mmu.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "kvm.h"
  21. #include "x86.h"
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <asm/page.h>
  28. #include <asm/cmpxchg.h>
  29. #undef MMU_DEBUG
  30. #undef AUDIT
  31. #ifdef AUDIT
  32. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  33. #else
  34. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  35. #endif
  36. #ifdef MMU_DEBUG
  37. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  38. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  39. #else
  40. #define pgprintk(x...) do { } while (0)
  41. #define rmap_printk(x...) do { } while (0)
  42. #endif
  43. #if defined(MMU_DEBUG) || defined(AUDIT)
  44. static int dbg = 1;
  45. #endif
  46. #ifndef MMU_DEBUG
  47. #define ASSERT(x) do { } while (0)
  48. #else
  49. #define ASSERT(x) \
  50. if (!(x)) { \
  51. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  52. __FILE__, __LINE__, #x); \
  53. }
  54. #endif
  55. #define PT64_PT_BITS 9
  56. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  57. #define PT32_PT_BITS 10
  58. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  59. #define PT_WRITABLE_SHIFT 1
  60. #define PT_PRESENT_MASK (1ULL << 0)
  61. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  62. #define PT_USER_MASK (1ULL << 2)
  63. #define PT_PWT_MASK (1ULL << 3)
  64. #define PT_PCD_MASK (1ULL << 4)
  65. #define PT_ACCESSED_MASK (1ULL << 5)
  66. #define PT_DIRTY_MASK (1ULL << 6)
  67. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  68. #define PT_PAT_MASK (1ULL << 7)
  69. #define PT_GLOBAL_MASK (1ULL << 8)
  70. #define PT64_NX_MASK (1ULL << 63)
  71. #define PT_PAT_SHIFT 7
  72. #define PT_DIR_PAT_SHIFT 12
  73. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  74. #define PT32_DIR_PSE36_SIZE 4
  75. #define PT32_DIR_PSE36_SHIFT 13
  76. #define PT32_DIR_PSE36_MASK \
  77. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  81. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  82. #define PT64_LEVEL_BITS 9
  83. #define PT64_LEVEL_SHIFT(level) \
  84. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  85. #define PT64_LEVEL_MASK(level) \
  86. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  87. #define PT64_INDEX(address, level)\
  88. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  89. #define PT32_LEVEL_BITS 10
  90. #define PT32_LEVEL_SHIFT(level) \
  91. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  92. #define PT32_LEVEL_MASK(level) \
  93. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  94. #define PT32_INDEX(address, level)\
  95. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  96. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  97. #define PT64_DIR_BASE_ADDR_MASK \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  99. #define PT32_BASE_ADDR_MASK PAGE_MASK
  100. #define PT32_DIR_BASE_ADDR_MASK \
  101. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  102. #define PFERR_PRESENT_MASK (1U << 0)
  103. #define PFERR_WRITE_MASK (1U << 1)
  104. #define PFERR_USER_MASK (1U << 2)
  105. #define PFERR_FETCH_MASK (1U << 4)
  106. #define PT64_ROOT_LEVEL 4
  107. #define PT32_ROOT_LEVEL 2
  108. #define PT32E_ROOT_LEVEL 3
  109. #define PT_DIRECTORY_LEVEL 2
  110. #define PT_PAGE_TABLE_LEVEL 1
  111. #define RMAP_EXT 4
  112. struct kvm_rmap_desc {
  113. u64 *shadow_ptes[RMAP_EXT];
  114. struct kvm_rmap_desc *more;
  115. };
  116. static struct kmem_cache *pte_chain_cache;
  117. static struct kmem_cache *rmap_desc_cache;
  118. static struct kmem_cache *mmu_page_header_cache;
  119. static u64 __read_mostly shadow_trap_nonpresent_pte;
  120. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  121. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  122. {
  123. shadow_trap_nonpresent_pte = trap_pte;
  124. shadow_notrap_nonpresent_pte = notrap_pte;
  125. }
  126. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  127. static int is_write_protection(struct kvm_vcpu *vcpu)
  128. {
  129. return vcpu->cr0 & X86_CR0_WP;
  130. }
  131. static int is_cpuid_PSE36(void)
  132. {
  133. return 1;
  134. }
  135. static int is_nx(struct kvm_vcpu *vcpu)
  136. {
  137. return vcpu->shadow_efer & EFER_NX;
  138. }
  139. static int is_present_pte(unsigned long pte)
  140. {
  141. return pte & PT_PRESENT_MASK;
  142. }
  143. static int is_shadow_present_pte(u64 pte)
  144. {
  145. pte &= ~PT_SHADOW_IO_MARK;
  146. return pte != shadow_trap_nonpresent_pte
  147. && pte != shadow_notrap_nonpresent_pte;
  148. }
  149. static int is_writeble_pte(unsigned long pte)
  150. {
  151. return pte & PT_WRITABLE_MASK;
  152. }
  153. static int is_dirty_pte(unsigned long pte)
  154. {
  155. return pte & PT_DIRTY_MASK;
  156. }
  157. static int is_io_pte(unsigned long pte)
  158. {
  159. return pte & PT_SHADOW_IO_MARK;
  160. }
  161. static int is_rmap_pte(u64 pte)
  162. {
  163. return pte != shadow_trap_nonpresent_pte
  164. && pte != shadow_notrap_nonpresent_pte;
  165. }
  166. static void set_shadow_pte(u64 *sptep, u64 spte)
  167. {
  168. #ifdef CONFIG_X86_64
  169. set_64bit((unsigned long *)sptep, spte);
  170. #else
  171. set_64bit((unsigned long long *)sptep, spte);
  172. #endif
  173. }
  174. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  175. struct kmem_cache *base_cache, int min)
  176. {
  177. void *obj;
  178. if (cache->nobjs >= min)
  179. return 0;
  180. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  181. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  182. if (!obj)
  183. return -ENOMEM;
  184. cache->objects[cache->nobjs++] = obj;
  185. }
  186. return 0;
  187. }
  188. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  189. {
  190. while (mc->nobjs)
  191. kfree(mc->objects[--mc->nobjs]);
  192. }
  193. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  194. int min)
  195. {
  196. struct page *page;
  197. if (cache->nobjs >= min)
  198. return 0;
