vmx.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include "kvm_cache_regs.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  31. MODULE_AUTHOR("Qumranet");
  32. MODULE_LICENSE("GPL");
  33. static int bypass_guest_pf = 1;
  34. module_param(bypass_guest_pf, bool, 0);
  35. static int enable_vpid = 1;
  36. module_param(enable_vpid, bool, 0);
  37. static int flexpriority_enabled = 1;
  38. module_param(flexpriority_enabled, bool, 0);
  39. static int enable_ept = 1;
  40. module_param(enable_ept, bool, 0);
  41. struct vmcs {
  42. u32 revision_id;
  43. u32 abort;
  44. char data[0];
  45. };
  46. struct vcpu_vmx {
  47. struct kvm_vcpu vcpu;
  48. struct list_head local_vcpus_link;
  49. int launched;
  50. u8 fail;
  51. u32 idt_vectoring_info;
  52. struct kvm_msr_entry *guest_msrs;
  53. struct kvm_msr_entry *host_msrs;
  54. int nmsrs;
  55. int save_nmsrs;
  56. int msr_offset_efer;
  57. #ifdef CONFIG_X86_64
  58. int msr_offset_kernel_gs_base;
  59. #endif
  60. struct vmcs *vmcs;
  61. struct {
  62. int loaded;
  63. u16 fs_sel, gs_sel, ldt_sel;
  64. int gs_ldt_reload_needed;
  65. int fs_reload_needed;
  66. int guest_efer_loaded;
  67. } host_state;
  68. struct {
  69. struct {
  70. bool pending;
  71. u8 vector;
  72. unsigned rip;
  73. } irq;
  74. } rmode;
  75. int vpid;
  76. };
  77. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  78. {
  79. return container_of(vcpu, struct vcpu_vmx, vcpu);
  80. }
  81. static int init_rmode(struct kvm *kvm);
  82. static u64 construct_eptp(unsigned long root_hpa);
  83. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  84. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  85. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  86. static struct page *vmx_io_bitmap_a;
  87. static struct page *vmx_io_bitmap_b;
  88. static struct page *vmx_msr_bitmap;
  89. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  90. static DEFINE_SPINLOCK(vmx_vpid_lock);
  91. static struct vmcs_config {
  92. int size;
  93. int order;
  94. u32 revision_id;
  95. u32 pin_based_exec_ctrl;
  96. u32 cpu_based_exec_ctrl;
  97. u32 cpu_based_2nd_exec_ctrl;
  98. u32 vmexit_ctrl;
  99. u32 vmentry_ctrl;
  100. } vmcs_config;
  101. struct vmx_capability {
  102. u32 ept;
  103. u32 vpid;
  104. } vmx_capability;
  105. #define VMX_SEGMENT_FIELD(seg) \
  106. [VCPU_SREG_##seg] = { \
  107. .selector = GUEST_##seg##_SELECTOR, \
  108. .base = GUEST_##seg##_BASE, \
  109. .limit = GUEST_##seg##_LIMIT, \
  110. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  111. }
  112. static struct kvm_vmx_segment_field {
  113. unsigned selector;
  114. unsigned base;
  115. unsigned limit;
  116. unsigned ar_bytes;
  117. } kvm_vmx_segment_fields[] = {
  118. VMX_SEGMENT_FIELD(CS),
  119. VMX_SEGMENT_FIELD(DS),
  120. VMX_SEGMENT_FIELD(ES),
  121. VMX_SEGMENT_FIELD(FS),
  122. VMX_SEGMENT_FIELD(GS),
  123. VMX_SEGMENT_FIELD(SS),
  124. VMX_SEGMENT_FIELD(TR),
  125. VMX_SEGMENT_FIELD(LDTR),
  126. };
  127. /*
  128. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  129. * away by decrementing the array size.
  130. */
  131. static const u32 vmx_msr_index[] = {
  132. #ifdef CONFIG_X86_64
  133. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  134. #endif
  135. MSR_EFER, MSR_K6_STAR,
  136. };
  137. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  138. static void load_msrs(struct kvm_msr_entry *e, int n)
  139. {
  140. int i;
  141. for (i = 0; i < n; ++i)
  142. wrmsrl(e[i].index, e[i].data);
  143. }
  144. static void save_msrs(struct kvm_msr_entry *e, int n)
  145. {
  146. int i;
  147. for (i = 0; i < n; ++i)
  148. rdmsrl(e[i].index, e[i].data);
  149. }
  150. static inline int is_page_fault(u32 intr_info)
  151. {
  152. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  153. INTR_INFO_VALID_MASK)) ==
  154. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  155. }
  156. static inline int is_no_device(u32 intr_info)
  157. {
  158. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  159. INTR_INFO_VALID_MASK)) ==
  160. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  161. }
  162. static inline int is_invalid_opcode(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_external_interrupt(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  171. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  172. }
  173. static inline int cpu_has_vmx_msr_bitmap(void)
  174. {
  175. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  176. }
  177. static inline int cpu_has_vmx_tpr_shadow(void)
  178. {
  179. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  180. }
  181. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  182. {
  183. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  184. }
  185. static inline int cpu_has_secondary_exec_ctrls(void)
  186. {
  187. return (vmcs_config.cpu_based_exec_ctrl &
  188. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  189. }
  190. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  191. {
  192. return flexpriority_enabled
  193. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  194. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  195. }
  196. static inline int cpu_has_vmx_invept_individual_addr(void)
  197. {
  198. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  199. }
  200. static inline int cpu_has_vmx_invept_context(void)
  201. {
  202. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  203. }
  204. static inline int cpu_has_vmx_invept_global(void)
  205. {
  206. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  207. }
  208. static inline int cpu_has_vmx_ept(void)
  209. {
  210. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  211. SECONDARY_EXEC_ENABLE_EPT);
  212. }
  213. static inline int vm_need_ept(void)
  214. {
  215. return (cpu_has_vmx_ept() && enable_ept);
  216. }
  217. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  218. {
  219. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  220. (irqchip_in_kernel(kvm)));
  221. }
  222. static inline int cpu_has_vmx_vpid(void)
  223. {
  224. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  225. SECONDARY_EXEC_ENABLE_VPID);
  226. }
  227. static inline int cpu_has_virtual_nmis(void)
  228. {
  229. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  230. }
  231. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  232. {
  233. int i;
  234. for (i = 0; i < vmx->nmsrs; ++i)
  235. if (vmx->guest_msrs[i].index == msr)
  236. return i;
  237. return -1;
  238. }
  239. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  240. {
  241. struct {
  242. u64 vpid : 16;
  243. u64 rsvd : 48;
  244. u64 gva;
  245. } operand = { vpid, 0, gva };
  246. asm volatile (__ex(ASM_VMX_INVVPID)
  247. /* CF==1 or ZF==1 --> rc = -1 */
  248. "; ja 1f ; ud2 ; 1:"
  249. : : "a"(&operand), "c"(ext) : "cc", "memory");
  250. }
  251. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  252. {
  253. struct {
  254. u64 eptp, gpa;
  255. } operand = {eptp, gpa};
  256. asm volatile (__ex(ASM_VMX_INVEPT)
  257. /* CF==1 or ZF==1 --> rc = -1 */
  258. "; ja 1f ; ud2 ; 1:\n"
  259. : : "a" (&operand), "c" (ext) : "cc", "memory");
  260. }
  261. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  262. {
  263. int i;
  264. i = __find_msr_index(vmx, msr);
  265. if (i >= 0)
  266. return &vmx->guest_msrs[i];
  267. return NULL;
  268. }
  269. static void vmcs_clear(struct vmcs *vmcs)
  270. {
  271. u64 phys_addr = __pa(vmcs);
  272. u8 error;
  273. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  274. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  275. : "cc", "memory");
  276. if (error)
  277. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  278. vmcs, phys_addr);
  279. }
  280. static void __vcpu_clear(void *arg)
  281. {
  282. struct vcpu_vmx *vmx = arg;
  283. int cpu = raw_smp_processor_id();
  284. if (vmx->vcpu.cpu == cpu)
  285. vmcs_clear(vmx->vmcs);
  286. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  287. per_cpu(current_vmcs, cpu) = NULL;
  288. rdtscll(vmx->vcpu.arch.host_tsc);
  289. list_del(&vmx->local_vcpus_link);
  290. vmx->vcpu.cpu = -1;
  291. vmx->launched = 0;
  292. }
  293. static void vcpu_clear(struct vcpu_vmx *vmx)
  294. {
  295. if (vmx->vcpu.cpu == -1)
  296. return;
  297. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  298. }
  299. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  300. {
  301. if (vmx->vpid == 0)
  302. return;
  303. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  304. }
  305. static inline void ept_sync_global(void)
  306. {
  307. if (cpu_has_vmx_invept_global())
  308. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  309. }
  310. static inline void ept_sync_context(u64 eptp)
  311. {
  312. if (vm_need_ept()) {
  313. if (cpu_has_vmx_invept_context())
  314. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  315. else
  316. ept_sync_global();
  317. }
  318. }
  319. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  320. {
  321. if (vm_need_ept()) {
  322. if (cpu_has_vmx_invept_individual_addr())
  323. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  324. eptp, gpa);
  325. else
  326. ept_sync_context(eptp);
  327. }
  328. }
  329. static unsigned long vmcs_readl(unsigned long field)
  330. {
  331. unsigned long value;
  332. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  333. : "=a"(value) : "d"(field) : "cc");
  334. return value;
  335. }
  336. static u16 vmcs_read16(unsigned long field)
  337. {
  338. return vmcs_readl(field);
  339. }
  340. static u32 vmcs_read32(unsigned long field)
  341. {
  342. return vmcs_readl(field);
  343. }
  344. static u64 vmcs_read64(unsigned long field)
  345. {
  346. #ifdef CONFIG_X86_64
  347. return vmcs_readl(field);
  348. #else
  349. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  350. #endif
  351. }
  352. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  353. {
  354. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  355. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  356. dump_stack();
  357. }
  358. static void vmcs_writel(unsigned long field, unsigned long value)
  359. {
  360. u8 error;
  361. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  362. : "=q"(error) : "a"(value), "d"(field) : "cc");
  363. if (unlikely(error))
  364. vmwrite_error(field, value);
  365. }
  366. static void vmcs_write16(unsigned long field, u16 value)
  367. {
  368. vmcs_writel(field, value);
  369. }
  370. static void vmcs_write32(unsigned long field, u32 value)
  371. {
  372. vmcs_writel(field, value);
  373. }
  374. static void vmcs_write64(unsigned long field, u64 value)
  375. {
  376. vmcs_writel(field, value);
  377. #ifndef CONFIG_X86_64
  378. asm volatile ("");
  379. vmcs_writel(field+1, value >> 32);
  380. #endif
  381. }
  382. static void vmcs_clear_bits(unsigned long field, u32 mask)
  383. {
  384. vmcs_writel(field, vmcs_readl(field) & ~mask);
  385. }
  386. static void vmcs_set_bits(unsigned long field, u32 mask)
  387. {
  388. vmcs_writel(field, vmcs_readl(field) | mask);
  389. }
  390. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  391. {
  392. u32 eb;
  393. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  394. if (!vcpu->fpu_active)
  395. eb |= 1u << NM_VECTOR;
  396. if (vcpu->guest_debug.enabled)
  397. eb |= 1u << 1;
  398. if (vcpu->arch.rmode.active)
  399. eb = ~0;
  400. if (vm_need_ept())
  401. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  402. vmcs_write32(EXCEPTION_BITMAP, eb);
  403. }
  404. static void reload_tss(void)
  405. {
  406. /*
  407. * VT restores TR but not its size. Useless.
