efx.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2009 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include <linux/gfp.h>
  23. #include "net_driver.h"
  24. #include "efx.h"
  25. #include "nic.h"
  26. #include "mcdi.h"
  27. #include "workarounds.h"
  28. /**************************************************************************
  29. *
  30. * Type name strings
  31. *
  32. **************************************************************************
  33. */
  34. /* Loopback mode names (see LOOPBACK_MODE()) */
  35. const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  36. const char *efx_loopback_mode_names[] = {
  37. [LOOPBACK_NONE] = "NONE",
  38. [LOOPBACK_DATA] = "DATAPATH",
  39. [LOOPBACK_GMAC] = "GMAC",
  40. [LOOPBACK_XGMII] = "XGMII",
  41. [LOOPBACK_XGXS] = "XGXS",
  42. [LOOPBACK_XAUI] = "XAUI",
  43. [LOOPBACK_GMII] = "GMII",
  44. [LOOPBACK_SGMII] = "SGMII",
  45. [LOOPBACK_XGBR] = "XGBR",
  46. [LOOPBACK_XFI] = "XFI",
  47. [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
  48. [LOOPBACK_GMII_FAR] = "GMII_FAR",
  49. [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
  50. [LOOPBACK_XFI_FAR] = "XFI_FAR",
  51. [LOOPBACK_GPHY] = "GPHY",
  52. [LOOPBACK_PHYXS] = "PHYXS",
  53. [LOOPBACK_PCS] = "PCS",
  54. [LOOPBACK_PMAPMD] = "PMA/PMD",
  55. [LOOPBACK_XPORT] = "XPORT",
  56. [LOOPBACK_XGMII_WS] = "XGMII_WS",
  57. [LOOPBACK_XAUI_WS] = "XAUI_WS",
  58. [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
  59. [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  60. [LOOPBACK_GMII_WS] = "GMII_WS",
  61. [LOOPBACK_XFI_WS] = "XFI_WS",
  62. [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
  63. [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
  64. };
  65. const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  66. const char *efx_reset_type_names[] = {
  67. [RESET_TYPE_INVISIBLE] = "INVISIBLE",
  68. [RESET_TYPE_ALL] = "ALL",
  69. [RESET_TYPE_WORLD] = "WORLD",
  70. [RESET_TYPE_DISABLE] = "DISABLE",
  71. [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
  72. [RESET_TYPE_INT_ERROR] = "INT_ERROR",
  73. [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
  74. [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  75. [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  76. [RESET_TYPE_TX_SKIP] = "TX_SKIP",
  77. [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
  78. };
  79. #define EFX_MAX_MTU (9 * 1024)
  80. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  81. * queued onto this work queue. This is not a per-nic work queue, because
  82. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  83. */
  84. static struct workqueue_struct *reset_workqueue;
  85. /**************************************************************************
  86. *
  87. * Configurable values
  88. *
  89. *************************************************************************/
  90. /*
  91. * Use separate channels for TX and RX events
  92. *
  93. * Set this to 1 to use separate channels for TX and RX. It allows us
  94. * to control interrupt affinity separately for TX and RX.
  95. *
  96. * This is only used in MSI-X interrupt mode
  97. */
  98. static unsigned int separate_tx_channels;
  99. module_param(separate_tx_channels, uint, 0444);
  100. MODULE_PARM_DESC(separate_tx_channels,
  101. "Use separate channels for TX and RX");
  102. /* This is the weight assigned to each of the (per-channel) virtual
  103. * NAPI devices.
  104. */
  105. static int napi_weight = 64;
  106. /* This is the time (in jiffies) between invocations of the hardware
  107. * monitor. On Falcon-based NICs, this will:
  108. * - Check the on-board hardware monitor;
  109. * - Poll the link state and reconfigure the hardware as necessary.
  110. */
  111. static unsigned int efx_monitor_interval = 1 * HZ;
  112. /* This controls whether or not the driver will initialise devices
  113. * with invalid MAC addresses stored in the EEPROM or flash. If true,
  114. * such devices will be initialised with a random locally-generated
  115. * MAC address. This allows for loading the sfc_mtd driver to
  116. * reprogram the flash, even if the flash contents (including the MAC
  117. * address) have previously been erased.
  118. */
  119. static unsigned int allow_bad_hwaddr;
  120. /* Initial interrupt moderation settings. They can be modified after
  121. * module load with ethtool.
  122. *
  123. * The default for RX should strike a balance between increasing the
  124. * round-trip latency and reducing overhead.
  125. */
  126. static unsigned int rx_irq_mod_usec = 60;
  127. /* Initial interrupt moderation settings. They can be modified after
  128. * module load with ethtool.
  129. *
  130. * This default is chosen to ensure that a 10G link does not go idle
  131. * while a TX queue is stopped after it has become full. A queue is
  132. * restarted when it drops below half full. The time this takes (assuming
  133. * worst case 3 descriptors per packet and 1024 descriptors) is
  134. * 512 / 3 * 1.2 = 205 usec.
  135. */
  136. static unsigned int tx_irq_mod_usec = 150;
  137. /* This is the first interrupt mode to try out of:
  138. * 0 => MSI-X
  139. * 1 => MSI
  140. * 2 => legacy
  141. */
  142. static unsigned int interrupt_mode;
  143. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  144. * i.e. the number of CPUs among which we may distribute simultaneous
  145. * interrupt handling.
  146. *
  147. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  148. * The default (0) means to assign an interrupt to each package (level II cache)
  149. */
  150. static unsigned int rss_cpus;
  151. module_param(rss_cpus, uint, 0444);
  152. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  153. static int phy_flash_cfg;
  154. module_param(phy_flash_cfg, int, 0644);
  155. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  156. static unsigned irq_adapt_low_thresh = 10000;
  157. module_param(irq_adapt_low_thresh, uint, 0644);
  158. MODULE_PARM_DESC(irq_adapt_low_thresh,
  159. "Threshold score for reducing IRQ moderation");
  160. static unsigned irq_adapt_high_thresh = 20000;
  161. module_param(irq_adapt_high_thresh, uint, 0644);
  162. MODULE_PARM_DESC(irq_adapt_high_thresh,
  163. "Threshold score for increasing IRQ moderation");
  164. static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  165. NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  166. NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  167. NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  168. module_param(debug, uint, 0);
  169. MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  170. /**************************************************************************
  171. *
  172. * Utility functions and prototypes
  173. *
  174. *************************************************************************/
  175. static void efx_remove_channels(struct efx_nic *efx);
  176. static void efx_remove_port(struct efx_nic *efx);
  177. static void efx_init_napi(struct efx_nic *efx);
  178. static void efx_fini_napi(struct efx_nic *efx);
  179. static void efx_fini_napi_channel(struct efx_channel *channel);
  180. static void efx_fini_struct(struct efx_nic *efx);
  181. static void efx_start_all(struct efx_nic *efx);
  182. static void efx_stop_all(struct efx_nic *efx);
  183. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  184. do { \
  185. if ((efx->state == STATE_RUNNING) || \
  186. (efx->state == STATE_DISABLED)) \
  187. ASSERT_RTNL(); \
  188. } while (0)
  189. /**************************************************************************
  190. *
  191. * Event queue processing
  192. *
  193. *************************************************************************/
  194. /* Process channel's event queue
  195. *
  196. * This function is responsible for processing the event queue of a
  197. * single channel. The caller must guarantee that this function will
  198. * never be concurrently called more than once on the same channel,
  199. * though different channels may be being processed concurrently.
  200. */
  201. static int efx_process_channel(struct efx_channel *channel, int budget)
  202. {
  203. struct efx_nic *efx = channel->efx;
  204. int spent;
  205. if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
  206. !channel->enabled))
  207. return 0;
  208. spent = efx_nic_process_eventq(channel, budget);
  209. if (spent == 0)
  210. return 0;
  211. /* Deliver last RX packet. */
  212. if (channel->rx_pkt) {
  213. __efx_rx_packet(channel, channel->rx_pkt,
  214. channel->rx_pkt_csummed);
  215. channel->rx_pkt = NULL;
  216. }
  217. efx_rx_strategy(channel);
  218. efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel));
  219. return spent;
  220. }
  221. /* Mark channel as finished processing
  222. *
  223. * Note that since we will not receive further interrupts for this
  224. * channel before we finish processing and call the eventq_read_ack()
  225. * method, there is no need to use the interrupt hold-off timers.
  226. */
  227. static inline void efx_channel_processed(struct efx_channel *channel)
  228. {
  229. /* The interrupt handler for this channel may set work_pending
  230. * as soon as we acknowledge the events we've seen. Make sure
  231. * it's cleared before then. */
  232. channel->work_pending = false;
  233. smp_wmb();
  234. efx_nic_eventq_read_ack(channel);
  235. }
  236. /* NAPI poll handler
  237. *
  238. * NAPI guarantees serialisation of polls of the same device, which
  239. * provides the guarantee required by efx_process_channel().
  240. */
  241. static int efx_poll(struct napi_struct *napi, int budget)
  242. {
  243. struct efx_channel *channel =
  244. container_of(napi, struct efx_channel, napi_str);
  245. struct efx_nic *efx = channel->efx;
  246. int spent;
  247. netif_vdbg(efx, intr, efx->net_dev,
  248. "channel %d NAPI poll executing on CPU %d\n",
  249. channel->channel, raw_smp_processor_id());
  250. spent = efx_process_channel(channel, budget);
  251. if (spent < budget) {
  252. if (channel->channel < efx->n_rx_channels &&
  253. efx->irq_rx_adaptive &&
  254. unlikely(++channel->irq_count == 1000)) {
  255. if (unlikely(channel->irq_mod_score <
  256. irq_adapt_low_thresh)) {
  257. if (channel->irq_moderation > 1) {
  258. channel->irq_moderation -= 1;
  259. efx->type->push_irq_moderation(channel);
  260. }
  261. } else if (unlikely(channel->irq_mod_score >
  262. irq_adapt_high_thresh)) {
  263. if (channel->irq_moderation <
  264. efx->irq_rx_moderation) {
  265. channel->irq_moderation += 1;
  266. efx->type->push_irq_moderation(channel);
  267. }
  268. }
  269. channel->irq_count = 0;
  270. channel->irq_mod_score = 0;
  271. }
  272. /* There is no race here; although napi_disable() will
  273. * only wait for napi_complete(), this isn't a problem
  274. * since efx_channel_processed() will have no effect if
  275. * interrupts have already been disabled.
  276. */
  277. napi_complete(napi);
  278. efx_channel_processed(channel);
  279. }
  280. return spent;
  281. }
  282. /* Process the eventq of the specified channel immediately on this CPU
  283. *
  284. * Disable hardware generated interrupts, wait for any existing
  285. * processing to finish, then directly poll (and ack ) the eventq.