  199. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  200. page = alloc_page(GFP_KERNEL);
  201. if (!page)
  202. return -ENOMEM;
  203. set_page_private(page, 0);
  204. cache->objects[cache->nobjs++] = page_address(page);
  205. }
  206. return 0;
  207. }
  208. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  209. {
  210. while (mc->nobjs)
  211. free_page((unsigned long)mc->objects[--mc->nobjs]);
  212. }
  213. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  214. {
  215. int r;
  216. kvm_mmu_free_some_pages(vcpu);
  217. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  218. pte_chain_cache, 4);
  219. if (r)
  220. goto out;
  221. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  222. rmap_desc_cache, 1);
  223. if (r)
  224. goto out;
  225. r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
  226. if (r)
  227. goto out;
  228. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  229. mmu_page_header_cache, 4);
  230. out:
  231. return r;
  232. }
  233. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  234. {
  235. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  236. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  237. mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
  238. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  239. }
  240. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  241. size_t size)
  242. {
  243. void *p;
  244. BUG_ON(!mc->nobjs);
  245. p = mc->objects[--mc->nobjs];
  246. memset(p, 0, size);
  247. return p;
  248. }
  249. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  250. {
  251. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  252. sizeof(struct kvm_pte_chain));
  253. }
  254. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  255. {
  256. kfree(pc);
  257. }
  258. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  259. {
  260. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  261. sizeof(struct kvm_rmap_desc));
  262. }
  263. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  264. {
  265. kfree(rd);
  266. }
  267. /*
  268. * Take gfn and return the reverse mapping to it.
  269. * Note: gfn must be unaliased before this function get called
  270. */
  271. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
  272. {
  273. struct kvm_memory_slot *slot;
  274. slot = gfn_to_memslot(kvm, gfn);
  275. return &slot->rmap[gfn - slot->base_gfn];
  276. }
  277. /*
  278. * Reverse mapping data structures:
  279. *
  280. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  281. * that points to page_address(page).
  282. *
  283. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  284. * containing more mappings.
  285. */
  286. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  287. {
  288. struct kvm_mmu_page *page;
  289. struct kvm_rmap_desc *desc;
  290. unsigned long *rmapp;
  291. int i;
  292. if (!is_rmap_pte(*spte))
  293. return;
  294. gfn = unalias_gfn(vcpu->kvm, gfn);
  295. page = page_header(__pa(spte));
  296. page->gfns[spte - page->spt] = gfn;
  297. rmapp = gfn_to_rmap(vcpu->kvm, gfn);
  298. if (!*rmapp) {
  299. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  300. *rmapp = (unsigned long)spte;
  301. } else if (!(*rmapp & 1)) {
  302. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  303. desc = mmu_alloc_rmap_desc(vcpu);
  304. desc->shadow_ptes[0] = (u64 *)*rmapp;
  305. desc->shadow_ptes[1] = spte;
  306. *rmapp = (unsigned long)desc | 1;
  307. } else {
  308. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  309. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  310. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  311. desc = desc->more;
  312. if (desc->shadow_ptes[RMAP_EXT-1]) {
  313. desc->more = mmu_alloc_rmap_desc(vcpu);
  314. desc = desc->more;
  315. }
  316. for (i = 0; desc->shadow_ptes[i]; ++i)
  317. ;
  318. desc->shadow_ptes[i] = spte;
  319. }
  320. }
  321. static void rmap_desc_remove_entry(unsigned long *rmapp,
  322. struct kvm_rmap_desc *desc,
  323. int i,
  324. struct kvm_rmap_desc *prev_desc)
  325. {
  326. int j;
  327. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  328. ;
  329. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  330. desc->shadow_ptes[j] = NULL;
  331. if (j != 0)
  332. return;
  333. if (!prev_desc && !desc->more)
  334. *rmapp = (unsigned long)desc->shadow_ptes[0];
  335. else
  336. if (prev_desc)
  337. prev_desc->more = desc->more;
  338. else
  339. *rmapp = (unsigned long)desc->more | 1;
  340. mmu_free_rmap_desc(desc);
  341. }
  342. static void rmap_remove(struct kvm *kvm, u64 *spte)
  343. {
  344. struct kvm_rmap_desc *desc;
  345. struct kvm_rmap_desc *prev_desc;
  346. struct kvm_mmu_page *page;
  347. unsigned long *rmapp;
  348. int i;
  349. if (!is_rmap_pte(*spte))
  350. return;
  351. page = page_header(__pa(spte));
  352. kvm_release_page(pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >>
  353. PAGE_SHIFT));
  354. rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
  355. if (!*rmapp) {
  356. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  357. BUG();
  358. } else if (!(*rmapp & 1)) {
  359. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  360. if ((u64 *)*rmapp != spte) {
  361. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  362. spte, *spte);
  363. BUG();
  364. }
  365. *rmapp = 0;
  366. } else {
  367. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  368. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  369. prev_desc = NULL;
  370. while (desc) {
  371. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  372. if (desc->shadow_ptes[i] == spte) {
  373. rmap_desc_remove_entry(rmapp,
  374. desc, i,
  375. prev_desc);
  376. return;
  377. }
  378. prev_desc = desc;
  379. desc = desc->more;
  380. }
  381. BUG();
  382. }
  383. }
  384. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  385. {
  386. struct kvm_rmap_desc *desc;