  408. */
  409. struct descriptor_table gdt;
  410. struct desc_struct *descs;
  411. kvm_get_gdt(&gdt);
  412. descs = (void *)gdt.base;
  413. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  414. load_TR_desc();
  415. }
  416. static void load_transition_efer(struct vcpu_vmx *vmx)
  417. {
  418. int efer_offset = vmx->msr_offset_efer;
  419. u64 host_efer = vmx->host_msrs[efer_offset].data;
  420. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  421. u64 ignore_bits;
  422. if (efer_offset < 0)
  423. return;
  424. /*
  425. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  426. * outside long mode
  427. */
  428. ignore_bits = EFER_NX | EFER_SCE;
  429. #ifdef CONFIG_X86_64
  430. ignore_bits |= EFER_LMA | EFER_LME;
  431. /* SCE is meaningful only in long mode on Intel */
  432. if (guest_efer & EFER_LMA)
  433. ignore_bits &= ~(u64)EFER_SCE;
  434. #endif
  435. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  436. return;
  437. vmx->host_state.guest_efer_loaded = 1;
  438. guest_efer &= ~ignore_bits;
  439. guest_efer |= host_efer & ignore_bits;
  440. wrmsrl(MSR_EFER, guest_efer);
  441. vmx->vcpu.stat.efer_reload++;
  442. }
  443. static void reload_host_efer(struct vcpu_vmx *vmx)
  444. {
  445. if (vmx->host_state.guest_efer_loaded) {
  446. vmx->host_state.guest_efer_loaded = 0;
  447. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  448. }
  449. }
  450. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  451. {
  452. struct vcpu_vmx *vmx = to_vmx(vcpu);
  453. if (vmx->host_state.loaded)
  454. return;
  455. vmx->host_state.loaded = 1;
  456. /*
  457. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  458. * allow segment selectors with cpl > 0 or ti == 1.
  459. */
  460. vmx->host_state.ldt_sel = kvm_read_ldt();
  461. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  462. vmx->host_state.fs_sel = kvm_read_fs();
  463. if (!(vmx->host_state.fs_sel & 7)) {
  464. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  465. vmx->host_state.fs_reload_needed = 0;
  466. } else {
  467. vmcs_write16(HOST_FS_SELECTOR, 0);
  468. vmx->host_state.fs_reload_needed = 1;
  469. }
  470. vmx->host_state.gs_sel = kvm_read_gs();
  471. if (!(vmx->host_state.gs_sel & 7))
  472. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  473. else {
  474. vmcs_write16(HOST_GS_SELECTOR, 0);
  475. vmx->host_state.gs_ldt_reload_needed = 1;
  476. }
  477. #ifdef CONFIG_X86_64
  478. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  479. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  480. #else
  481. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  482. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  483. #endif
  484. #ifdef CONFIG_X86_64
  485. if (is_long_mode(&vmx->vcpu))
  486. save_msrs(vmx->host_msrs +
  487. vmx->msr_offset_kernel_gs_base, 1);
  488. #endif
  489. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  490. load_transition_efer(vmx);
  491. }
  492. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  493. {
  494. unsigned long flags;
  495. if (!vmx->host_state.loaded)
  496. return;
  497. ++vmx->vcpu.stat.host_state_reload;
  498. vmx->host_state.loaded = 0;
  499. if (vmx->host_state.fs_reload_needed)
  500. kvm_load_fs(vmx->host_state.fs_sel);
  501. if (vmx->host_state.gs_ldt_reload_needed) {
  502. kvm_load_ldt(vmx->host_state.ldt_sel);
  503. /*
  504. * If we have to reload gs, we must take care to
  505. * preserve our gs base.
  506. */
  507. local_irq_save(flags);
  508. kvm_load_gs(vmx->host_state.gs_sel);
  509. #ifdef CONFIG_X86_64
  510. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  511. #endif
  512. local_irq_restore(flags);
  513. }
  514. reload_tss();
  515. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  516. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  517. reload_host_efer(vmx);
  518. }
  519. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  520. {
  521. preempt_disable();
  522. __vmx_load_host_state(vmx);
  523. preempt_enable();
  524. }
  525. /*
  526. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  527. * vcpu mutex is already taken.
  528. */
  529. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  530. {
  531. struct vcpu_vmx *vmx = to_vmx(vcpu);
  532. u64 phys_addr = __pa(vmx->vmcs);
  533. u64 tsc_this, delta, new_offset;
  534. if (vcpu->cpu != cpu) {
  535. vcpu_clear(vmx);
  536. kvm_migrate_timers(vcpu);
  537. vpid_sync_vcpu_all(vmx);
  538. local_irq_disable();
  539. list_add(&vmx->local_vcpus_link,
  540. &per_cpu(vcpus_on_cpu, cpu));
  541. local_irq_enable();
  542. }
  543. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  544. u8 error;
  545. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  546. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  547. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  548. : "cc");
  549. if (error)
  550. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  551. vmx->vmcs, phys_addr);
  552. }
  553. if (vcpu->cpu != cpu) {
  554. struct descriptor_table dt;
  555. unsigned long sysenter_esp;
  556. vcpu->cpu = cpu;
  557. /*
  558. * Linux uses per-cpu TSS and GDT, so set these when switching
  559. * processors.
  560. */
  561. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  562. kvm_get_gdt(&dt);
  563. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  564. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  565. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  566. /*
  567. * Make sure the time stamp counter is monotonous.
  568. */
  569. rdtscll(tsc_this);
  570. if (tsc_this < vcpu->arch.host_tsc) {
  571. delta = vcpu->arch.host_tsc - tsc_this;
  572. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  573. vmcs_write64(TSC_OFFSET, new_offset);
  574. }
  575. }
  576. }
  577. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  578. {
  579. __vmx_load_host_state(to_vmx(vcpu));
  580. }
  581. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  582. {
  583. if (vcpu->fpu_active)
  584. return;
  585. vcpu->fpu_active = 1;
  586. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  587. if (vcpu->arch.cr0 & X86_CR0_TS)
  588. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  589. update_exception_bitmap(vcpu);
  590. }
  591. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  592. {
  593. if (!vcpu->fpu_active)
  594. return;
  595. vcpu->fpu_active = 0;
  596. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  597. update_exception_bitmap(vcpu);
  598. }
  599. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  600. {
  601. return vmcs_readl(GUEST_RFLAGS);
  602. }
  603. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  604. {
  605. if (vcpu->arch.rmode.active)
  606. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  607. vmcs_writel(GUEST_RFLAGS, rflags);
  608. }
  609. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  610. {
  611. unsigned long rip;
  612. u32 interruptibility;
  613. rip = kvm_rip_read(vcpu);
  614. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  615. kvm_rip_write(vcpu, rip);
  616. /*
  617. * We emulated an instruction, so temporary interrupt blocking
  618. * should be removed, if set.
  619. */
  620. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  621. if (interruptibility & 3)
  622. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  623. interruptibility & ~3);
  624. vcpu->arch.interrupt_window_open = 1;
  625. }
  626. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  627. bool has_error_code, u32 error_code)
  628. {
  629. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  630. nr | INTR_TYPE_EXCEPTION
  631. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  632. | INTR_INFO_VALID_MASK);
  633. if (has_error_code)
  634. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  635. }
  636. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  637. {
  638. struct vcpu_vmx *vmx = to_vmx(vcpu);
  639. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  640. }
  641. /*
  642. * Swap MSR entry in host/guest MSR entry array.
  643. */
  644. #ifdef CONFIG_X86_64
  645. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  646. {
  647. struct kvm_msr_entry tmp;
  648. tmp = vmx->guest_msrs[to];
  649. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  650. vmx->guest_msrs[from] = tmp;
  651. tmp = vmx->host_msrs[to];
  652. vmx->host_msrs[to] = vmx->host_msrs[from];
  653. vmx->host_msrs[from] = tmp;
  654. }
  655. #endif
  656. /*
  657. * Set up the vmcs to automatically save and restore system
  658. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  659. * mode, as fiddling with msrs is very expensive.
  660. */
  661. static void setup_msrs(struct vcpu_vmx *vmx)
  662. {
  663. int save_nmsrs;
  664. vmx_load_host_state(vmx);
  665. save_nmsrs = 0;
  666. #ifdef CONFIG_X86_64
  667. if (is_long_mode(&vmx->vcpu)) {
  668. int index;
  669. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  670. if (index >= 0)
  671. move_msr_up(vmx, index, save_nmsrs++);
  672. index = __find_msr_index(vmx, MSR_LSTAR);
  673. if (index >= 0)
  674. move_msr_up(vmx, index, save_nmsrs++);
  675. index = __find_msr_index(vmx, MSR_CSTAR);
  676. if (index >= 0)
  677. move_msr_up(vmx, index, save_nmsrs++);
  678. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  679. if (index >= 0)
  680. move_msr_up(vmx, index, save_nmsrs++);
  681. /*
  682. * MSR_K6_STAR is only needed on long mode guests, and only
  683. * if efer.sce is enabled.
  684. */
  685. index = __find_msr_index(vmx, MSR_K6_STAR);
  686. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  687. move_msr_up(vmx, index, save_nmsrs++);
  688. }
  689. #endif
  690. vmx->save_nmsrs = save_nmsrs;
  691. #ifdef CONFIG_X86_64
  692. vmx->msr_offset_kernel_gs_base =
  693. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  694. #endif
  695. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  696. }
  697. /*
  698. * reads and returns guest's timestamp counter "register"
  699. * guest_tsc = host_tsc + tsc_offset -- 21.3
  700. */
  701. static u64 guest_read_tsc(void)
  702. {
  703. u64 host_tsc, tsc_offset;
  704. rdtscll(host_tsc);
  705. tsc_offset = vmcs_read64(TSC_OFFSET);
  706. return host_tsc + tsc_offset;
  707. }
  708. /*
  709. * writes 'guest_tsc' into guest's timestamp counter "register"
  710. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  711. */
  712. static void guest_write_tsc(u64 guest_tsc)
  713. {
  714. u64 host_tsc;
  715. rdtscll(host_tsc);
  716. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  717. }
  718. /*
  719. * Reads an msr value (of 'msr_index') into 'pdata'.
  720. * Returns 0 on success, non-0 otherwise.
  721. * Assumes vcpu_load() was already called.
