kvm_main.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <linux/profile.h>
  40. #include <linux/kvm_para.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/mman.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. #define CR0_RESERVED_BITS \
  82. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  83. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  84. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  85. #define CR4_RESERVED_BITS \
  86. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  87. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  88. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  89. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  90. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  91. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  92. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  93. unsigned long arg);
  94. static inline int valid_vcpu(int n)
  95. {
  96. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  97. }
  98. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  99. {
  100. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  101. return;
  102. vcpu->guest_fpu_loaded = 1;
  103. fx_save(&vcpu->host_fx_image);
  104. fx_restore(&vcpu->guest_fx_image);
  105. }
  106. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  107. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  108. {
  109. if (!vcpu->guest_fpu_loaded)
  110. return;
  111. vcpu->guest_fpu_loaded = 0;
  112. fx_save(&vcpu->guest_fx_image);
  113. fx_restore(&vcpu->host_fx_image);
  114. }
  115. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  116. /*
  117. * Switches to specified vcpu, until a matching vcpu_put()
  118. */
  119. void vcpu_load(struct kvm_vcpu *vcpu)
  120. {
  121. int cpu;
  122. mutex_lock(&vcpu->mutex);
  123. cpu = get_cpu();
  124. preempt_notifier_register(&vcpu->preempt_notifier);
  125. kvm_arch_vcpu_load(vcpu, cpu);
  126. put_cpu();
  127. }
  128. void vcpu_put(struct kvm_vcpu *vcpu)
  129. {
  130. preempt_disable();
  131. kvm_arch_vcpu_put(vcpu);
  132. preempt_notifier_unregister(&vcpu->preempt_notifier);
  133. preempt_enable();
  134. mutex_unlock(&vcpu->mutex);
  135. }
  136. static void ack_flush(void *_completed)
  137. {
  138. }
  139. void kvm_flush_remote_tlbs(struct kvm *kvm)
  140. {
  141. int i, cpu;
  142. cpumask_t cpus;
  143. struct kvm_vcpu *vcpu;
  144. cpus_clear(cpus);
  145. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  146. vcpu = kvm->vcpus[i];
  147. if (!vcpu)
  148. continue;
  149. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  150. continue;
  151. cpu = vcpu->cpu;
  152. if (cpu != -1 && cpu != raw_smp_processor_id())
  153. cpu_set(cpu, cpus);
  154. }
  155. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  156. }
  157. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  158. {
  159. struct page *page;
  160. int r;
  161. mutex_init(&vcpu->mutex);
  162. vcpu->cpu = -1;
  163. vcpu->mmu.root_hpa = INVALID_PAGE;
  164. vcpu->kvm = kvm;
  165. vcpu->vcpu_id = id;
  166. if (!irqchip_in_kernel(kvm) || id == 0)
  167. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  168. else
  169. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  170. init_waitqueue_head(&vcpu->wq);
  171. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  172. if (!page) {
  173. r = -ENOMEM;
  174. goto fail;
  175. }
  176. vcpu->run = page_address(page);
  177. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  178. if (!page) {
  179. r = -ENOMEM;
  180. goto fail_free_run;
  181. }
  182. vcpu->pio_data = page_address(page);
  183. r = kvm_mmu_create(vcpu);
  184. if (r < 0)
  185. goto fail_free_pio_data;
  186. if (irqchip_in_kernel(kvm)) {
  187. r = kvm_create_lapic(vcpu);
  188. if (r < 0)
  189. goto fail_mmu_destroy;
  190. }
  191. return 0;
  192. fail_mmu_destroy:
  193. kvm_mmu_destroy(vcpu);
  194. fail_free_pio_data:
  195. free_page((unsigned long)vcpu->pio_data);
  196. fail_free_run:
  197. free_page((unsigned long)vcpu->run);
  198. fail:
  199. return r;
  200. }
  201. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  202. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  203. {
  204. kvm_free_lapic(vcpu);
  205. kvm_mmu_destroy(vcpu);
  206. free_page((unsigned long)vcpu->pio_data);
  207. free_page((unsigned long)vcpu->run);
  208. }
  209. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  210. static struct kvm *kvm_create_vm(void)
  211. {
  212. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  213. if (!kvm)
  214. return ERR_PTR(-ENOMEM);
  215. kvm_io_bus_init(&kvm->pio_bus);
  216. mutex_init(&kvm->lock);
  217. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  218. kvm_io_bus_init(&kvm->mmio_bus);
  219. spin_lock(&kvm_lock);
  220. list_add(&kvm->vm_list, &vm_list);
  221. spin_unlock(&kvm_lock);
  222. return kvm;
  223. }
  224. /*
  225. * Free any memory in @free but not in @dont.
  226. */
  227. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  228. struct kvm_memory_slot *dont)
  229. {
  230. if (!dont || free->rmap != dont->rmap)
  231. vfree(free->rmap);
  232. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  233. vfree(free->dirty_bitmap);
  234. free->npages = 0;
  235. free->dirty_bitmap = NULL;
  236. free->rmap = NULL;
  237. }
  238. static void kvm_free_physmem(struct kvm *kvm)
  239. {
  240. int i;
  241. for (i = 0; i < kvm->nmemslots; ++i)
  242. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  243. }
  244. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  245. {
  246. int i;
  247. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  248. if (vcpu->pio.guest_pages[i]) {
  249. kvm_release_page(vcpu->pio.guest_pages[i]);
  250. vcpu->pio.guest_pages[i] = NULL;
  251. }
  252. }
  253. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  254. {
  255. vcpu_load(vcpu);
  256. kvm_mmu_unload(vcpu);
  257. vcpu_put(vcpu);
  258. }
  259. static void kvm_free_vcpus(struct kvm *kvm)
  260. {
  261. unsigned int i;
  262. /*
  263. * Unpin any mmu pages first.