  387. struct kvm_rmap_desc *prev_desc;
  388. u64 *prev_spte;
  389. int i;
  390. if (!*rmapp)
  391. return NULL;
  392. else if (!(*rmapp & 1)) {
  393. if (!spte)
  394. return (u64 *)*rmapp;
  395. return NULL;
  396. }
  397. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  398. prev_desc = NULL;
  399. prev_spte = NULL;
  400. while (desc) {
  401. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  402. if (prev_spte == spte)
  403. return desc->shadow_ptes[i];
  404. prev_spte = desc->shadow_ptes[i];
  405. }
  406. desc = desc->more;
  407. }
  408. return NULL;
  409. }
  410. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  411. {
  412. unsigned long *rmapp;
  413. u64 *spte;
  414. gfn = unalias_gfn(kvm, gfn);
  415. rmapp = gfn_to_rmap(kvm, gfn);
  416. spte = rmap_next(kvm, rmapp, NULL);
  417. while (spte) {
  418. BUG_ON(!spte);
  419. BUG_ON(!(*spte & PT_PRESENT_MASK));
  420. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  421. if (is_writeble_pte(*spte))
  422. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  423. kvm_flush_remote_tlbs(kvm);
  424. spte = rmap_next(kvm, rmapp, spte);
  425. }
  426. }
  427. #ifdef MMU_DEBUG
  428. static int is_empty_shadow_page(u64 *spt)
  429. {
  430. u64 *pos;
  431. u64 *end;
  432. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  433. if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
  434. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  435. pos, *pos);
  436. return 0;
  437. }
  438. return 1;
  439. }
  440. #endif
  441. static void kvm_mmu_free_page(struct kvm *kvm,
  442. struct kvm_mmu_page *page_head)
  443. {
  444. ASSERT(is_empty_shadow_page(page_head->spt));
  445. list_del(&page_head->link);
  446. __free_page(virt_to_page(page_head->spt));
  447. __free_page(virt_to_page(page_head->gfns));
  448. kfree(page_head);
  449. ++kvm->n_free_mmu_pages;
  450. }
  451. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  452. {
  453. return gfn;
  454. }
  455. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  456. u64 *parent_pte)
  457. {
  458. struct kvm_mmu_page *page;
  459. if (!vcpu->kvm->n_free_mmu_pages)
  460. return NULL;
  461. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  462. sizeof *page);
  463. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  464. page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  465. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  466. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  467. ASSERT(is_empty_shadow_page(page->spt));
  468. page->slot_bitmap = 0;
  469. page->multimapped = 0;
  470. page->parent_pte = parent_pte;
  471. --vcpu->kvm->n_free_mmu_pages;
  472. return page;
  473. }
  474. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  475. struct kvm_mmu_page *page, u64 *parent_pte)
  476. {
  477. struct kvm_pte_chain *pte_chain;
  478. struct hlist_node *node;
  479. int i;
  480. if (!parent_pte)
  481. return;
  482. if (!page->multimapped) {
  483. u64 *old = page->parent_pte;
  484. if (!old) {
  485. page->parent_pte = parent_pte;
  486. return;
  487. }
  488. page->multimapped = 1;
  489. pte_chain = mmu_alloc_pte_chain(vcpu);
  490. INIT_HLIST_HEAD(&page->parent_ptes);
  491. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  492. pte_chain->parent_ptes[0] = old;
  493. }
  494. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  495. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  496. continue;
  497. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  498. if (!pte_chain->parent_ptes[i]) {
  499. pte_chain->parent_ptes[i] = parent_pte;
  500. return;
  501. }
  502. }
  503. pte_chain = mmu_alloc_pte_chain(vcpu);
  504. BUG_ON(!pte_chain);
  505. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  506. pte_chain->parent_ptes[0] = parent_pte;
  507. }
  508. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  509. u64 *parent_pte)
  510. {
  511. struct kvm_pte_chain *pte_chain;
  512. struct hlist_node *node;
  513. int i;
  514. if (!page->multimapped) {
  515. BUG_ON(page->parent_pte != parent_pte);
  516. page->parent_pte = NULL;
  517. return;
  518. }
  519. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  520. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  521. if (!pte_chain->parent_ptes[i])
  522. break;
  523. if (pte_chain->parent_ptes[i] != parent_pte)
  524. continue;
  525. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  526. && pte_chain->parent_ptes[i + 1]) {
  527. pte_chain->parent_ptes[i]
  528. = pte_chain->parent_ptes[i + 1];
  529. ++i;
  530. }
  531. pte_chain->parent_ptes[i] = NULL;
  532. if (i == 0) {
  533. hlist_del(&pte_chain->link);
  534. mmu_free_pte_chain(pte_chain);
  535. if (hlist_empty(&page->parent_ptes)) {
  536. page->multimapped = 0;
  537. page->parent_pte = NULL;
  538. }
  539. }
  540. return;
  541. }
  542. BUG();
  543. }
  544. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm,
  545. gfn_t gfn)
  546. {
  547. unsigned index;
  548. struct hlist_head *bucket;
  549. struct kvm_mmu_page *page;
  550. struct hlist_node *node;
  551. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  552. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  553. bucket = &kvm->mmu_page_hash[index];
  554. hlist_for_each_entry(page, node, bucket, hash_link)
  555. if (page->gfn == gfn && !page->role.metaphysical) {
  556. pgprintk("%s: found role %x\n",
  557. __FUNCTION__, page->role.word);
  558. return page;
  559. }
  560. return NULL;
  561. }
  562. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  563. gfn_t gfn,
  564. gva_t gaddr,
  565. unsigned level,
  566. int metaphysical,
  567. unsigned hugepage_access,
  568. u64 *parent_pte)
  569. {
  570. union kvm_mmu_page_role role;
  571. unsigned index;
  572. unsigned quadrant;
  573. struct hlist_head *bucket;
  574. struct kvm_mmu_page *page;
  575. struct hlist_node *node;
  576. role.word = 0;
  577. role.glevels = vcpu->mmu.root_level;