  722. */
  723. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  724. {
  725. u64 data;
  726. struct kvm_msr_entry *msr;
  727. if (!pdata) {
  728. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  729. return -EINVAL;
  730. }
  731. switch (msr_index) {
  732. #ifdef CONFIG_X86_64
  733. case MSR_FS_BASE:
  734. data = vmcs_readl(GUEST_FS_BASE);
  735. break;
  736. case MSR_GS_BASE:
  737. data = vmcs_readl(GUEST_GS_BASE);
  738. break;
  739. case MSR_EFER:
  740. return kvm_get_msr_common(vcpu, msr_index, pdata);
  741. #endif
  742. case MSR_IA32_TIME_STAMP_COUNTER:
  743. data = guest_read_tsc();
  744. break;
  745. case MSR_IA32_SYSENTER_CS:
  746. data = vmcs_read32(GUEST_SYSENTER_CS);
  747. break;
  748. case MSR_IA32_SYSENTER_EIP:
  749. data = vmcs_readl(GUEST_SYSENTER_EIP);
  750. break;
  751. case MSR_IA32_SYSENTER_ESP:
  752. data = vmcs_readl(GUEST_SYSENTER_ESP);
  753. break;
  754. default:
  755. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  756. if (msr) {
  757. data = msr->data;
  758. break;
  759. }
  760. return kvm_get_msr_common(vcpu, msr_index, pdata);
  761. }
  762. *pdata = data;
  763. return 0;
  764. }
  765. /*
  766. * Writes msr value into into the appropriate "register".
  767. * Returns 0 on success, non-0 otherwise.
  768. * Assumes vcpu_load() was already called.
  769. */
  770. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  771. {
  772. struct vcpu_vmx *vmx = to_vmx(vcpu);
  773. struct kvm_msr_entry *msr;
  774. int ret = 0;
  775. switch (msr_index) {
  776. #ifdef CONFIG_X86_64
  777. case MSR_EFER:
  778. vmx_load_host_state(vmx);
  779. ret = kvm_set_msr_common(vcpu, msr_index, data);
  780. break;
  781. case MSR_FS_BASE:
  782. vmcs_writel(GUEST_FS_BASE, data);
  783. break;
  784. case MSR_GS_BASE:
  785. vmcs_writel(GUEST_GS_BASE, data);
  786. break;
  787. #endif
  788. case MSR_IA32_SYSENTER_CS:
  789. vmcs_write32(GUEST_SYSENTER_CS, data);
  790. break;
  791. case MSR_IA32_SYSENTER_EIP:
  792. vmcs_writel(GUEST_SYSENTER_EIP, data);
  793. break;
  794. case MSR_IA32_SYSENTER_ESP:
  795. vmcs_writel(GUEST_SYSENTER_ESP, data);
  796. break;
  797. case MSR_IA32_TIME_STAMP_COUNTER:
  798. guest_write_tsc(data);
  799. break;
  800. case MSR_P6_PERFCTR0:
  801. case MSR_P6_PERFCTR1:
  802. case MSR_P6_EVNTSEL0:
  803. case MSR_P6_EVNTSEL1:
  804. /*
  805. * Just discard all writes to the performance counters; this
  806. * should keep both older linux and windows 64-bit guests
  807. * happy
  808. */
  809. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  810. break;
  811. default:
  812. vmx_load_host_state(vmx);
  813. msr = find_msr_entry(vmx, msr_index);
  814. if (msr) {
  815. msr->data = data;
  816. break;
  817. }
  818. ret = kvm_set_msr_common(vcpu, msr_index, data);
  819. }
  820. return ret;
  821. }
  822. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  823. {
  824. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  825. switch (reg) {
  826. case VCPU_REGS_RSP:
  827. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  828. break;
  829. case VCPU_REGS_RIP:
  830. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  831. break;
  832. default:
  833. break;
  834. }
  835. }
  836. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  837. {
  838. unsigned long dr7 = 0x400;
  839. int old_singlestep;
  840. old_singlestep = vcpu->guest_debug.singlestep;
  841. vcpu->guest_debug.enabled = dbg->enabled;
  842. if (vcpu->guest_debug.enabled) {
  843. int i;
  844. dr7 |= 0x200; /* exact */
  845. for (i = 0; i < 4; ++i) {
  846. if (!dbg->breakpoints[i].enabled)
  847. continue;
  848. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  849. dr7 |= 2 << (i*2); /* global enable */
  850. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  851. }
  852. vcpu->guest_debug.singlestep = dbg->singlestep;
  853. } else
  854. vcpu->guest_debug.singlestep = 0;
  855. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  856. unsigned long flags;
  857. flags = vmcs_readl(GUEST_RFLAGS);
  858. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  859. vmcs_writel(GUEST_RFLAGS, flags);
  860. }
  861. update_exception_bitmap(vcpu);
  862. vmcs_writel(GUEST_DR7, dr7);
  863. return 0;
  864. }
  865. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  866. {
  867. struct vcpu_vmx *vmx = to_vmx(vcpu);
  868. u32 idtv_info_field;
  869. idtv_info_field = vmx->idt_vectoring_info;
  870. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  871. if (is_external_interrupt(idtv_info_field))
  872. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  873. else
  874. printk(KERN_DEBUG "pending exception: not handled yet\n");
  875. }
  876. return -1;
  877. }
  878. static __init int cpu_has_kvm_support(void)
  879. {
  880. unsigned long ecx = cpuid_ecx(1);
  881. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  882. }
  883. static __init int vmx_disabled_by_bios(void)
  884. {
  885. u64 msr;
  886. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  887. return (msr & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  888. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  889. == IA32_FEATURE_CONTROL_LOCKED_BIT;
  890. /* locked but not enabled */
  891. }
  892. static void hardware_enable(void *garbage)
  893. {
  894. int cpu = raw_smp_processor_id();
  895. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  896. u64 old;
  897. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  898. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  899. if ((old & (IA32_FEATURE_CONTROL_LOCKED_BIT |
  900. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  901. != (IA32_FEATURE_CONTROL_LOCKED_BIT |
  902. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT))
  903. /* enable and lock */
  904. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  905. IA32_FEATURE_CONTROL_LOCKED_BIT |
  906. IA32_FEATURE_CONTROL_VMXON_ENABLED_BIT);
  907. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  908. asm volatile (ASM_VMX_VMXON_RAX
  909. : : "a"(&phys_addr), "m"(phys_addr)
  910. : "memory", "cc");
  911. }
  912. static void vmclear_local_vcpus(void)
  913. {
  914. int cpu = raw_smp_processor_id();
  915. struct vcpu_vmx *vmx, *n;
  916. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  917. local_vcpus_link)
  918. __vcpu_clear(vmx);
  919. }
  920. static void hardware_disable(void *garbage)
  921. {
  922. vmclear_local_vcpus();
  923. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  924. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  925. }
  926. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  927. u32 msr, u32 *result)
  928. {
  929. u32 vmx_msr_low, vmx_msr_high;
  930. u32 ctl = ctl_min | ctl_opt;
  931. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  932. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  933. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  934. /* Ensure minimum (required) set of control bits are supported. */
  935. if (ctl_min & ~ctl)
  936. return -EIO;
  937. *result = ctl;
  938. return 0;
  939. }
  940. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  941. {
  942. u32 vmx_msr_low, vmx_msr_high;
  943. u32 min, opt, min2, opt2;
  944. u32 _pin_based_exec_control = 0;
  945. u32 _cpu_based_exec_control = 0;
  946. u32 _cpu_based_2nd_exec_control = 0;
  947. u32 _vmexit_control = 0;
  948. u32 _vmentry_control = 0;
  949. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  950. opt = PIN_BASED_VIRTUAL_NMIS;
  951. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  952. &_pin_based_exec_control) < 0)
  953. return -EIO;
  954. min = CPU_BASED_HLT_EXITING |
  955. #ifdef CONFIG_X86_64
  956. CPU_BASED_CR8_LOAD_EXITING |
  957. CPU_BASED_CR8_STORE_EXITING |
  958. #endif
  959. CPU_BASED_CR3_LOAD_EXITING |
  960. CPU_BASED_CR3_STORE_EXITING |
  961. CPU_BASED_USE_IO_BITMAPS |
  962. CPU_BASED_MOV_DR_EXITING |
  963. CPU_BASED_USE_TSC_OFFSETING;
  964. opt = CPU_BASED_TPR_SHADOW |
  965. CPU_BASED_USE_MSR_BITMAPS |
  966. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  967. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  968. &_cpu_based_exec_control) < 0)
  969. return -EIO;
  970. #ifdef CONFIG_X86_64
  971. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  972. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  973. ~CPU_BASED_CR8_STORE_EXITING;
  974. #endif
  975. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  976. min2 = 0;
  977. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  978. SECONDARY_EXEC_WBINVD_EXITING |
  979. SECONDARY_EXEC_ENABLE_VPID |
  980. SECONDARY_EXEC_ENABLE_EPT;
  981. if (adjust_vmx_controls(min2, opt2,
  982. MSR_IA32_VMX_PROCBASED_CTLS2,
  983. &_cpu_based_2nd_exec_control) < 0)
  984. return -EIO;
  985. }
  986. #ifndef CONFIG_X86_64
  987. if (!(_cpu_based_2nd_exec_control &
  988. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  989. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  990. #endif
  991. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  992. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  993. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  994. CPU_BASED_CR3_STORE_EXITING);
  995. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  996. &_cpu_based_exec_control) < 0)
  997. return -EIO;
  998. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  999. vmx_capability.ept, vmx_capability.vpid);
  1000. }
  1001. min = 0;
  1002. #ifdef CONFIG_X86_64
  1003. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1004. #endif
  1005. opt = 0;
  1006. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1007. &_vmexit_control) < 0)
  1008. return -EIO;
  1009. min = opt = 0;
  1010. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1011. &_vmentry_control) < 0)
  1012. return -EIO;
  1013. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1014. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1015. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1016. return -EIO;
  1017. #ifdef CONFIG_X86_64
  1018. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1019. if (vmx_msr_high & (1u<<16))
  1020. return -EIO;
  1021. #endif
  1022. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1023. if (((vmx_msr_high >> 18) & 15) != 6)
  1024. return -EIO;
  1025. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1026. vmcs_conf->order = get_order(vmcs_config.size);
  1027. vmcs_conf->revision_id = vmx_msr_low;
  1028. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1029. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1030. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1031. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1032. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1033. return 0;
  1034. }
  1035. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1036. {
  1037. int node = cpu_to_node(cpu);
  1038. struct page *pages;
  1039. struct vmcs *vmcs;
  1040. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1041. if (!pages)
  1042. return NULL;
  1043. vmcs = page_address(pages);
  1044. memset(vmcs, 0, vmcs_config.size);
  1045. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1046. return vmcs;
  1047. }
  1048. static struct vmcs *alloc_vmcs(void)
  1049. {
  1050. return alloc_vmcs_cpu(raw_smp_processor_id());
  1051. }
  1052. static void free_vmcs(struct vmcs *vmcs)
  1053. {
  1054. free_pages((unsigned long)vmcs, vmcs_config.order);
  1055. }
  1056. static void free_kvm_area(void)
  1057. {
  1058. int cpu;
  1059. for_each_online_cpu(cpu)
  1060. free_vmcs(per_cpu(vmxarea, cpu));
  1061. }
  1062. static __init int alloc_kvm_area(void)
  1063. {
  1064. int cpu;
  1065. for_each_online_cpu(cpu) {
  1066. struct vmcs *vmcs;
  1067. vmcs = alloc_vmcs_cpu(cpu);
  1068. if (!vmcs) {
  1069. free_kvm_area();
  1070. return -ENOMEM;
  1071. }
  1072. per_cpu(vmxarea, cpu) = vmcs;
  1073. }
  1074. return 0;
  1075. }
  1076. static __init int hardware_setup(void)
  1077. {
  1078. if (setup_vmcs_config(&vmcs_config) < 0)
  1079. return -EIO;
  1080. if (boot_cpu_has(X86_FEATURE_NX))
  1081. kvm_enable_efer_bits(EFER_NX);
  1082. return alloc_kvm_area();
  1083. }
  1084. static __exit void hardware_unsetup(void)
  1085. {
  1086. free_kvm_area();
  1087. }
  1088. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1089. {
  1090. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1091. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1092. vmcs_write16(sf->selector, save->selector);