  264. */
  265. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  266. if (kvm->vcpus[i])
  267. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  268. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  269. if (kvm->vcpus[i]) {
  270. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  271. kvm->vcpus[i] = NULL;
  272. }
  273. }
  274. }
  275. static void kvm_destroy_vm(struct kvm *kvm)
  276. {
  277. spin_lock(&kvm_lock);
  278. list_del(&kvm->vm_list);
  279. spin_unlock(&kvm_lock);
  280. kvm_io_bus_destroy(&kvm->pio_bus);
  281. kvm_io_bus_destroy(&kvm->mmio_bus);
  282. kfree(kvm->vpic);
  283. kfree(kvm->vioapic);
  284. kvm_free_vcpus(kvm);
  285. kvm_free_physmem(kvm);
  286. kfree(kvm);
  287. }
  288. static int kvm_vm_release(struct inode *inode, struct file *filp)
  289. {
  290. struct kvm *kvm = filp->private_data;
  291. kvm_destroy_vm(kvm);
  292. return 0;
  293. }
  294. static void inject_gp(struct kvm_vcpu *vcpu)
  295. {
  296. kvm_x86_ops->inject_gp(vcpu, 0);
  297. }
  298. /*
  299. * Load the pae pdptrs. Return true is they are all valid.
  300. */
  301. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  302. {
  303. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  304. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  305. int i;
  306. int ret;
  307. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  308. mutex_lock(&vcpu->kvm->lock);
  309. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  310. offset * sizeof(u64), sizeof(pdpte));
  311. if (ret < 0) {
  312. ret = 0;
  313. goto out;
  314. }
  315. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  316. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  317. ret = 0;
  318. goto out;
  319. }
  320. }
  321. ret = 1;
  322. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  323. out:
  324. mutex_unlock(&vcpu->kvm->lock);
  325. return ret;
  326. }
  327. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  328. {
  329. if (cr0 & CR0_RESERVED_BITS) {
  330. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  331. cr0, vcpu->cr0);
  332. inject_gp(vcpu);
  333. return;
  334. }
  335. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  336. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  337. inject_gp(vcpu);
  338. return;
  339. }
  340. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  341. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  342. "and a clear PE flag\n");
  343. inject_gp(vcpu);
  344. return;
  345. }
  346. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  347. #ifdef CONFIG_X86_64
  348. if ((vcpu->shadow_efer & EFER_LME)) {
  349. int cs_db, cs_l;
  350. if (!is_pae(vcpu)) {
  351. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  352. "in long mode while PAE is disabled\n");
  353. inject_gp(vcpu);
  354. return;
  355. }
  356. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  357. if (cs_l) {
  358. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  359. "in long mode while CS.L == 1\n");
  360. inject_gp(vcpu);
  361. return;
  362. }
  363. } else
  364. #endif
  365. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  366. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  367. "reserved bits\n");
  368. inject_gp(vcpu);
  369. return;
  370. }
  371. }
  372. kvm_x86_ops->set_cr0(vcpu, cr0);
  373. vcpu->cr0 = cr0;
  374. mutex_lock(&vcpu->kvm->lock);
  375. kvm_mmu_reset_context(vcpu);
  376. mutex_unlock(&vcpu->kvm->lock);
  377. return;
  378. }
  379. EXPORT_SYMBOL_GPL(set_cr0);
  380. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  381. {
  382. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  383. }
  384. EXPORT_SYMBOL_GPL(lmsw);
  385. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  386. {
  387. if (cr4 & CR4_RESERVED_BITS) {
  388. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  389. inject_gp(vcpu);
  390. return;
  391. }
  392. if (is_long_mode(vcpu)) {
  393. if (!(cr4 & X86_CR4_PAE)) {
  394. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  395. "in long mode\n");
  396. inject_gp(vcpu);
  397. return;
  398. }
  399. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  400. && !load_pdptrs(vcpu, vcpu->cr3)) {
  401. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  402. inject_gp(vcpu);
  403. return;
  404. }
  405. if (cr4 & X86_CR4_VMXE) {
  406. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  407. inject_gp(vcpu);
  408. return;
  409. }
  410. kvm_x86_ops->set_cr4(vcpu, cr4);
  411. vcpu->cr4 = cr4;
  412. mutex_lock(&vcpu->kvm->lock);
  413. kvm_mmu_reset_context(vcpu);
  414. mutex_unlock(&vcpu->kvm->lock);
  415. }
  416. EXPORT_SYMBOL_GPL(set_cr4);
  417. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  418. {
  419. if (is_long_mode(vcpu)) {
  420. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  421. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  422. inject_gp(vcpu);
  423. return;
  424. }
  425. } else {
  426. if (is_pae(vcpu)) {
  427. if (cr3 & CR3_PAE_RESERVED_BITS) {
  428. printk(KERN_DEBUG
  429. "set_cr3: #GP, reserved bits\n");
  430. inject_gp(vcpu);
  431. return;
  432. }
  433. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  434. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  435. "reserved bits\n");
  436. inject_gp(vcpu);
  437. return;
  438. }
  439. }
  440. /*
  441. * We don't check reserved bits in nonpae mode, because
  442. * this isn't enforced, and VMware depends on this.
  443. */
  444. }
  445. mutex_lock(&vcpu->kvm->lock);
  446. /*
  447. * Does the new cr3 value map to physical memory? (Note, we
  448. * catch an invalid cr3 even in real-mode, because it would
  449. * cause trouble later on when we turn on paging anyway.)