  286. * Finally reenable NAPI and interrupts.
  287. *
  288. * Since we are touching interrupts the caller should hold the suspend lock
  289. */
  290. void efx_process_channel_now(struct efx_channel *channel)
  291. {
  292. struct efx_nic *efx = channel->efx;
  293. BUG_ON(channel->channel >= efx->n_channels);
  294. BUG_ON(!channel->enabled);
  295. /* Disable interrupts and wait for ISRs to complete */
  296. efx_nic_disable_interrupts(efx);
  297. if (efx->legacy_irq) {
  298. synchronize_irq(efx->legacy_irq);
  299. efx->legacy_irq_enabled = false;
  300. }
  301. if (channel->irq)
  302. synchronize_irq(channel->irq);
  303. /* Wait for any NAPI processing to complete */
  304. napi_disable(&channel->napi_str);
  305. /* Poll the channel */
  306. efx_process_channel(channel, channel->eventq_mask + 1);
  307. /* Ack the eventq. This may cause an interrupt to be generated
  308. * when they are reenabled */
  309. efx_channel_processed(channel);
  310. napi_enable(&channel->napi_str);
  311. if (efx->legacy_irq)
  312. efx->legacy_irq_enabled = true;
  313. efx_nic_enable_interrupts(efx);
  314. }
  315. /* Create event queue
  316. * Event queue memory allocations are done only once. If the channel
  317. * is reset, the memory buffer will be reused; this guards against
  318. * errors during channel reset and also simplifies interrupt handling.
  319. */
  320. static int efx_probe_eventq(struct efx_channel *channel)
  321. {
  322. struct efx_nic *efx = channel->efx;
  323. unsigned long entries;
  324. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  325. "chan %d create event queue\n", channel->channel);
  326. /* Build an event queue with room for one event per tx and rx buffer,
  327. * plus some extra for link state events and MCDI completions. */
  328. entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
  329. EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
  330. channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
  331. return efx_nic_probe_eventq(channel);
  332. }
  333. /* Prepare channel's event queue */
  334. static void efx_init_eventq(struct efx_channel *channel)
  335. {
  336. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  337. "chan %d init event queue\n", channel->channel);
  338. channel->eventq_read_ptr = 0;
  339. efx_nic_init_eventq(channel);
  340. }
  341. static void efx_fini_eventq(struct efx_channel *channel)
  342. {
  343. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  344. "chan %d fini event queue\n", channel->channel);
  345. efx_nic_fini_eventq(channel);
  346. }
  347. static void efx_remove_eventq(struct efx_channel *channel)
  348. {
  349. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  350. "chan %d remove event queue\n", channel->channel);
  351. efx_nic_remove_eventq(channel);
  352. }
  353. /**************************************************************************
  354. *
  355. * Channel handling
  356. *
  357. *************************************************************************/
  358. /* Allocate and initialise a channel structure, optionally copying
  359. * parameters (but not resources) from an old channel structure. */
  360. static struct efx_channel *
  361. efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
  362. {
  363. struct efx_channel *channel;
  364. struct efx_rx_queue *rx_queue;
  365. struct efx_tx_queue *tx_queue;
  366. int j;
  367. if (old_channel) {
  368. channel = kmalloc(sizeof(*channel), GFP_KERNEL);
  369. if (!channel)
  370. return NULL;
  371. *channel = *old_channel;
  372. channel->napi_dev = NULL;
  373. memset(&channel->eventq, 0, sizeof(channel->eventq));
  374. rx_queue = &channel->rx_queue;
  375. rx_queue->buffer = NULL;
  376. memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
  377. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  378. tx_queue = &channel->tx_queue[j];
  379. if (tx_queue->channel)
  380. tx_queue->channel = channel;
  381. tx_queue->buffer = NULL;
  382. memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
  383. }
  384. } else {
  385. channel = kzalloc(sizeof(*channel), GFP_KERNEL);
  386. if (!channel)
  387. return NULL;
  388. channel->efx = efx;
  389. channel->channel = i;
  390. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  391. tx_queue = &channel->tx_queue[j];
  392. tx_queue->efx = efx;
  393. tx_queue->queue = i * EFX_TXQ_TYPES + j;
  394. tx_queue->channel = channel;
  395. }
  396. }
  397. rx_queue = &channel->rx_queue;
  398. rx_queue->efx = efx;
  399. setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
  400. (unsigned long)rx_queue);
  401. return channel;
  402. }
  403. static int efx_probe_channel(struct efx_channel *channel)
  404. {
  405. struct efx_tx_queue *tx_queue;
  406. struct efx_rx_queue *rx_queue;
  407. int rc;
  408. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  409. "creating channel %d\n", channel->channel);
  410. rc = efx_probe_eventq(channel);
  411. if (rc)
  412. goto fail1;
  413. efx_for_each_channel_tx_queue(tx_queue, channel) {
  414. rc = efx_probe_tx_queue(tx_queue);
  415. if (rc)
  416. goto fail2;
  417. }
  418. efx_for_each_channel_rx_queue(rx_queue, channel) {
  419. rc = efx_probe_rx_queue(rx_queue);
  420. if (rc)
  421. goto fail3;
  422. }
  423. channel->n_rx_frm_trunc = 0;
  424. return 0;
  425. fail3:
  426. efx_for_each_channel_rx_queue(rx_queue, channel)
  427. efx_remove_rx_queue(rx_queue);
  428. fail2:
  429. efx_for_each_channel_tx_queue(tx_queue, channel)
  430. efx_remove_tx_queue(tx_queue);
  431. fail1:
  432. return rc;
  433. }
  434. static void efx_set_channel_names(struct efx_nic *efx)
  435. {
  436. struct efx_channel *channel;
  437. const char *type = "";
  438. int number;
  439. efx_for_each_channel(channel, efx) {
  440. number = channel->channel;
  441. if (efx->n_channels > efx->n_rx_channels) {
  442. if (channel->channel < efx->n_rx_channels) {
  443. type = "-rx";
  444. } else {
  445. type = "-tx";
  446. number -= efx->n_rx_channels;
  447. }
  448. }
  449. snprintf(efx->channel_name[channel->channel],
  450. sizeof(efx->channel_name[0]),
  451. "%s%s-%d", efx->name, type, number);
  452. }
  453. }
  454. static int efx_probe_channels(struct efx_nic *efx)
  455. {
  456. struct efx_channel *channel;
  457. int rc;
  458. /* Restart special buffer allocation */
  459. efx->next_buffer_table = 0;
  460. efx_for_each_channel(channel, efx) {
  461. rc = efx_probe_channel(channel);
  462. if (rc) {
  463. netif_err(efx, probe, efx->net_dev,
  464. "failed to create channel %d\n",
  465. channel->channel);
  466. goto fail;
  467. }
  468. }
  469. efx_set_channel_names(efx);
  470. return 0;
  471. fail:
  472. efx_remove_channels(efx);
  473. return rc;
  474. }
  475. /* Channels are shutdown and reinitialised whilst the NIC is running
  476. * to propagate configuration changes (mtu, checksum offload), or
  477. * to clear hardware error conditions
  478. */
  479. static void efx_init_channels(struct efx_nic *efx)
  480. {
  481. struct efx_tx_queue *tx_queue;
  482. struct efx_rx_queue *rx_queue;
  483. struct efx_channel *channel;
  484. /* Calculate the rx buffer allocation parameters required to
  485. * support the current MTU, including padding for header
  486. * alignment and overruns.
  487. */
  488. efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
  489. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  490. efx->type->rx_buffer_hash_size +
  491. efx->type->rx_buffer_padding);
  492. efx->rx_buffer_order = get_order(efx->rx_buffer_len +
  493. sizeof(struct efx_rx_page_state));
  494. /* Initialise the channels */
  495. efx_for_each_channel(channel, efx) {
  496. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  497. "init chan %d\n", channel->channel);
  498. efx_init_eventq(channel);
  499. efx_for_each_channel_tx_queue(tx_queue, channel)
  500. efx_init_tx_queue(tx_queue);
  501. /* The rx buffer allocation strategy is MTU dependent */
  502. efx_rx_strategy(channel);
  503. efx_for_each_channel_rx_queue(rx_queue, channel)
  504. efx_init_rx_queue(rx_queue);
  505. WARN_ON(channel->rx_pkt != NULL);
  506. efx_rx_strategy(channel);
  507. }
  508. }
  509. /* This enables event queue processing and packet transmission.
  510. *
  511. * Note that this function is not allowed to fail, since that would
  512. * introduce too much complexity into the suspend/resume path.
  513. */
  514. static void efx_start_channel(struct efx_channel *channel)
  515. {
  516. struct efx_rx_queue *rx_queue;
  517. netif_dbg(channel->efx, ifup, channel->efx->net_dev,
  518. "starting chan %d\n", channel->channel);
  519. /* The interrupt handler for this channel may set work_pending
  520. * as soon as we enable it. Make sure it's cleared before
  521. * then. Similarly, make sure it sees the enabled flag set. */
  522. channel->work_pending = false;
  523. channel->enabled = true;
  524. smp_wmb();
  525. /* Fill the queues before enabling NAPI */
  526. efx_for_each_channel_rx_queue(rx_queue, channel)
  527. efx_fast_push_rx_descriptors(rx_queue);
  528. napi_enable(&channel->napi_str);
  529. }
  530. /* This disables event queue processing and packet transmission.
  531. * This function does not guarantee that all queue processing
  532. * (e.g. RX refill) is complete.
