tcp_memcontrol.c 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. #include <net/tcp.h>
  2. #include <net/tcp_memcontrol.h>
  3. #include <net/sock.h>
  4. #include <net/ip.h>
  5. #include <linux/nsproxy.h>
  6. #include <linux/memcontrol.h>
  7. #include <linux/module.h>
  8. static void memcg_tcp_enter_memory_pressure(struct sock *sk)
  9. {
  10. if (sk->sk_cgrp->memory_pressure)
  11. sk->sk_cgrp->memory_pressure = 1;
  12. }
  13. EXPORT_SYMBOL(memcg_tcp_enter_memory_pressure);
  14. int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  15. {
  16. /*
  17. * The root cgroup does not use res_counters, but rather,
  18. * rely on the data already collected by the network
  19. * subsystem
  20. */
  21. struct res_counter *res_parent = NULL;
  22. struct cg_proto *cg_proto, *parent_cg;
  23. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  24. cg_proto = tcp_prot.proto_cgroup(memcg);
  25. if (!cg_proto)
  26. return 0;
  27. cg_proto->sysctl_mem[0] = sysctl_tcp_mem[0];
  28. cg_proto->sysctl_mem[1] = sysctl_tcp_mem[1];
  29. cg_proto->sysctl_mem[2] = sysctl_tcp_mem[2];
  30. cg_proto->memory_pressure = 0;
  31. cg_proto->memcg = memcg;
  32. parent_cg = tcp_prot.proto_cgroup(parent);
  33. if (parent_cg)
  34. res_parent = &parent_cg->memory_allocated;
  35. res_counter_init(&cg_proto->memory_allocated, res_parent);
  36. percpu_counter_init(&cg_proto->sockets_allocated, 0);
  37. return 0;
  38. }
  39. EXPORT_SYMBOL(tcp_init_cgroup);
  40. void tcp_destroy_cgroup(struct mem_cgroup *memcg)
  41. {
  42. struct cg_proto *cg_proto;
  43. cg_proto = tcp_prot.proto_cgroup(memcg);
  44. if (!cg_proto)
  45. return;
  46. percpu_counter_destroy(&cg_proto->sockets_allocated);
  47. }
  48. EXPORT_SYMBOL(tcp_destroy_cgroup);
  49. static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
  50. {
  51. struct cg_proto *cg_proto;
  52. int i;
  53. int ret;
  54. cg_proto = tcp_prot.proto_cgroup(memcg);
  55. if (!cg_proto)
  56. return -EINVAL;
  57. if (val > RES_COUNTER_MAX)
  58. val = RES_COUNTER_MAX;
  59. ret = res_counter_set_limit(&cg_proto->memory_allocated, val);
  60. if (ret)
  61. return ret;
  62. for (i = 0; i < 3; i++)
  63. cg_proto->sysctl_mem[i] = min_t(long, val >> PAGE_SHIFT,
  64. sysctl_tcp_mem[i]);
  65. if (val == RES_COUNTER_MAX)
  66. clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
  67. else if (val != RES_COUNTER_MAX) {
  68. /*
  69. * The active bit needs to be written after the static_key
  70. * update. This is what guarantees that the socket activation
  71. * function is the last one to run. See sock_update_memcg() for
  72. * details, and note that we don't mark any socket as belonging
  73. * to this memcg until that flag is up.
  74. *
  75. * We need to do this, because static_keys will span multiple
  76. * sites, but we can't control their order. If we mark a socket
  77. * as accounted, but the accounting functions are not patched in
  78. * yet, we'll lose accounting.
  79. *
  80. * We never race with the readers in sock_update_memcg(),
  81. * because when this value change, the code to process it is not
  82. * patched in yet.
  83. *
  84. * The activated bit is used to guarantee that no two writers
  85. * will do the update in the same memcg. Without that, we can't
  86. * properly shutdown the static key.
  87. */
  88. if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))
  89. static_key_slow_inc(&memcg_socket_limit_enabled);
  90. set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
  91. }
  92. return 0;
  93. }
  94. static int tcp_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
  95. const char *buffer)
  96. {
  97. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  98. unsigned long long val;
  99. int ret = 0;
  100. switch (cft->private) {
  101. case RES_LIMIT:
  102. /* see memcontrol.c */
  103. ret = res_counter_memparse_write_strategy(buffer, &val);
  104. if (ret)
  105. break;
  106. ret = tcp_update_limit(memcg, val);
  107. break;
  108. default:
  109. ret = -EINVAL;
  110. break;
  111. }
  112. return ret;
  113. }
  114. static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
  115. {
  116. struct cg_proto *cg_proto;
  117. cg_proto = tcp_prot.proto_cgroup(memcg);
  118. if (!cg_proto)
  119. return default_val;
  120. return res_counter_read_u64(&cg_proto->memory_allocated, type);
  121. }
  122. static u64 tcp_read_usage(struct mem_cgroup *memcg)
  123. {
  124. struct cg_proto *cg_proto;
  125. cg_proto = tcp_prot.proto_cgroup(memcg);
  126. if (!cg_proto)
  127. return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
  128. return res_counter_read_u64(&cg_proto->memory_allocated, RES_USAGE);
  129. }
  130. static u64 tcp_cgroup_read(struct cgroup_subsys_state *css, struct cftype *cft)
  131. {
  132. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  133. u64 val;
  134. switch (cft->private) {
  135. case RES_LIMIT:
  136. val = tcp_read_stat(memcg, RES_LIMIT, RES_COUNTER_MAX);
  137. break;
  138. case RES_USAGE:
  139. val = tcp_read_usage(memcg);
  140. break;
  141. case RES_FAILCNT:
  142. case RES_MAX_USAGE:
  143. val = tcp_read_stat(memcg, cft->private, 0);
  144. break;
  145. default:
  146. BUG();
  147. }
  148. return val;
  149. }
  150. static int tcp_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
  151. {
  152. struct mem_cgroup *memcg;
  153. struct cg_proto *cg_proto;
  154. memcg = mem_cgroup_from_css(css);
  155. cg_proto = tcp_prot.proto_cgroup(memcg);
  156. if (!cg_proto)
  157. return 0;
  158. switch (event) {
  159. case RES_MAX_USAGE:
  160. res_counter_reset_max(&cg_proto->memory_allocated);
  161. break;
  162. case RES_FAILCNT:
  163. res_counter_reset_failcnt(&cg_proto->memory_allocated);
  164. break;
  165. }
  166. return 0;
  167. }
  168. static struct cftype tcp_files[] = {
  169. {
  170. .name = "kmem.tcp.limit_in_bytes",
  171. .write_string = tcp_cgroup_write,
  172. .read_u64 = tcp_cgroup_read,
  173. .private = RES_LIMIT,
  174. },
  175. {
  176. .name = "kmem.tcp.usage_in_bytes",
  177. .read_u64 = tcp_cgroup_read,
  178. .private = RES_USAGE,
  179. },
  180. {
  181. .name = "kmem.tcp.failcnt",
  182. .private = RES_FAILCNT,
  183. .trigger = tcp_cgroup_reset,
  184. .read_u64 = tcp_cgroup_read,
  185. },
  186. {
  187. .name = "kmem.tcp.max_usage_in_bytes",
  188. .private = RES_MAX_USAGE,
  189. .trigger = tcp_cgroup_reset,
  190. .read_u64 = tcp_cgroup_read,
  191. },
  192. { } /* terminate */
  193. };
  194. static int __init tcp_memcontrol_init(void)
  195. {
  196. WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
  197. return 0;
  198. }
  199. __initcall(tcp_memcontrol_init);