if (readl(addr) & D40_EVENTLINE_MASK(event))
  668. break;
  669. }
  670. if (tries != 99)
  671. dev_dbg(chan2dev(d40c),
  672. "[%s] workaround enable S%cLNK (%d tries)\n",
  673. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  674. 100 - tries);
  675. WARN_ON(!tries);
  676. }
  677. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  678. {
  679. unsigned long flags;
  680. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  681. /* Enable event line connected to device (or memcpy) */
  682. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  683. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  684. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  685. __d40_config_set_event(d40c, do_enable, event,
  686. D40_CHAN_REG_SSLNK);
  687. }
  688. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  689. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  690. __d40_config_set_event(d40c, do_enable, event,
  691. D40_CHAN_REG_SDLNK);
  692. }
  693. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  694. }
  695. static u32 d40_chan_has_events(struct d40_chan *d40c)
  696. {
  697. void __iomem *chanbase = chan_base(d40c);
  698. u32 val;
  699. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  700. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  701. return val;
  702. }
  703. static u32 d40_get_prmo(struct d40_chan *d40c)
  704. {
  705. static const unsigned int phy_map[] = {
  706. [STEDMA40_PCHAN_BASIC_MODE]
  707. = D40_DREG_PRMO_PCHAN_BASIC,
  708. [STEDMA40_PCHAN_MODULO_MODE]
  709. = D40_DREG_PRMO_PCHAN_MODULO,
  710. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  711. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  712. };
  713. static const unsigned int log_map[] = {
  714. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  715. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  716. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  717. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  718. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  719. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  720. };
  721. if (chan_is_physical(d40c))
  722. return phy_map[d40c->dma_cfg.mode_opt];
  723. else
  724. return log_map[d40c->dma_cfg.mode_opt];
  725. }
  726. static void d40_config_write(struct d40_chan *d40c)
  727. {
  728. u32 addr_base;
  729. u32 var;
  730. /* Odd addresses are even addresses + 4 */
  731. addr_base = (d40c->phy_chan->num % 2) * 4;
  732. /* Setup channel mode to logical or physical */
  733. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  734. D40_CHAN_POS(d40c->phy_chan->num);
  735. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  736. /* Setup operational mode option register */
  737. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  738. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  739. if (chan_is_logical(d40c)) {
  740. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  741. & D40_SREG_ELEM_LOG_LIDX_MASK;
  742. void __iomem *chanbase = chan_base(d40c);
  743. /* Set default config for CFG reg */
  744. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  745. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  746. /* Set LIDX for lcla */
  747. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  748. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  749. }
  750. }
  751. static u32 d40_residue(struct d40_chan *d40c)
  752. {
  753. u32 num_elt;
  754. if (chan_is_logical(d40c))
  755. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  756. >> D40_MEM_LCSP2_ECNT_POS;
  757. else {
  758. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  759. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  760. >> D40_SREG_ELEM_PHY_ECNT_POS;
  761. }
  762. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  763. }
  764. static bool d40_tx_is_linked(struct d40_chan *d40c)
  765. {
  766. bool is_link;
  767. if (chan_is_logical(d40c))
  768. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  769. else
  770. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  771. & D40_SREG_LNK_PHYS_LNK_MASK;
  772. return is_link;
  773. }
  774. static int d40_pause(struct dma_chan *chan)
  775. {
  776. struct d40_chan *d40c =
  777. container_of(chan, struct d40_chan, chan);
  778. int res = 0;
  779. unsigned long flags;
  780. if (!d40c->busy)
  781. return 0;
  782. spin_lock_irqsave(&d40c->lock, flags);
  783. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  784. if (res == 0) {
  785. if (chan_is_logical(d40c)) {
  786. d40_config_set_event(d40c, false);
  787. /* Resume the other logical channels if any */
  788. if (d40_chan_has_events(d40c))
  789. res = d40_channel_execute_command(d40c,
  790. D40_DMA_RUN);
  791. }
  792. }
  793. spin_unlock_irqrestore(&d40c->lock, flags);
  794. return res;
  795. }
  796. static int d40_resume(struct dma_chan *chan)
  797. {
  798. struct d40_chan *d40c =
  799. container_of(chan, struct d40_chan, chan);
  800. int res = 0;
  801. unsigned long flags;
  802. if (!d40c->busy)
  803. return 0;
  804. spin_lock_irqsave(&d40c->lock, flags);
  805. if (d40c->base->rev == 0)
  806. if (chan_is_logical(d40c)) {
  807. res = d40_channel_execute_command(d40c,
  808. D40_DMA_SUSPEND_REQ);
  809. goto no_suspend;
  810. }
  811. /* If bytes left to transfer or linked tx resume job */
  812. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  813. if (chan_is_logical(d40c))
  814. d40_config_set_event(d40c, true);
  815. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  816. }
  817. no_suspend:
  818. spin_unlock_irqrestore(&d40c->lock, flags);
  819. return res;
  820. }
  821. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  822. {
  823. struct d40_chan *d40c = container_of(tx->chan,
  824. struct d40_chan,
  825. chan);
  826. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  827. unsigned long flags;
  828. spin_lock_irqsave(&d40c->lock, flags);
  829. d40c->chan.cookie++;
  830. if (d40c->chan.cookie < 0)
  831. d40c->chan.cookie = 1;
  832. d40d->txd.cookie = d40c->chan.cookie;
  833. d40_desc_queue(d40c, d40d);
  834. spin_unlock_irqrestore(&d40c->lock, flags);
  835. return tx->cookie;
  836. }
  837. static int d40_start(struct d40_chan *d40c)
  838. {
  839. if (d40c->base->rev == 0) {
  840. int err;
  841. if (chan_is_logical(d40c)) {
  842. err = d40_channel_execute_command(d40c,
  843. D40_DMA_SUSPEND_REQ);
  844. if (err)
  845. return err;
  846. }
  847. }
  848. if (chan_is_logical(d40c))
  849. d40_config_set_event(d40c, true);
  850. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  851. }
  852. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  853. {
  854. struct d40_desc *d40d;
  855. int err;
  856. /* Start queued jobs, if any */
  857. d40d = d40_first_queued(d40c);
  858. if (d40d != NULL) {
  859. d40c->busy = true;
  860. /* Remove from queue */
  861. d40_desc_remove(d40d);
  862. /* Add to active queue */
  863. d40_desc_submit(d40c, d40d);
  864. /* Initiate DMA job */
  865. d40_desc_load(d40c, d40d);
  866. /* Start dma job */
  867. err = d40_start(d40c);
  868. if (err)
  869. return NULL;
  870. }
  871. return d40d;
  872. }
  873. /* called from interrupt context */
  874. static void dma_tc_handle(struct d40_chan *d40c)
  875. {
  876. struct d40_desc *d40d;
  877. /* Get first active entry from list */
  878. d40d = d40_first_active_get(d40c);
  879. if (d40d == NULL)
  880. return;
  881. d40_lcla_free_all(d40c, d40d);
  882. if (d40d->lli_current < d40d->lli_len) {
  883. d40_desc_load(d40c, d40d);
  884. /* Start dma job */
  885. (void) d40_start(d40c);
  886. return;
  887. }
  888. if (d40_queue_start(d40c) == NULL)
  889. d40c->busy = false;
  890. d40c->pending_tx++;
  891. tasklet_schedule(&d40c->tasklet);
  892. }
  893. static void dma_tasklet(unsigned long data)
  894. {
  895. struct d40_chan *d40c = (struct d40_chan *) data;
  896. struct d40_desc *d40d;
  897. unsigned long flags;
  898. dma_async_tx_callback callback;
  899. void *callback_param;
  900. spin_lock_irqsave(&d40c->lock, flags);
  901. /* Get first active entry from list */
  902. d40d = d40_first_active_get(d40c);
  903. if (d40d == NULL)
  904. goto err;
  905. d40c->completed = d40d->txd.cookie;
  906. /*
  907. * If terminating a channel pending_tx is set to zero.