  533. */
  534. static void efx_stop_channel(struct efx_channel *channel)
  535. {
  536. if (!channel->enabled)
  537. return;
  538. netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
  539. "stop chan %d\n", channel->channel);
  540. channel->enabled = false;
  541. napi_disable(&channel->napi_str);
  542. }
  543. static void efx_fini_channels(struct efx_nic *efx)
  544. {
  545. struct efx_channel *channel;
  546. struct efx_tx_queue *tx_queue;
  547. struct efx_rx_queue *rx_queue;
  548. int rc;
  549. EFX_ASSERT_RESET_SERIALISED(efx);
  550. BUG_ON(efx->port_enabled);
  551. rc = efx_nic_flush_queues(efx);
  552. if (rc && EFX_WORKAROUND_7803(efx)) {
  553. /* Schedule a reset to recover from the flush failure. The
  554. * descriptor caches reference memory we're about to free,
  555. * but falcon_reconfigure_mac_wrapper() won't reconnect
  556. * the MACs because of the pending reset. */
  557. netif_err(efx, drv, efx->net_dev,
  558. "Resetting to recover from flush failure\n");
  559. efx_schedule_reset(efx, RESET_TYPE_ALL);
  560. } else if (rc) {
  561. netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
  562. } else {
  563. netif_dbg(efx, drv, efx->net_dev,
  564. "successfully flushed all queues\n");
  565. }
  566. efx_for_each_channel(channel, efx) {
  567. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  568. "shut down chan %d\n", channel->channel);
  569. efx_for_each_channel_rx_queue(rx_queue, channel)
  570. efx_fini_rx_queue(rx_queue);
  571. efx_for_each_channel_tx_queue(tx_queue, channel)
  572. efx_fini_tx_queue(tx_queue);
  573. efx_fini_eventq(channel);
  574. }
  575. }
  576. static void efx_remove_channel(struct efx_channel *channel)
  577. {
  578. struct efx_tx_queue *tx_queue;
  579. struct efx_rx_queue *rx_queue;
  580. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  581. "destroy chan %d\n", channel->channel);
  582. efx_for_each_channel_rx_queue(rx_queue, channel)
  583. efx_remove_rx_queue(rx_queue);
  584. efx_for_each_channel_tx_queue(tx_queue, channel)
  585. efx_remove_tx_queue(tx_queue);
  586. efx_remove_eventq(channel);
  587. }
  588. static void efx_remove_channels(struct efx_nic *efx)
  589. {
  590. struct efx_channel *channel;
  591. efx_for_each_channel(channel, efx)
  592. efx_remove_channel(channel);
  593. }
  594. int
  595. efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
  596. {
  597. struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
  598. u32 old_rxq_entries, old_txq_entries;
  599. unsigned i;
  600. int rc;
  601. efx_stop_all(efx);
  602. efx_fini_channels(efx);
  603. /* Clone channels */
  604. memset(other_channel, 0, sizeof(other_channel));
  605. for (i = 0; i < efx->n_channels; i++) {
  606. channel = efx_alloc_channel(efx, i, efx->channel[i]);
  607. if (!channel) {
  608. rc = -ENOMEM;
  609. goto out;
  610. }
  611. other_channel[i] = channel;
  612. }
  613. /* Swap entry counts and channel pointers */
  614. old_rxq_entries = efx->rxq_entries;
  615. old_txq_entries = efx->txq_entries;
  616. efx->rxq_entries = rxq_entries;
  617. efx->txq_entries = txq_entries;
  618. for (i = 0; i < efx->n_channels; i++) {
  619. channel = efx->channel[i];
  620. efx->channel[i] = other_channel[i];
  621. other_channel[i] = channel;
  622. }
  623. rc = efx_probe_channels(efx);
  624. if (rc)
  625. goto rollback;
  626. efx_init_napi(efx);
  627. /* Destroy old channels */
  628. for (i = 0; i < efx->n_channels; i++) {
  629. efx_fini_napi_channel(other_channel[i]);
  630. efx_remove_channel(other_channel[i]);
  631. }
  632. out:
  633. /* Free unused channel structures */
  634. for (i = 0; i < efx->n_channels; i++)
  635. kfree(other_channel[i]);
  636. efx_init_channels(efx);
  637. efx_start_all(efx);
  638. return rc;
  639. rollback:
  640. /* Swap back */
  641. efx->rxq_entries = old_rxq_entries;
  642. efx->txq_entries = old_txq_entries;
  643. for (i = 0; i < efx->n_channels; i++) {
  644. channel = efx->channel[i];
  645. efx->channel[i] = other_channel[i];
  646. other_channel[i] = channel;
  647. }
  648. goto out;
  649. }
  650. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
  651. {
  652. mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
  653. }
  654. /**************************************************************************
  655. *
  656. * Port handling
  657. *
  658. **************************************************************************/
  659. /* This ensures that the kernel is kept informed (via
  660. * netif_carrier_on/off) of the link status, and also maintains the
  661. * link status's stop on the port's TX queue.
  662. */
  663. void efx_link_status_changed(struct efx_nic *efx)
  664. {
  665. struct efx_link_state *link_state = &efx->link_state;
  666. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  667. * that no events are triggered between unregister_netdev() and the
  668. * driver unloading. A more general condition is that NETDEV_CHANGE
  669. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  670. if (!netif_running(efx->net_dev))
  671. return;
  672. if (efx->port_inhibited) {
  673. netif_carrier_off(efx->net_dev);
  674. return;
  675. }
  676. if (link_state->up != netif_carrier_ok(efx->net_dev)) {
  677. efx->n_link_state_changes++;
  678. if (link_state->up)
  679. netif_carrier_on(efx->net_dev);
  680. else
  681. netif_carrier_off(efx->net_dev);
  682. }
  683. /* Status message for kernel log */
  684. if (link_state->up) {
  685. netif_info(efx, link, efx->net_dev,
  686. "link up at %uMbps %s-duplex (MTU %d)%s\n",
  687. link_state->speed, link_state->fd ? "full" : "half",
  688. efx->net_dev->mtu,
  689. (efx->promiscuous ? " [PROMISC]" : ""));
  690. } else {
  691. netif_info(efx, link, efx->net_dev, "link down\n");
  692. }
  693. }
  694. void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
  695. {
  696. efx->link_advertising = advertising;
  697. if (advertising) {
  698. if (advertising & ADVERTISED_Pause)
  699. efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
  700. else
  701. efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
  702. if (advertising & ADVERTISED_Asym_Pause)
  703. efx->wanted_fc ^= EFX_FC_TX;
  704. }
  705. }
  706. void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
  707. {
  708. efx->wanted_fc = wanted_fc;
  709. if (efx->link_advertising) {
  710. if (wanted_fc & EFX_FC_RX)
  711. efx->link_advertising |= (ADVERTISED_Pause |
  712. ADVERTISED_Asym_Pause);
  713. else
  714. efx->link_advertising &= ~(ADVERTISED_Pause |
  715. ADVERTISED_Asym_Pause);
  716. if (wanted_fc & EFX_FC_TX)
  717. efx->link_advertising ^= ADVERTISED_Asym_Pause;
  718. }
  719. }
  720. static void efx_fini_port(struct efx_nic *efx);
  721. /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
  722. * the MAC appropriately. All other PHY configuration changes are pushed
  723. * through phy_op->set_settings(), and pushed asynchronously to the MAC
  724. * through efx_monitor().
  725. *
  726. * Callers must hold the mac_lock
  727. */
  728. int __efx_reconfigure_port(struct efx_nic *efx)
  729. {
  730. enum efx_phy_mode phy_mode;
  731. int rc;
  732. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  733. /* Serialise the promiscuous flag with efx_set_multicast_list. */
  734. if (efx_dev_registered(efx)) {
  735. netif_addr_lock_bh(efx->net_dev);
  736. netif_addr_unlock_bh(efx->net_dev);
  737. }
  738. /* Disable PHY transmit in mac level loopbacks */
  739. phy_mode = efx->phy_mode;
  740. if (LOOPBACK_INTERNAL(efx))
  741. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  742. else
  743. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  744. rc = efx->type->reconfigure_port(efx);
  745. if (rc)
  746. efx->phy_mode = phy_mode;
  747. return rc;
  748. }
  749. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  750. * disabled. */
  751. int efx_reconfigure_port(struct efx_nic *efx)
  752. {
  753. int rc;
  754. EFX_ASSERT_RESET_SERIALISED(efx);
  755. mutex_lock(&efx->mac_lock);
  756. rc = __efx_reconfigure_port(efx);
  757. mutex_unlock(&efx->mac_lock);
  758. return rc;
  759. }
  760. /* Asynchronous work item for changing MAC promiscuity and multicast
  761. * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
  762. * MAC directly. */
  763. static void efx_mac_work(struct work_struct *data)
  764. {
  765. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  766. mutex_lock(&efx->mac_lock);
  767. if (efx->port_enabled) {
  768. efx->type->push_multicast_hash(efx);
  769. efx->mac_op->reconfigure(efx);
  770. }
  771. mutex_unlock(&efx->mac_lock);
  772. }
  773. static int efx_probe_port(struct efx_nic *efx)
  774. {
  775. unsigned char *perm_addr;
  776. int rc;
  777. netif_dbg(efx, probe, efx->net_dev, "create port\n");
  778. if (phy_flash_cfg)
  779. efx->phy_mode = PHY_MODE_SPECIAL;
  780. /* Connect up MAC/PHY operations table */
  781. rc = efx->type->probe_port(efx);
  782. if (rc)
  783. return rc;
  784. /* Sanity check MAC address */
  785. perm_addr = efx->net_dev->perm_addr;
  786. if (is_valid_ether_addr(perm_addr)) {
  787. memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
  788. } else {
  789. netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
  790. perm_addr);
  791. if (!allow_bad_hwaddr) {
  792. rc = -EINVAL;
  793. goto err;
  794. }
  795. random_ether_addr(efx->net_dev->dev_addr);
  796. netif_info(efx, probe, efx->net_dev,
  797. "using locally-generated MAC %pM\n",
  798. efx->net_dev->dev_addr);
  799. }
  800. return 0;
  801. err:
  802. efx->type->remove_port(efx);
  803. return rc;
  804. }
  805. static int efx_init_port(struct efx_nic *efx)
  806. {
  807. int rc;
  808. netif_dbg(efx, drv, efx->net_dev, "init port\n");
  809. mutex_lock(&efx->mac_lock);
  810. rc = efx->phy_op->init(efx);
  811. if (rc)
  812. goto fail1;
  813. efx->port_initialized = true;
  814. /* Reconfigure the MAC before creating dma queues (required for
  815. * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
  816. efx->mac_op->reconfigure(efx);
  817. /* Ensure the PHY advertises the correct flow control settings */
  818. rc = efx->phy_op->reconfigure(efx);
  819. if (rc)
  820. goto fail2;
  821. mutex_unlock(&efx->mac_lock);
  822. return 0;
  823. fail2:
  824. efx->phy_op->fini(efx);
  825. fail1:
  826. mutex_unlock(&efx->mac_lock);
  827. return rc;
  828. }
  829. static void efx_start_port(struct efx_nic *efx)
  830. {
  831. netif_dbg(efx, ifup, efx->net_dev, "start port\n");
  832. BUG_ON(efx->port_enabled);
  833. mutex_lock(&efx->mac_lock);
  834. efx->port_enabled = true;
  835. /* efx_mac_work() might have been scheduled after efx_stop_port(),
  836. * and then cancelled by efx_flush_all() */
  837. efx->type->push_multicast_hash(efx);
  838. efx->mac_op->reconfigure(efx);
  839. mutex_unlock(&efx->mac_lock);
  840. }
  841. /* Prevent efx_mac_work() and efx_monitor() from working */
  842. static void efx_stop_port(struct efx_nic *efx)
  843. {
  844. netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
  845. mutex_lock(&efx->mac_lock);
  846. efx->port_enabled = false;
  847. mutex_unlock(&efx->mac_lock);
  848. /* Serialise against efx_set_multicast_list() */
  849. if (efx_dev_registered(efx)) {
  850. netif_addr_lock_bh(efx->net_dev);
  851. netif_addr_unlock_bh(efx->net_dev);
  852. }
  853. }
  854. static void efx_fini_port(struct efx_nic *efx)
  855. {
  856. netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
  857. if (!efx->port_initialized)
  858. return;
  859. efx->phy_op->fini(efx);
  860. efx->port_initialized = false;
  861. efx->link_state.up = false;
  862. efx_link_status_changed(efx);
  863. }
  864. static void efx_remove_port(struct efx_nic *efx)
  865. {
  866. netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
  867. efx->type->remove_port(efx);
  868. }
  869. /**************************************************************************
  870. *
  871. * NIC handling
  872. *
  873. **************************************************************************/
  874. /* This configures the PCI device to enable I/O and DMA. */
  875. static int efx_init_io(struct efx_nic *efx)
  876. {
  877. struct pci_dev *pci_dev = efx->pci_dev;
  878. dma_addr_t dma_mask = efx->type->max_dma_mask;
  879. int rc;
  880. netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
  881. rc = pci_enable_device(pci_dev);
  882. if (rc) {
  883. netif_err(efx, probe, efx->net_dev,
  884. "failed to enable PCI device\n");
  885. goto fail1;
  886. }
  887. pci_set_master(pci_dev);
  888. /* Set the PCI DMA mask. Try all possibilities from our
  889. * genuine mask down to 32 bits, because some architectures
  890. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  891. * masks event though they reject 46 bit masks.