  1093. vmcs_writel(sf->base, save->base);
  1094. vmcs_write32(sf->limit, save->limit);
  1095. vmcs_write32(sf->ar_bytes, save->ar);
  1096. } else {
  1097. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1098. << AR_DPL_SHIFT;
  1099. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1100. }
  1101. }
  1102. static void enter_pmode(struct kvm_vcpu *vcpu)
  1103. {
  1104. unsigned long flags;
  1105. vcpu->arch.rmode.active = 0;
  1106. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1107. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1108. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1109. flags = vmcs_readl(GUEST_RFLAGS);
  1110. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1111. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1112. vmcs_writel(GUEST_RFLAGS, flags);
  1113. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1114. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1115. update_exception_bitmap(vcpu);
  1116. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1117. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1118. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1119. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1120. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1121. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1122. vmcs_write16(GUEST_CS_SELECTOR,
  1123. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1124. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1125. }
  1126. static gva_t rmode_tss_base(struct kvm *kvm)
  1127. {
  1128. if (!kvm->arch.tss_addr) {
  1129. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1130. kvm->memslots[0].npages - 3;
  1131. return base_gfn << PAGE_SHIFT;
  1132. }
  1133. return kvm->arch.tss_addr;
  1134. }
  1135. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1136. {
  1137. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1138. save->selector = vmcs_read16(sf->selector);
  1139. save->base = vmcs_readl(sf->base);
  1140. save->limit = vmcs_read32(sf->limit);
  1141. save->ar = vmcs_read32(sf->ar_bytes);
  1142. vmcs_write16(sf->selector, save->base >> 4);
  1143. vmcs_write32(sf->base, save->base & 0xfffff);
  1144. vmcs_write32(sf->limit, 0xffff);
  1145. vmcs_write32(sf->ar_bytes, 0xf3);
  1146. }
  1147. static void enter_rmode(struct kvm_vcpu *vcpu)
  1148. {
  1149. unsigned long flags;
  1150. vcpu->arch.rmode.active = 1;
  1151. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1152. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1153. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1154. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1155. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1156. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1157. flags = vmcs_readl(GUEST_RFLAGS);
  1158. vcpu->arch.rmode.save_iopl
  1159. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1160. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1161. vmcs_writel(GUEST_RFLAGS, flags);
  1162. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1163. update_exception_bitmap(vcpu);
  1164. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1165. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1166. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1167. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1168. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1169. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1170. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1171. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1172. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1173. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1174. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1175. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1176. kvm_mmu_reset_context(vcpu);
  1177. init_rmode(vcpu->kvm);
  1178. }
  1179. #ifdef CONFIG_X86_64
  1180. static void enter_lmode(struct kvm_vcpu *vcpu)
  1181. {
  1182. u32 guest_tr_ar;
  1183. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1184. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1185. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1186. __func__);
  1187. vmcs_write32(GUEST_TR_AR_BYTES,
  1188. (guest_tr_ar & ~AR_TYPE_MASK)
  1189. | AR_TYPE_BUSY_64_TSS);
  1190. }
  1191. vcpu->arch.shadow_efer |= EFER_LMA;
  1192. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1193. vmcs_write32(VM_ENTRY_CONTROLS,
  1194. vmcs_read32(VM_ENTRY_CONTROLS)
  1195. | VM_ENTRY_IA32E_MODE);
  1196. }
  1197. static void exit_lmode(struct kvm_vcpu *vcpu)
  1198. {
  1199. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1200. vmcs_write32(VM_ENTRY_CONTROLS,
  1201. vmcs_read32(VM_ENTRY_CONTROLS)
  1202. & ~VM_ENTRY_IA32E_MODE);
  1203. }
  1204. #endif
  1205. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1206. {
  1207. vpid_sync_vcpu_all(to_vmx(vcpu));
  1208. if (vm_need_ept())
  1209. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1210. }
  1211. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1212. {
  1213. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1214. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1215. }
  1216. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1217. {
  1218. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1219. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1220. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1221. return;
  1222. }
  1223. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1224. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1225. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1226. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1227. }
  1228. }
  1229. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1230. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1231. unsigned long cr0,
  1232. struct kvm_vcpu *vcpu)
  1233. {
  1234. if (!(cr0 & X86_CR0_PG)) {
  1235. /* From paging/starting to nonpaging */
  1236. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1237. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1238. (CPU_BASED_CR3_LOAD_EXITING |
  1239. CPU_BASED_CR3_STORE_EXITING));
  1240. vcpu->arch.cr0 = cr0;
  1241. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1242. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1243. *hw_cr0 &= ~X86_CR0_WP;
  1244. } else if (!is_paging(vcpu)) {
  1245. /* From nonpaging to paging */
  1246. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1247. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1248. ~(CPU_BASED_CR3_LOAD_EXITING |
  1249. CPU_BASED_CR3_STORE_EXITING));
  1250. vcpu->arch.cr0 = cr0;
  1251. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1252. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1253. *hw_cr0 &= ~X86_CR0_WP;
  1254. }
  1255. }
  1256. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1257. struct kvm_vcpu *vcpu)
  1258. {
  1259. if (!is_paging(vcpu)) {
  1260. *hw_cr4 &= ~X86_CR4_PAE;
  1261. *hw_cr4 |= X86_CR4_PSE;
  1262. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1263. *hw_cr4 &= ~X86_CR4_PAE;
  1264. }
  1265. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1266. {
  1267. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1268. KVM_VM_CR0_ALWAYS_ON;
  1269. vmx_fpu_deactivate(vcpu);
  1270. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1271. enter_pmode(vcpu);
  1272. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1273. enter_rmode(vcpu);
  1274. #ifdef CONFIG_X86_64
  1275. if (vcpu->arch.shadow_efer & EFER_LME) {
  1276. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1277. enter_lmode(vcpu);
  1278. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1279. exit_lmode(vcpu);
  1280. }
  1281. #endif
  1282. if (vm_need_ept())
  1283. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1284. vmcs_writel(CR0_READ_SHADOW, cr0);
  1285. vmcs_writel(GUEST_CR0, hw_cr0);
  1286. vcpu->arch.cr0 = cr0;
  1287. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1288. vmx_fpu_activate(vcpu);
  1289. }
  1290. static u64 construct_eptp(unsigned long root_hpa)
  1291. {
  1292. u64 eptp;
  1293. /* TODO write the value reading from MSR */
  1294. eptp = VMX_EPT_DEFAULT_MT |
  1295. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1296. eptp |= (root_hpa & PAGE_MASK);
  1297. return eptp;
  1298. }
  1299. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1300. {
  1301. unsigned long guest_cr3;
  1302. u64 eptp;
  1303. guest_cr3 = cr3;
  1304. if (vm_need_ept()) {
  1305. eptp = construct_eptp(cr3);
  1306. vmcs_write64(EPT_POINTER, eptp);
  1307. ept_sync_context(eptp);
  1308. ept_load_pdptrs(vcpu);
  1309. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1310. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1311. }
  1312. vmx_flush_tlb(vcpu);
  1313. vmcs_writel(GUEST_CR3, guest_cr3);
  1314. if (vcpu->arch.cr0 & X86_CR0_PE)
  1315. vmx_fpu_deactivate(vcpu);
  1316. }
  1317. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1318. {
  1319. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1320. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1321. vcpu->arch.cr4 = cr4;
  1322. if (vm_need_ept())
  1323. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1324. vmcs_writel(CR4_READ_SHADOW, cr4);
  1325. vmcs_writel(GUEST_CR4, hw_cr4);
  1326. }
  1327. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1328. {
  1329. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1330. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1331. vcpu->arch.shadow_efer = efer;
  1332. if (!msr)
  1333. return;
  1334. if (efer & EFER_LMA) {
  1335. vmcs_write32(VM_ENTRY_CONTROLS,
  1336. vmcs_read32(VM_ENTRY_CONTROLS) |
  1337. VM_ENTRY_IA32E_MODE);
  1338. msr->data = efer;
  1339. } else {
  1340. vmcs_write32(VM_ENTRY_CONTROLS,
  1341. vmcs_read32(VM_ENTRY_CONTROLS) &
  1342. ~VM_ENTRY_IA32E_MODE);
  1343. msr->data = efer & ~EFER_LME;
  1344. }
  1345. setup_msrs(vmx);
  1346. }
  1347. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1348. {
  1349. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1350. return vmcs_readl(sf->base);
  1351. }
  1352. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1353. struct kvm_segment *var, int seg)
  1354. {
  1355. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1356. u32 ar;
  1357. var->base = vmcs_readl(sf->base);
  1358. var->limit = vmcs_read32(sf->limit);
  1359. var->selector = vmcs_read16(sf->selector);
  1360. ar = vmcs_read32(sf->ar_bytes);
  1361. if (ar & AR_UNUSABLE_MASK)
  1362. ar = 0;
  1363. var->type = ar & 15;
  1364. var->s = (ar >> 4) & 1;
  1365. var->dpl = (ar >> 5) & 3;
  1366. var->present = (ar >> 7) & 1;
  1367. var->avl = (ar >> 12) & 1;
  1368. var->l = (ar >> 13) & 1;
  1369. var->db = (ar >> 14) & 1;
  1370. var->g = (ar >> 15) & 1;
  1371. var->unusable = (ar >> 16) & 1;
  1372. }
  1373. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1374. {
  1375. struct kvm_segment kvm_seg;
  1376. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1377. return 0;
  1378. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1379. return 3;
  1380. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1381. return kvm_seg.selector & 3;
  1382. }
  1383. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1384. {
  1385. u32 ar;
  1386. if (var->unusable)
  1387. ar = 1 << 16;
  1388. else {
  1389. ar = var->type & 15;
  1390. ar |= (var->s & 1) << 4;
  1391. ar |= (var->dpl & 3) << 5;
  1392. ar |= (var->present & 1) << 7;
  1393. ar |= (var->avl & 1) << 12;
  1394. ar |= (var->l & 1) << 13;
  1395. ar |= (var->db & 1) << 14;
  1396. ar |= (var->g & 1) << 15;
  1397. }
  1398. if (ar == 0) /* a 0 value means unusable */
  1399. ar = AR_UNUSABLE_MASK;
  1400. return ar;
  1401. }
  1402. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1403. struct kvm_segment *var, int seg)
  1404. {
  1405. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1406. u32 ar;
  1407. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1408. vcpu->arch.rmode.tr.selector = var->selector;
  1409. vcpu->arch.rmode.tr.base = var->base;
  1410. vcpu->arch.rmode.tr.limit = var->limit;
  1411. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1412. return;
  1413. }
  1414. vmcs_writel(sf->base, var->base);
  1415. vmcs_write32(sf->limit, var->limit);
  1416. vmcs_write16(sf->selector, var->selector);
  1417. if (vcpu->arch.rmode.active && var->s) {
  1418. /*
  1419. * Hack real-mode segments into vm86 compatibility.