  908. * This prevents any finished active jobs to return to the client.
  909. */
  910. if (d40c->pending_tx == 0) {
  911. spin_unlock_irqrestore(&d40c->lock, flags);
  912. return;
  913. }
  914. /* Callback to client */
  915. callback = d40d->txd.callback;
  916. callback_param = d40d->txd.callback_param;
  917. if (async_tx_test_ack(&d40d->txd)) {
  918. d40_pool_lli_free(d40c, d40d);
  919. d40_desc_remove(d40d);
  920. d40_desc_free(d40c, d40d);
  921. } else {
  922. if (!d40d->is_in_client_list) {
  923. d40_desc_remove(d40d);
  924. d40_lcla_free_all(d40c, d40d);
  925. list_add_tail(&d40d->node, &d40c->client);
  926. d40d->is_in_client_list = true;
  927. }
  928. }
  929. d40c->pending_tx--;
  930. if (d40c->pending_tx)
  931. tasklet_schedule(&d40c->tasklet);
  932. spin_unlock_irqrestore(&d40c->lock, flags);
  933. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  934. callback(callback_param);
  935. return;
  936. err:
  937. /* Rescue manouver if receiving double interrupts */
  938. if (d40c->pending_tx > 0)
  939. d40c->pending_tx--;
  940. spin_unlock_irqrestore(&d40c->lock, flags);
  941. }
  942. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  943. {
  944. static const struct d40_interrupt_lookup il[] = {
  945. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  946. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  947. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  948. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  949. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  950. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  951. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  952. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  953. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  954. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  955. };
  956. int i;
  957. u32 regs[ARRAY_SIZE(il)];
  958. u32 idx;
  959. u32 row;
  960. long chan = -1;
  961. struct d40_chan *d40c;
  962. unsigned long flags;
  963. struct d40_base *base = data;
  964. spin_lock_irqsave(&base->interrupt_lock, flags);
  965. /* Read interrupt status of both logical and physical channels */
  966. for (i = 0; i < ARRAY_SIZE(il); i++)
  967. regs[i] = readl(base->virtbase + il[i].src);
  968. for (;;) {
  969. chan = find_next_bit((unsigned long *)regs,
  970. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  971. /* No more set bits found? */
  972. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  973. break;
  974. row = chan / BITS_PER_LONG;
  975. idx = chan & (BITS_PER_LONG - 1);
  976. /* ACK interrupt */
  977. writel(1 << idx, base->virtbase + il[row].clr);
  978. if (il[row].offset == D40_PHY_CHAN)
  979. d40c = base->lookup_phy_chans[idx];
  980. else
  981. d40c = base->lookup_log_chans[il[row].offset + idx];
  982. spin_lock(&d40c->lock);
  983. if (!il[row].is_error)
  984. dma_tc_handle(d40c);
  985. else
  986. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  987. chan, il[row].offset, idx);
  988. spin_unlock(&d40c->lock);
  989. }
  990. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  991. return IRQ_HANDLED;
  992. }
  993. static int d40_validate_conf(struct d40_chan *d40c,
  994. struct stedma40_chan_cfg *conf)
  995. {
  996. int res = 0;
  997. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  998. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  999. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1000. if (!conf->dir) {
  1001. chan_err(d40c, "Invalid direction.\n");
  1002. res = -EINVAL;
  1003. }
  1004. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1005. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1006. d40c->runtime_addr == 0) {
  1007. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1008. conf->dst_dev_type);
  1009. res = -EINVAL;
  1010. }
  1011. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1012. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1013. d40c->runtime_addr == 0) {
  1014. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1015. conf->src_dev_type);
  1016. res = -EINVAL;
  1017. }
  1018. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1019. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1020. chan_err(d40c, "Invalid dst\n");
  1021. res = -EINVAL;
  1022. }
  1023. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1024. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1025. chan_err(d40c, "Invalid src\n");
  1026. res = -EINVAL;
  1027. }
  1028. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1029. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1030. chan_err(d40c, "No event line\n");
  1031. res = -EINVAL;
  1032. }
  1033. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1034. (src_event_group != dst_event_group)) {
  1035. chan_err(d40c, "Invalid event group\n");
  1036. res = -EINVAL;
  1037. }
  1038. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1039. /*
  1040. * DMAC HW supports it. Will be added to this driver,
  1041. * in case any dma client requires it.
  1042. */
  1043. chan_err(d40c, "periph to periph not supported\n");
  1044. res = -EINVAL;
  1045. }
  1046. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1047. (1 << conf->src_info.data_width) !=
  1048. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1049. (1 << conf->dst_info.data_width)) {
  1050. /*
  1051. * The DMAC hardware only supports
  1052. * src (burst x width) == dst (burst x width)
  1053. */
  1054. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1055. res = -EINVAL;
  1056. }
  1057. return res;
  1058. }
  1059. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1060. int log_event_line, bool is_log)
  1061. {
  1062. unsigned long flags;
  1063. spin_lock_irqsave(&phy->lock, flags);
  1064. if (!is_log) {
  1065. /* Physical interrupts are masked per physical full channel */
  1066. if (phy->allocated_src == D40_ALLOC_FREE &&
  1067. phy->allocated_dst == D40_ALLOC_FREE) {
  1068. phy->allocated_dst = D40_ALLOC_PHY;
  1069. phy->allocated_src = D40_ALLOC_PHY;
  1070. goto found;
  1071. } else
  1072. goto not_found;
  1073. }
  1074. /* Logical channel */
  1075. if (is_src) {
  1076. if (phy->allocated_src == D40_ALLOC_PHY)
  1077. goto not_found;
  1078. if (phy->allocated_src == D40_ALLOC_FREE)
  1079. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1080. if (!(phy->allocated_src & (1 << log_event_line))) {
  1081. phy->allocated_src |= 1 << log_event_line;
  1082. goto found;
  1083. } else
  1084. goto not_found;
  1085. } else {