  450. *
  451. * A real CPU would silently accept an invalid cr3 and would
  452. * attempt to use it - with largely undefined (and often hard
  453. * to debug) behavior on the guest side.
  454. */
  455. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  456. inject_gp(vcpu);
  457. else {
  458. vcpu->cr3 = cr3;
  459. vcpu->mmu.new_cr3(vcpu);
  460. }
  461. mutex_unlock(&vcpu->kvm->lock);
  462. }
  463. EXPORT_SYMBOL_GPL(set_cr3);
  464. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  465. {
  466. if (cr8 & CR8_RESERVED_BITS) {
  467. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  468. inject_gp(vcpu);
  469. return;
  470. }
  471. if (irqchip_in_kernel(vcpu->kvm))
  472. kvm_lapic_set_tpr(vcpu, cr8);
  473. else
  474. vcpu->cr8 = cr8;
  475. }
  476. EXPORT_SYMBOL_GPL(set_cr8);
  477. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  478. {
  479. if (irqchip_in_kernel(vcpu->kvm))
  480. return kvm_lapic_get_cr8(vcpu);
  481. else
  482. return vcpu->cr8;
  483. }
  484. EXPORT_SYMBOL_GPL(get_cr8);
  485. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  486. {
  487. if (irqchip_in_kernel(vcpu->kvm))
  488. return vcpu->apic_base;
  489. else
  490. return vcpu->apic_base;
  491. }
  492. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  493. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  494. {
  495. /* TODO: reserve bits check */
  496. if (irqchip_in_kernel(vcpu->kvm))
  497. kvm_lapic_set_base(vcpu, data);
  498. else
  499. vcpu->apic_base = data;
  500. }
  501. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  502. void fx_init(struct kvm_vcpu *vcpu)
  503. {
  504. unsigned after_mxcsr_mask;
  505. /* Initialize guest FPU by resetting ours and saving into guest's */
  506. preempt_disable();
  507. fx_save(&vcpu->host_fx_image);
  508. fpu_init();
  509. fx_save(&vcpu->guest_fx_image);
  510. fx_restore(&vcpu->host_fx_image);
  511. preempt_enable();
  512. vcpu->cr0 |= X86_CR0_ET;
  513. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  514. vcpu->guest_fx_image.mxcsr = 0x1f80;
  515. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  516. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  517. }
  518. EXPORT_SYMBOL_GPL(fx_init);
  519. /*
  520. * Allocate some memory and give it an address in the guest physical address
  521. * space.
  522. *
  523. * Discontiguous memory is allowed, mostly for framebuffers.
  524. */
  525. int kvm_set_memory_region(struct kvm *kvm,
  526. struct kvm_userspace_memory_region *mem,
  527. int user_alloc)
  528. {
  529. int r;
  530. gfn_t base_gfn;
  531. unsigned long npages;
  532. unsigned long i;
  533. struct kvm_memory_slot *memslot;
  534. struct kvm_memory_slot old, new;
  535. r = -EINVAL;
  536. /* General sanity checks */
  537. if (mem->memory_size & (PAGE_SIZE - 1))
  538. goto out;
  539. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  540. goto out;
  541. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  542. goto out;
  543. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  544. goto out;
  545. memslot = &kvm->memslots[mem->slot];
  546. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  547. npages = mem->memory_size >> PAGE_SHIFT;
  548. if (!npages)
  549. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  550. mutex_lock(&kvm->lock);
  551. new = old = *memslot;
  552. new.base_gfn = base_gfn;
  553. new.npages = npages;
  554. new.flags = mem->flags;
  555. /* Disallow changing a memory slot's size. */
  556. r = -EINVAL;
  557. if (npages && old.npages && npages != old.npages)
  558. goto out_unlock;
  559. /* Check for overlaps */
  560. r = -EEXIST;
  561. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  562. struct kvm_memory_slot *s = &kvm->memslots[i];
  563. if (s == memslot)
  564. continue;
  565. if (!((base_gfn + npages <= s->base_gfn) ||
  566. (base_gfn >= s->base_gfn + s->npages)))
  567. goto out_unlock;
  568. }
  569. /* Free page dirty bitmap if unneeded */
  570. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  571. new.dirty_bitmap = NULL;
  572. r = -ENOMEM;
  573. /* Allocate if a slot is being created */
  574. if (npages && !new.rmap) {
  575. new.rmap = vmalloc(npages * sizeof(struct page *));
  576. if (!new.rmap)
  577. goto out_unlock;
  578. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  579. new.user_alloc = user_alloc;
  580. if (user_alloc)
  581. new.userspace_addr = mem->userspace_addr;
  582. else {
  583. down_write(&current->mm->mmap_sem);
  584. new.userspace_addr = do_mmap(NULL, 0,
  585. npages * PAGE_SIZE,
  586. PROT_READ | PROT_WRITE,
  587. MAP_SHARED | MAP_ANONYMOUS,
  588. 0);
  589. up_write(&current->mm->mmap_sem);
  590. if (IS_ERR((void *)new.userspace_addr))
  591. goto out_unlock;
  592. }
  593. } else {
  594. if (!old.user_alloc && old.rmap) {
  595. int ret;
  596. down_write(&current->mm->mmap_sem);
  597. ret = do_munmap(current->mm, old.userspace_addr,
  598. old.npages * PAGE_SIZE);
  599. up_write(&current->mm->mmap_sem);
  600. if (ret < 0)
  601. printk(KERN_WARNING
  602. "kvm_vm_ioctl_set_memory_region: "
  603. "failed to munmap memory\n");
  604. }
  605. }
  606. /* Allocate page dirty bitmap if needed */
  607. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  608. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  609. new.dirty_bitmap = vmalloc(dirty_bytes);
  610. if (!new.dirty_bitmap)
  611. goto out_unlock;
  612. memset(new.dirty_bitmap, 0, dirty_bytes);
  613. }
  614. if (mem->slot >= kvm->nmemslots)
  615. kvm->nmemslots = mem->slot + 1;
  616. if (!kvm->n_requested_mmu_pages) {
  617. unsigned int n_pages;
  618. if (npages) {
  619. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  620. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  621. n_pages);
  622. } else {
  623. unsigned int nr_mmu_pages;
  624. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  625. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  626. nr_mmu_pages = max(nr_mmu_pages,
  627. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  628. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  629. }
  630. }
  631. *memslot = new;
  632. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  633. kvm_flush_remote_tlbs(kvm);
  634. mutex_unlock(&kvm->lock);
  635. kvm_free_physmem_slot(&old, &new);
  636. return 0;
  637. out_unlock:
  638. mutex_unlock(&kvm->lock);
  639. kvm_free_physmem_slot(&new, &old);
  640. out:
  641. return r;
  642. }
  643. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  644. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  645. struct
  646. kvm_userspace_memory_region *mem,
  647. int user_alloc)
  648. {
  649. if (mem->slot >= KVM_MEMORY_SLOTS)
  650. return -EINVAL;
  651. return kvm_set_memory_region(kvm, mem, user_alloc);
  652. }
  653. /*
  654. * Get (and clear) the dirty memory log for a memory slot.