  578. role.level = level;
  579. role.metaphysical = metaphysical;
  580. role.hugepage_access = hugepage_access;
  581. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  582. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  583. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  584. role.quadrant = quadrant;
  585. }
  586. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  587. gfn, role.word);
  588. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  589. bucket = &vcpu->kvm->mmu_page_hash[index];
  590. hlist_for_each_entry(page, node, bucket, hash_link)
  591. if (page->gfn == gfn && page->role.word == role.word) {
  592. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  593. pgprintk("%s: found\n", __FUNCTION__);
  594. return page;
  595. }
  596. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  597. if (!page)
  598. return page;
  599. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  600. page->gfn = gfn;
  601. page->role = role;
  602. hlist_add_head(&page->hash_link, bucket);
  603. vcpu->mmu.prefetch_page(vcpu, page);
  604. if (!metaphysical)
  605. rmap_write_protect(vcpu->kvm, gfn);
  606. return page;
  607. }
  608. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  609. struct kvm_mmu_page *page)
  610. {
  611. unsigned i;
  612. u64 *pt;
  613. u64 ent;
  614. pt = page->spt;
  615. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  616. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  617. if (is_shadow_present_pte(pt[i]))
  618. rmap_remove(kvm, &pt[i]);
  619. pt[i] = shadow_trap_nonpresent_pte;
  620. }
  621. kvm_flush_remote_tlbs(kvm);
  622. return;
  623. }
  624. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  625. ent = pt[i];
  626. pt[i] = shadow_trap_nonpresent_pte;
  627. if (!is_shadow_present_pte(ent))
  628. continue;
  629. ent &= PT64_BASE_ADDR_MASK;
  630. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  631. }
  632. kvm_flush_remote_tlbs(kvm);
  633. }
  634. static void kvm_mmu_put_page(struct kvm_mmu_page *page,
  635. u64 *parent_pte)
  636. {
  637. mmu_page_remove_parent_pte(page, parent_pte);
  638. }
  639. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  640. {
  641. int i;
  642. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  643. if (kvm->vcpus[i])
  644. kvm->vcpus[i]->last_pte_updated = NULL;
  645. }
  646. static void kvm_mmu_zap_page(struct kvm *kvm,
  647. struct kvm_mmu_page *page)
  648. {
  649. u64 *parent_pte;
  650. while (page->multimapped || page->parent_pte) {
  651. if (!page->multimapped)
  652. parent_pte = page->parent_pte;
  653. else {
  654. struct kvm_pte_chain *chain;
  655. chain = container_of(page->parent_ptes.first,
  656. struct kvm_pte_chain, link);
  657. parent_pte = chain->parent_ptes[0];
  658. }
  659. BUG_ON(!parent_pte);
  660. kvm_mmu_put_page(page, parent_pte);
  661. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  662. }
  663. kvm_mmu_page_unlink_children(kvm, page);
  664. if (!page->root_count) {
  665. hlist_del(&page->hash_link);
  666. kvm_mmu_free_page(kvm, page);
  667. } else
  668. list_move(&page->link, &kvm->active_mmu_pages);
  669. kvm_mmu_reset_last_pte_updated(kvm);
  670. }
  671. /*
  672. * Changing the number of mmu pages allocated to the vm
  673. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  674. */
  675. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  676. {
  677. /*
  678. * If we set the number of mmu pages to be smaller be than the
  679. * number of actived pages , we must to free some mmu pages before we
  680. * change the value
  681. */
  682. if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
  683. kvm_nr_mmu_pages) {
  684. int n_used_mmu_pages = kvm->n_alloc_mmu_pages
  685. - kvm->n_free_mmu_pages;
  686. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  687. struct kvm_mmu_page *page;
  688. page = container_of(kvm->active_mmu_pages.prev,
  689. struct kvm_mmu_page, link);
  690. kvm_mmu_zap_page(kvm, page);
  691. n_used_mmu_pages--;
  692. }
  693. kvm->n_free_mmu_pages = 0;
  694. }
  695. else
  696. kvm->n_free_mmu_pages += kvm_nr_mmu_pages
  697. - kvm->n_alloc_mmu_pages;
  698. kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
  699. }
  700. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  701. {
  702. unsigned index;
  703. struct hlist_head *bucket;
  704. struct kvm_mmu_page *page;
  705. struct hlist_node *node, *n;
  706. int r;
  707. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  708. r = 0;
  709. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  710. bucket = &kvm->mmu_page_hash[index];
  711. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  712. if (page->gfn == gfn && !page->role.metaphysical) {
  713. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  714. page->role.word);
  715. kvm_mmu_zap_page(kvm, page);
  716. r = 1;
  717. }
  718. return r;
  719. }
  720. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  721. {
  722. struct kvm_mmu_page *page;
  723. while ((page = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  724. pgprintk("%s: zap %lx %x\n",
  725. __FUNCTION__, gfn, page->role.word);
  726. kvm_mmu_zap_page(kvm, page);
  727. }
  728. }
  729. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  730. {
  731. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  732. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  733. __set_bit(slot, &page_head->slot_bitmap);
  734. }
  735. hpa_t gpa_to_hpa(struct kvm *kvm, gpa_t gpa)
  736. {
  737. struct page *page;
  738. hpa_t hpa;
  739. ASSERT((gpa & HPA_ERR_MASK) == 0);
  740. page = gfn_to_page(kvm, gpa >> PAGE_SHIFT);
  741. hpa = ((hpa_t)page_to_pfn(page) << PAGE_SHIFT) | (gpa & (PAGE_SIZE-1));
  742. if (is_error_page(page))
  743. return hpa | HPA_ERR_MASK;
  744. return hpa;
  745. }
  746. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  747. {