  1086. if (phy->allocated_dst == D40_ALLOC_PHY)
  1087. goto not_found;
  1088. if (phy->allocated_dst == D40_ALLOC_FREE)
  1089. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1090. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1091. phy->allocated_dst |= 1 << log_event_line;
  1092. goto found;
  1093. } else
  1094. goto not_found;
  1095. }
  1096. not_found:
  1097. spin_unlock_irqrestore(&phy->lock, flags);
  1098. return false;
  1099. found:
  1100. spin_unlock_irqrestore(&phy->lock, flags);
  1101. return true;
  1102. }
  1103. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1104. int log_event_line)
  1105. {
  1106. unsigned long flags;
  1107. bool is_free = false;
  1108. spin_lock_irqsave(&phy->lock, flags);
  1109. if (!log_event_line) {
  1110. phy->allocated_dst = D40_ALLOC_FREE;
  1111. phy->allocated_src = D40_ALLOC_FREE;
  1112. is_free = true;
  1113. goto out;
  1114. }
  1115. /* Logical channel */
  1116. if (is_src) {
  1117. phy->allocated_src &= ~(1 << log_event_line);
  1118. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1119. phy->allocated_src = D40_ALLOC_FREE;
  1120. } else {
  1121. phy->allocated_dst &= ~(1 << log_event_line);
  1122. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1123. phy->allocated_dst = D40_ALLOC_FREE;
  1124. }
  1125. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1126. D40_ALLOC_FREE);
  1127. out:
  1128. spin_unlock_irqrestore(&phy->lock, flags);
  1129. return is_free;
  1130. }
  1131. static int d40_allocate_channel(struct d40_chan *d40c)
  1132. {
  1133. int dev_type;
  1134. int event_group;
  1135. int event_line;
  1136. struct d40_phy_res *phys;
  1137. int i;
  1138. int j;
  1139. int log_num;
  1140. bool is_src;
  1141. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1142. phys = d40c->base->phy_res;
  1143. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1144. dev_type = d40c->dma_cfg.src_dev_type;
  1145. log_num = 2 * dev_type;
  1146. is_src = true;
  1147. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1148. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1149. /* dst event lines are used for logical memcpy */
  1150. dev_type = d40c->dma_cfg.dst_dev_type;
  1151. log_num = 2 * dev_type + 1;
  1152. is_src = false;
  1153. } else
  1154. return -EINVAL;
  1155. event_group = D40_TYPE_TO_GROUP(dev_type);
  1156. event_line = D40_TYPE_TO_EVENT(dev_type);
  1157. if (!is_log) {
  1158. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1159. /* Find physical half channel */
  1160. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1161. if (d40_alloc_mask_set(&phys[i], is_src,
  1162. 0, is_log))
  1163. goto found_phy;
  1164. }
  1165. } else
  1166. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1167. int phy_num = j + event_group * 2;
  1168. for (i = phy_num; i < phy_num + 2; i++) {
  1169. if (d40_alloc_mask_set(&phys[i],
  1170. is_src,
  1171. 0,
  1172. is_log))
  1173. goto found_phy;
  1174. }
  1175. }
  1176. return -EINVAL;
  1177. found_phy:
  1178. d40c->phy_chan = &phys[i];
  1179. d40c->log_num = D40_PHY_CHAN;
  1180. goto out;
  1181. }
  1182. if (dev_type == -1)
  1183. return -EINVAL;
  1184. /* Find logical channel */
  1185. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1186. int phy_num = j + event_group * 2;
  1187. /*
  1188. * Spread logical channels across all available physical rather
  1189. * than pack every logical channel at the first available phy
  1190. * channels.
  1191. */
  1192. if (is_src) {
  1193. for (i = phy_num; i < phy_num + 2; i++) {
  1194. if (d40_alloc_mask_set(&phys[i], is_src,
  1195. event_line, is_log))
  1196. goto found_log;
  1197. }
  1198. } else {
  1199. for (i = phy_num + 1; i >= phy_num; i--) {
  1200. if (d40_alloc_mask_set(&phys[i], is_src,
  1201. event_line, is_log))
  1202. goto found_log;
  1203. }
  1204. }
  1205. }
  1206. return -EINVAL;
  1207. found_log:
  1208. d40c->phy_chan = &phys[i];
  1209. d40c->log_num = log_num;
  1210. out:
  1211. if (is_log)
  1212. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1213. else
  1214. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1215. return 0;
  1216. }
  1217. static int d40_config_memcpy(struct d40_chan *d40c)
  1218. {
  1219. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1220. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1221. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1222. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1223. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1224. memcpy[d40c->chan.chan_id];
  1225. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1226. dma_has_cap(DMA_SLAVE, cap)) {
  1227. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1228. } else {
  1229. chan_err(d40c, "No memcpy\n");
  1230. return -EINVAL;
  1231. }
  1232. return 0;
  1233. }
  1234. static int d40_free_dma(struct d40_chan *d40c)
  1235. {
  1236. int res = 0;
  1237. u32 event;
  1238. struct d40_phy_res *phy = d40c->phy_chan;
  1239. bool is_src;
  1240. struct d40_desc *d;
  1241. struct d40_desc *_d;
  1242. /* Terminate all queued and active transfers */
  1243. d40_term_all(d40c);
  1244. /* Release client owned descriptors */
  1245. if (!list_empty(&d40c->client))
  1246. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1247. d40_pool_lli_free(d40c, d);
  1248. d40_desc_remove(d);
  1249. d40_desc_free(d40c, d);
  1250. }
  1251. if (phy == NULL) {
  1252. chan_err(d40c, "phy == null\n");
  1253. return -EINVAL;
  1254. }
  1255. if (phy->allocated_src == D40_ALLOC_FREE &&
  1256. phy->allocated_dst == D40_ALLOC_FREE) {
  1257. chan_err(d40c, "channel already free\n");
  1258. return -EINVAL;
  1259. }
  1260. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1261. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1262. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1263. is_src = false;
  1264. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1265. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1266. is_src = true;
  1267. } else {
  1268. chan_err(d40c, "Unknown direction\n");
  1269. return -EINVAL;
  1270. }
  1271. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1272. if (res) {
  1273. chan_err(d40c, "suspend failed\n");
  1274. return res;
  1275. }
  1276. if (chan_is_logical(d40c)) {
  1277. /* Release logical channel, deactivate the event line */
  1278. d40_config_set_event(d40c, false);
  1279. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1280. /*
  1281. * Check if there are more logical allocation
  1282. * on this phy channel.