  892. */
  893. while (dma_mask > 0x7fffffffUL) {
  894. if (pci_dma_supported(pci_dev, dma_mask) &&
  895. ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
  896. break;
  897. dma_mask >>= 1;
  898. }
  899. if (rc) {
  900. netif_err(efx, probe, efx->net_dev,
  901. "could not find a suitable DMA mask\n");
  902. goto fail2;
  903. }
  904. netif_dbg(efx, probe, efx->net_dev,
  905. "using DMA mask %llx\n", (unsigned long long) dma_mask);
  906. rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
  907. if (rc) {
  908. /* pci_set_consistent_dma_mask() is not *allowed* to
  909. * fail with a mask that pci_set_dma_mask() accepted,
  910. * but just in case...
  911. */
  912. netif_err(efx, probe, efx->net_dev,
  913. "failed to set consistent DMA mask\n");
  914. goto fail2;
  915. }
  916. efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
  917. rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
  918. if (rc) {
  919. netif_err(efx, probe, efx->net_dev,
  920. "request for memory BAR failed\n");
  921. rc = -EIO;
  922. goto fail3;
  923. }
  924. efx->membase = ioremap_nocache(efx->membase_phys,
  925. efx->type->mem_map_size);
  926. if (!efx->membase) {
  927. netif_err(efx, probe, efx->net_dev,
  928. "could not map memory BAR at %llx+%x\n",
  929. (unsigned long long)efx->membase_phys,
  930. efx->type->mem_map_size);
  931. rc = -ENOMEM;
  932. goto fail4;
  933. }
  934. netif_dbg(efx, probe, efx->net_dev,
  935. "memory BAR at %llx+%x (virtual %p)\n",
  936. (unsigned long long)efx->membase_phys,
  937. efx->type->mem_map_size, efx->membase);
  938. return 0;
  939. fail4:
  940. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  941. fail3:
  942. efx->membase_phys = 0;
  943. fail2:
  944. pci_disable_device(efx->pci_dev);
  945. fail1:
  946. return rc;
  947. }
  948. static void efx_fini_io(struct efx_nic *efx)
  949. {
  950. netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
  951. if (efx->membase) {
  952. iounmap(efx->membase);
  953. efx->membase = NULL;
  954. }
  955. if (efx->membase_phys) {
  956. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  957. efx->membase_phys = 0;
  958. }
  959. pci_disable_device(efx->pci_dev);
  960. }
  961. /* Get number of channels wanted. Each channel will have its own IRQ,
  962. * 1 RX queue and/or 2 TX queues. */
  963. static int efx_wanted_channels(void)
  964. {
  965. cpumask_var_t core_mask;
  966. int count;
  967. int cpu;
  968. if (rss_cpus)
  969. return rss_cpus;
  970. if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
  971. printk(KERN_WARNING
  972. "sfc: RSS disabled due to allocation failure\n");
  973. return 1;
  974. }
  975. count = 0;
  976. for_each_online_cpu(cpu) {
  977. if (!cpumask_test_cpu(cpu, core_mask)) {
  978. ++count;
  979. cpumask_or(core_mask, core_mask,
  980. topology_core_cpumask(cpu));
  981. }
  982. }
  983. free_cpumask_var(core_mask);
  984. return count;
  985. }
  986. /* Probe the number and type of interrupts we are able to obtain, and
  987. * the resulting numbers of channels and RX queues.
  988. */
  989. static void efx_probe_interrupts(struct efx_nic *efx)
  990. {
  991. int max_channels =
  992. min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  993. int rc, i;
  994. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  995. struct msix_entry xentries[EFX_MAX_CHANNELS];
  996. int n_channels;
  997. n_channels = efx_wanted_channels();
  998. if (separate_tx_channels)
  999. n_channels *= 2;
  1000. n_channels = min(n_channels, max_channels);
  1001. for (i = 0; i < n_channels; i++)
  1002. xentries[i].entry = i;
  1003. rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
  1004. if (rc > 0) {
  1005. netif_err(efx, drv, efx->net_dev,
  1006. "WARNING: Insufficient MSI-X vectors"
  1007. " available (%d < %d).\n", rc, n_channels);
  1008. netif_err(efx, drv, efx->net_dev,
  1009. "WARNING: Performance may be reduced.\n");
  1010. EFX_BUG_ON_PARANOID(rc >= n_channels);
  1011. n_channels = rc;
  1012. rc = pci_enable_msix(efx->pci_dev, xentries,
  1013. n_channels);
  1014. }
  1015. if (rc == 0) {
  1016. efx->n_channels = n_channels;
  1017. if (separate_tx_channels) {
  1018. efx->n_tx_channels =
  1019. max(efx->n_channels / 2, 1U);
  1020. efx->n_rx_channels =
  1021. max(efx->n_channels -
  1022. efx->n_tx_channels, 1U);
  1023. } else {
  1024. efx->n_tx_channels = efx->n_channels;
  1025. efx->n_rx_channels = efx->n_channels;
  1026. }
  1027. for (i = 0; i < n_channels; i++)
  1028. efx_get_channel(efx, i)->irq =
  1029. xentries[i].vector;
  1030. } else {
  1031. /* Fall back to single channel MSI */
  1032. efx->interrupt_mode = EFX_INT_MODE_MSI;
  1033. netif_err(efx, drv, efx->net_dev,
  1034. "could not enable MSI-X\n");
  1035. }
  1036. }
  1037. /* Try single interrupt MSI */
  1038. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  1039. efx->n_channels = 1;
  1040. efx->n_rx_channels = 1;
  1041. efx->n_tx_channels = 1;
  1042. rc = pci_enable_msi(efx->pci_dev);
  1043. if (rc == 0) {
  1044. efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
  1045. } else {
  1046. netif_err(efx, drv, efx->net_dev,
  1047. "could not enable MSI\n");
  1048. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  1049. }
  1050. }
  1051. /* Assume legacy interrupts */
  1052. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  1053. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  1054. efx->n_rx_channels = 1;
  1055. efx->n_tx_channels = 1;
  1056. efx->legacy_irq = efx->pci_dev->irq;
  1057. }
  1058. }
  1059. static void efx_remove_interrupts(struct efx_nic *efx)
  1060. {
  1061. struct efx_channel *channel;
  1062. /* Remove MSI/MSI-X interrupts */
  1063. efx_for_each_channel(channel, efx)
  1064. channel->irq = 0;
  1065. pci_disable_msi(efx->pci_dev);
  1066. pci_disable_msix(efx->pci_dev);
  1067. /* Remove legacy interrupt */
  1068. efx->legacy_irq = 0;
  1069. }
  1070. static void efx_set_channels(struct efx_nic *efx)
  1071. {
  1072. struct efx_channel *channel;
  1073. struct efx_tx_queue *tx_queue;
  1074. efx->tx_channel_offset =
  1075. separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
  1076. /* Channel pointers were set in efx_init_struct() but we now
  1077. * need to clear them for TX queues in any RX-only channels. */
  1078. efx_for_each_channel(channel, efx) {
  1079. if (channel->channel - efx->tx_channel_offset >=
  1080. efx->n_tx_channels) {
  1081. efx_for_each_channel_tx_queue(tx_queue, channel)
  1082. tx_queue->channel = NULL;
  1083. }
  1084. }
  1085. }
  1086. static int efx_probe_nic(struct efx_nic *efx)
  1087. {
  1088. size_t i;
  1089. int rc;
  1090. netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
  1091. /* Carry out hardware-type specific initialisation */
  1092. rc = efx->type->probe(efx);
  1093. if (rc)
  1094. return rc;
  1095. /* Determine the number of channels and queues by trying to hook
  1096. * in MSI-X interrupts. */
  1097. efx_probe_interrupts(efx);
  1098. if (efx->n_channels > 1)
  1099. get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
  1100. for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
  1101. efx->rx_indir_table[i] = i % efx->n_rx_channels;
  1102. efx_set_channels(efx);
  1103. netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
  1104. netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
  1105. /* Initialise the interrupt moderation settings */
  1106. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
  1107. return 0;
  1108. }
  1109. static void efx_remove_nic(struct efx_nic *efx)
  1110. {
  1111. netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
  1112. efx_remove_interrupts(efx);
  1113. efx->type->remove(efx);
  1114. }
  1115. /**************************************************************************
  1116. *
  1117. * NIC startup/shutdown
  1118. *
  1119. *************************************************************************/
  1120. static int efx_probe_all(struct efx_nic *efx)
  1121. {
  1122. int rc;
  1123. rc = efx_probe_nic(efx);
  1124. if (rc) {
  1125. netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
  1126. goto fail1;
  1127. }
  1128. rc = efx_probe_port(efx);
  1129. if (rc) {
  1130. netif_err(efx, probe, efx->net_dev, "failed to create port\n");
  1131. goto fail2;
  1132. }
  1133. efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
  1134. rc = efx_probe_channels(efx);
  1135. if (rc)
  1136. goto fail3;
  1137. rc = efx_probe_filters(efx);
  1138. if (rc) {
  1139. netif_err(efx, probe, efx->net_dev,
  1140. "failed to create filter tables\n");
  1141. goto fail4;
  1142. }
  1143. return 0;
  1144. fail4:
  1145. efx_remove_channels(efx);
  1146. fail3:
  1147. efx_remove_port(efx);
  1148. fail2:
  1149. efx_remove_nic(efx);
  1150. fail1:
  1151. return rc;
  1152. }
  1153. /* Called after previous invocation(s) of efx_stop_all, restarts the
  1154. * port, kernel transmit queue, NAPI processing and hardware interrupts,
  1155. * and ensures that the port is scheduled to be reconfigured.