  748. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  749. if (gpa == UNMAPPED_GVA)
  750. return UNMAPPED_GVA;
  751. return gpa_to_hpa(vcpu->kvm, gpa);
  752. }
  753. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  754. {
  755. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  756. if (gpa == UNMAPPED_GVA)
  757. return NULL;
  758. return pfn_to_page(gpa_to_hpa(vcpu->kvm, gpa) >> PAGE_SHIFT);
  759. }
  760. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  761. {
  762. }
  763. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  764. {
  765. int level = PT32E_ROOT_LEVEL;
  766. hpa_t table_addr = vcpu->mmu.root_hpa;
  767. for (; ; level--) {
  768. u32 index = PT64_INDEX(v, level);
  769. u64 *table;
  770. u64 pte;
  771. ASSERT(VALID_PAGE(table_addr));
  772. table = __va(table_addr);
  773. if (level == 1) {
  774. int was_rmapped;
  775. pte = table[index];
  776. was_rmapped = is_rmap_pte(pte);
  777. if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
  778. return 0;
  779. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  780. page_header_update_slot(vcpu->kvm, table, v);
  781. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  782. PT_USER_MASK;
  783. if (!was_rmapped)
  784. rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
  785. else
  786. kvm_release_page(pfn_to_page(p >> PAGE_SHIFT));
  787. return 0;
  788. }
  789. if (table[index] == shadow_trap_nonpresent_pte) {
  790. struct kvm_mmu_page *new_table;
  791. gfn_t pseudo_gfn;
  792. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  793. >> PAGE_SHIFT;
  794. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  795. v, level - 1,
  796. 1, 3, &table[index]);
  797. if (!new_table) {
  798. pgprintk("nonpaging_map: ENOMEM\n");
  799. kvm_release_page(pfn_to_page(p >> PAGE_SHIFT));
  800. return -ENOMEM;
  801. }
  802. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  803. | PT_WRITABLE_MASK | PT_USER_MASK;
  804. }
  805. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  806. }
  807. }
  808. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  809. struct kvm_mmu_page *sp)
  810. {
  811. int i;
  812. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  813. sp->spt[i] = shadow_trap_nonpresent_pte;
  814. }
  815. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  816. {
  817. int i;
  818. struct kvm_mmu_page *page;
  819. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  820. return;
  821. #ifdef CONFIG_X86_64
  822. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  823. hpa_t root = vcpu->mmu.root_hpa;
  824. page = page_header(root);
  825. --page->root_count;
  826. vcpu->mmu.root_hpa = INVALID_PAGE;
  827. return;
  828. }
  829. #endif
  830. for (i = 0; i < 4; ++i) {
  831. hpa_t root = vcpu->mmu.pae_root[i];
  832. if (root) {
  833. root &= PT64_BASE_ADDR_MASK;
  834. page = page_header(root);
  835. --page->root_count;
  836. }
  837. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  838. }
  839. vcpu->mmu.root_hpa = INVALID_PAGE;
  840. }
  841. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  842. {
  843. int i;
  844. gfn_t root_gfn;
  845. struct kvm_mmu_page *page;
  846. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  847. #ifdef CONFIG_X86_64
  848. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  849. hpa_t root = vcpu->mmu.root_hpa;
  850. ASSERT(!VALID_PAGE(root));
  851. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  852. PT64_ROOT_LEVEL, 0, 0, NULL);
  853. root = __pa(page->spt);
  854. ++page->root_count;
  855. vcpu->mmu.root_hpa = root;
  856. return;
  857. }
  858. #endif
  859. for (i = 0; i < 4; ++i) {
  860. hpa_t root = vcpu->mmu.pae_root[i];
  861. ASSERT(!VALID_PAGE(root));
  862. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  863. if (!is_present_pte(vcpu->pdptrs[i])) {
  864. vcpu->mmu.pae_root[i] = 0;
  865. continue;
  866. }
  867. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  868. } else if (vcpu->mmu.root_level == 0)
  869. root_gfn = 0;
  870. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  871. PT32_ROOT_LEVEL, !is_paging(vcpu),
  872. 0, NULL);
  873. root = __pa(page->spt);
  874. ++page->root_count;
  875. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  876. }
  877. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  878. }
  879. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  880. {
  881. return vaddr;
  882. }
  883. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  884. u32 error_code)
  885. {
  886. gpa_t addr = gva;
  887. hpa_t paddr;
  888. int r;
  889. r = mmu_topup_memory_caches(vcpu);
  890. if (r)
  891. return r;
  892. ASSERT(vcpu);
  893. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  894. paddr = gpa_to_hpa(vcpu->kvm, addr & PT64_BASE_ADDR_MASK);
  895. if (is_error_hpa(paddr)) {
  896. kvm_release_page(pfn_to_page((paddr & PT64_BASE_ADDR_MASK)
  897. >> PAGE_SHIFT));
  898. return 1;
  899. }
  900. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  901. }
  902. static void nonpaging_free(struct kvm_vcpu *vcpu)
  903. {
  904. mmu_free_roots(vcpu);
  905. }
  906. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  907. {
  908. struct kvm_mmu *context = &vcpu->mmu;
  909. context->new_cr3 = nonpaging_new_cr3;
  910. context->page_fault = nonpaging_page_fault;
  911. context->gva_to_gpa = nonpaging_gva_to_gpa;
  912. context->free = nonpaging_free;
  913. context->prefetch_page = nonpaging_prefetch_page;
  914. context->root_level = 0;
  915. context->shadow_root_level = PT32E_ROOT_LEVEL;
  916. context->root_hpa = INVALID_PAGE;
  917. return 0;
  918. }
  919. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  920. {
  921. ++vcpu->stat.tlb_flush;
  922. kvm_x86_ops->tlb_flush(vcpu);
  923. }
  924. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  925. {
  926. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  927. mmu_free_roots(vcpu);
  928. }
  929. static void inject_page_fault(struct kvm_vcpu *vcpu,
