smp_32.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429
  1. /* smp.c: Sparc SMP support.
  2. *
  3. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  4. * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  5. * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
  6. */
  7. #include <asm/head.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/init.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/mm.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/delay.h>
  21. #include <asm/ptrace.h>
  22. #include <asm/atomic.h>
  23. #include <asm/irq.h>
  24. #include <asm/page.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/oplib.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/tlbflush.h>
  30. #include <asm/cpudata.h>
  31. #include <asm/leon.h>
  32. #include "irq.h"
  33. volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
  34. cpumask_t smp_commenced_mask = CPU_MASK_NONE;
  35. /* The only guaranteed locking primitive available on all Sparc
  36. * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
  37. * places the current byte at the effective address into dest_reg and
  38. * places 0xff there afterwards. Pretty lame locking primitive
  39. * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
  40. * instruction which is much better...
  41. */
  42. void __cpuinit smp_store_cpu_info(int id)
  43. {
  44. int cpu_node;
  45. cpu_data(id).udelay_val = loops_per_jiffy;
  46. cpu_find_by_mid(id, &cpu_node);
  47. cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
  48. "clock-frequency", 0);
  49. cpu_data(id).prom_node = cpu_node;
  50. cpu_data(id).mid = cpu_get_hwmid(cpu_node);
  51. if (cpu_data(id).mid < 0)
  52. panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
  53. }
  54. void __init smp_cpus_done(unsigned int max_cpus)
  55. {
  56. extern void smp4m_smp_done(void);
  57. extern void smp4d_smp_done(void);
  58. unsigned long bogosum = 0;
  59. int cpu, num = 0;
  60. for_each_online_cpu(cpu) {
  61. num++;
  62. bogosum += cpu_data(cpu).udelay_val;
  63. }
  64. printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  65. num, bogosum/(500000/HZ),
  66. (bogosum/(5000/HZ))%100);
  67. switch(sparc_cpu_model) {
  68. case sun4:
  69. printk("SUN4\n");
  70. BUG();
  71. break;
  72. case sun4c:
  73. printk("SUN4C\n");
  74. BUG();
  75. break;
  76. case sun4m:
  77. smp4m_smp_done();
  78. break;
  79. case sun4d:
  80. smp4d_smp_done();
  81. break;
  82. case sparc_leon:
  83. leon_smp_done();
  84. break;
  85. case sun4e:
  86. printk("SUN4E\n");
  87. BUG();
  88. break;
  89. case sun4u:
  90. printk("SUN4U\n");
  91. BUG();
  92. break;
  93. default:
  94. printk("UNKNOWN!\n");
  95. BUG();
  96. break;
  97. };
  98. }
  99. void cpu_panic(void)
  100. {
  101. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  102. panic("SMP bolixed\n");
  103. }
  104. struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
  105. void smp_send_reschedule(int cpu)
  106. {
  107. /* See sparc64 */
  108. }
  109. void smp_send_stop(void)
  110. {
  111. }
  112. void smp_flush_cache_all(void)
  113. {
  114. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
  115. local_flush_cache_all();
  116. }
  117. void smp_flush_tlb_all(void)
  118. {
  119. xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
  120. local_flush_tlb_all();
  121. }
  122. void smp_flush_cache_mm(struct mm_struct *mm)
  123. {
  124. if(mm->context != NO_CONTEXT) {
  125. cpumask_t cpu_mask = *mm_cpumask(mm);
  126. cpu_clear(smp_processor_id(), cpu_mask);
  127. if (!cpus_empty(cpu_mask))
  128. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
  129. local_flush_cache_mm(mm);
  130. }
  131. }
  132. void smp_flush_tlb_mm(struct mm_struct *mm)
  133. {
  134. if(mm->context != NO_CONTEXT) {
  135. cpumask_t cpu_mask = *mm_cpumask(mm);
  136. cpu_clear(smp_processor_id(), cpu_mask);
  137. if (!cpus_empty(cpu_mask)) {
  138. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
  139. if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
  140. cpumask_copy(mm_cpumask(mm),
  141. cpumask_of(smp_processor_id()));
  142. }
  143. local_flush_tlb_mm(mm);
  144. }
  145. }
  146. void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
  147. unsigned long end)
  148. {
  149. struct mm_struct *mm = vma->vm_mm;
  150. if (mm->context != NO_CONTEXT) {