  1156. * This function is safe to call multiple times when the NIC is in any
  1157. * state. */
  1158. static void efx_start_all(struct efx_nic *efx)
  1159. {
  1160. struct efx_channel *channel;
  1161. EFX_ASSERT_RESET_SERIALISED(efx);
  1162. /* Check that it is appropriate to restart the interface. All
  1163. * of these flags are safe to read under just the rtnl lock */
  1164. if (efx->port_enabled)
  1165. return;
  1166. if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
  1167. return;
  1168. if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
  1169. return;
  1170. /* Mark the port as enabled so port reconfigurations can start, then
  1171. * restart the transmit interface early so the watchdog timer stops */
  1172. efx_start_port(efx);
  1173. if (efx_dev_registered(efx))
  1174. netif_tx_wake_all_queues(efx->net_dev);
  1175. efx_for_each_channel(channel, efx)
  1176. efx_start_channel(channel);
  1177. if (efx->legacy_irq)
  1178. efx->legacy_irq_enabled = true;
  1179. efx_nic_enable_interrupts(efx);
  1180. /* Switch to event based MCDI completions after enabling interrupts.
  1181. * If a reset has been scheduled, then we need to stay in polled mode.
  1182. * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
  1183. * reset_pending [modified from an atomic context], we instead guarantee
  1184. * that efx_mcdi_mode_poll() isn't reverted erroneously */
  1185. efx_mcdi_mode_event(efx);
  1186. if (efx->reset_pending != RESET_TYPE_NONE)
  1187. efx_mcdi_mode_poll(efx);
  1188. /* Start the hardware monitor if there is one. Otherwise (we're link
  1189. * event driven), we have to poll the PHY because after an event queue
  1190. * flush, we could have a missed a link state change */
  1191. if (efx->type->monitor != NULL) {
  1192. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1193. efx_monitor_interval);
  1194. } else {
  1195. mutex_lock(&efx->mac_lock);
  1196. if (efx->phy_op->poll(efx))
  1197. efx_link_status_changed(efx);
  1198. mutex_unlock(&efx->mac_lock);
  1199. }
  1200. efx->type->start_stats(efx);
  1201. }
  1202. /* Flush all delayed work. Should only be called when no more delayed work
  1203. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  1204. * since we're holding the rtnl_lock at this point. */
  1205. static void efx_flush_all(struct efx_nic *efx)
  1206. {
  1207. /* Make sure the hardware monitor is stopped */
  1208. cancel_delayed_work_sync(&efx->monitor_work);
  1209. /* Stop scheduled port reconfigurations */
  1210. cancel_work_sync(&efx->mac_work);
  1211. }
  1212. /* Quiesce hardware and software without bringing the link down.
  1213. * Safe to call multiple times, when the nic and interface is in any
  1214. * state. The caller is guaranteed to subsequently be in a position
  1215. * to modify any hardware and software state they see fit without
  1216. * taking locks. */
  1217. static void efx_stop_all(struct efx_nic *efx)
  1218. {
  1219. struct efx_channel *channel;
  1220. EFX_ASSERT_RESET_SERIALISED(efx);
  1221. /* port_enabled can be read safely under the rtnl lock */
  1222. if (!efx->port_enabled)
  1223. return;
  1224. efx->type->stop_stats(efx);
  1225. /* Switch to MCDI polling on Siena before disabling interrupts */
  1226. efx_mcdi_mode_poll(efx);
  1227. /* Disable interrupts and wait for ISR to complete */
  1228. efx_nic_disable_interrupts(efx);
  1229. if (efx->legacy_irq) {
  1230. synchronize_irq(efx->legacy_irq);
  1231. efx->legacy_irq_enabled = false;
  1232. }
  1233. efx_for_each_channel(channel, efx) {
  1234. if (channel->irq)
  1235. synchronize_irq(channel->irq);
  1236. }
  1237. /* Stop all NAPI processing and synchronous rx refills */
  1238. efx_for_each_channel(channel, efx)
  1239. efx_stop_channel(channel);
  1240. /* Stop all asynchronous port reconfigurations. Since all
  1241. * event processing has already been stopped, there is no
  1242. * window to loose phy events */
  1243. efx_stop_port(efx);
  1244. /* Flush efx_mac_work(), refill_workqueue, monitor_work */
  1245. efx_flush_all(efx);
  1246. /* Stop the kernel transmit interface late, so the watchdog
  1247. * timer isn't ticking over the flush */
  1248. if (efx_dev_registered(efx)) {
  1249. netif_tx_stop_all_queues(efx->net_dev);
  1250. netif_tx_lock_bh(efx->net_dev);
  1251. netif_tx_unlock_bh(efx->net_dev);
  1252. }
  1253. }
  1254. static void efx_remove_all(struct efx_nic *efx)
  1255. {
  1256. efx_remove_filters(efx);
  1257. efx_remove_channels(efx);
  1258. efx_remove_port(efx);
  1259. efx_remove_nic(efx);
  1260. }
  1261. /**************************************************************************
  1262. *
  1263. * Interrupt moderation
  1264. *
  1265. **************************************************************************/
  1266. static unsigned irq_mod_ticks(int usecs, int resolution)
  1267. {
  1268. if (usecs <= 0)
  1269. return 0; /* cannot receive interrupts ahead of time :-) */
  1270. if (usecs < resolution)
  1271. return 1; /* never round down to 0 */
  1272. return usecs / resolution;
  1273. }
  1274. /* Set interrupt moderation parameters */
  1275. void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
  1276. bool rx_adaptive)
  1277. {
  1278. struct efx_channel *channel;
  1279. unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1280. unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
  1281. EFX_ASSERT_RESET_SERIALISED(efx);
  1282. efx->irq_rx_adaptive = rx_adaptive;
  1283. efx->irq_rx_moderation = rx_ticks;
  1284. efx_for_each_channel(channel, efx) {
  1285. if (efx_channel_get_rx_queue(channel))
  1286. channel->irq_moderation = rx_ticks;
  1287. else if (efx_channel_get_tx_queue(channel, 0))
  1288. channel->irq_moderation = tx_ticks;
  1289. }
  1290. }
  1291. /**************************************************************************
  1292. *
  1293. * Hardware monitor
  1294. *
  1295. **************************************************************************/
  1296. /* Run periodically off the general workqueue */
  1297. static void efx_monitor(struct work_struct *data)
  1298. {
  1299. struct efx_nic *efx = container_of(data, struct efx_nic,
  1300. monitor_work.work);
  1301. netif_vdbg(efx, timer, efx->net_dev,
  1302. "hardware monitor executing on CPU %d\n",
  1303. raw_smp_processor_id());
  1304. BUG_ON(efx->type->monitor == NULL);
  1305. /* If the mac_lock is already held then it is likely a port
  1306. * reconfiguration is already in place, which will likely do
  1307. * most of the work of monitor() anyway. */
  1308. if (mutex_trylock(&efx->mac_lock)) {
  1309. if (efx->port_enabled)
  1310. efx->type->monitor(efx);
  1311. mutex_unlock(&efx->mac_lock);
  1312. }
  1313. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1314. efx_monitor_interval);
  1315. }
  1316. /**************************************************************************
  1317. *
  1318. * ioctls
  1319. *
  1320. *************************************************************************/
  1321. /* Net device ioctl
  1322. * Context: process, rtnl_lock() held.
  1323. */
  1324. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1325. {
  1326. struct efx_nic *efx = netdev_priv(net_dev);
  1327. struct mii_ioctl_data *data = if_mii(ifr);
  1328. EFX_ASSERT_RESET_SERIALISED(efx);
  1329. /* Convert phy_id from older PRTAD/DEVAD format */
  1330. if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
  1331. (data->phy_id & 0xfc00) == 0x0400)
  1332. data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
  1333. return mdio_mii_ioctl(&efx->mdio, data, cmd);
  1334. }
  1335. /**************************************************************************
  1336. *
  1337. * NAPI interface
  1338. *
  1339. **************************************************************************/
  1340. static void efx_init_napi(struct efx_nic *efx)
  1341. {
  1342. struct efx_channel *channel;
  1343. efx_for_each_channel(channel, efx) {
  1344. channel->napi_dev = efx->net_dev;
  1345. netif_napi_add(channel->napi_dev, &channel->napi_str,
  1346. efx_poll, napi_weight);
  1347. }
  1348. }
  1349. static void efx_fini_napi_channel(struct efx_channel *channel)
  1350. {
  1351. if (channel->napi_dev)
  1352. netif_napi_del(&channel->napi_str);
  1353. channel->napi_dev = NULL;
  1354. }
  1355. static void efx_fini_napi(struct efx_nic *efx)
  1356. {
  1357. struct efx_channel *channel;
  1358. efx_for_each_channel(channel, efx)
  1359. efx_fini_napi_channel(channel);
  1360. }
  1361. /**************************************************************************
  1362. *
  1363. * Kernel netpoll interface
  1364. *
  1365. *************************************************************************/
  1366. #ifdef CONFIG_NET_POLL_CONTROLLER
  1367. /* Although in the common case interrupts will be disabled, this is not
  1368. * guaranteed. However, all our work happens inside the NAPI callback,
  1369. * so no locking is required.