  930. u64 addr,
  931. u32 err_code)
  932. {
  933. kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
  934. }
  935. static void paging_free(struct kvm_vcpu *vcpu)
  936. {
  937. nonpaging_free(vcpu);
  938. }
  939. #define PTTYPE 64
  940. #include "paging_tmpl.h"
  941. #undef PTTYPE
  942. #define PTTYPE 32
  943. #include "paging_tmpl.h"
  944. #undef PTTYPE
  945. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  946. {
  947. struct kvm_mmu *context = &vcpu->mmu;
  948. ASSERT(is_pae(vcpu));
  949. context->new_cr3 = paging_new_cr3;
  950. context->page_fault = paging64_page_fault;
  951. context->gva_to_gpa = paging64_gva_to_gpa;
  952. context->prefetch_page = paging64_prefetch_page;
  953. context->free = paging_free;
  954. context->root_level = level;
  955. context->shadow_root_level = level;
  956. context->root_hpa = INVALID_PAGE;
  957. return 0;
  958. }
  959. static int paging64_init_context(struct kvm_vcpu *vcpu)
  960. {
  961. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  962. }
  963. static int paging32_init_context(struct kvm_vcpu *vcpu)
  964. {
  965. struct kvm_mmu *context = &vcpu->mmu;
  966. context->new_cr3 = paging_new_cr3;
  967. context->page_fault = paging32_page_fault;
  968. context->gva_to_gpa = paging32_gva_to_gpa;
  969. context->free = paging_free;
  970. context->prefetch_page = paging32_prefetch_page;
  971. context->root_level = PT32_ROOT_LEVEL;
  972. context->shadow_root_level = PT32E_ROOT_LEVEL;
  973. context->root_hpa = INVALID_PAGE;
  974. return 0;
  975. }
  976. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  977. {
  978. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  979. }
  980. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  981. {
  982. ASSERT(vcpu);
  983. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  984. if (!is_paging(vcpu))
  985. return nonpaging_init_context(vcpu);
  986. else if (is_long_mode(vcpu))
  987. return paging64_init_context(vcpu);
  988. else if (is_pae(vcpu))
  989. return paging32E_init_context(vcpu);
  990. else
  991. return paging32_init_context(vcpu);
  992. }
  993. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  994. {
  995. ASSERT(vcpu);
  996. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  997. vcpu->mmu.free(vcpu);
  998. vcpu->mmu.root_hpa = INVALID_PAGE;
  999. }
  1000. }
  1001. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1002. {
  1003. destroy_kvm_mmu(vcpu);
  1004. return init_kvm_mmu(vcpu);
  1005. }
  1006. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1007. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1008. {
  1009. int r;
  1010. mutex_lock(&vcpu->kvm->lock);
  1011. r = mmu_topup_memory_caches(vcpu);
  1012. if (r)
  1013. goto out;
  1014. mmu_alloc_roots(vcpu);
  1015. kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  1016. kvm_mmu_flush_tlb(vcpu);
  1017. out:
  1018. mutex_unlock(&vcpu->kvm->lock);
  1019. return r;
  1020. }
  1021. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1022. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1023. {
  1024. mmu_free_roots(vcpu);
  1025. }
  1026. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1027. struct kvm_mmu_page *page,
  1028. u64 *spte)
  1029. {
  1030. u64 pte;
  1031. struct kvm_mmu_page *child;
  1032. pte = *spte;
  1033. if (is_shadow_present_pte(pte)) {
  1034. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  1035. rmap_remove(vcpu->kvm, spte);
  1036. else {
  1037. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1038. mmu_page_remove_parent_pte(child, spte);
  1039. }
  1040. }
  1041. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1042. kvm_flush_remote_tlbs(vcpu->kvm);
  1043. }
  1044. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1045. struct kvm_mmu_page *page,
  1046. u64 *spte,
  1047. const void *new, int bytes,
  1048. int offset_in_pte)
  1049. {
  1050. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1051. return;
  1052. if (page->role.glevels == PT32_ROOT_LEVEL)
  1053. paging32_update_pte(vcpu, page, spte, new, bytes,
  1054. offset_in_pte);
  1055. else
  1056. paging64_update_pte(vcpu, page, spte, new, bytes,
  1057. offset_in_pte);
  1058. }
  1059. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1060. {
  1061. u64 *spte = vcpu->last_pte_updated;
  1062. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1063. }
  1064. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1065. const u8 *new, int bytes)
  1066. {
  1067. gfn_t gfn = gpa >> PAGE_SHIFT;
  1068. struct kvm_mmu_page *page;
  1069. struct hlist_node *node, *n;
  1070. struct hlist_head *bucket;
  1071. unsigned index;
  1072. u64 *spte;
  1073. unsigned offset = offset_in_page(gpa);
  1074. unsigned pte_size;
  1075. unsigned page_offset;
  1076. unsigned misaligned;
  1077. unsigned quadrant;
  1078. int level;
  1079. int flooded = 0;
  1080. int npte;
  1081. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  1082. kvm_mmu_audit(vcpu, "pre pte write");
  1083. if (gfn == vcpu->last_pt_write_gfn
  1084. && !last_updated_pte_accessed(vcpu)) {
  1085. ++vcpu->last_pt_write_count;
  1086. if (vcpu->last_pt_write_count >= 3)
  1087. flooded = 1;
  1088. } else {
  1089. vcpu->last_pt_write_gfn = gfn;
  1090. vcpu->last_pt_write_count = 1;
  1091. vcpu->last_pte_updated = NULL;
  1092. }
  1093. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  1094. bucket = &vcpu->kvm->mmu_page_hash[index];
  1095. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  1096. if (page->gfn != gfn || page->role.metaphysical)
  1097. continue;
  1098. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1099. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1100. misaligned |= bytes < 4;
  1101. if (misaligned || flooded) {
  1102. /*
  1103. * Misaligned accesses are too much trouble to fix
  1104. * up; also, they usually indicate a page is not used
  1105. * as a page table.