  151. cpumask_t cpu_mask = *mm_cpumask(mm);
  152. cpu_clear(smp_processor_id(), cpu_mask);
  153. if (!cpus_empty(cpu_mask))
  154. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
  155. local_flush_cache_range(vma, start, end);
  156. }
  157. }
  158. void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
  159. unsigned long end)
  160. {
  161. struct mm_struct *mm = vma->vm_mm;
  162. if (mm->context != NO_CONTEXT) {
  163. cpumask_t cpu_mask = *mm_cpumask(mm);
  164. cpu_clear(smp_processor_id(), cpu_mask);
  165. if (!cpus_empty(cpu_mask))
  166. xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
  167. local_flush_tlb_range(vma, start, end);
  168. }
  169. }
  170. void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
  171. {
  172. struct mm_struct *mm = vma->vm_mm;
  173. if(mm->context != NO_CONTEXT) {
  174. cpumask_t cpu_mask = *mm_cpumask(mm);
  175. cpu_clear(smp_processor_id(), cpu_mask);
  176. if (!cpus_empty(cpu_mask))
  177. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
  178. local_flush_cache_page(vma, page);
  179. }
  180. }
  181. void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  182. {
  183. struct mm_struct *mm = vma->vm_mm;
  184. if(mm->context != NO_CONTEXT) {
  185. cpumask_t cpu_mask = *mm_cpumask(mm);
  186. cpu_clear(smp_processor_id(), cpu_mask);
  187. if (!cpus_empty(cpu_mask))
  188. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
  189. local_flush_tlb_page(vma, page);
  190. }
  191. }
  192. void smp_reschedule_irq(void)
  193. {
  194. set_need_resched();
  195. }
  196. void smp_flush_page_to_ram(unsigned long page)
  197. {
  198. /* Current theory is that those who call this are the one's
  199. * who have just dirtied their cache with the pages contents
  200. * in kernel space, therefore we only run this on local cpu.
  201. *
  202. * XXX This experiment failed, research further... -DaveM
  203. */
  204. #if 1
  205. xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
  206. #endif
  207. local_flush_page_to_ram(page);
  208. }
  209. void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
  210. {
  211. cpumask_t cpu_mask = *mm_cpumask(mm);
  212. cpu_clear(smp_processor_id(), cpu_mask);
  213. if (!cpus_empty(cpu_mask))
  214. xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
  215. local_flush_sig_insns(mm, insn_addr);
  216. }
  217. extern unsigned int lvl14_resolution;
  218. /* /proc/profile writes can call this, don't __init it please. */
  219. static DEFINE_SPINLOCK(prof_setup_lock);
  220. int setup_profiling_timer(unsigned int multiplier)
  221. {
  222. int i;
  223. unsigned long flags;
  224. /* Prevent level14 ticker IRQ flooding. */
  225. if((!multiplier) || (lvl14_resolution / multiplier) < 500)
  226. return -EINVAL;
  227. spin_lock_irqsave(&prof_setup_lock, flags);
  228. for_each_possible_cpu(i) {
  229. load_profile_irq(i, lvl14_resolution / multiplier);
  230. prof_multiplier(i) = multiplier;
  231. }
  232. spin_unlock_irqrestore(&prof_setup_lock, flags);
  233. return 0;
  234. }
  235. void __init smp_prepare_cpus(unsigned int max_cpus)
  236. {
  237. extern void __init smp4m_boot_cpus(void);
  238. extern void __init smp4d_boot_cpus(void);
  239. int i, cpuid, extra;
  240. printk("Entering SMP Mode...\n");
  241. extra = 0;
  242. for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
  243. if (cpuid >= NR_CPUS)
  244. extra++;
  245. }
  246. /* i = number of cpus */
  247. if (extra && max_cpus > i - extra)
  248. printk("Warning: NR_CPUS is too low to start all cpus\n");
  249. smp_store_cpu_info(boot_cpu_id);
  250. switch(sparc_cpu_model) {
  251. case sun4:
  252. printk("SUN4\n");
  253. BUG();
  254. break;
  255. case sun4c:
  256. printk("SUN4C\n");
  257. BUG();
  258. break;
  259. case sun4m:
  260. smp4m_boot_cpus();
  261. break;
  262. case sun4d:
  263. smp4d_boot_cpus();
  264. break;
  265. case sparc_leon:
  266. leon_boot_cpus();
  267. break;
  268. case sun4e:
  269. printk("SUN4E\n");
  270. BUG();
  271. break;
  272. case sun4u:
  273. printk("SUN4U\n");
  274. BUG();
  275. break;
  276. default:
  277. printk("UNKNOWN!\n");
  278. BUG();
  279. break;
  280. };
  281. }
  282. /* Set this up early so that things like the scheduler can init
  283. * properly. We use the same cpu mask for both the present and
  284. * possible cpu map.