  1370. */
  1371. static void efx_netpoll(struct net_device *net_dev)
  1372. {
  1373. struct efx_nic *efx = netdev_priv(net_dev);
  1374. struct efx_channel *channel;
  1375. efx_for_each_channel(channel, efx)
  1376. efx_schedule_channel(channel);
  1377. }
  1378. #endif
  1379. /**************************************************************************
  1380. *
  1381. * Kernel net device interface
  1382. *
  1383. *************************************************************************/
  1384. /* Context: process, rtnl_lock() held. */
  1385. static int efx_net_open(struct net_device *net_dev)
  1386. {
  1387. struct efx_nic *efx = netdev_priv(net_dev);
  1388. EFX_ASSERT_RESET_SERIALISED(efx);
  1389. netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
  1390. raw_smp_processor_id());
  1391. if (efx->state == STATE_DISABLED)
  1392. return -EIO;
  1393. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1394. return -EBUSY;
  1395. if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
  1396. return -EIO;
  1397. /* Notify the kernel of the link state polled during driver load,
  1398. * before the monitor starts running */
  1399. efx_link_status_changed(efx);
  1400. efx_start_all(efx);
  1401. return 0;
  1402. }
  1403. /* Context: process, rtnl_lock() held.
  1404. * Note that the kernel will ignore our return code; this method
  1405. * should really be a void.
  1406. */
  1407. static int efx_net_stop(struct net_device *net_dev)
  1408. {
  1409. struct efx_nic *efx = netdev_priv(net_dev);
  1410. netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
  1411. raw_smp_processor_id());
  1412. if (efx->state != STATE_DISABLED) {
  1413. /* Stop the device and flush all the channels */
  1414. efx_stop_all(efx);
  1415. efx_fini_channels(efx);
  1416. efx_init_channels(efx);
  1417. }
  1418. return 0;
  1419. }
  1420. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1421. static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
  1422. {
  1423. struct efx_nic *efx = netdev_priv(net_dev);
  1424. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1425. spin_lock_bh(&efx->stats_lock);
  1426. efx->type->update_stats(efx);
  1427. spin_unlock_bh(&efx->stats_lock);
  1428. stats->rx_packets = mac_stats->rx_packets;
  1429. stats->tx_packets = mac_stats->tx_packets;
  1430. stats->rx_bytes = mac_stats->rx_bytes;
  1431. stats->tx_bytes = mac_stats->tx_bytes;
  1432. stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
  1433. stats->multicast = mac_stats->rx_multicast;
  1434. stats->collisions = mac_stats->tx_collision;
  1435. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1436. mac_stats->rx_length_error);
  1437. stats->rx_crc_errors = mac_stats->rx_bad;
  1438. stats->rx_frame_errors = mac_stats->rx_align_error;
  1439. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1440. stats->rx_missed_errors = mac_stats->rx_missed;
  1441. stats->tx_window_errors = mac_stats->tx_late_collision;
  1442. stats->rx_errors = (stats->rx_length_errors +
  1443. stats->rx_crc_errors +
  1444. stats->rx_frame_errors +
  1445. mac_stats->rx_symbol_error);
  1446. stats->tx_errors = (stats->tx_window_errors +
  1447. mac_stats->tx_bad);
  1448. return stats;
  1449. }
  1450. /* Context: netif_tx_lock held, BHs disabled. */
  1451. static void efx_watchdog(struct net_device *net_dev)
  1452. {
  1453. struct efx_nic *efx = netdev_priv(net_dev);
  1454. netif_err(efx, tx_err, efx->net_dev,
  1455. "TX stuck with port_enabled=%d: resetting channels\n",
  1456. efx->port_enabled);
  1457. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1458. }
  1459. /* Context: process, rtnl_lock() held. */
  1460. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1461. {
  1462. struct efx_nic *efx = netdev_priv(net_dev);
  1463. int rc = 0;
  1464. EFX_ASSERT_RESET_SERIALISED(efx);
  1465. if (new_mtu > EFX_MAX_MTU)
  1466. return -EINVAL;
  1467. efx_stop_all(efx);
  1468. netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
  1469. efx_fini_channels(efx);
  1470. mutex_lock(&efx->mac_lock);
  1471. /* Reconfigure the MAC before enabling the dma queues so that
  1472. * the RX buffers don't overflow */
  1473. net_dev->mtu = new_mtu;
  1474. efx->mac_op->reconfigure(efx);
  1475. mutex_unlock(&efx->mac_lock);
  1476. efx_init_channels(efx);
  1477. efx_start_all(efx);
  1478. return rc;
  1479. }
  1480. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1481. {
  1482. struct efx_nic *efx = netdev_priv(net_dev);
  1483. struct sockaddr *addr = data;
  1484. char *new_addr = addr->sa_data;
  1485. EFX_ASSERT_RESET_SERIALISED(efx);
  1486. if (!is_valid_ether_addr(new_addr)) {
  1487. netif_err(efx, drv, efx->net_dev,
  1488. "invalid ethernet MAC address requested: %pM\n",
  1489. new_addr);
  1490. return -EINVAL;
  1491. }
  1492. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1493. /* Reconfigure the MAC */
  1494. mutex_lock(&efx->mac_lock);
  1495. efx->mac_op->reconfigure(efx);
  1496. mutex_unlock(&efx->mac_lock);
  1497. return 0;
  1498. }
  1499. /* Context: netif_addr_lock held, BHs disabled. */
  1500. static void efx_set_multicast_list(struct net_device *net_dev)
  1501. {
  1502. struct efx_nic *efx = netdev_priv(net_dev);
  1503. struct netdev_hw_addr *ha;
  1504. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1505. u32 crc;
  1506. int bit;
  1507. efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1508. /* Build multicast hash table */
  1509. if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1510. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1511. } else {
  1512. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1513. netdev_for_each_mc_addr(ha, net_dev) {
  1514. crc = ether_crc_le(ETH_ALEN, ha->addr);
  1515. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1516. set_bit_le(bit, mc_hash->byte);
  1517. }
  1518. /* Broadcast packets go through the multicast hash filter.
  1519. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1520. * so we always add bit 0xff to the mask.
  1521. */
  1522. set_bit_le(0xff, mc_hash->byte);
  1523. }
  1524. if (efx->port_enabled)
  1525. queue_work(efx->workqueue, &efx->mac_work);
  1526. /* Otherwise efx_start_port() will do this */
  1527. }
  1528. static const struct net_device_ops efx_netdev_ops = {
  1529. .ndo_open = efx_net_open,
  1530. .ndo_stop = efx_net_stop,
  1531. .ndo_get_stats64 = efx_net_stats,
  1532. .ndo_tx_timeout = efx_watchdog,
  1533. .ndo_start_xmit = efx_hard_start_xmit,
  1534. .ndo_validate_addr = eth_validate_addr,
  1535. .ndo_do_ioctl = efx_ioctl,
  1536. .ndo_change_mtu = efx_change_mtu,
  1537. .ndo_set_mac_address = efx_set_mac_address,
  1538. .ndo_set_multicast_list = efx_set_multicast_list,
  1539. #ifdef CONFIG_NET_POLL_CONTROLLER
  1540. .ndo_poll_controller = efx_netpoll,
  1541. #endif
  1542. };
  1543. static void efx_update_name(struct efx_nic *efx)
  1544. {
  1545. strcpy(efx->name, efx->net_dev->name);
  1546. efx_mtd_rename(efx);
  1547. efx_set_channel_names(efx);
  1548. }
  1549. static int efx_netdev_event(struct notifier_block *this,
  1550. unsigned long event, void *ptr)
  1551. {
  1552. struct net_device *net_dev = ptr;
  1553. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1554. event == NETDEV_CHANGENAME)
  1555. efx_update_name(netdev_priv(net_dev));
  1556. return NOTIFY_DONE;
  1557. }
  1558. static struct notifier_block efx_netdev_notifier = {
  1559. .notifier_call = efx_netdev_event,
  1560. };
  1561. static ssize_t
  1562. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1563. {
  1564. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1565. return sprintf(buf, "%d\n", efx->phy_type);
  1566. }
  1567. static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
  1568. static int efx_register_netdev(struct efx_nic *efx)
  1569. {
  1570. struct net_device *net_dev = efx->net_dev;
  1571. struct efx_channel *channel;
  1572. int rc;
  1573. net_dev->watchdog_timeo = 5 * HZ;
  1574. net_dev->irq = efx->pci_dev->irq;
  1575. net_dev->netdev_ops = &efx_netdev_ops;
  1576. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1577. /* Clear MAC statistics */
  1578. efx->mac_op->update_stats(efx);
  1579. memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
  1580. rtnl_lock();
  1581. rc = dev_alloc_name(net_dev, net_dev->name);
  1582. if (rc < 0)
  1583. goto fail_locked;
  1584. efx_update_name(efx);
  1585. rc = register_netdevice(net_dev);
  1586. if (rc)
  1587. goto fail_locked;
  1588. efx_for_each_channel(channel, efx) {
  1589. struct efx_tx_queue *tx_queue;
  1590. efx_for_each_channel_tx_queue(tx_queue, channel)
  1591. efx_init_tx_queue_core_txq(tx_queue);
  1592. }
  1593. /* Always start with carrier off; PHY events will detect the link */
  1594. netif_carrier_off(efx->net_dev);
  1595. rtnl_unlock();
  1596. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1597. if (rc) {
  1598. netif_err(efx, drv, efx->net_dev,
  1599. "failed to init net dev attributes\n");
  1600. goto fail_registered;
  1601. }
  1602. return 0;
  1603. fail_locked:
  1604. rtnl_unlock();
  1605. netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
  1606. return rc;
  1607. fail_registered:
  1608. unregister_netdev(net_dev);
  1609. return rc;
  1610. }
  1611. static void efx_unregister_netdev(struct efx_nic *efx)
  1612. {
  1613. struct efx_channel *channel;
  1614. struct efx_tx_queue *tx_queue;
  1615. if (!efx->net_dev)
  1616. return;
  1617. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1618. /* Free up any skbs still remaining. This has to happen before
  1619. * we try to unregister the netdev as running their destructors
  1620. * may be needed to get the device ref. count to 0. */
  1621. efx_for_each_channel(channel, efx) {
  1622. efx_for_each_channel_tx_queue(tx_queue, channel)
  1623. efx_release_tx_buffers(tx_queue);
  1624. }
  1625. if (efx_dev_registered(efx)) {
  1626. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1627. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1628. unregister_netdev(efx->net_dev);
  1629. }
  1630. }
  1631. /**************************************************************************
  1632. *
  1633. * Device reset and suspend
  1634. *
  1635. **************************************************************************/
  1636. /* Tears down the entire software state and most of the hardware state
  1637. * before reset. */
  1638. void efx_reset_down(struct efx_nic *efx, enum reset_type method)
  1639. {
  1640. EFX_ASSERT_RESET_SERIALISED(efx);
  1641. efx_stop_all(efx);
  1642. mutex_lock(&efx->mac_lock);
  1643. efx_fini_channels(efx);
  1644. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1645. efx->phy_op->fini(efx);
  1646. efx->type->fini(efx);
  1647. }
  1648. /* This function will always ensure that the locks acquired in
  1649. * efx_reset_down() are released. A failure return code indicates
  1650. * that we were unable to reinitialise the hardware, and the
  1651. * driver should be disabled. If ok is false, then the rx and tx
  1652. * engines are not restarted, pending a RESET_DISABLE. */
  1653. int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
  1654. {
  1655. int rc;
  1656. EFX_ASSERT_RESET_SERIALISED(efx);
  1657. rc = efx->type->init(efx);
  1658. if (rc) {
  1659. netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
  1660. goto fail;
  1661. }
  1662. if (!ok)
  1663. goto fail;
  1664. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1665. rc = efx->phy_op->init(efx);
  1666. if (rc)
  1667. goto fail;
  1668. if (efx->phy_op->reconfigure(efx))
  1669. netif_err(efx, drv, efx->net_dev,
  1670. "could not restore PHY settings\n");
  1671. }
  1672. efx->mac_op->reconfigure(efx);
  1673. efx_init_channels(efx);
  1674. efx_restore_filters(efx);
  1675. mutex_unlock(&efx->mac_lock);
  1676. efx_start_all(efx);
  1677. return 0;
  1678. fail:
  1679. efx->port_initialized = false;
  1680. mutex_unlock(&efx->mac_lock);
  1681. return rc;
  1682. }
  1683. /* Reset the NIC using the specified method. Note that the reset may
  1684. * fail, in which case the card will be left in an unusable state.