  1106. *
  1107. * If we're seeing too many writes to a page,
  1108. * it may no longer be a page table, or we may be
  1109. * forking, in which case it is better to unmap the
  1110. * page.
  1111. */
  1112. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1113. gpa, bytes, page->role.word);
  1114. kvm_mmu_zap_page(vcpu->kvm, page);
  1115. continue;
  1116. }
  1117. page_offset = offset;
  1118. level = page->role.level;
  1119. npte = 1;
  1120. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1121. page_offset <<= 1; /* 32->64 */
  1122. /*
  1123. * A 32-bit pde maps 4MB while the shadow pdes map
  1124. * only 2MB. So we need to double the offset again
  1125. * and zap two pdes instead of one.
  1126. */
  1127. if (level == PT32_ROOT_LEVEL) {
  1128. page_offset &= ~7; /* kill rounding error */
  1129. page_offset <<= 1;
  1130. npte = 2;
  1131. }
  1132. quadrant = page_offset >> PAGE_SHIFT;
  1133. page_offset &= ~PAGE_MASK;
  1134. if (quadrant != page->role.quadrant)
  1135. continue;
  1136. }
  1137. spte = &page->spt[page_offset / sizeof(*spte)];
  1138. while (npte--) {
  1139. mmu_pte_write_zap_pte(vcpu, page, spte);
  1140. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
  1141. page_offset & (pte_size - 1));
  1142. ++spte;
  1143. }
  1144. }
  1145. kvm_mmu_audit(vcpu, "post pte write");
  1146. }
  1147. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1148. {
  1149. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1150. return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1151. }
  1152. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1153. {
  1154. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1155. struct kvm_mmu_page *page;
  1156. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1157. struct kvm_mmu_page, link);
  1158. kvm_mmu_zap_page(vcpu->kvm, page);
  1159. }
  1160. }
  1161. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1162. {
  1163. int r;
  1164. enum emulation_result er;
  1165. mutex_lock(&vcpu->kvm->lock);
  1166. r = vcpu->mmu.page_fault(vcpu, cr2, error_code);
  1167. if (r < 0)
  1168. goto out;
  1169. if (!r) {
  1170. r = 1;
  1171. goto out;
  1172. }
  1173. r = mmu_topup_memory_caches(vcpu);
  1174. if (r)
  1175. goto out;
  1176. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1177. mutex_unlock(&vcpu->kvm->lock);
  1178. switch (er) {
  1179. case EMULATE_DONE:
  1180. return 1;
  1181. case EMULATE_DO_MMIO:
  1182. ++vcpu->stat.mmio_exits;
  1183. return 0;
  1184. case EMULATE_FAIL:
  1185. kvm_report_emulation_failure(vcpu, "pagetable");
  1186. return 1;
  1187. default:
  1188. BUG();
  1189. }
  1190. out:
  1191. mutex_unlock(&vcpu->kvm->lock);
  1192. return r;
  1193. }
  1194. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1195. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1196. {
  1197. struct kvm_mmu_page *page;
  1198. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1199. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1200. struct kvm_mmu_page, link);
  1201. kvm_mmu_zap_page(vcpu->kvm, page);
  1202. }
  1203. free_page((unsigned long)vcpu->mmu.pae_root);
  1204. }
  1205. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1206. {
  1207. struct page *page;
  1208. int i;
  1209. ASSERT(vcpu);
  1210. if (vcpu->kvm->n_requested_mmu_pages)
  1211. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
  1212. else
  1213. vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
  1214. /*
  1215. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1216. * Therefore we need to allocate shadow page tables in the first
  1217. * 4GB of memory, which happens to fit the DMA32 zone.