  1283. */
  1284. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1285. /* Resume the other logical channels if any */
  1286. if (d40_chan_has_events(d40c)) {
  1287. res = d40_channel_execute_command(d40c,
  1288. D40_DMA_RUN);
  1289. if (res) {
  1290. chan_err(d40c,
  1291. "Executing RUN command\n");
  1292. return res;
  1293. }
  1294. }
  1295. return 0;
  1296. }
  1297. } else {
  1298. (void) d40_alloc_mask_free(phy, is_src, 0);
  1299. }
  1300. /* Release physical channel */
  1301. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1302. if (res) {
  1303. chan_err(d40c, "Failed to stop channel\n");
  1304. return res;
  1305. }
  1306. d40c->phy_chan = NULL;
  1307. d40c->configured = false;
  1308. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1309. return 0;
  1310. }
  1311. static bool d40_is_paused(struct d40_chan *d40c)
  1312. {
  1313. void __iomem *chanbase = chan_base(d40c);
  1314. bool is_paused = false;
  1315. unsigned long flags;
  1316. void __iomem *active_reg;
  1317. u32 status;
  1318. u32 event;
  1319. spin_lock_irqsave(&d40c->lock, flags);
  1320. if (chan_is_physical(d40c)) {
  1321. if (d40c->phy_chan->num % 2 == 0)
  1322. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1323. else
  1324. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1325. status = (readl(active_reg) &
  1326. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1327. D40_CHAN_POS(d40c->phy_chan->num);
  1328. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1329. is_paused = true;
  1330. goto _exit;
  1331. }
  1332. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1333. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1334. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1335. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1336. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1337. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1338. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1339. } else {
  1340. chan_err(d40c, "Unknown direction\n");
  1341. goto _exit;
  1342. }
  1343. status = (status & D40_EVENTLINE_MASK(event)) >>
  1344. D40_EVENTLINE_POS(event);
  1345. if (status != D40_DMA_RUN)
  1346. is_paused = true;
  1347. _exit:
  1348. spin_unlock_irqrestore(&d40c->lock, flags);
  1349. return is_paused;
  1350. }
  1351. static u32 stedma40_residue(struct dma_chan *chan)
  1352. {
  1353. struct d40_chan *d40c =
  1354. container_of(chan, struct d40_chan, chan);
  1355. u32 bytes_left;
  1356. unsigned long flags;
  1357. spin_lock_irqsave(&d40c->lock, flags);
  1358. bytes_left = d40_residue(d40c);
  1359. spin_unlock_irqrestore(&d40c->lock, flags);
  1360. return bytes_left;
  1361. }
  1362. static int
  1363. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1364. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1365. unsigned int sg_len, dma_addr_t src_dev_addr,
  1366. dma_addr_t dst_dev_addr)
  1367. {
  1368. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1369. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1370. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1371. int ret;
  1372. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1373. src_dev_addr,
  1374. desc->lli_log.src,
  1375. chan->log_def.lcsp1,
  1376. src_info->data_width,
  1377. dst_info->data_width);
  1378. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1379. dst_dev_addr,
  1380. desc->lli_log.dst,
  1381. chan->log_def.lcsp3,
  1382. dst_info->data_width,
  1383. src_info->data_width);
  1384. return ret < 0 ? ret : 0;
  1385. }
  1386. static int
  1387. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1388. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1389. unsigned int sg_len, dma_addr_t src_dev_addr,
  1390. dma_addr_t dst_dev_addr)
  1391. {
  1392. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1393. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1394. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1395. int ret;
  1396. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1397. desc->lli_phy.src,
  1398. virt_to_phys(desc->lli_phy.src),
  1399. chan->src_def_cfg,
  1400. src_info, dst_info);
  1401. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1402. desc->lli_phy.dst,
  1403. virt_to_phys(desc->lli_phy.dst),
  1404. chan->dst_def_cfg,
  1405. dst_info, src_info);
  1406. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1407. desc->lli_pool.size, DMA_TO_DEVICE);
  1408. return ret < 0 ? ret : 0;
  1409. }
  1410. static struct d40_desc *
  1411. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1412. unsigned int sg_len, unsigned long dma_flags)
  1413. {
  1414. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1415. struct d40_desc *desc;
  1416. int ret;
  1417. desc = d40_desc_get(chan);
  1418. if (!desc)
  1419. return NULL;
  1420. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1421. cfg->dst_info.data_width);
  1422. if (desc->lli_len < 0) {
  1423. chan_err(chan, "Unaligned size\n");
  1424. goto err;
  1425. }
  1426. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1427. if (ret < 0) {
  1428. chan_err(chan, "Could not allocate lli\n");
  1429. goto err;
  1430. }
  1431. desc->lli_current = 0;
  1432. desc->txd.flags = dma_flags;
  1433. desc->txd.tx_submit = d40_tx_submit;
  1434. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1435. return desc;
  1436. err:
  1437. d40_desc_free(chan, desc);
  1438. return NULL;
  1439. }
  1440. static dma_addr_t
  1441. d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
  1442. {
  1443. struct stedma40_platform_data *plat = chan->base->plat_data;
  1444. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1445. dma_addr_t addr;
  1446. if (chan->runtime_addr)
  1447. return chan->runtime_addr;
  1448. if (direction == DMA_FROM_DEVICE)
  1449. addr = plat->dev_rx[cfg->src_dev_type];
  1450. else if (direction == DMA_TO_DEVICE)
  1451. addr = plat->dev_tx[cfg->dst_dev_type];
  1452. return addr;
  1453. }
  1454. static struct dma_async_tx_descriptor *
  1455. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1456. struct scatterlist *sg_dst, unsigned int sg_len,
  1457. enum dma_data_direction direction, unsigned long dma_flags)
  1458. {
  1459. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1460. dma_addr_t src_dev_addr = 0;
  1461. dma_addr_t dst_dev_addr = 0;
  1462. struct d40_desc *desc;
  1463. unsigned long flags;
  1464. int ret;
  1465. if (!chan->phy_chan) {
  1466. chan_err(chan, "Cannot prepare unallocated channel\n");
  1467. return NULL;
  1468. }
  1469. spin_lock_irqsave(&chan->lock, flags);
  1470. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1471. if (desc == NULL)
  1472. goto err;
  1473. if (direction != DMA_NONE) {
  1474. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1475. if (direction == DMA_FROM_DEVICE)
  1476. src_dev_addr = dev_addr;
  1477. else if (direction == DMA_TO_DEVICE)
  1478. dst_dev_addr = dev_addr;
  1479. }
  1480. if (chan_is_logical(chan))
  1481. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1482. sg_len, src_dev_addr, dst_dev_addr);
  1483. else
  1484. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1485. sg_len, src_dev_addr, dst_dev_addr);
  1486. if (ret) {
  1487. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1488. chan_is_logical(chan) ? "log" : "phy", ret);
  1489. goto err;
  1490. }
  1491. spin_unlock_irqrestore(&chan->lock, flags);
  1492. return &desc->txd;
  1493. err:
  1494. if (desc)
  1495. d40_desc_free(chan, desc);
  1496. spin_unlock_irqrestore(&chan->lock, flags);
  1497. return NULL;
  1498. }
  1499. bool stedma40_filter(struct dma_chan *chan, void *data)
  1500. {
  1501. struct stedma40_chan_cfg *info = data;
  1502. struct d40_chan *d40c =
  1503. container_of(chan, struct d40_chan, chan);
  1504. int err;
  1505. if (data) {
  1506. err = d40_validate_conf(d40c, info);
  1507. if (!err)
  1508. d40c->dma_cfg = *info;
  1509. } else
  1510. err = d40_config_memcpy(d40c);
  1511. if (!err)
  1512. d40c->configured = true;
  1513. return err == 0;
  1514. }
  1515. EXPORT_SYMBOL(stedma40_filter);
  1516. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1517. {
  1518. bool realtime = d40c->dma_cfg.realtime;
  1519. bool highprio = d40c->dma_cfg.high_priority;
  1520. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1521. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1522. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1523. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1524. u32 bit = 1 << event;
  1525. /* Destination event lines are stored in the upper halfword */
  1526. if (!src)
  1527. bit <<= 16;
  1528. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1529. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1530. }
  1531. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1532. {
  1533. if (d40c->base->rev < 3)
  1534. return;
  1535. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1536. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1537. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1538. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1539. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1540. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1541. }
  1542. /* DMA ENGINE functions */
  1543. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1544. {
  1545. int err;
  1546. unsigned long flags;
  1547. struct d40_chan *d40c =
  1548. container_of(chan, struct d40_chan, chan);
  1549. bool is_free_phy;
  1550. spin_lock_irqsave(&d40c->lock, flags);
  1551. d40c->completed = chan->cookie = 1;
  1552. /* If no dma configuration is set use default configuration (memcpy) */
  1553. if (!d40c->configured) {
  1554. err = d40_config_memcpy(d40c);
  1555. if (err) {
  1556. chan_err(d40c, "Failed to configure memcpy channel\n");
  1557. goto fail;
  1558. }
  1559. }
  1560. is_free_phy = (d40c->phy_chan == NULL);
  1561. err = d40_allocate_channel(d40c);
  1562. if (err) {
  1563. chan_err(d40c, "Failed to allocate channel\n");
  1564. goto fail;
  1565. }
  1566. /* Fill in basic CFG register values */
  1567. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1568. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1569. d40_set_prio_realtime(d40c);
  1570. if (chan_is_logical(d40c)) {
  1571. d40_log_cfg(&d40c->dma_cfg,
  1572. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1573. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1574. d40c->lcpa = d40c->base->lcpa_base +
  1575. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1576. else
  1577. d40c->lcpa = d40c->base->lcpa_base +
  1578. d40c->dma_cfg.dst_dev_type *
  1579. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1580. }
  1581. /*
  1582. * Only write channel configuration to the DMA if the physical
  1583. * resource is free. In case of multiple logical channels
  1584. * on the same physical resource, only the first write is necessary.