  1420. */
  1421. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1422. vmcs_writel(sf->base, 0xf0000);
  1423. ar = 0xf3;
  1424. } else
  1425. ar = vmx_segment_access_rights(var);
  1426. vmcs_write32(sf->ar_bytes, ar);
  1427. }
  1428. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1429. {
  1430. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1431. *db = (ar >> 14) & 1;
  1432. *l = (ar >> 13) & 1;
  1433. }
  1434. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1435. {
  1436. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1437. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1438. }
  1439. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1440. {
  1441. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1442. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1443. }
  1444. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1445. {
  1446. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1447. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1448. }
  1449. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1450. {
  1451. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1452. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1453. }
  1454. static int init_rmode_tss(struct kvm *kvm)
  1455. {
  1456. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1457. u16 data = 0;
  1458. int ret = 0;
  1459. int r;
  1460. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1461. if (r < 0)
  1462. goto out;
  1463. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1464. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1465. if (r < 0)
  1466. goto out;
  1467. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1468. if (r < 0)
  1469. goto out;
  1470. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1471. if (r < 0)
  1472. goto out;
  1473. data = ~0;
  1474. r = kvm_write_guest_page(kvm, fn, &data,
  1475. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1476. sizeof(u8));
  1477. if (r < 0)
  1478. goto out;
  1479. ret = 1;
  1480. out:
  1481. return ret;
  1482. }
  1483. static int init_rmode_identity_map(struct kvm *kvm)
  1484. {
  1485. int i, r, ret;
  1486. pfn_t identity_map_pfn;
  1487. u32 tmp;
  1488. if (!vm_need_ept())
  1489. return 1;
  1490. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1491. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1492. "haven't been allocated!\n");
  1493. return 0;
  1494. }
  1495. if (likely(kvm->arch.ept_identity_pagetable_done))
  1496. return 1;
  1497. ret = 0;
  1498. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1499. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1500. if (r < 0)
  1501. goto out;
  1502. /* Set up identity-mapping pagetable for EPT in real mode */
  1503. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1504. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1505. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1506. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1507. &tmp, i * sizeof(tmp), sizeof(tmp));
  1508. if (r < 0)
  1509. goto out;
  1510. }
  1511. kvm->arch.ept_identity_pagetable_done = true;
  1512. ret = 1;
  1513. out:
  1514. return ret;
  1515. }
  1516. static void seg_setup(int seg)
  1517. {
  1518. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1519. vmcs_write16(sf->selector, 0);
  1520. vmcs_writel(sf->base, 0);
  1521. vmcs_write32(sf->limit, 0xffff);
  1522. vmcs_write32(sf->ar_bytes, 0x93);
  1523. }
  1524. static int alloc_apic_access_page(struct kvm *kvm)
  1525. {
  1526. struct kvm_userspace_memory_region kvm_userspace_mem;
  1527. int r = 0;
  1528. down_write(&kvm->slots_lock);
  1529. if (kvm->arch.apic_access_page)
  1530. goto out;
  1531. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1532. kvm_userspace_mem.flags = 0;
  1533. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1534. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1535. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1536. if (r)
  1537. goto out;
  1538. down_read(&current->mm->mmap_sem);
  1539. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1540. up_read(&current->mm->mmap_sem);
  1541. out:
  1542. up_write(&kvm->slots_lock);
  1543. return r;
  1544. }
  1545. static int alloc_identity_pagetable(struct kvm *kvm)
  1546. {
  1547. struct kvm_userspace_memory_region kvm_userspace_mem;
  1548. int r = 0;
  1549. down_write(&kvm->slots_lock);
  1550. if (kvm->arch.ept_identity_pagetable)
  1551. goto out;
  1552. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1553. kvm_userspace_mem.flags = 0;
  1554. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1555. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1556. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1557. if (r)
  1558. goto out;
  1559. down_read(&current->mm->mmap_sem);
  1560. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1561. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1562. up_read(&current->mm->mmap_sem);
  1563. out:
  1564. up_write(&kvm->slots_lock);
  1565. return r;
  1566. }
  1567. static void allocate_vpid(struct vcpu_vmx *vmx)
  1568. {
  1569. int vpid;
  1570. vmx->vpid = 0;
  1571. if (!enable_vpid || !cpu_has_vmx_vpid())
  1572. return;
  1573. spin_lock(&vmx_vpid_lock);
  1574. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1575. if (vpid < VMX_NR_VPIDS) {
  1576. vmx->vpid = vpid;
  1577. __set_bit(vpid, vmx_vpid_bitmap);
  1578. }
  1579. spin_unlock(&vmx_vpid_lock);
  1580. }
  1581. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1582. {
  1583. void *va;
  1584. if (!cpu_has_vmx_msr_bitmap())
  1585. return;
  1586. /*
  1587. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1588. * have the write-low and read-high bitmap offsets the wrong way round.
  1589. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1590. */
  1591. va = kmap(msr_bitmap);
  1592. if (msr <= 0x1fff) {
  1593. __clear_bit(msr, va + 0x000); /* read-low */
  1594. __clear_bit(msr, va + 0x800); /* write-low */
  1595. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1596. msr &= 0x1fff;
  1597. __clear_bit(msr, va + 0x400); /* read-high */
  1598. __clear_bit(msr, va + 0xc00); /* write-high */
  1599. }
  1600. kunmap(msr_bitmap);
  1601. }
  1602. /*
  1603. * Sets up the vmcs for emulated real mode.
  1604. */
  1605. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1606. {
  1607. u32 host_sysenter_cs;
  1608. u32 junk;
  1609. unsigned long a;
  1610. struct descriptor_table dt;
  1611. int i;
  1612. unsigned long kvm_vmx_return;
  1613. u32 exec_control;
  1614. /* I/O */
  1615. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1616. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1617. if (cpu_has_vmx_msr_bitmap())
  1618. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1619. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1620. /* Control */
  1621. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1622. vmcs_config.pin_based_exec_ctrl);
  1623. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1624. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1625. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1626. #ifdef CONFIG_X86_64
  1627. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1628. CPU_BASED_CR8_LOAD_EXITING;
  1629. #endif
  1630. }
  1631. if (!vm_need_ept())
  1632. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1633. CPU_BASED_CR3_LOAD_EXITING;
  1634. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1635. if (cpu_has_secondary_exec_ctrls()) {
  1636. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1637. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1638. exec_control &=
  1639. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1640. if (vmx->vpid == 0)
  1641. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1642. if (!vm_need_ept())
  1643. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1644. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1645. }
  1646. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1647. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1648. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1649. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1650. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1651. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1652. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1653. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1654. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1655. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1656. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1657. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1658. #ifdef CONFIG_X86_64
  1659. rdmsrl(MSR_FS_BASE, a);
  1660. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1661. rdmsrl(MSR_GS_BASE, a);
  1662. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1663. #else
  1664. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1665. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1666. #endif
  1667. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1668. kvm_get_idt(&dt);
  1669. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1670. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1671. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1672. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1673. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1674. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1675. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1676. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1677. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1678. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1679. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1680. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1681. for (i = 0; i < NR_VMX_MSR; ++i) {
  1682. u32 index = vmx_msr_index[i];
  1683. u32 data_low, data_high;
  1684. u64 data;
  1685. int j = vmx->nmsrs;
  1686. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1687. continue;
  1688. if (wrmsr_safe(index, data_low, data_high) < 0)
  1689. continue;
  1690. data = data_low | ((u64)data_high << 32);
  1691. vmx->host_msrs[j].index = index;
  1692. vmx->host_msrs[j].reserved = 0;
  1693. vmx->host_msrs[j].data = data;
  1694. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1695. ++vmx->nmsrs;
  1696. }
  1697. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1698. /* 22.2.1, 20.8.1 */
  1699. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1700. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1701. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1702. return 0;
  1703. }
  1704. static int init_rmode(struct kvm *kvm)
  1705. {
  1706. if (!init_rmode_tss(kvm))
  1707. return 0;
  1708. if (!init_rmode_identity_map(kvm))
  1709. return 0;
  1710. return 1;
  1711. }
  1712. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1713. {
  1714. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1715. u64 msr;
  1716. int ret;
  1717. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1718. down_read(&vcpu->kvm->slots_lock);
  1719. if (!init_rmode(vmx->vcpu.kvm)) {
  1720. ret = -ENOMEM;
  1721. goto out;
  1722. }
  1723. vmx->vcpu.arch.rmode.active = 0;
  1724. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1725. kvm_set_cr8(&vmx->vcpu, 0);
  1726. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1727. if (vmx->vcpu.vcpu_id == 0)
  1728. msr |= MSR_IA32_APICBASE_BSP;
  1729. kvm_set_apic_base(&vmx->vcpu, msr);
  1730. fx_init(&vmx->vcpu);
  1731. /*
  1732. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1733. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1734. */
  1735. if (vmx->vcpu.vcpu_id == 0) {
  1736. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1737. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1738. } else {
  1739. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1740. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1741. }
  1742. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1743. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1744. seg_setup(VCPU_SREG_DS);
  1745. seg_setup(VCPU_SREG_ES);
  1746. seg_setup(VCPU_SREG_FS);
  1747. seg_setup(VCPU_SREG_GS);
  1748. seg_setup(VCPU_SREG_SS);
  1749. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1750. vmcs_writel(GUEST_TR_BASE, 0);
  1751. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1752. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1753. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1754. vmcs_writel(GUEST_LDTR_BASE, 0);
  1755. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1756. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1757. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1758. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1759. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1760. vmcs_writel(GUEST_RFLAGS, 0x02);
  1761. if (vmx->vcpu.vcpu_id == 0)
  1762. kvm_rip_write(vcpu, 0xfff0);
  1763. else
  1764. kvm_rip_write(vcpu, 0);
  1765. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1766. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1767. vmcs_writel(GUEST_DR7, 0x400);
  1768. vmcs_writel(GUEST_GDTR_BASE, 0);
  1769. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1770. vmcs_writel(GUEST_IDTR_BASE, 0);
  1771. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1772. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1773. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1774. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1775. guest_write_tsc(0);
  1776. /* Special registers */
  1777. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1778. setup_msrs(vmx);
  1779. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1780. if (cpu_has_vmx_tpr_shadow()) {
  1781. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1782. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1783. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1784. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1785. vmcs_write32(TPR_THRESHOLD, 0);
  1786. }
  1787. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1788. vmcs_write64(APIC_ACCESS_ADDR,
  1789. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1790. if (vmx->vpid != 0)
  1791. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1792. vmx->vcpu.arch.cr0 = 0x60000010;
  1793. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1794. vmx_set_cr4(&vmx->vcpu, 0);
  1795. vmx_set_efer(&vmx->vcpu, 0);
  1796. vmx_fpu_activate(&vmx->vcpu);
  1797. update_exception_bitmap(&vmx->vcpu);
  1798. vpid_sync_vcpu_all(vmx);
  1799. ret = 0;
  1800. out:
  1801. up_read(&vcpu->kvm->slots_lock);
  1802. return ret;
  1803. }
  1804. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1805. {
  1806. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1807. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1808. if (vcpu->arch.rmode.active) {
  1809. vmx->rmode.irq.pending = true;
  1810. vmx->rmode.irq.vector = irq;
  1811. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  1812. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1813. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1814. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1815. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  1816. return;
  1817. }
  1818. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1819. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1820. }
  1821. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  1822. {
  1823. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1824. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  1825. vcpu->arch.nmi_pending = 0;
  1826. }
  1827. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1828. {
  1829. int word_index = __ffs(vcpu->arch.irq_summary);
  1830. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1831. int irq = word_index * BITS_PER_LONG + bit_index;
  1832. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1833. if (!vcpu->arch.irq_pending[word_index])
  1834. clear_bit(word_index, &vcpu->arch.irq_summary);
  1835. vmx_inject_irq(vcpu, irq);
  1836. }
  1837. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1838. struct kvm_run *kvm_run)
  1839. {
  1840. u32 cpu_based_vm_exec_control;
  1841. vcpu->arch.interrupt_window_open =
  1842. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1843. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1844. if (vcpu->arch.interrupt_window_open &&
  1845. vcpu->arch.irq_summary &&
  1846. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1847. /*
  1848. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1849. */
  1850. kvm_do_inject_irq(vcpu);
  1851. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1852. if (!vcpu->arch.interrupt_window_open &&
  1853. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1854. /*
  1855. * Interrupts blocked. Wait for unblock.