  655. */
  656. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  657. struct kvm_dirty_log *log)
  658. {
  659. struct kvm_memory_slot *memslot;
  660. int r, i;
  661. int n;
  662. unsigned long any = 0;
  663. mutex_lock(&kvm->lock);
  664. r = -EINVAL;
  665. if (log->slot >= KVM_MEMORY_SLOTS)
  666. goto out;
  667. memslot = &kvm->memslots[log->slot];
  668. r = -ENOENT;
  669. if (!memslot->dirty_bitmap)
  670. goto out;
  671. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  672. for (i = 0; !any && i < n/sizeof(long); ++i)
  673. any = memslot->dirty_bitmap[i];
  674. r = -EFAULT;
  675. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  676. goto out;
  677. /* If nothing is dirty, don't bother messing with page tables. */
  678. if (any) {
  679. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  680. kvm_flush_remote_tlbs(kvm);
  681. memset(memslot->dirty_bitmap, 0, n);
  682. }
  683. r = 0;
  684. out:
  685. mutex_unlock(&kvm->lock);
  686. return r;
  687. }
  688. int is_error_page(struct page *page)
  689. {
  690. return page == bad_page;
  691. }
  692. EXPORT_SYMBOL_GPL(is_error_page);
  693. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  694. {
  695. int i;
  696. struct kvm_mem_alias *alias;
  697. for (i = 0; i < kvm->naliases; ++i) {
  698. alias = &kvm->aliases[i];
  699. if (gfn >= alias->base_gfn
  700. && gfn < alias->base_gfn + alias->npages)
  701. return alias->target_gfn + gfn - alias->base_gfn;
  702. }
  703. return gfn;
  704. }
  705. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  706. {
  707. int i;
  708. for (i = 0; i < kvm->nmemslots; ++i) {
  709. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  710. if (gfn >= memslot->base_gfn
  711. && gfn < memslot->base_gfn + memslot->npages)
  712. return memslot;
  713. }
  714. return NULL;
  715. }
  716. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  717. {
  718. gfn = unalias_gfn(kvm, gfn);
  719. return __gfn_to_memslot(kvm, gfn);
  720. }
  721. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  722. {
  723. int i;
  724. gfn = unalias_gfn(kvm, gfn);
  725. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  726. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  727. if (gfn >= memslot->base_gfn
  728. && gfn < memslot->base_gfn + memslot->npages)
  729. return 1;
  730. }
  731. return 0;
  732. }
  733. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  734. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  735. {
  736. struct kvm_memory_slot *slot;
  737. struct page *page[1];
  738. int npages;
  739. might_sleep();
  740. gfn = unalias_gfn(kvm, gfn);
  741. slot = __gfn_to_memslot(kvm, gfn);
  742. if (!slot) {
  743. get_page(bad_page);
  744. return bad_page;
  745. }
  746. down_read(&current->mm->mmap_sem);
  747. npages = get_user_pages(current, current->mm,
  748. slot->userspace_addr
  749. + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
  750. 1, 1, page, NULL);
  751. up_read(&current->mm->mmap_sem);
  752. if (npages != 1) {
  753. get_page(bad_page);
  754. return bad_page;
  755. }
  756. return page[0];
  757. }
  758. EXPORT_SYMBOL_GPL(gfn_to_page);
  759. void kvm_release_page(struct page *page)
  760. {
  761. if (!PageReserved(page))
  762. SetPageDirty(page);
  763. put_page(page);
  764. }
  765. EXPORT_SYMBOL_GPL(kvm_release_page);
  766. static int next_segment(unsigned long len, int offset)
  767. {
  768. if (len > PAGE_SIZE - offset)
  769. return PAGE_SIZE - offset;
  770. else
  771. return len;
  772. }
  773. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  774. int len)
  775. {
  776. void *page_virt;
  777. struct page *page;
  778. page = gfn_to_page(kvm, gfn);
  779. if (is_error_page(page)) {
  780. kvm_release_page(page);
  781. return -EFAULT;
  782. }
  783. page_virt = kmap_atomic(page, KM_USER0);
  784. memcpy(data, page_virt + offset, len);
  785. kunmap_atomic(page_virt, KM_USER0);
  786. kvm_release_page(page);
  787. return 0;
  788. }
  789. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  790. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  791. {
  792. gfn_t gfn = gpa >> PAGE_SHIFT;
  793. int seg;
  794. int offset = offset_in_page(gpa);
  795. int ret;
  796. while ((seg = next_segment(len, offset)) != 0) {
  797. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  798. if (ret < 0)
  799. return ret;
  800. offset = 0;
  801. len -= seg;
  802. data += seg;
  803. ++gfn;
  804. }
  805. return 0;
  806. }
  807. EXPORT_SYMBOL_GPL(kvm_read_guest);
  808. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  809. int offset, int len)
  810. {
  811. void *page_virt;
  812. struct page *page;