  1685. *
  1686. * Caller must hold the rtnl_lock.
  1687. */
  1688. int efx_reset(struct efx_nic *efx, enum reset_type method)
  1689. {
  1690. int rc, rc2;
  1691. bool disabled;
  1692. netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
  1693. RESET_TYPE(method));
  1694. efx_reset_down(efx, method);
  1695. rc = efx->type->reset(efx, method);
  1696. if (rc) {
  1697. netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
  1698. goto out;
  1699. }
  1700. /* Allow resets to be rescheduled. */
  1701. efx->reset_pending = RESET_TYPE_NONE;
  1702. /* Reinitialise bus-mastering, which may have been turned off before
  1703. * the reset was scheduled. This is still appropriate, even in the
  1704. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1705. * can respond to requests. */
  1706. pci_set_master(efx->pci_dev);
  1707. out:
  1708. /* Leave device stopped if necessary */
  1709. disabled = rc || method == RESET_TYPE_DISABLE;
  1710. rc2 = efx_reset_up(efx, method, !disabled);
  1711. if (rc2) {
  1712. disabled = true;
  1713. if (!rc)
  1714. rc = rc2;
  1715. }
  1716. if (disabled) {
  1717. dev_close(efx->net_dev);
  1718. netif_err(efx, drv, efx->net_dev, "has been disabled\n");
  1719. efx->state = STATE_DISABLED;
  1720. } else {
  1721. netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
  1722. }
  1723. return rc;
  1724. }
  1725. /* The worker thread exists so that code that cannot sleep can
  1726. * schedule a reset for later.
  1727. */
  1728. static void efx_reset_work(struct work_struct *data)
  1729. {
  1730. struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
  1731. if (efx->reset_pending == RESET_TYPE_NONE)
  1732. return;
  1733. /* If we're not RUNNING then don't reset. Leave the reset_pending
  1734. * flag set so that efx_pci_probe_main will be retried */
  1735. if (efx->state != STATE_RUNNING) {
  1736. netif_info(efx, drv, efx->net_dev,
  1737. "scheduled reset quenched. NIC not RUNNING\n");
  1738. return;
  1739. }
  1740. rtnl_lock();
  1741. (void)efx_reset(efx, efx->reset_pending);
  1742. rtnl_unlock();
  1743. }
  1744. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1745. {
  1746. enum reset_type method;
  1747. if (efx->reset_pending != RESET_TYPE_NONE) {
  1748. netif_info(efx, drv, efx->net_dev,
  1749. "quenching already scheduled reset\n");
  1750. return;
  1751. }
  1752. switch (type) {
  1753. case RESET_TYPE_INVISIBLE:
  1754. case RESET_TYPE_ALL:
  1755. case RESET_TYPE_WORLD:
  1756. case RESET_TYPE_DISABLE:
  1757. method = type;
  1758. break;
  1759. case RESET_TYPE_RX_RECOVERY:
  1760. case RESET_TYPE_RX_DESC_FETCH:
  1761. case RESET_TYPE_TX_DESC_FETCH:
  1762. case RESET_TYPE_TX_SKIP:
  1763. method = RESET_TYPE_INVISIBLE;
  1764. break;
  1765. case RESET_TYPE_MC_FAILURE:
  1766. default:
  1767. method = RESET_TYPE_ALL;
  1768. break;
  1769. }
  1770. if (method != type)
  1771. netif_dbg(efx, drv, efx->net_dev,
  1772. "scheduling %s reset for %s\n",
  1773. RESET_TYPE(method), RESET_TYPE(type));
  1774. else
  1775. netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
  1776. RESET_TYPE(method));
  1777. efx->reset_pending = method;
  1778. /* efx_process_channel() will no longer read events once a
  1779. * reset is scheduled. So switch back to poll'd MCDI completions. */
  1780. efx_mcdi_mode_poll(efx);
  1781. queue_work(reset_workqueue, &efx->reset_work);
  1782. }
  1783. /**************************************************************************
  1784. *
  1785. * List of NICs we support
  1786. *
  1787. **************************************************************************/
  1788. /* PCI device ID table */
  1789. static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
  1790. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
  1791. .driver_data = (unsigned long) &falcon_a1_nic_type},
  1792. {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
  1793. .driver_data = (unsigned long) &falcon_b0_nic_type},
  1794. {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
  1795. .driver_data = (unsigned long) &siena_a0_nic_type},
  1796. {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
  1797. .driver_data = (unsigned long) &siena_a0_nic_type},
  1798. {0} /* end of list */
  1799. };
  1800. /**************************************************************************
  1801. *
  1802. * Dummy PHY/MAC operations
  1803. *
  1804. * Can be used for some unimplemented operations
  1805. * Needed so all function pointers are valid and do not have to be tested
  1806. * before use
  1807. *
  1808. **************************************************************************/
  1809. int efx_port_dummy_op_int(struct efx_nic *efx)
  1810. {
  1811. return 0;
  1812. }
  1813. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  1814. static bool efx_port_dummy_op_poll(struct efx_nic *efx)
  1815. {
  1816. return false;
  1817. }
  1818. static struct efx_phy_operations efx_dummy_phy_operations = {
  1819. .init = efx_port_dummy_op_int,
  1820. .reconfigure = efx_port_dummy_op_int,
  1821. .poll = efx_port_dummy_op_poll,
  1822. .fini = efx_port_dummy_op_void,
  1823. };
  1824. /**************************************************************************
  1825. *
  1826. * Data housekeeping
  1827. *
  1828. **************************************************************************/
  1829. /* This zeroes out and then fills in the invariants in a struct
  1830. * efx_nic (including all sub-structures).
  1831. */
  1832. static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
  1833. struct pci_dev *pci_dev, struct net_device *net_dev)
  1834. {
  1835. int i;
  1836. /* Initialise common structures */
  1837. memset(efx, 0, sizeof(*efx));
  1838. spin_lock_init(&efx->biu_lock);
  1839. #ifdef CONFIG_SFC_MTD
  1840. INIT_LIST_HEAD(&efx->mtd_list);
  1841. #endif
  1842. INIT_WORK(&efx->reset_work, efx_reset_work);
  1843. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  1844. efx->pci_dev = pci_dev;
  1845. efx->msg_enable = debug;
  1846. efx->state = STATE_INIT;
  1847. efx->reset_pending = RESET_TYPE_NONE;
  1848. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  1849. efx->net_dev = net_dev;
  1850. efx->rx_checksum_enabled = true;
  1851. spin_lock_init(&efx->stats_lock);
  1852. mutex_init(&efx->mac_lock);
  1853. efx->mac_op = type->default_mac_ops;
  1854. efx->phy_op = &efx_dummy_phy_operations;
  1855. efx->mdio.dev = net_dev;
  1856. INIT_WORK(&efx->mac_work, efx_mac_work);
  1857. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  1858. efx->channel[i] = efx_alloc_channel(efx, i, NULL);
  1859. if (!efx->channel[i])
  1860. goto fail;
  1861. }
  1862. efx->type = type;
  1863. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  1864. /* Higher numbered interrupt modes are less capable! */
  1865. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  1866. interrupt_mode);
  1867. /* Would be good to use the net_dev name, but we're too early */
  1868. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  1869. pci_name(pci_dev));
  1870. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  1871. if (!efx->workqueue)
  1872. goto fail;
  1873. return 0;
  1874. fail:
  1875. efx_fini_struct(efx);
  1876. return -ENOMEM;
  1877. }
  1878. static void efx_fini_struct(struct efx_nic *efx)
  1879. {
  1880. int i;
  1881. for (i = 0; i < EFX_MAX_CHANNELS; i++)
  1882. kfree(efx->channel[i]);
  1883. if (efx->workqueue) {
  1884. destroy_workqueue(efx->workqueue);
  1885. efx->workqueue = NULL;
  1886. }
  1887. }
  1888. /**************************************************************************
  1889. *
  1890. * PCI interface
  1891. *
  1892. **************************************************************************/
  1893. /* Main body of final NIC shutdown code
  1894. * This is called only at module unload (or hotplug removal).
  1895. */
  1896. static void efx_pci_remove_main(struct efx_nic *efx)
  1897. {
  1898. efx_nic_fini_interrupt(efx);
  1899. efx_fini_channels(efx);
  1900. efx_fini_port(efx);
  1901. efx->type->fini(efx);
  1902. efx_fini_napi(efx);
  1903. efx_remove_all(efx);
  1904. }
  1905. /* Final NIC shutdown
  1906. * This is called only at module unload (or hotplug removal).
  1907. */
  1908. static void efx_pci_remove(struct pci_dev *pci_dev)
  1909. {
  1910. struct efx_nic *efx;
  1911. efx = pci_get_drvdata(pci_dev);
  1912. if (!efx)
  1913. return;
  1914. /* Mark the NIC as fini, then stop the interface */
  1915. rtnl_lock();
  1916. efx->state = STATE_FINI;
  1917. dev_close(efx->net_dev);
  1918. /* Allow any queued efx_resets() to complete */
  1919. rtnl_unlock();
  1920. efx_unregister_netdev(efx);
  1921. efx_mtd_remove(efx);
  1922. /* Wait for any scheduled resets to complete. No more will be
  1923. * scheduled from this point because efx_stop_all() has been
  1924. * called, we are no longer registered with driverlink, and
  1925. * the net_device's have been removed. */
  1926. cancel_work_sync(&efx->reset_work);
  1927. efx_pci_remove_main(efx);
  1928. efx_fini_io(efx);
  1929. netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
  1930. pci_set_drvdata(pci_dev, NULL);
  1931. efx_fini_struct(efx);
  1932. free_netdev(efx->net_dev);
  1933. };
  1934. /* Main body of NIC initialisation
  1935. * This is called at module load (or hotplug insertion, theoretically).