  1856. */
  1857. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1858. else
  1859. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1860. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1861. }
  1862. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1863. {
  1864. int ret;
  1865. struct kvm_userspace_memory_region tss_mem = {
  1866. .slot = 8,
  1867. .guest_phys_addr = addr,
  1868. .memory_size = PAGE_SIZE * 3,
  1869. .flags = 0,
  1870. };
  1871. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1872. if (ret)
  1873. return ret;
  1874. kvm->arch.tss_addr = addr;
  1875. return 0;
  1876. }
  1877. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1878. {
  1879. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1880. set_debugreg(dbg->bp[0], 0);
  1881. set_debugreg(dbg->bp[1], 1);
  1882. set_debugreg(dbg->bp[2], 2);
  1883. set_debugreg(dbg->bp[3], 3);
  1884. if (dbg->singlestep) {
  1885. unsigned long flags;
  1886. flags = vmcs_readl(GUEST_RFLAGS);
  1887. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1888. vmcs_writel(GUEST_RFLAGS, flags);
  1889. }
  1890. }
  1891. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1892. int vec, u32 err_code)
  1893. {
  1894. if (!vcpu->arch.rmode.active)
  1895. return 0;
  1896. /*
  1897. * Instruction with address size override prefix opcode 0x67
  1898. * Cause the #SS fault with 0 error code in VM86 mode.
  1899. */
  1900. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1901. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1902. return 1;
  1903. return 0;
  1904. }
  1905. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1906. {
  1907. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1908. u32 intr_info, error_code;
  1909. unsigned long cr2, rip;
  1910. u32 vect_info;
  1911. enum emulation_result er;
  1912. vect_info = vmx->idt_vectoring_info;
  1913. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1914. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1915. !is_page_fault(intr_info))
  1916. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1917. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1918. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1919. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1920. set_bit(irq, vcpu->arch.irq_pending);
  1921. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1922. }
  1923. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1924. return 1; /* already handled by vmx_vcpu_run() */
  1925. if (is_no_device(intr_info)) {
  1926. vmx_fpu_activate(vcpu);
  1927. return 1;
  1928. }
  1929. if (is_invalid_opcode(intr_info)) {
  1930. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1931. if (er != EMULATE_DONE)
  1932. kvm_queue_exception(vcpu, UD_VECTOR);
  1933. return 1;
  1934. }
  1935. error_code = 0;
  1936. rip = kvm_rip_read(vcpu);
  1937. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1938. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1939. if (is_page_fault(intr_info)) {
  1940. /* EPT won't cause page fault directly */
  1941. if (vm_need_ept())
  1942. BUG();
  1943. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1944. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1945. (u32)((u64)cr2 >> 32), handler);
  1946. if (vect_info & VECTORING_INFO_VALID_MASK)
  1947. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  1948. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1949. }
  1950. if (vcpu->arch.rmode.active &&
  1951. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1952. error_code)) {
  1953. if (vcpu->arch.halt_request) {
  1954. vcpu->arch.halt_request = 0;
  1955. return kvm_emulate_halt(vcpu);
  1956. }
  1957. return 1;
  1958. }
  1959. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1960. (INTR_TYPE_EXCEPTION | 1)) {
  1961. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1962. return 0;
  1963. }
  1964. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1965. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1966. kvm_run->ex.error_code = error_code;
  1967. return 0;
  1968. }
  1969. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1970. struct kvm_run *kvm_run)
  1971. {
  1972. ++vcpu->stat.irq_exits;
  1973. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1974. return 1;
  1975. }
  1976. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1977. {
  1978. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1979. return 0;
  1980. }
  1981. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1982. {
  1983. unsigned long exit_qualification;
  1984. int size, down, in, string, rep;
  1985. unsigned port;
  1986. ++vcpu->stat.io_exits;
  1987. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1988. string = (exit_qualification & 16) != 0;
  1989. if (string) {
  1990. if (emulate_instruction(vcpu,
  1991. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1992. return 0;
  1993. return 1;
  1994. }
  1995. size = (exit_qualification & 7) + 1;
  1996. in = (exit_qualification & 8) != 0;
  1997. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1998. rep = (exit_qualification & 32) != 0;
  1999. port = exit_qualification >> 16;
  2000. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2001. }
  2002. static void
  2003. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2004. {
  2005. /*
  2006. * Patch in the VMCALL instruction:
  2007. */
  2008. hypercall[0] = 0x0f;
  2009. hypercall[1] = 0x01;
  2010. hypercall[2] = 0xc1;
  2011. }
  2012. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2013. {
  2014. unsigned long exit_qualification;
  2015. int cr;
  2016. int reg;
  2017. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2018. cr = exit_qualification & 15;
  2019. reg = (exit_qualification >> 8) & 15;
  2020. switch ((exit_qualification >> 4) & 3) {
  2021. case 0: /* mov to cr */
  2022. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2023. (u32)kvm_register_read(vcpu, reg),
  2024. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2025. handler);
  2026. switch (cr) {
  2027. case 0:
  2028. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2029. skip_emulated_instruction(vcpu);
  2030. return 1;
  2031. case 3:
  2032. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2033. skip_emulated_instruction(vcpu);
  2034. return 1;
  2035. case 4:
  2036. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2037. skip_emulated_instruction(vcpu);
  2038. return 1;
  2039. case 8:
  2040. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2041. skip_emulated_instruction(vcpu);
  2042. if (irqchip_in_kernel(vcpu->kvm))
  2043. return 1;
  2044. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2045. return 0;
  2046. };
  2047. break;
  2048. case 2: /* clts */
  2049. vmx_fpu_deactivate(vcpu);
  2050. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2051. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2052. vmx_fpu_activate(vcpu);
  2053. KVMTRACE_0D(CLTS, vcpu, handler);
  2054. skip_emulated_instruction(vcpu);
  2055. return 1;
  2056. case 1: /*mov from cr*/
  2057. switch (cr) {
  2058. case 3:
  2059. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2060. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2061. (u32)kvm_register_read(vcpu, reg),
  2062. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2063. handler);
  2064. skip_emulated_instruction(vcpu);
  2065. return 1;
  2066. case 8:
  2067. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2068. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2069. (u32)kvm_register_read(vcpu, reg), handler);
  2070. skip_emulated_instruction(vcpu);
  2071. return 1;
  2072. }
  2073. break;
  2074. case 3: /* lmsw */
  2075. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2076. skip_emulated_instruction(vcpu);
  2077. return 1;
  2078. default:
  2079. break;
  2080. }
  2081. kvm_run->exit_reason = 0;
  2082. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2083. (int)(exit_qualification >> 4) & 3, cr);
  2084. return 0;
  2085. }
  2086. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2087. {
  2088. unsigned long exit_qualification;
  2089. unsigned long val;
  2090. int dr, reg;
  2091. /*
  2092. * FIXME: this code assumes the host is debugging the guest.
  2093. * need to deal with guest debugging itself too.
  2094. */
  2095. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2096. dr = exit_qualification & 7;
  2097. reg = (exit_qualification >> 8) & 15;
  2098. if (exit_qualification & 16) {
  2099. /* mov from dr */
  2100. switch (dr) {
  2101. case 6:
  2102. val = 0xffff0ff0;
  2103. break;
  2104. case 7:
  2105. val = 0x400;
  2106. break;
  2107. default:
  2108. val = 0;
  2109. }
  2110. kvm_register_write(vcpu, reg, val);
  2111. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2112. } else {
  2113. /* mov to dr */
  2114. }
  2115. skip_emulated_instruction(vcpu);
  2116. return 1;
  2117. }
  2118. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2119. {
  2120. kvm_emulate_cpuid(vcpu);
  2121. return 1;
  2122. }
  2123. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2124. {
  2125. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2126. u64 data;
  2127. if (vmx_get_msr(vcpu, ecx, &data)) {
  2128. kvm_inject_gp(vcpu, 0);
  2129. return 1;
  2130. }
  2131. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2132. handler);
  2133. /* FIXME: handling of bits 32:63 of rax, rdx */
  2134. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2135. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2136. skip_emulated_instruction(vcpu);
  2137. return 1;
  2138. }
  2139. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2140. {
  2141. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2142. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2143. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2144. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2145. handler);
  2146. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2147. kvm_inject_gp(vcpu, 0);
  2148. return 1;
  2149. }
  2150. skip_emulated_instruction(vcpu);
  2151. return 1;
  2152. }
  2153. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2154. struct kvm_run *kvm_run)
  2155. {
  2156. return 1;
  2157. }
  2158. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2159. struct kvm_run *kvm_run)
  2160. {
  2161. u32 cpu_based_vm_exec_control;
  2162. /* clear pending irq */
  2163. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2164. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2165. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2166. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2167. /*
  2168. * If the user space waits to inject interrupts, exit as soon as
  2169. * possible
  2170. */
  2171. if (kvm_run->request_interrupt_window &&
  2172. !vcpu->arch.irq_summary) {
  2173. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2174. ++vcpu->stat.irq_window_exits;
  2175. return 0;
  2176. }
  2177. return 1;
  2178. }
  2179. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2180. {
  2181. skip_emulated_instruction(vcpu);
  2182. return kvm_emulate_halt(vcpu);
  2183. }
  2184. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2185. {
  2186. skip_emulated_instruction(vcpu);
  2187. kvm_emulate_hypercall(vcpu);
  2188. return 1;
  2189. }
  2190. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2191. {
  2192. skip_emulated_instruction(vcpu);
  2193. /* TODO: Add support for VT-d/pass-through device */
  2194. return 1;
  2195. }
  2196. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2197. {
  2198. u64 exit_qualification;
  2199. enum emulation_result er;
  2200. unsigned long offset;
  2201. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2202. offset = exit_qualification & 0xffful;
  2203. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2204. if (er != EMULATE_DONE) {
  2205. printk(KERN_ERR
  2206. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2207. offset);
  2208. return -ENOTSUPP;
  2209. }
  2210. return 1;
  2211. }
  2212. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2213. {
  2214. unsigned long exit_qualification;
  2215. u16 tss_selector;
  2216. int reason;
  2217. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2218. reason = (u32)exit_qualification >> 30;
  2219. tss_selector = exit_qualification;
  2220. return kvm_task_switch(vcpu, tss_selector, reason);
  2221. }
  2222. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2223. {
  2224. u64 exit_qualification;
  2225. enum emulation_result er;
  2226. gpa_t gpa;
  2227. unsigned long hva;
  2228. int gla_validity;
  2229. int r;
  2230. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2231. if (exit_qualification & (1 << 6)) {
  2232. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2233. return -ENOTSUPP;
  2234. }
  2235. gla_validity = (exit_qualification >> 7) & 0x3;
  2236. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2237. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2238. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2239. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2240. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2241. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2242. (long unsigned int)exit_qualification);
  2243. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2244. kvm_run->hw.hardware_exit_reason = 0;
  2245. return -ENOTSUPP;
  2246. }
  2247. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2248. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2249. if (!kvm_is_error_hva(hva)) {
  2250. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2251. if (r < 0) {
  2252. printk(KERN_ERR "EPT: Not enough memory!\n");
  2253. return -ENOMEM;
  2254. }
  2255. return 1;
  2256. } else {
  2257. /* must be MMIO */
  2258. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2259. if (er == EMULATE_FAIL) {
  2260. printk(KERN_ERR
  2261. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2262. er);
  2263. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2264. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2265. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2266. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2267. (long unsigned int)exit_qualification);
  2268. return -ENOTSUPP;
  2269. } else if (er == EMULATE_DO_MMIO)
  2270. return 0;
  2271. }
  2272. return 1;
  2273. }
  2274. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2275. {
  2276. u32 cpu_based_vm_exec_control;
  2277. /* clear pending NMI */
  2278. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2279. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2280. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2281. ++vcpu->stat.nmi_window_exits;
  2282. return 1;
  2283. }
  2284. /*
  2285. * The exit handlers return 1 if the exit was handled fully and guest execution
  2286. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2287. * to be done to userspace and return 0.