  1585. */
  1586. if (is_free_phy)
  1587. d40_config_write(d40c);
  1588. fail:
  1589. spin_unlock_irqrestore(&d40c->lock, flags);
  1590. return err;
  1591. }
  1592. static void d40_free_chan_resources(struct dma_chan *chan)
  1593. {
  1594. struct d40_chan *d40c =
  1595. container_of(chan, struct d40_chan, chan);
  1596. int err;
  1597. unsigned long flags;
  1598. if (d40c->phy_chan == NULL) {
  1599. chan_err(d40c, "Cannot free unallocated channel\n");
  1600. return;
  1601. }
  1602. spin_lock_irqsave(&d40c->lock, flags);
  1603. err = d40_free_dma(d40c);
  1604. if (err)
  1605. chan_err(d40c, "Failed to free channel\n");
  1606. spin_unlock_irqrestore(&d40c->lock, flags);
  1607. }
  1608. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1609. dma_addr_t dst,
  1610. dma_addr_t src,
  1611. size_t size,
  1612. unsigned long dma_flags)
  1613. {
  1614. struct scatterlist dst_sg;
  1615. struct scatterlist src_sg;
  1616. sg_init_table(&dst_sg, 1);
  1617. sg_init_table(&src_sg, 1);
  1618. sg_dma_address(&dst_sg) = dst;
  1619. sg_dma_address(&src_sg) = src;
  1620. sg_dma_len(&dst_sg) = size;
  1621. sg_dma_len(&src_sg) = size;
  1622. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1623. }
  1624. static struct dma_async_tx_descriptor *
  1625. d40_prep_memcpy_sg(struct dma_chan *chan,
  1626. struct scatterlist *dst_sg, unsigned int dst_nents,
  1627. struct scatterlist *src_sg, unsigned int src_nents,
  1628. unsigned long dma_flags)
  1629. {
  1630. if (dst_nents != src_nents)
  1631. return NULL;
  1632. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1633. }
  1634. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1635. struct scatterlist *sgl,
  1636. unsigned int sg_len,
  1637. enum dma_data_direction direction,
  1638. unsigned long dma_flags)
  1639. {
  1640. if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
  1641. return NULL;
  1642. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1643. }
  1644. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1645. dma_cookie_t cookie,
  1646. struct dma_tx_state *txstate)
  1647. {
  1648. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1649. dma_cookie_t last_used;
  1650. dma_cookie_t last_complete;
  1651. int ret;
  1652. if (d40c->phy_chan == NULL) {
  1653. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1654. return -EINVAL;
  1655. }
  1656. last_complete = d40c->completed;
  1657. last_used = chan->cookie;
  1658. if (d40_is_paused(d40c))
  1659. ret = DMA_PAUSED;
  1660. else
  1661. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1662. dma_set_tx_state(txstate, last_complete, last_used,
  1663. stedma40_residue(chan));
  1664. return ret;
  1665. }
  1666. static void d40_issue_pending(struct dma_chan *chan)
  1667. {
  1668. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1669. unsigned long flags;
  1670. if (d40c->phy_chan == NULL) {
  1671. chan_err(d40c, "Channel is not allocated!\n");
  1672. return;
  1673. }
  1674. spin_lock_irqsave(&d40c->lock, flags);
  1675. /* Busy means that pending jobs are already being processed */
  1676. if (!d40c->busy)
  1677. (void) d40_queue_start(d40c);
  1678. spin_unlock_irqrestore(&d40c->lock, flags);
  1679. }
  1680. /* Runtime reconfiguration extension */
  1681. static void d40_set_runtime_config(struct dma_chan *chan,
  1682. struct dma_slave_config *config)
  1683. {
  1684. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1685. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1686. enum dma_slave_buswidth config_addr_width;
  1687. dma_addr_t config_addr;
  1688. u32 config_maxburst;
  1689. enum stedma40_periph_data_width addr_width;
  1690. int psize;
  1691. if (config->direction == DMA_FROM_DEVICE) {
  1692. dma_addr_t dev_addr_rx =
  1693. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1694. config_addr = config->src_addr;
  1695. if (dev_addr_rx)
  1696. dev_dbg(d40c->base->dev,
  1697. "channel has a pre-wired RX address %08x "
  1698. "overriding with %08x\n",
  1699. dev_addr_rx, config_addr);
  1700. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1701. dev_dbg(d40c->base->dev,
  1702. "channel was not configured for peripheral "
  1703. "to memory transfer (%d) overriding\n",
  1704. cfg->dir);
  1705. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1706. config_addr_width = config->src_addr_width;
  1707. config_maxburst = config->src_maxburst;
  1708. } else if (config->direction == DMA_TO_DEVICE) {
  1709. dma_addr_t dev_addr_tx =
  1710. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1711. config_addr = config->dst_addr;
  1712. if (dev_addr_tx)
  1713. dev_dbg(d40c->base->dev,
  1714. "channel has a pre-wired TX address %08x "
  1715. "overriding with %08x\n",
  1716. dev_addr_tx, config_addr);
  1717. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1718. dev_dbg(d40c->base->dev,
  1719. "channel was not configured for memory "
  1720. "to peripheral transfer (%d) overriding\n",
  1721. cfg->dir);
  1722. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1723. config_addr_width = config->dst_addr_width;
  1724. config_maxburst = config->dst_maxburst;
  1725. } else {
  1726. dev_err(d40c->base->dev,
  1727. "unrecognized channel direction %d\n",
  1728. config->direction);
  1729. return;
  1730. }
  1731. switch (config_addr_width) {
  1732. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1733. addr_width = STEDMA40_BYTE_WIDTH;
  1734. break;
  1735. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1736. addr_width = STEDMA40_HALFWORD_WIDTH;
  1737. break;
  1738. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1739. addr_width = STEDMA40_WORD_WIDTH;
  1740. break;
  1741. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1742. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1743. break;
  1744. default:
  1745. dev_err(d40c->base->dev,
  1746. "illegal peripheral address width "
  1747. "requested (%d)\n",
  1748. config->src_addr_width);
  1749. return;
  1750. }
  1751. if (chan_is_logical(d40c)) {
  1752. if (config_maxburst >= 16)
  1753. psize = STEDMA40_PSIZE_LOG_16;
  1754. else if (config_maxburst >= 8)
  1755. psize = STEDMA40_PSIZE_LOG_8;
  1756. else if (config_maxburst >= 4)
  1757. psize = STEDMA40_PSIZE_LOG_4;
  1758. else
  1759. psize = STEDMA40_PSIZE_LOG_1;
  1760. } else {
  1761. if (config_maxburst >= 16)
  1762. psize = STEDMA40_PSIZE_PHY_16;
  1763. else if (config_maxburst >= 8)
  1764. psize = STEDMA40_PSIZE_PHY_8;
  1765. else if (config_maxburst >= 4)
  1766. psize = STEDMA40_PSIZE_PHY_4;
  1767. else if (config_maxburst >= 2)
  1768. psize = STEDMA40_PSIZE_PHY_2;
  1769. else
  1770. psize = STEDMA40_PSIZE_PHY_1;
  1771. }
  1772. /* Set up all the endpoint configs */
  1773. cfg->src_info.data_width = addr_width;
  1774. cfg->src_info.psize = psize;
  1775. cfg->src_info.big_endian = false;
  1776. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1777. cfg->dst_info.data_width = addr_width;
  1778. cfg->dst_info.psize = psize;
  1779. cfg->dst_info.big_endian = false;
  1780. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1781. /* Fill in register values */
  1782. if (chan_is_logical(d40c))
  1783. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1784. else
  1785. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1786. &d40c->dst_def_cfg, false);
  1787. /* These settings will take precedence later */
  1788. d40c->runtime_addr = config_addr;
  1789. d40c->runtime_direction = config->direction;
  1790. dev_dbg(d40c->base->dev,
  1791. "configured channel %s for %s, data width %d, "