  1218. */
  1219. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1220. if (!page)
  1221. goto error_1;
  1222. vcpu->mmu.pae_root = page_address(page);
  1223. for (i = 0; i < 4; ++i)
  1224. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1225. return 0;
  1226. error_1:
  1227. free_mmu_pages(vcpu);
  1228. return -ENOMEM;
  1229. }
  1230. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1231. {
  1232. ASSERT(vcpu);
  1233. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1234. return alloc_mmu_pages(vcpu);
  1235. }
  1236. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1237. {
  1238. ASSERT(vcpu);
  1239. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1240. return init_kvm_mmu(vcpu);
  1241. }
  1242. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1243. {
  1244. ASSERT(vcpu);
  1245. destroy_kvm_mmu(vcpu);
  1246. free_mmu_pages(vcpu);
  1247. mmu_free_memory_caches(vcpu);
  1248. }
  1249. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1250. {
  1251. struct kvm_mmu_page *page;
  1252. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1253. int i;
  1254. u64 *pt;
  1255. if (!test_bit(slot, &page->slot_bitmap))
  1256. continue;
  1257. pt = page->spt;
  1258. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1259. /* avoid RMW */
  1260. if (pt[i] & PT_WRITABLE_MASK)
  1261. pt[i] &= ~PT_WRITABLE_MASK;
  1262. }
  1263. }
  1264. void kvm_mmu_zap_all(struct kvm *kvm)
  1265. {
  1266. struct kvm_mmu_page *page, *node;
  1267. list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
  1268. kvm_mmu_zap_page(kvm, page);
  1269. kvm_flush_remote_tlbs(kvm);
  1270. }
  1271. void kvm_mmu_module_exit(void)
  1272. {
  1273. if (pte_chain_cache)
  1274. kmem_cache_destroy(pte_chain_cache);
  1275. if (rmap_desc_cache)
  1276. kmem_cache_destroy(rmap_desc_cache);
  1277. if (mmu_page_header_cache)
  1278. kmem_cache_destroy(mmu_page_header_cache);
  1279. }
  1280. int kvm_mmu_module_init(void)
  1281. {
  1282. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1283. sizeof(struct kvm_pte_chain),
  1284. 0, 0, NULL);
  1285. if (!pte_chain_cache)
  1286. goto nomem;
  1287. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1288. sizeof(struct kvm_rmap_desc),
  1289. 0, 0, NULL);
  1290. if (!rmap_desc_cache)
  1291. goto nomem;
  1292. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1293. sizeof(struct kvm_mmu_page),
  1294. 0, 0, NULL);
  1295. if (!mmu_page_header_cache)
  1296. goto nomem;
  1297. return 0;
  1298. nomem:
  1299. kvm_mmu_module_exit();
  1300. return -ENOMEM;
  1301. }
  1302. #ifdef AUDIT
  1303. static const char *audit_msg;
  1304. static gva_t canonicalize(gva_t gva)
  1305. {
  1306. #ifdef CONFIG_X86_64
  1307. gva = (long long)(gva << 16) >> 16;
  1308. #endif
  1309. return gva;
  1310. }
  1311. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1312. gva_t va, int level)
  1313. {
  1314. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1315. int i;
  1316. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1317. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1318. u64 ent = pt[i];
  1319. if (ent == shadow_trap_nonpresent_pte)
  1320. continue;
  1321. va = canonicalize(va);
  1322. if (level > 1) {
  1323. if (ent == shadow_notrap_nonpresent_pte)
  1324. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1325. " in nonleaf level: levels %d gva %lx"
  1326. " level %d pte %llx\n", audit_msg,
  1327. vcpu->mmu.root_level, va, level, ent);
  1328. audit_mappings_page(vcpu, ent, va, level - 1);
  1329. } else {
  1330. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1331. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1332. struct page *page;
  1333. if (is_shadow_present_pte(ent)
  1334. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1335. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1336. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1337. audit_msg, vcpu->mmu.root_level,
  1338. va, gpa, hpa, ent,
  1339. is_shadow_present_pte(ent));
  1340. else if (ent == shadow_notrap_nonpresent_pte
  1341. && !is_error_hpa(hpa))
  1342. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1343. " valid guest gva %lx\n", audit_msg, va);
  1344. page = pfn_to_page((gpa & PT64_BASE_ADDR_MASK)
  1345. >> PAGE_SHIFT);
  1346. kvm_release_page(page);
  1347. }
  1348. }
  1349. }
  1350. static void audit_mappings(struct kvm_vcpu *vcpu)
  1351. {
  1352. unsigned i;
  1353. if (vcpu->mmu.root_level == 4)
  1354. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1355. else
  1356. for (i = 0; i < 4; ++i)
  1357. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1358. audit_mappings_page(vcpu,
  1359. vcpu->mmu.pae_root[i],
  1360. i << 30,
  1361. 2);
  1362. }
  1363. static int count_rmaps(struct kvm_vcpu *vcpu)
  1364. {
  1365. int nmaps = 0;
  1366. int i, j, k;
  1367. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1368. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1369. struct kvm_rmap_desc *d;
  1370. for (j = 0; j < m->npages; ++j) {
  1371. unsigned long *rmapp = &m->rmap[j];
  1372. if (!*rmapp)
  1373. continue;
  1374. if (!(*rmapp & 1)) {
  1375. ++nmaps;
  1376. continue;
  1377. }
  1378. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1379. while (d) {
  1380. for (k = 0; k < RMAP_EXT; ++k)
  1381. if (d->shadow_ptes[k])
  1382. ++nmaps;
  1383. else
  1384. break;
  1385. d = d->more;
  1386. }
  1387. }
  1388. }
  1389. return nmaps;
  1390. }
  1391. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1392. {
  1393. int nmaps = 0;
  1394. struct kvm_mmu_page *page;
  1395. int i;
  1396. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1397. u64 *pt = page->spt;
  1398. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1399. continue;
  1400. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1401. u64 ent = pt[i];
  1402. if (!(ent & PT_PRESENT_MASK))
  1403. continue;
  1404. if (!(ent & PT_WRITABLE_MASK))
  1405. continue;
  1406. ++nmaps;
  1407. }
  1408. }
  1409. return nmaps;
  1410. }
  1411. static void audit_rmap(struct kvm_vcpu *vcpu)
  1412. {
  1413. int n_rmap = count_rmaps(vcpu);
  1414. int n_actual = count_writable_mappings(vcpu);
  1415. if (n_rmap != n_actual)
  1416. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1417. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1418. }
  1419. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1420. {
  1421. struct kvm_mmu_page *page;
  1422. struct kvm_memory_slot *slot;
  1423. unsigned long *rmapp;
  1424. gfn_t gfn;
  1425. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1426. if (page->role.metaphysical)
  1427. continue;
  1428. slot = gfn_to_memslot(vcpu->kvm, page->gfn);
  1429. gfn = unalias_gfn(vcpu->kvm, page->gfn);
  1430. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1431. if (*rmapp)
  1432. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1433. " mappings: gfn %lx role %x\n",
  1434. __FUNCTION__, audit_msg, page->gfn,
  1435. page->role.word);
  1436. }
  1437. }
  1438. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1439. {
  1440. int olddbg = dbg;
  1441. dbg = 0;
  1442. audit_msg = msg;
  1443. audit_rmap(vcpu);
  1444. audit_write_protection(vcpu);
  1445. audit_mappings(vcpu);
  1446. dbg = olddbg;
  1447. }
  1448. #endif