  813. page = gfn_to_page(kvm, gfn);
  814. if (is_error_page(page)) {
  815. kvm_release_page(page);
  816. return -EFAULT;
  817. }
  818. page_virt = kmap_atomic(page, KM_USER0);
  819. memcpy(page_virt + offset, data, len);
  820. kunmap_atomic(page_virt, KM_USER0);
  821. mark_page_dirty(kvm, gfn);
  822. kvm_release_page(page);
  823. return 0;
  824. }
  825. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  826. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  827. unsigned long len)
  828. {
  829. gfn_t gfn = gpa >> PAGE_SHIFT;
  830. int seg;
  831. int offset = offset_in_page(gpa);
  832. int ret;
  833. while ((seg = next_segment(len, offset)) != 0) {
  834. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  835. if (ret < 0)
  836. return ret;
  837. offset = 0;
  838. len -= seg;
  839. data += seg;
  840. ++gfn;
  841. }
  842. return 0;
  843. }
  844. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  845. {
  846. void *page_virt;
  847. struct page *page;
  848. page = gfn_to_page(kvm, gfn);
  849. if (is_error_page(page)) {
  850. kvm_release_page(page);
  851. return -EFAULT;
  852. }
  853. page_virt = kmap_atomic(page, KM_USER0);
  854. memset(page_virt + offset, 0, len);
  855. kunmap_atomic(page_virt, KM_USER0);
  856. kvm_release_page(page);
  857. return 0;
  858. }
  859. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  860. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  861. {
  862. gfn_t gfn = gpa >> PAGE_SHIFT;
  863. int seg;
  864. int offset = offset_in_page(gpa);
  865. int ret;
  866. while ((seg = next_segment(len, offset)) != 0) {
  867. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  868. if (ret < 0)
  869. return ret;
  870. offset = 0;
  871. len -= seg;
  872. ++gfn;
  873. }
  874. return 0;
  875. }
  876. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  877. /* WARNING: Does not work on aliased pages. */
  878. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  879. {
  880. struct kvm_memory_slot *memslot;
  881. memslot = __gfn_to_memslot(kvm, gfn);
  882. if (memslot && memslot->dirty_bitmap) {
  883. unsigned long rel_gfn = gfn - memslot->base_gfn;
  884. /* avoid RMW */
  885. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  886. set_bit(rel_gfn, memslot->dirty_bitmap);
  887. }
  888. }
  889. int emulator_read_std(unsigned long addr,
  890. void *val,
  891. unsigned int bytes,
  892. struct kvm_vcpu *vcpu)
  893. {
  894. void *data = val;
  895. while (bytes) {
  896. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  897. unsigned offset = addr & (PAGE_SIZE-1);
  898. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  899. int ret;
  900. if (gpa == UNMAPPED_GVA)
  901. return X86EMUL_PROPAGATE_FAULT;
  902. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  903. if (ret < 0)
  904. return X86EMUL_UNHANDLEABLE;
  905. bytes -= tocopy;
  906. data += tocopy;
  907. addr += tocopy;
  908. }
  909. return X86EMUL_CONTINUE;
  910. }
  911. EXPORT_SYMBOL_GPL(emulator_read_std);
  912. static int emulator_write_std(unsigned long addr,
  913. const void *val,
  914. unsigned int bytes,
  915. struct kvm_vcpu *vcpu)
  916. {
  917. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  918. return X86EMUL_UNHANDLEABLE;
  919. }
  920. /*
  921. * Only apic need an MMIO device hook, so shortcut now..
  922. */
  923. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  924. gpa_t addr)
  925. {
  926. struct kvm_io_device *dev;
  927. if (vcpu->apic) {
  928. dev = &vcpu->apic->dev;
  929. if (dev->in_range(dev, addr))
  930. return dev;
  931. }
  932. return NULL;
  933. }
  934. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  935. gpa_t addr)
  936. {
  937. struct kvm_io_device *dev;
  938. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  939. if (dev == NULL)
  940. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  941. return dev;
  942. }
  943. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  944. gpa_t addr)
  945. {
  946. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  947. }
  948. static int emulator_read_emulated(unsigned long addr,
  949. void *val,
  950. unsigned int bytes,
  951. struct kvm_vcpu *vcpu)
  952. {
  953. struct kvm_io_device *mmio_dev;
  954. gpa_t gpa;
  955. if (vcpu->mmio_read_completed) {
  956. memcpy(val, vcpu->mmio_data, bytes);
  957. vcpu->mmio_read_completed = 0;
  958. return X86EMUL_CONTINUE;
  959. } else if (emulator_read_std(addr, val, bytes, vcpu)
  960. == X86EMUL_CONTINUE)
  961. return X86EMUL_CONTINUE;
  962. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  963. if (gpa == UNMAPPED_GVA)
  964. return X86EMUL_PROPAGATE_FAULT;
  965. /*
  966. * Is this MMIO handled locally?