  2288. */
  2289. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2290. struct kvm_run *kvm_run) = {
  2291. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2292. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2293. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2294. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2295. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2296. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2297. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2298. [EXIT_REASON_CPUID] = handle_cpuid,
  2299. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2300. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2301. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2302. [EXIT_REASON_HLT] = handle_halt,
  2303. [EXIT_REASON_VMCALL] = handle_vmcall,
  2304. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2305. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2306. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2307. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2308. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2309. };
  2310. static const int kvm_vmx_max_exit_handlers =
  2311. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2312. /*
  2313. * The guest has exited. See if we can fix it or if we need userspace
  2314. * assistance.
  2315. */
  2316. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2317. {
  2318. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2319. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2320. u32 vectoring_info = vmx->idt_vectoring_info;
  2321. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2322. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2323. /* Access CR3 don't cause VMExit in paging mode, so we need
  2324. * to sync with guest real CR3. */
  2325. if (vm_need_ept() && is_paging(vcpu)) {
  2326. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2327. ept_load_pdptrs(vcpu);
  2328. }
  2329. if (unlikely(vmx->fail)) {
  2330. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2331. kvm_run->fail_entry.hardware_entry_failure_reason
  2332. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2333. return 0;
  2334. }
  2335. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2336. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2337. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2338. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2339. "exit reason is 0x%x\n", __func__, exit_reason);
  2340. if (exit_reason < kvm_vmx_max_exit_handlers
  2341. && kvm_vmx_exit_handlers[exit_reason])
  2342. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2343. else {
  2344. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2345. kvm_run->hw.hardware_exit_reason = exit_reason;
  2346. }
  2347. return 0;
  2348. }
  2349. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2350. {
  2351. int max_irr, tpr;
  2352. if (!vm_need_tpr_shadow(vcpu->kvm))
  2353. return;
  2354. if (!kvm_lapic_enabled(vcpu) ||
  2355. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2356. vmcs_write32(TPR_THRESHOLD, 0);
  2357. return;
  2358. }
  2359. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2360. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2361. }
  2362. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2363. {
  2364. u32 cpu_based_vm_exec_control;
  2365. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2366. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2367. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2368. }
  2369. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2370. {
  2371. u32 cpu_based_vm_exec_control;
  2372. if (!cpu_has_virtual_nmis())
  2373. return;
  2374. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2375. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2376. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2377. }
  2378. static int vmx_nmi_enabled(struct kvm_vcpu *vcpu)
  2379. {
  2380. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2381. return !(guest_intr & (GUEST_INTR_STATE_NMI |
  2382. GUEST_INTR_STATE_MOV_SS |
  2383. GUEST_INTR_STATE_STI));
  2384. }
  2385. static int vmx_irq_enabled(struct kvm_vcpu *vcpu)
  2386. {
  2387. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2388. return (!(guest_intr & (GUEST_INTR_STATE_MOV_SS |
  2389. GUEST_INTR_STATE_STI)) &&
  2390. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  2391. }
  2392. static void enable_intr_window(struct kvm_vcpu *vcpu)
  2393. {
  2394. if (vcpu->arch.nmi_pending)
  2395. enable_nmi_window(vcpu);
  2396. else if (kvm_cpu_has_interrupt(vcpu))
  2397. enable_irq_window(vcpu);
  2398. }
  2399. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2400. {
  2401. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2402. u32 idtv_info_field, intr_info_field, exit_intr_info_field;
  2403. int vector;
  2404. update_tpr_threshold(vcpu);
  2405. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2406. exit_intr_info_field = vmcs_read32(VM_EXIT_INTR_INFO);
  2407. idtv_info_field = vmx->idt_vectoring_info;
  2408. if (intr_info_field & INTR_INFO_VALID_MASK) {
  2409. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  2410. /* TODO: fault when IDT_Vectoring */
  2411. if (printk_ratelimit())
  2412. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  2413. }
  2414. enable_intr_window(vcpu);
  2415. return;
  2416. }
  2417. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  2418. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2419. == INTR_TYPE_EXT_INTR
  2420. && vcpu->arch.rmode.active) {
  2421. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  2422. vmx_inject_irq(vcpu, vect);
  2423. enable_intr_window(vcpu);
  2424. return;
  2425. }
  2426. KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
  2427. /*
  2428. * SDM 3: 25.7.1.2
  2429. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2430. * faulted.
  2431. */
  2432. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2433. == INTR_TYPE_NMI_INTR && cpu_has_virtual_nmis())
  2434. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  2435. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2436. ~GUEST_INTR_STATE_NMI);
  2437. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field
  2438. & ~INTR_INFO_RESVD_BITS_MASK);
  2439. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2440. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2441. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2442. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2443. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2444. enable_intr_window(vcpu);
  2445. return;
  2446. }
  2447. if (cpu_has_virtual_nmis()) {
  2448. /*
  2449. * SDM 3: 25.7.1.2
  2450. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2451. * a guest IRET fault.
  2452. */
  2453. if ((exit_intr_info_field & INTR_INFO_UNBLOCK_NMI) &&
  2454. (exit_intr_info_field & INTR_INFO_VECTOR_MASK) != 8)
  2455. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  2456. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) |
  2457. GUEST_INTR_STATE_NMI);
  2458. else if (vcpu->arch.nmi_pending) {
  2459. if (vmx_nmi_enabled(vcpu))
  2460. vmx_inject_nmi(vcpu);
  2461. enable_intr_window(vcpu);
  2462. return;
  2463. }
  2464. }
  2465. if (!kvm_cpu_has_interrupt(vcpu))
  2466. return;
  2467. if (vmx_irq_enabled(vcpu)) {
  2468. vector = kvm_cpu_get_interrupt(vcpu);
  2469. vmx_inject_irq(vcpu, vector);
  2470. kvm_timer_intr_post(vcpu, vector);
  2471. } else
  2472. enable_irq_window(vcpu);
  2473. }
  2474. /*
  2475. * Failure to inject an interrupt should give us the information
  2476. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2477. * when fetching the interrupt redirection bitmap in the real-mode
  2478. * tss, this doesn't happen. So we do it ourselves.