  1792. "maxburst %d bytes, LE, no flow control\n",
  1793. dma_chan_name(chan),
  1794. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1795. config_addr_width,
  1796. config_maxburst);
  1797. }
  1798. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1799. unsigned long arg)
  1800. {
  1801. unsigned long flags;
  1802. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1803. if (d40c->phy_chan == NULL) {
  1804. chan_err(d40c, "Channel is not allocated!\n");
  1805. return -EINVAL;
  1806. }
  1807. switch (cmd) {
  1808. case DMA_TERMINATE_ALL:
  1809. spin_lock_irqsave(&d40c->lock, flags);
  1810. d40_term_all(d40c);
  1811. spin_unlock_irqrestore(&d40c->lock, flags);
  1812. return 0;
  1813. case DMA_PAUSE:
  1814. return d40_pause(chan);
  1815. case DMA_RESUME:
  1816. return d40_resume(chan);
  1817. case DMA_SLAVE_CONFIG:
  1818. d40_set_runtime_config(chan,
  1819. (struct dma_slave_config *) arg);
  1820. return 0;
  1821. default:
  1822. break;
  1823. }
  1824. /* Other commands are unimplemented */
  1825. return -ENXIO;
  1826. }
  1827. /* Initialization functions */
  1828. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1829. struct d40_chan *chans, int offset,
  1830. int num_chans)
  1831. {
  1832. int i = 0;
  1833. struct d40_chan *d40c;
  1834. INIT_LIST_HEAD(&dma->channels);
  1835. for (i = offset; i < offset + num_chans; i++) {
  1836. d40c = &chans[i];
  1837. d40c->base = base;
  1838. d40c->chan.device = dma;
  1839. spin_lock_init(&d40c->lock);
  1840. d40c->log_num = D40_PHY_CHAN;
  1841. INIT_LIST_HEAD(&d40c->active);
  1842. INIT_LIST_HEAD(&d40c->queue);
  1843. INIT_LIST_HEAD(&d40c->client);
  1844. tasklet_init(&d40c->tasklet, dma_tasklet,
  1845. (unsigned long) d40c);
  1846. list_add_tail(&d40c->chan.device_node,
  1847. &dma->channels);
  1848. }
  1849. }
  1850. static int __init d40_dmaengine_init(struct d40_base *base,
  1851. int num_reserved_chans)
  1852. {
  1853. int err ;
  1854. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1855. 0, base->num_log_chans);
  1856. dma_cap_zero(base->dma_slave.cap_mask);
  1857. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1858. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1859. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1860. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1861. base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
  1862. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1863. base->dma_slave.device_tx_status = d40_tx_status;
  1864. base->dma_slave.device_issue_pending = d40_issue_pending;
  1865. base->dma_slave.device_control = d40_control;
  1866. base->dma_slave.dev = base->dev;
  1867. err = dma_async_device_register(&base->dma_slave);
  1868. if (err) {
  1869. d40_err(base->dev, "Failed to register slave channels\n");
  1870. goto failure1;
  1871. }
  1872. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1873. base->num_log_chans, base->plat_data->memcpy_len);
  1874. dma_cap_zero(base->dma_memcpy.cap_mask);
  1875. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1876. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1877. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1878. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1879. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1880. base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
  1881. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1882. base->dma_memcpy.device_tx_status = d40_tx_status;
  1883. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1884. base->dma_memcpy.device_control = d40_control;
  1885. base->dma_memcpy.dev = base->dev;
  1886. /*
  1887. * This controller can only access address at even
  1888. * 32bit boundaries, i.e. 2^2
  1889. */
  1890. base->dma_memcpy.copy_align = 2;
  1891. err = dma_async_device_register(&base->dma_memcpy);
  1892. if (err) {
  1893. d40_err(base->dev,
  1894. "Failed to regsiter memcpy only channels\n");
  1895. goto failure2;
  1896. }
  1897. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1898. 0, num_reserved_chans);
  1899. dma_cap_zero(base->dma_both.cap_mask);
  1900. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1901. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1902. dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
  1903. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1904. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1905. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  1906. base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
  1907. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  1908. base->dma_both.device_tx_status = d40_tx_status;
  1909. base->dma_both.device_issue_pending = d40_issue_pending;
  1910. base->dma_both.device_control = d40_control;
  1911. base->dma_both.dev = base->dev;
  1912. base->dma_both.copy_align = 2;
  1913. err = dma_async_device_register(&base->dma_both);
  1914. if (err) {
  1915. d40_err(base->dev,
  1916. "Failed to register logical and physical capable channels\n");
  1917. goto failure3;
  1918. }
  1919. return 0;
  1920. failure3:
  1921. dma_async_device_unregister(&base->dma_memcpy);
  1922. failure2:
  1923. dma_async_device_unregister(&base->dma_slave);
  1924. failure1:
  1925. return err;
  1926. }
  1927. /* Initialization functions. */
  1928. static int __init d40_phy_res_init(struct d40_base *base)
  1929. {
  1930. int i;
  1931. int num_phy_chans_avail = 0;
  1932. u32 val[2];
  1933. int odd_even_bit = -2;
  1934. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  1935. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  1936. for (i = 0; i < base->num_phy_chans; i++) {
  1937. base->phy_res[i].num = i;
  1938. odd_even_bit += 2 * ((i % 2) == 0);
  1939. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  1940. /* Mark security only channels as occupied */
  1941. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  1942. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  1943. } else {
  1944. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  1945. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  1946. num_phy_chans_avail++;
  1947. }
  1948. spin_lock_init(&base->phy_res[i].lock);
  1949. }
  1950. /* Mark disabled channels as occupied */
  1951. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  1952. int chan = base->plat_data->disabled_channels[i];
  1953. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  1954. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  1955. num_phy_chans_avail--;
  1956. }
  1957. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  1958. num_phy_chans_avail, base->num_phy_chans);
  1959. /* Verify settings extended vs standard */
  1960. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  1961. for (i = 0; i < base->num_phy_chans; i++) {
  1962. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  1963. (val[0] & 0x3) != 1)
  1964. dev_info(base->dev,
  1965. "[%s] INFO: channel %d is misconfigured (%d)\n",
  1966. __func__, i, val[0] & 0x3);
  1967. val[0] = val[0] >> 2;
  1968. }
  1969. return num_phy_chans_avail;
  1970. }
  1971. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  1972. {
  1973. static const struct d40_reg_val dma_id_regs[] = {
  1974. /* Peripheral Id */
  1975. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  1976. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  1977. /*
  1978. * D40_DREG_PERIPHID2 Depends on HW revision:
  1979. * DB8500ed has 0x0008,
  1980. * ? has 0x0018,
  1981. * DB8500v1 has 0x0028
  1982. * DB8500v2 has 0x0038