  285. */
  286. void __init smp_setup_cpu_possible_map(void)
  287. {
  288. int instance, mid;
  289. instance = 0;
  290. while (!cpu_find_by_instance(instance, NULL, &mid)) {
  291. if (mid < NR_CPUS) {
  292. set_cpu_possible(mid, true);
  293. set_cpu_present(mid, true);
  294. }
  295. instance++;
  296. }
  297. }
  298. void __init smp_prepare_boot_cpu(void)
  299. {
  300. int cpuid = hard_smp_processor_id();
  301. if (cpuid >= NR_CPUS) {
  302. prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
  303. prom_halt();
  304. }
  305. if (cpuid != 0)
  306. printk("boot cpu id != 0, this could work but is untested\n");
  307. current_thread_info()->cpu = cpuid;
  308. set_cpu_online(cpuid, true);
  309. set_cpu_possible(cpuid, true);
  310. }
  311. int __cpuinit __cpu_up(unsigned int cpu)
  312. {
  313. extern int __cpuinit smp4m_boot_one_cpu(int);
  314. extern int __cpuinit smp4d_boot_one_cpu(int);
  315. int ret=0;
  316. switch(sparc_cpu_model) {
  317. case sun4:
  318. printk("SUN4\n");
  319. BUG();
  320. break;
  321. case sun4c:
  322. printk("SUN4C\n");
  323. BUG();
  324. break;
  325. case sun4m:
  326. ret = smp4m_boot_one_cpu(cpu);
  327. break;
  328. case sun4d:
  329. ret = smp4d_boot_one_cpu(cpu);
  330. break;
  331. case sparc_leon:
  332. ret = leon_boot_one_cpu(cpu);
  333. break;
  334. case sun4e:
  335. printk("SUN4E\n");
  336. BUG();
  337. break;
  338. case sun4u:
  339. printk("SUN4U\n");
  340. BUG();
  341. break;
  342. default:
  343. printk("UNKNOWN!\n");
  344. BUG();
  345. break;
  346. };
  347. if (!ret) {
  348. cpu_set(cpu, smp_commenced_mask);
  349. while (!cpu_online(cpu))
  350. mb();
  351. }
  352. return ret;
  353. }
  354. void smp_bogo(struct seq_file *m)
  355. {
  356. int i;
  357. for_each_online_cpu(i) {
  358. seq_printf(m,
  359. "Cpu%dBogo\t: %lu.%02lu\n",
  360. i,
  361. cpu_data(i).udelay_val/(500000/HZ),
  362. (cpu_data(i).udelay_val/(5000/HZ))%100);
  363. }
  364. }
  365. void smp_info(struct seq_file *m)
  366. {
  367. int i;
  368. seq_printf(m, "State:\n");
  369. for_each_online_cpu(i)
  370. seq_printf(m, "CPU%d\t\t: online\n", i);
  371. }