  967. */
  968. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  969. if (mmio_dev) {
  970. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  971. return X86EMUL_CONTINUE;
  972. }
  973. vcpu->mmio_needed = 1;
  974. vcpu->mmio_phys_addr = gpa;
  975. vcpu->mmio_size = bytes;
  976. vcpu->mmio_is_write = 0;
  977. return X86EMUL_UNHANDLEABLE;
  978. }
  979. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  980. const void *val, int bytes)
  981. {
  982. int ret;
  983. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  984. if (ret < 0)
  985. return 0;
  986. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  987. return 1;
  988. }
  989. static int emulator_write_emulated_onepage(unsigned long addr,
  990. const void *val,
  991. unsigned int bytes,
  992. struct kvm_vcpu *vcpu)
  993. {
  994. struct kvm_io_device *mmio_dev;
  995. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  996. if (gpa == UNMAPPED_GVA) {
  997. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  998. return X86EMUL_PROPAGATE_FAULT;
  999. }
  1000. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1001. return X86EMUL_CONTINUE;
  1002. /*
  1003. * Is this MMIO handled locally?
  1004. */
  1005. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1006. if (mmio_dev) {
  1007. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1008. return X86EMUL_CONTINUE;
  1009. }
  1010. vcpu->mmio_needed = 1;
  1011. vcpu->mmio_phys_addr = gpa;
  1012. vcpu->mmio_size = bytes;
  1013. vcpu->mmio_is_write = 1;
  1014. memcpy(vcpu->mmio_data, val, bytes);
  1015. return X86EMUL_CONTINUE;
  1016. }
  1017. int emulator_write_emulated(unsigned long addr,
  1018. const void *val,
  1019. unsigned int bytes,
  1020. struct kvm_vcpu *vcpu)
  1021. {
  1022. /* Crossing a page boundary? */
  1023. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1024. int rc, now;
  1025. now = -addr & ~PAGE_MASK;
  1026. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1027. if (rc != X86EMUL_CONTINUE)
  1028. return rc;
  1029. addr += now;
  1030. val += now;
  1031. bytes -= now;
  1032. }
  1033. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1034. }
  1035. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1036. static int emulator_cmpxchg_emulated(unsigned long addr,
  1037. const void *old,
  1038. const void *new,
  1039. unsigned int bytes,
  1040. struct kvm_vcpu *vcpu)
  1041. {
  1042. static int reported;
  1043. if (!reported) {
  1044. reported = 1;
  1045. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1046. }
  1047. return emulator_write_emulated(addr, new, bytes, vcpu);
  1048. }
  1049. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1050. {
  1051. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1052. }
  1053. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1054. {
  1055. return X86EMUL_CONTINUE;
  1056. }
  1057. int emulate_clts(struct kvm_vcpu *vcpu)
  1058. {
  1059. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1060. return X86EMUL_CONTINUE;
  1061. }
  1062. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1063. {
  1064. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1065. switch (dr) {
  1066. case 0 ... 3:
  1067. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1068. return X86EMUL_CONTINUE;
  1069. default:
  1070. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1071. return X86EMUL_UNHANDLEABLE;
  1072. }
  1073. }
  1074. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1075. {
  1076. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1077. int exception;
  1078. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1079. if (exception) {
  1080. /* FIXME: better handling */
  1081. return X86EMUL_UNHANDLEABLE;
  1082. }
  1083. return X86EMUL_CONTINUE;
  1084. }
  1085. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1086. {
  1087. static int reported;
  1088. u8 opcodes[4];
  1089. unsigned long rip = vcpu->rip;
  1090. unsigned long rip_linear;
  1091. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1092. if (reported)
  1093. return;
  1094. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1095. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1096. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1097. reported = 1;
  1098. }
  1099. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1100. struct x86_emulate_ops emulate_ops = {
  1101. .read_std = emulator_read_std,
  1102. .write_std = emulator_write_std,
  1103. .read_emulated = emulator_read_emulated,
  1104. .write_emulated = emulator_write_emulated,
  1105. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1106. };
  1107. int emulate_instruction(struct kvm_vcpu *vcpu,
  1108. struct kvm_run *run,
  1109. unsigned long cr2,
  1110. u16 error_code,
  1111. int no_decode)
  1112. {
  1113. int r;
  1114. vcpu->mmio_fault_cr2 = cr2;