  2479. */
  2480. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2481. {
  2482. vmx->rmode.irq.pending = 0;
  2483. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2484. return;
  2485. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2486. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2487. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2488. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2489. return;
  2490. }
  2491. vmx->idt_vectoring_info =
  2492. VECTORING_INFO_VALID_MASK
  2493. | INTR_TYPE_EXT_INTR
  2494. | vmx->rmode.irq.vector;
  2495. }
  2496. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2497. {
  2498. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2499. u32 intr_info;
  2500. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2501. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2502. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2503. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2504. /*
  2505. * Loading guest fpu may have cleared host cr0.ts
  2506. */
  2507. vmcs_writel(HOST_CR0, read_cr0());
  2508. asm(
  2509. /* Store host registers */
  2510. #ifdef CONFIG_X86_64
  2511. "push %%rdx; push %%rbp;"
  2512. "push %%rcx \n\t"
  2513. #else
  2514. "push %%edx; push %%ebp;"
  2515. "push %%ecx \n\t"
  2516. #endif
  2517. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2518. /* Check if vmlaunch of vmresume is needed */
  2519. "cmpl $0, %c[launched](%0) \n\t"
  2520. /* Load guest registers. Don't clobber flags. */
  2521. #ifdef CONFIG_X86_64
  2522. "mov %c[cr2](%0), %%rax \n\t"
  2523. "mov %%rax, %%cr2 \n\t"
  2524. "mov %c[rax](%0), %%rax \n\t"
  2525. "mov %c[rbx](%0), %%rbx \n\t"
  2526. "mov %c[rdx](%0), %%rdx \n\t"
  2527. "mov %c[rsi](%0), %%rsi \n\t"
  2528. "mov %c[rdi](%0), %%rdi \n\t"
  2529. "mov %c[rbp](%0), %%rbp \n\t"
  2530. "mov %c[r8](%0), %%r8 \n\t"
  2531. "mov %c[r9](%0), %%r9 \n\t"
  2532. "mov %c[r10](%0), %%r10 \n\t"
  2533. "mov %c[r11](%0), %%r11 \n\t"
  2534. "mov %c[r12](%0), %%r12 \n\t"
  2535. "mov %c[r13](%0), %%r13 \n\t"
  2536. "mov %c[r14](%0), %%r14 \n\t"
  2537. "mov %c[r15](%0), %%r15 \n\t"
  2538. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2539. #else
  2540. "mov %c[cr2](%0), %%eax \n\t"
  2541. "mov %%eax, %%cr2 \n\t"
  2542. "mov %c[rax](%0), %%eax \n\t"
  2543. "mov %c[rbx](%0), %%ebx \n\t"
  2544. "mov %c[rdx](%0), %%edx \n\t"
  2545. "mov %c[rsi](%0), %%esi \n\t"
  2546. "mov %c[rdi](%0), %%edi \n\t"
  2547. "mov %c[rbp](%0), %%ebp \n\t"
  2548. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2549. #endif
  2550. /* Enter guest mode */
  2551. "jne .Llaunched \n\t"
  2552. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2553. "jmp .Lkvm_vmx_return \n\t"
  2554. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2555. ".Lkvm_vmx_return: "
  2556. /* Save guest registers, load host registers, keep flags */
  2557. #ifdef CONFIG_X86_64
  2558. "xchg %0, (%%rsp) \n\t"
  2559. "mov %%rax, %c[rax](%0) \n\t"
  2560. "mov %%rbx, %c[rbx](%0) \n\t"
  2561. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2562. "mov %%rdx, %c[rdx](%0) \n\t"
  2563. "mov %%rsi, %c[rsi](%0) \n\t"
  2564. "mov %%rdi, %c[rdi](%0) \n\t"
  2565. "mov %%rbp, %c[rbp](%0) \n\t"
  2566. "mov %%r8, %c[r8](%0) \n\t"
  2567. "mov %%r9, %c[r9](%0) \n\t"
  2568. "mov %%r10, %c[r10](%0) \n\t"
  2569. "mov %%r11, %c[r11](%0) \n\t"
  2570. "mov %%r12, %c[r12](%0) \n\t"
  2571. "mov %%r13, %c[r13](%0) \n\t"
  2572. "mov %%r14, %c[r14](%0) \n\t"
  2573. "mov %%r15, %c[r15](%0) \n\t"
  2574. "mov %%cr2, %%rax \n\t"
  2575. "mov %%rax, %c[cr2](%0) \n\t"
  2576. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2577. #else
  2578. "xchg %0, (%%esp) \n\t"
  2579. "mov %%eax, %c[rax](%0) \n\t"
  2580. "mov %%ebx, %c[rbx](%0) \n\t"
  2581. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2582. "mov %%edx, %c[rdx](%0) \n\t"
  2583. "mov %%esi, %c[rsi](%0) \n\t"
  2584. "mov %%edi, %c[rdi](%0) \n\t"
  2585. "mov %%ebp, %c[rbp](%0) \n\t"
  2586. "mov %%cr2, %%eax \n\t"
  2587. "mov %%eax, %c[cr2](%0) \n\t"
  2588. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2589. #endif
  2590. "setbe %c[fail](%0) \n\t"
  2591. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2592. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2593. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2594. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2595. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2596. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2597. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2598. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2599. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2600. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2601. #ifdef CONFIG_X86_64
  2602. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2603. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2604. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2605. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2606. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2607. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2608. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2609. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2610. #endif
  2611. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2612. : "cc", "memory"
  2613. #ifdef CONFIG_X86_64
  2614. , "rbx", "rdi", "rsi"
  2615. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2616. #else
  2617. , "ebx", "edi", "rsi"
  2618. #endif
  2619. );
  2620. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2621. vcpu->arch.regs_dirty = 0;
  2622. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2623. if (vmx->rmode.irq.pending)
  2624. fixup_rmode_irq(vmx);
  2625. vcpu->arch.interrupt_window_open =
  2626. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2627. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)) == 0;
  2628. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2629. vmx->launched = 1;
  2630. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2631. /* We need to handle NMIs before interrupts are enabled */
  2632. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200 &&
  2633. (intr_info & INTR_INFO_VALID_MASK)) {
  2634. KVMTRACE_0D(NMI, vcpu, handler);
  2635. asm("int $2");
  2636. }
  2637. }
  2638. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2639. {
  2640. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2641. if (vmx->vmcs) {
  2642. vcpu_clear(vmx);
  2643. free_vmcs(vmx->vmcs);
  2644. vmx->vmcs = NULL;
  2645. }
  2646. }
  2647. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2648. {
  2649. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2650. spin_lock(&vmx_vpid_lock);
  2651. if (vmx->vpid != 0)
  2652. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2653. spin_unlock(&vmx_vpid_lock);
  2654. vmx_free_vmcs(vcpu);
  2655. kfree(vmx->host_msrs);
  2656. kfree(vmx->guest_msrs);
  2657. kvm_vcpu_uninit(vcpu);
  2658. kmem_cache_free(kvm_vcpu_cache, vmx);
  2659. }
  2660. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2661. {
  2662. int err;
  2663. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2664. int cpu;
  2665. if (!vmx)
  2666. return ERR_PTR(-ENOMEM);
  2667. allocate_vpid(vmx);
  2668. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2669. if (err)
  2670. goto free_vcpu;
  2671. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2672. if (!vmx->guest_msrs) {
  2673. err = -ENOMEM;
  2674. goto uninit_vcpu;
  2675. }
  2676. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2677. if (!vmx->host_msrs)
  2678. goto free_guest_msrs;
  2679. vmx->vmcs = alloc_vmcs();
  2680. if (!vmx->vmcs)
  2681. goto free_msrs;
  2682. vmcs_clear(vmx->vmcs);
  2683. cpu = get_cpu();
  2684. vmx_vcpu_load(&vmx->vcpu, cpu);
  2685. err = vmx_vcpu_setup(vmx);
  2686. vmx_vcpu_put(&vmx->vcpu);
  2687. put_cpu();
  2688. if (err)
  2689. goto free_vmcs;
  2690. if (vm_need_virtualize_apic_accesses(kvm))
  2691. if (alloc_apic_access_page(kvm) != 0)
  2692. goto free_vmcs;
  2693. if (vm_need_ept())
  2694. if (alloc_identity_pagetable(kvm) != 0)
  2695. goto free_vmcs;
  2696. return &vmx->vcpu;
  2697. free_vmcs:
  2698. free_vmcs(vmx->vmcs);
  2699. free_msrs:
  2700. kfree(vmx->host_msrs);
  2701. free_guest_msrs:
  2702. kfree(vmx->guest_msrs);
  2703. uninit_vcpu:
  2704. kvm_vcpu_uninit(&vmx->vcpu);
  2705. free_vcpu:
  2706. kmem_cache_free(kvm_vcpu_cache, vmx);
  2707. return ERR_PTR(err);
  2708. }
  2709. static void __init vmx_check_processor_compat(void *rtn)
  2710. {
  2711. struct vmcs_config vmcs_conf;
  2712. *(int *)rtn = 0;
  2713. if (setup_vmcs_config(&vmcs_conf) < 0)
  2714. *(int *)rtn = -EIO;
  2715. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2716. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2717. smp_processor_id());
  2718. *(int *)rtn = -EIO;
  2719. }
  2720. }
  2721. static int get_ept_level(void)
  2722. {
  2723. return VMX_EPT_DEFAULT_GAW + 1;
  2724. }
  2725. static struct kvm_x86_ops vmx_x86_ops = {
  2726. .cpu_has_kvm_support = cpu_has_kvm_support,
  2727. .disabled_by_bios = vmx_disabled_by_bios,
  2728. .hardware_setup = hardware_setup,
  2729. .hardware_unsetup = hardware_unsetup,
  2730. .check_processor_compatibility = vmx_check_processor_compat,
  2731. .hardware_enable = hardware_enable,
  2732. .hardware_disable = hardware_disable,
  2733. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2734. .vcpu_create = vmx_create_vcpu,
  2735. .vcpu_free = vmx_free_vcpu,
  2736. .vcpu_reset = vmx_vcpu_reset,
  2737. .prepare_guest_switch = vmx_save_host_state,
  2738. .vcpu_load = vmx_vcpu_load,
  2739. .vcpu_put = vmx_vcpu_put,
  2740. .set_guest_debug = set_guest_debug,
  2741. .guest_debug_pre = kvm_guest_debug_pre,
  2742. .get_msr = vmx_get_msr,
  2743. .set_msr = vmx_set_msr,
  2744. .get_segment_base = vmx_get_segment_base,
  2745. .get_segment = vmx_get_segment,
  2746. .set_segment = vmx_set_segment,
  2747. .get_cpl = vmx_get_cpl,
  2748. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2749. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2750. .set_cr0 = vmx_set_cr0,
  2751. .set_cr3 = vmx_set_cr3,
  2752. .set_cr4 = vmx_set_cr4,
  2753. .set_efer = vmx_set_efer,
  2754. .get_idt = vmx_get_idt,
  2755. .set_idt = vmx_set_idt,
  2756. .get_gdt = vmx_get_gdt,
  2757. .set_gdt = vmx_set_gdt,
  2758. .cache_reg = vmx_cache_reg,
  2759. .get_rflags = vmx_get_rflags,
  2760. .set_rflags = vmx_set_rflags,
  2761. .tlb_flush = vmx_flush_tlb,
  2762. .run = vmx_vcpu_run,
  2763. .handle_exit = kvm_handle_exit,
  2764. .skip_emulated_instruction = skip_emulated_instruction,
  2765. .patch_hypercall = vmx_patch_hypercall,
  2766. .get_irq = vmx_get_irq,
  2767. .set_irq = vmx_inject_irq,
  2768. .queue_exception = vmx_queue_exception,
  2769. .exception_injected = vmx_exception_injected,
  2770. .inject_pending_irq = vmx_intr_assist,
  2771. .inject_pending_vectors = do_interrupt_requests,
  2772. .set_tss_addr = vmx_set_tss_addr,
  2773. .get_tdp_level = get_ept_level,
  2774. };
  2775. static int __init vmx_init(void)
  2776. {
  2777. void *va;
  2778. int r;
  2779. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2780. if (!vmx_io_bitmap_a)
  2781. return -ENOMEM;
  2782. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2783. if (!vmx_io_bitmap_b) {
  2784. r = -ENOMEM;
  2785. goto out;
  2786. }
  2787. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2788. if (!vmx_msr_bitmap) {
  2789. r = -ENOMEM;
  2790. goto out1;
  2791. }
  2792. /*
  2793. * Allow direct access to the PC debug port (it is often used for I/O
  2794. * delays, but the vmexits simply slow things down).
  2795. */
  2796. va = kmap(vmx_io_bitmap_a);
  2797. memset(va, 0xff, PAGE_SIZE);
  2798. clear_bit(0x80, va);
  2799. kunmap(vmx_io_bitmap_a);
  2800. va = kmap(vmx_io_bitmap_b);
  2801. memset(va, 0xff, PAGE_SIZE);
  2802. kunmap(vmx_io_bitmap_b);
  2803. va = kmap(vmx_msr_bitmap);
  2804. memset(va, 0xff, PAGE_SIZE);
  2805. kunmap(vmx_msr_bitmap);
  2806. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2807. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2808. if (r)
  2809. goto out2;
  2810. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2811. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2812. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2813. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2814. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2815. if (vm_need_ept()) {
  2816. bypass_guest_pf = 0;
  2817. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2818. VMX_EPT_WRITABLE_MASK |
  2819. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2820. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  2821. VMX_EPT_EXECUTABLE_MASK);
  2822. kvm_enable_tdp();
  2823. } else
  2824. kvm_disable_tdp();
  2825. if (bypass_guest_pf)
  2826. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2827. ept_sync_global();
  2828. return 0;
  2829. out2:
  2830. __free_page(vmx_msr_bitmap);
  2831. out1:
  2832. __free_page(vmx_io_bitmap_b);
  2833. out:
  2834. __free_page(vmx_io_bitmap_a);
  2835. return r;
  2836. }
  2837. static void __exit vmx_exit(void)
  2838. {
  2839. __free_page(vmx_msr_bitmap);
  2840. __free_page(vmx_io_bitmap_b);
  2841. __free_page(vmx_io_bitmap_a);
  2842. kvm_exit();
  2843. }
  2844. module_init(vmx_init)
  2845. module_exit(vmx_exit)