  1983. */
  1984. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  1985. /* PCell Id */
  1986. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  1987. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  1988. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  1989. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  1990. };
  1991. struct stedma40_platform_data *plat_data;
  1992. struct clk *clk = NULL;
  1993. void __iomem *virtbase = NULL;
  1994. struct resource *res = NULL;
  1995. struct d40_base *base = NULL;
  1996. int num_log_chans = 0;
  1997. int num_phy_chans;
  1998. int i;
  1999. u32 val;
  2000. u32 rev;
  2001. clk = clk_get(&pdev->dev, NULL);
  2002. if (IS_ERR(clk)) {
  2003. d40_err(&pdev->dev, "No matching clock found\n");
  2004. goto failure;
  2005. }
  2006. clk_enable(clk);
  2007. /* Get IO for DMAC base address */
  2008. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2009. if (!res)
  2010. goto failure;
  2011. if (request_mem_region(res->start, resource_size(res),
  2012. D40_NAME " I/O base") == NULL)
  2013. goto failure;
  2014. virtbase = ioremap(res->start, resource_size(res));
  2015. if (!virtbase)
  2016. goto failure;
  2017. /* HW version check */
  2018. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2019. if (dma_id_regs[i].val !=
  2020. readl(virtbase + dma_id_regs[i].reg)) {
  2021. d40_err(&pdev->dev,
  2022. "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2023. dma_id_regs[i].val,
  2024. dma_id_regs[i].reg,
  2025. readl(virtbase + dma_id_regs[i].reg));
  2026. goto failure;
  2027. }
  2028. }
  2029. /* Get silicon revision and designer */
  2030. val = readl(virtbase + D40_DREG_PERIPHID2);
  2031. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2032. D40_HW_DESIGNER) {
  2033. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2034. val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2035. D40_HW_DESIGNER);
  2036. goto failure;
  2037. }
  2038. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2039. D40_DREG_PERIPHID2_REV_POS;
  2040. /* The number of physical channels on this HW */
  2041. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2042. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2043. rev, res->start);
  2044. plat_data = pdev->dev.platform_data;
  2045. /* Count the number of logical channels in use */
  2046. for (i = 0; i < plat_data->dev_len; i++)
  2047. if (plat_data->dev_rx[i] != 0)
  2048. num_log_chans++;
  2049. for (i = 0; i < plat_data->dev_len; i++)
  2050. if (plat_data->dev_tx[i] != 0)
  2051. num_log_chans++;
  2052. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2053. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2054. sizeof(struct d40_chan), GFP_KERNEL);
  2055. if (base == NULL) {
  2056. d40_err(&pdev->dev, "Out of memory\n");
  2057. goto failure;
  2058. }
  2059. base->rev = rev;
  2060. base->clk = clk;
  2061. base->num_phy_chans = num_phy_chans;
  2062. base->num_log_chans = num_log_chans;
  2063. base->phy_start = res->start;
  2064. base->phy_size = resource_size(res);
  2065. base->virtbase = virtbase;
  2066. base->plat_data = plat_data;
  2067. base->dev = &pdev->dev;
  2068. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2069. base->log_chans = &base->phy_chans[num_phy_chans];
  2070. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2071. GFP_KERNEL);
  2072. if (!base->phy_res)
  2073. goto failure;
  2074. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2075. sizeof(struct d40_chan *),
  2076. GFP_KERNEL);
  2077. if (!base->lookup_phy_chans)
  2078. goto failure;
  2079. if (num_log_chans + plat_data->memcpy_len) {
  2080. /*
  2081. * The max number of logical channels are event lines for all
  2082. * src devices and dst devices
  2083. */
  2084. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2085. sizeof(struct d40_chan *),
  2086. GFP_KERNEL);
  2087. if (!base->lookup_log_chans)
  2088. goto failure;
  2089. }
  2090. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2091. sizeof(struct d40_desc *) *
  2092. D40_LCLA_LINK_PER_EVENT_GRP,
  2093. GFP_KERNEL);
  2094. if (!base->lcla_pool.alloc_map)
  2095. goto failure;
  2096. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2097. 0, SLAB_HWCACHE_ALIGN,
  2098. NULL);
  2099. if (base->desc_slab == NULL)
  2100. goto failure;
  2101. return base;
  2102. failure:
  2103. if (!IS_ERR(clk)) {
  2104. clk_disable(clk);
  2105. clk_put(clk);
  2106. }
  2107. if (virtbase)
  2108. iounmap(virtbase);
  2109. if (res)
  2110. release_mem_region(res->start,
  2111. resource_size(res));
  2112. if (virtbase)
  2113. iounmap(virtbase);
  2114. if (base) {
  2115. kfree(base->lcla_pool.alloc_map);
  2116. kfree(base->lookup_log_chans);
  2117. kfree(base->lookup_phy_chans);
  2118. kfree(base->phy_res);
  2119. kfree(base);
  2120. }
  2121. return NULL;
  2122. }
  2123. static void __init d40_hw_init(struct d40_base *base)
  2124. {
  2125. static const struct d40_reg_val dma_init_reg[] = {
  2126. /* Clock every part of the DMA block from start */
  2127. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2128. /* Interrupts on all logical channels */
  2129. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2130. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2131. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2132. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2133. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2134. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2135. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2136. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2137. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2138. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2139. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2140. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2141. };
  2142. int i;
  2143. u32 prmseo[2] = {0, 0};
  2144. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2145. u32 pcmis = 0;
  2146. u32 pcicr = 0;
  2147. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2148. writel(dma_init_reg[i].val,
  2149. base->virtbase + dma_init_reg[i].reg);
  2150. /* Configure all our dma channels to default settings */
  2151. for (i = 0; i < base->num_phy_chans; i++) {
  2152. activeo[i % 2] = activeo[i % 2] << 2;
  2153. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2154. == D40_ALLOC_PHY) {
  2155. activeo[i % 2] |= 3;
  2156. continue;
  2157. }
  2158. /* Enable interrupt # */
  2159. pcmis = (pcmis << 1) | 1;
  2160. /* Clear interrupt # */
  2161. pcicr = (pcicr << 1) | 1;
  2162. /* Set channel to physical mode */
  2163. prmseo[i % 2] = prmseo[i % 2] << 2;
  2164. prmseo[i % 2] |= 1;
  2165. }
  2166. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2167. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2168. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2169. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2170. /* Write which interrupt to enable */
  2171. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2172. /* Write which interrupt to clear */
  2173. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2174. }
  2175. static int __init d40_lcla_allocate(struct d40_base *base)
  2176. {
  2177. struct d40_lcla_pool *pool = &base->lcla_pool;
  2178. unsigned long *page_list;
  2179. int i, j;
  2180. int ret = 0;
  2181. /*
  2182. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2183. * To full fill this hardware requirement without wasting 256 kb
  2184. * we allocate pages until we get an aligned one.