  1115. kvm_x86_ops->cache_regs(vcpu);
  1116. vcpu->mmio_is_write = 0;
  1117. vcpu->pio.string = 0;
  1118. if (!no_decode) {
  1119. int cs_db, cs_l;
  1120. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1121. vcpu->emulate_ctxt.vcpu = vcpu;
  1122. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1123. vcpu->emulate_ctxt.cr2 = cr2;
  1124. vcpu->emulate_ctxt.mode =
  1125. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1126. ? X86EMUL_MODE_REAL : cs_l
  1127. ? X86EMUL_MODE_PROT64 : cs_db
  1128. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1129. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1130. vcpu->emulate_ctxt.cs_base = 0;
  1131. vcpu->emulate_ctxt.ds_base = 0;
  1132. vcpu->emulate_ctxt.es_base = 0;
  1133. vcpu->emulate_ctxt.ss_base = 0;
  1134. } else {
  1135. vcpu->emulate_ctxt.cs_base =
  1136. get_segment_base(vcpu, VCPU_SREG_CS);
  1137. vcpu->emulate_ctxt.ds_base =
  1138. get_segment_base(vcpu, VCPU_SREG_DS);
  1139. vcpu->emulate_ctxt.es_base =
  1140. get_segment_base(vcpu, VCPU_SREG_ES);
  1141. vcpu->emulate_ctxt.ss_base =
  1142. get_segment_base(vcpu, VCPU_SREG_SS);
  1143. }
  1144. vcpu->emulate_ctxt.gs_base =
  1145. get_segment_base(vcpu, VCPU_SREG_GS);
  1146. vcpu->emulate_ctxt.fs_base =
  1147. get_segment_base(vcpu, VCPU_SREG_FS);
  1148. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1149. if (r) {
  1150. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1151. return EMULATE_DONE;
  1152. return EMULATE_FAIL;
  1153. }
  1154. }
  1155. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1156. if (vcpu->pio.string)
  1157. return EMULATE_DO_MMIO;
  1158. if ((r || vcpu->mmio_is_write) && run) {
  1159. run->exit_reason = KVM_EXIT_MMIO;
  1160. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1161. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1162. run->mmio.len = vcpu->mmio_size;
  1163. run->mmio.is_write = vcpu->mmio_is_write;
  1164. }
  1165. if (r) {
  1166. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1167. return EMULATE_DONE;
  1168. if (!vcpu->mmio_needed) {
  1169. kvm_report_emulation_failure(vcpu, "mmio");
  1170. return EMULATE_FAIL;
  1171. }
  1172. return EMULATE_DO_MMIO;
  1173. }
  1174. kvm_x86_ops->decache_regs(vcpu);
  1175. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1176. if (vcpu->mmio_is_write) {
  1177. vcpu->mmio_needed = 0;
  1178. return EMULATE_DO_MMIO;
  1179. }
  1180. return EMULATE_DONE;
  1181. }
  1182. EXPORT_SYMBOL_GPL(emulate_instruction);
  1183. /*
  1184. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1185. */
  1186. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1187. {
  1188. DECLARE_WAITQUEUE(wait, current);
  1189. add_wait_queue(&vcpu->wq, &wait);
  1190. /*
  1191. * We will block until either an interrupt or a signal wakes us up
  1192. */
  1193. while (!kvm_cpu_has_interrupt(vcpu)
  1194. && !signal_pending(current)
  1195. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1196. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1197. set_current_state(TASK_INTERRUPTIBLE);
  1198. vcpu_put(vcpu);
  1199. schedule();
  1200. vcpu_load(vcpu);
  1201. }
  1202. __set_current_state(TASK_RUNNING);
  1203. remove_wait_queue(&vcpu->wq, &wait);
  1204. }
  1205. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1206. {
  1207. ++vcpu->stat.halt_exits;
  1208. if (irqchip_in_kernel(vcpu->kvm)) {
  1209. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1210. kvm_vcpu_block(vcpu);
  1211. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1212. return -EINTR;
  1213. return 1;
  1214. } else {
  1215. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1216. return 0;
  1217. }
  1218. }
  1219. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1220. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1221. {
  1222. unsigned long nr, a0, a1, a2, a3, ret;
  1223. kvm_x86_ops->cache_regs(vcpu);
  1224. nr = vcpu->regs[VCPU_REGS_RAX];
  1225. a0 = vcpu->regs[VCPU_REGS_RBX];
  1226. a1 = vcpu->regs[VCPU_REGS_RCX];
  1227. a2 = vcpu->regs[VCPU_REGS_RDX];
  1228. a3 = vcpu->regs[VCPU_REGS_RSI];
  1229. if (!is_long_mode(vcpu)) {
  1230. nr &= 0xFFFFFFFF;
  1231. a0 &= 0xFFFFFFFF;
  1232. a1 &= 0xFFFFFFFF;
  1233. a2 &= 0xFFFFFFFF;
  1234. a3 &= 0xFFFFFFFF;
  1235. }
  1236. switch (nr) {
  1237. default:
  1238. ret = -KVM_ENOSYS;
  1239. break;
  1240. }
  1241. vcpu->regs[VCPU_REGS_RAX] = ret;
  1242. kvm_x86_ops->decache_regs(vcpu);
  1243. return 0;
  1244. }
  1245. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1246. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1247. {
  1248. char instruction[3];
  1249. int ret = 0;
  1250. mutex_lock(&vcpu->kvm->lock);
  1251. /*
  1252. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1253. * to ensure that the updated hypercall appears atomically across all
  1254. * VCPUs.