  1936. */
  1937. static int efx_pci_probe_main(struct efx_nic *efx)
  1938. {
  1939. int rc;
  1940. /* Do start-of-day initialisation */
  1941. rc = efx_probe_all(efx);
  1942. if (rc)
  1943. goto fail1;
  1944. efx_init_napi(efx);
  1945. rc = efx->type->init(efx);
  1946. if (rc) {
  1947. netif_err(efx, probe, efx->net_dev,
  1948. "failed to initialise NIC\n");
  1949. goto fail3;
  1950. }
  1951. rc = efx_init_port(efx);
  1952. if (rc) {
  1953. netif_err(efx, probe, efx->net_dev,
  1954. "failed to initialise port\n");
  1955. goto fail4;
  1956. }
  1957. efx_init_channels(efx);
  1958. rc = efx_nic_init_interrupt(efx);
  1959. if (rc)
  1960. goto fail5;
  1961. return 0;
  1962. fail5:
  1963. efx_fini_channels(efx);
  1964. efx_fini_port(efx);
  1965. fail4:
  1966. efx->type->fini(efx);
  1967. fail3:
  1968. efx_fini_napi(efx);
  1969. efx_remove_all(efx);
  1970. fail1:
  1971. return rc;
  1972. }
  1973. /* NIC initialisation
  1974. *
  1975. * This is called at module load (or hotplug insertion,
  1976. * theoretically). It sets up PCI mappings, tests and resets the NIC,
  1977. * sets up and registers the network devices with the kernel and hooks
  1978. * the interrupt service routine. It does not prepare the device for
  1979. * transmission; this is left to the first time one of the network
  1980. * interfaces is brought up (i.e. efx_net_open).
  1981. */
  1982. static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
  1983. const struct pci_device_id *entry)
  1984. {
  1985. struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
  1986. struct net_device *net_dev;
  1987. struct efx_nic *efx;
  1988. int i, rc;
  1989. /* Allocate and initialise a struct net_device and struct efx_nic */
  1990. net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
  1991. if (!net_dev)
  1992. return -ENOMEM;
  1993. net_dev->features |= (type->offload_features | NETIF_F_SG |
  1994. NETIF_F_HIGHDMA | NETIF_F_TSO |
  1995. NETIF_F_GRO);
  1996. if (type->offload_features & NETIF_F_V6_CSUM)
  1997. net_dev->features |= NETIF_F_TSO6;
  1998. /* Mask for features that also apply to VLAN devices */
  1999. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  2000. NETIF_F_HIGHDMA | NETIF_F_TSO);
  2001. efx = netdev_priv(net_dev);
  2002. pci_set_drvdata(pci_dev, efx);
  2003. SET_NETDEV_DEV(net_dev, &pci_dev->dev);
  2004. rc = efx_init_struct(efx, type, pci_dev, net_dev);
  2005. if (rc)
  2006. goto fail1;
  2007. netif_info(efx, probe, efx->net_dev,
  2008. "Solarflare Communications NIC detected\n");
  2009. /* Set up basic I/O (BAR mappings etc) */
  2010. rc = efx_init_io(efx);
  2011. if (rc)
  2012. goto fail2;
  2013. /* No serialisation is required with the reset path because
  2014. * we're in STATE_INIT. */
  2015. for (i = 0; i < 5; i++) {
  2016. rc = efx_pci_probe_main(efx);
  2017. /* Serialise against efx_reset(). No more resets will be
  2018. * scheduled since efx_stop_all() has been called, and we
  2019. * have not and never have been registered with either
  2020. * the rtnetlink or driverlink layers. */
  2021. cancel_work_sync(&efx->reset_work);
  2022. if (rc == 0) {
  2023. if (efx->reset_pending != RESET_TYPE_NONE) {
  2024. /* If there was a scheduled reset during
  2025. * probe, the NIC is probably hosed anyway */
  2026. efx_pci_remove_main(efx);
  2027. rc = -EIO;
  2028. } else {
  2029. break;
  2030. }
  2031. }
  2032. /* Retry if a recoverably reset event has been scheduled */
  2033. if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
  2034. (efx->reset_pending != RESET_TYPE_ALL))
  2035. goto fail3;
  2036. efx->reset_pending = RESET_TYPE_NONE;
  2037. }
  2038. if (rc) {
  2039. netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
  2040. goto fail4;
  2041. }
  2042. /* Switch to the running state before we expose the device to the OS,
  2043. * so that dev_open()|efx_start_all() will actually start the device */
  2044. efx->state = STATE_RUNNING;
  2045. rc = efx_register_netdev(efx);
  2046. if (rc)
  2047. goto fail5;
  2048. netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
  2049. rtnl_lock();
  2050. efx_mtd_probe(efx); /* allowed to fail */
  2051. rtnl_unlock();
  2052. return 0;
  2053. fail5:
  2054. efx_pci_remove_main(efx);
  2055. fail4:
  2056. fail3:
  2057. efx_fini_io(efx);
  2058. fail2:
  2059. efx_fini_struct(efx);
  2060. fail1:
  2061. WARN_ON(rc > 0);
  2062. netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
  2063. free_netdev(net_dev);
  2064. return rc;
  2065. }
  2066. static int efx_pm_freeze(struct device *dev)
  2067. {
  2068. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2069. efx->state = STATE_FINI;
  2070. netif_device_detach(efx->net_dev);
  2071. efx_stop_all(efx);
  2072. efx_fini_channels(efx);
  2073. return 0;
  2074. }
  2075. static int efx_pm_thaw(struct device *dev)
  2076. {
  2077. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2078. efx->state = STATE_INIT;
  2079. efx_init_channels(efx);
  2080. mutex_lock(&efx->mac_lock);
  2081. efx->phy_op->reconfigure(efx);
  2082. mutex_unlock(&efx->mac_lock);
  2083. efx_start_all(efx);
  2084. netif_device_attach(efx->net_dev);
  2085. efx->state = STATE_RUNNING;
  2086. efx->type->resume_wol(efx);
  2087. /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
  2088. queue_work(reset_workqueue, &efx->reset_work);
  2089. return 0;
  2090. }
  2091. static int efx_pm_poweroff(struct device *dev)
  2092. {
  2093. struct pci_dev *pci_dev = to_pci_dev(dev);
  2094. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2095. efx->type->fini(efx);
  2096. efx->reset_pending = RESET_TYPE_NONE;
  2097. pci_save_state(pci_dev);
  2098. return pci_set_power_state(pci_dev, PCI_D3hot);
  2099. }
  2100. /* Used for both resume and restore */
  2101. static int efx_pm_resume(struct device *dev)
  2102. {
  2103. struct pci_dev *pci_dev = to_pci_dev(dev);
  2104. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2105. int rc;
  2106. rc = pci_set_power_state(pci_dev, PCI_D0);
  2107. if (rc)
  2108. return rc;
  2109. pci_restore_state(pci_dev);
  2110. rc = pci_enable_device(pci_dev);
  2111. if (rc)
  2112. return rc;
  2113. pci_set_master(efx->pci_dev);
  2114. rc = efx->type->reset(efx, RESET_TYPE_ALL);
  2115. if (rc)
  2116. return rc;
  2117. rc = efx->type->init(efx);
  2118. if (rc)
  2119. return rc;
  2120. efx_pm_thaw(dev);
  2121. return 0;
  2122. }
  2123. static int efx_pm_suspend(struct device *dev)
  2124. {
  2125. int rc;
  2126. efx_pm_freeze(dev);
  2127. rc = efx_pm_poweroff(dev);
  2128. if (rc)
  2129. efx_pm_resume(dev);
  2130. return rc;
  2131. }
  2132. static struct dev_pm_ops efx_pm_ops = {
  2133. .suspend = efx_pm_suspend,
  2134. .resume = efx_pm_resume,
  2135. .freeze = efx_pm_freeze,
  2136. .thaw = efx_pm_thaw,
  2137. .poweroff = efx_pm_poweroff,
  2138. .restore = efx_pm_resume,
  2139. };
  2140. static struct pci_driver efx_pci_driver = {
  2141. .name = KBUILD_MODNAME,
  2142. .id_table = efx_pci_table,
  2143. .probe = efx_pci_probe,
  2144. .remove = efx_pci_remove,
  2145. .driver.pm = &efx_pm_ops,
  2146. };
  2147. /**************************************************************************
  2148. *
  2149. * Kernel module interface
  2150. *
  2151. *************************************************************************/
  2152. module_param(interrupt_mode, uint, 0444);
  2153. MODULE_PARM_DESC(interrupt_mode,
  2154. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  2155. static int __init efx_init_module(void)
  2156. {
  2157. int rc;
  2158. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  2159. rc = register_netdevice_notifier(&efx_netdev_notifier);
  2160. if (rc)
  2161. goto err_notifier;
  2162. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  2163. if (!reset_workqueue) {
  2164. rc = -ENOMEM;
  2165. goto err_reset;
  2166. }
  2167. rc = pci_register_driver(&efx_pci_driver);
  2168. if (rc < 0)
  2169. goto err_pci;
  2170. return 0;
  2171. err_pci:
  2172. destroy_workqueue(reset_workqueue);
  2173. err_reset:
  2174. unregister_netdevice_notifier(&efx_netdev_notifier);
  2175. err_notifier:
  2176. return rc;
  2177. }
  2178. static void __exit efx_exit_module(void)
  2179. {
  2180. printk(KERN_INFO "Solarflare NET driver unloading\n");
  2181. pci_unregister_driver(&efx_pci_driver);
  2182. destroy_workqueue(reset_workqueue);
  2183. unregister_netdevice_notifier(&efx_netdev_notifier);
  2184. }
  2185. module_init(efx_init_module);
  2186. module_exit(efx_exit_module);
  2187. MODULE_AUTHOR("Solarflare Communications and "
  2188. "Michael Brown <mbrown@fensystems.co.uk>");
  2189. MODULE_DESCRIPTION("Solarflare Communications network driver");
  2190. MODULE_LICENSE("GPL");
  2191. MODULE_DEVICE_TABLE(pci, efx_pci_table);