  2185. */
  2186. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2187. GFP_KERNEL);
  2188. if (!page_list) {
  2189. ret = -ENOMEM;
  2190. goto failure;
  2191. }
  2192. /* Calculating how many pages that are required */
  2193. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2194. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2195. page_list[i] = __get_free_pages(GFP_KERNEL,
  2196. base->lcla_pool.pages);
  2197. if (!page_list[i]) {
  2198. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2199. base->lcla_pool.pages);
  2200. for (j = 0; j < i; j++)
  2201. free_pages(page_list[j], base->lcla_pool.pages);
  2202. goto failure;
  2203. }
  2204. if ((virt_to_phys((void *)page_list[i]) &
  2205. (LCLA_ALIGNMENT - 1)) == 0)
  2206. break;
  2207. }
  2208. for (j = 0; j < i; j++)
  2209. free_pages(page_list[j], base->lcla_pool.pages);
  2210. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2211. base->lcla_pool.base = (void *)page_list[i];
  2212. } else {
  2213. /*
  2214. * After many attempts and no succees with finding the correct
  2215. * alignment, try with allocating a big buffer.
  2216. */
  2217. dev_warn(base->dev,
  2218. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2219. __func__, base->lcla_pool.pages);
  2220. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2221. base->num_phy_chans +
  2222. LCLA_ALIGNMENT,
  2223. GFP_KERNEL);
  2224. if (!base->lcla_pool.base_unaligned) {
  2225. ret = -ENOMEM;
  2226. goto failure;
  2227. }
  2228. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2229. LCLA_ALIGNMENT);
  2230. }
  2231. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2232. SZ_1K * base->num_phy_chans,
  2233. DMA_TO_DEVICE);
  2234. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2235. pool->dma_addr = 0;
  2236. ret = -ENOMEM;
  2237. goto failure;
  2238. }
  2239. writel(virt_to_phys(base->lcla_pool.base),
  2240. base->virtbase + D40_DREG_LCLA);
  2241. failure:
  2242. kfree(page_list);
  2243. return ret;
  2244. }
  2245. static int __init d40_probe(struct platform_device *pdev)
  2246. {
  2247. int err;
  2248. int ret = -ENOENT;
  2249. struct d40_base *base;
  2250. struct resource *res = NULL;
  2251. int num_reserved_chans;
  2252. u32 val;
  2253. base = d40_hw_detect_init(pdev);
  2254. if (!base)
  2255. goto failure;
  2256. num_reserved_chans = d40_phy_res_init(base);
  2257. platform_set_drvdata(pdev, base);
  2258. spin_lock_init(&base->interrupt_lock);
  2259. spin_lock_init(&base->execmd_lock);
  2260. /* Get IO for logical channel parameter address */
  2261. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2262. if (!res) {
  2263. ret = -ENOENT;
  2264. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2265. goto failure;
  2266. }
  2267. base->lcpa_size = resource_size(res);
  2268. base->phy_lcpa = res->start;
  2269. if (request_mem_region(res->start, resource_size(res),
  2270. D40_NAME " I/O lcpa") == NULL) {
  2271. ret = -EBUSY;
  2272. d40_err(&pdev->dev,
  2273. "Failed to request LCPA region 0x%x-0x%x\n",
  2274. res->start, res->end);
  2275. goto failure;
  2276. }
  2277. /* We make use of ESRAM memory for this. */
  2278. val = readl(base->virtbase + D40_DREG_LCPA);
  2279. if (res->start != val && val != 0) {
  2280. dev_warn(&pdev->dev,
  2281. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2282. __func__, val, res->start);
  2283. } else
  2284. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2285. base->lcpa_base = ioremap(res->start, resource_size(res));
  2286. if (!base->lcpa_base) {
  2287. ret = -ENOMEM;
  2288. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2289. goto failure;
  2290. }
  2291. ret = d40_lcla_allocate(base);
  2292. if (ret) {
  2293. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2294. goto failure;
  2295. }
  2296. spin_lock_init(&base->lcla_pool.lock);
  2297. base->irq = platform_get_irq(pdev, 0);
  2298. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2299. if (ret) {
  2300. d40_err(&pdev->dev, "No IRQ defined\n");
  2301. goto failure;
  2302. }
  2303. err = d40_dmaengine_init(base, num_reserved_chans);
  2304. if (err)
  2305. goto failure;
  2306. d40_hw_init(base);
  2307. dev_info(base->dev, "initialized\n");
  2308. return 0;
  2309. failure:
  2310. if (base) {
  2311. if (base->desc_slab)
  2312. kmem_cache_destroy(base->desc_slab);
  2313. if (base->virtbase)
  2314. iounmap(base->virtbase);
  2315. if (base->lcla_pool.dma_addr)
  2316. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2317. SZ_1K * base->num_phy_chans,
  2318. DMA_TO_DEVICE);
  2319. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2320. free_pages((unsigned long)base->lcla_pool.base,
  2321. base->lcla_pool.pages);
  2322. kfree(base->lcla_pool.base_unaligned);
  2323. if (base->phy_lcpa)
  2324. release_mem_region(base->phy_lcpa,
  2325. base->lcpa_size);
  2326. if (base->phy_start)
  2327. release_mem_region(base->phy_start,
  2328. base->phy_size);
  2329. if (base->clk) {
  2330. clk_disable(base->clk);
  2331. clk_put(base->clk);
  2332. }
  2333. kfree(base->lcla_pool.alloc_map);
  2334. kfree(base->lookup_log_chans);
  2335. kfree(base->lookup_phy_chans);
  2336. kfree(base->phy_res);
  2337. kfree(base);
  2338. }
  2339. d40_err(&pdev->dev, "probe failed\n");
  2340. return ret;
  2341. }
  2342. static struct platform_driver d40_driver = {
  2343. .driver = {
  2344. .owner = THIS_MODULE,
  2345. .name = D40_NAME,
  2346. },
  2347. };
  2348. static int __init stedma40_init(void)
  2349. {
  2350. return platform_driver_probe(&d40_driver, d40_probe);
  2351. }
  2352. arch_initcall(stedma40_init);