  1255. */
  1256. kvm_mmu_zap_all(vcpu->kvm);
  1257. kvm_x86_ops->cache_regs(vcpu);
  1258. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1259. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1260. != X86EMUL_CONTINUE)
  1261. ret = -EFAULT;
  1262. mutex_unlock(&vcpu->kvm->lock);
  1263. return ret;
  1264. }
  1265. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1266. {
  1267. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1268. }
  1269. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1270. {
  1271. struct descriptor_table dt = { limit, base };
  1272. kvm_x86_ops->set_gdt(vcpu, &dt);
  1273. }
  1274. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1275. {
  1276. struct descriptor_table dt = { limit, base };
  1277. kvm_x86_ops->set_idt(vcpu, &dt);
  1278. }
  1279. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1280. unsigned long *rflags)
  1281. {
  1282. lmsw(vcpu, msw);
  1283. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1284. }
  1285. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1286. {
  1287. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1288. switch (cr) {
  1289. case 0:
  1290. return vcpu->cr0;
  1291. case 2:
  1292. return vcpu->cr2;
  1293. case 3:
  1294. return vcpu->cr3;
  1295. case 4:
  1296. return vcpu->cr4;
  1297. default:
  1298. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1299. return 0;
  1300. }
  1301. }
  1302. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1303. unsigned long *rflags)
  1304. {
  1305. switch (cr) {
  1306. case 0:
  1307. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1308. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1309. break;
  1310. case 2:
  1311. vcpu->cr2 = val;
  1312. break;
  1313. case 3:
  1314. set_cr3(vcpu, val);
  1315. break;
  1316. case 4:
  1317. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1318. break;
  1319. default:
  1320. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1321. }
  1322. }
  1323. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1324. {
  1325. u64 data;
  1326. switch (msr) {
  1327. case 0xc0010010: /* SYSCFG */
  1328. case 0xc0010015: /* HWCR */
  1329. case MSR_IA32_PLATFORM_ID:
  1330. case MSR_IA32_P5_MC_ADDR:
  1331. case MSR_IA32_P5_MC_TYPE:
  1332. case MSR_IA32_MC0_CTL:
  1333. case MSR_IA32_MCG_STATUS:
  1334. case MSR_IA32_MCG_CAP:
  1335. case MSR_IA32_MC0_MISC:
  1336. case MSR_IA32_MC0_MISC+4:
  1337. case MSR_IA32_MC0_MISC+8:
  1338. case MSR_IA32_MC0_MISC+12:
  1339. case MSR_IA32_MC0_MISC+16:
  1340. case MSR_IA32_UCODE_REV:
  1341. case MSR_IA32_PERF_STATUS:
  1342. case MSR_IA32_EBL_CR_POWERON:
  1343. /* MTRR registers */
  1344. case 0xfe:
  1345. case 0x200 ... 0x2ff:
  1346. data = 0;
  1347. break;
  1348. case 0xcd: /* fsb frequency */
  1349. data = 3;
  1350. break;
  1351. case MSR_IA32_APICBASE:
  1352. data = kvm_get_apic_base(vcpu);
  1353. break;
  1354. case MSR_IA32_MISC_ENABLE:
  1355. data = vcpu->ia32_misc_enable_msr;
  1356. break;
  1357. #ifdef CONFIG_X86_64
  1358. case MSR_EFER:
  1359. data = vcpu->shadow_efer;
  1360. break;
  1361. #endif
  1362. default:
  1363. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1364. return 1;
  1365. }
  1366. *pdata = data;
  1367. return 0;
  1368. }
  1369. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1370. /*
  1371. * Reads an msr value (of 'msr_index') into 'pdata'.
  1372. * Returns 0 on success, non-0 otherwise.
  1373. * Assumes vcpu_load() was already called.
  1374. */
  1375. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1376. {
  1377. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1378. }
  1379. #ifdef CONFIG_X86_64
  1380. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1381. {
  1382. if (efer & EFER_RESERVED_BITS) {
  1383. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1384. efer);
  1385. inject_gp(vcpu);
  1386. return;
  1387. }
  1388. if (is_paging(vcpu)
  1389. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1390. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1391. inject_gp(vcpu);
  1392. return;
  1393. }
  1394. kvm_x86_ops->set_efer(vcpu, efer);
  1395. efer &= ~EFER_LMA;
  1396. efer |= vcpu->shadow_efer & EFER_LMA;
  1397. vcpu->shadow_efer = efer;
  1398. }
  1399. #endif
  1400. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1401. {
  1402. switch (msr) {
  1403. #ifdef CONFIG_X86_64
  1404. case MSR_EFER:
  1405. set_efer(vcpu, data);
  1406. break;
  1407. #endif
  1408. case MSR_IA32_MC0_STATUS:
  1409. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1410. __FUNCTION__, data);
  1411. break;
  1412. case MSR_IA32_MCG_STATUS:
  1413. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1414. __FUNCTION__, data);
  1415. break;
  1416. case MSR_IA32_UCODE_REV:
  1417. case MSR_IA32_UCODE_WRITE:
  1418. case 0x200 ... 0x2ff: /* MTRRs */
  1419. break;
  1420. case MSR_IA32_APICBASE:
  1421. kvm_set_apic_base(vcpu, data);
  1422. break;
  1423. case MSR_IA32_MISC_ENABLE:
  1424. vcpu->ia32_misc_enable_msr = data;
  1425. break;
  1426. default:
  1427. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1428. return 1;
  1429. }
  1430. return 0;
  1431. }
  1432. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1433. /*
  1434. * Writes msr value into into the appropriate "register".
  1435. * Returns 0 on success, non-0 otherwise.
  1436. * Assumes vcpu_load() was already called.
  1437. */
  1438. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1439. {
  1440. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1441. }
  1442. void kvm_resched(struct kvm_vcpu *vcpu)
  1443. {
  1444. if (!need_resched())
  1445. return;
  1446. cond_resched();
  1447. }
  1448. EXPORT_SYMBOL_GPL(kvm_resched);
  1449. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1450. {
  1451. int i;
  1452. u32 function;
  1453. struct kvm_cpuid_entry *e, *best;
  1454. kvm_x86_ops->cache_regs(vcpu);
  1455. function = vcpu->regs[VCPU_REGS_RAX];
  1456. vcpu->regs[VCPU_REGS_RAX] = 0;
  1457. vcpu->regs[VCPU_REGS_RBX] = 0;
  1458. vcpu->regs[VCPU_REGS_RCX] = 0;
  1459. vcpu->regs[VCPU_REGS_RDX] = 0;
  1460. best = NULL;
  1461. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1462. e = &vcpu->cpuid_entries[i];
  1463. if (e->function == function) {
  1464. best = e;
  1465. break;
  1466. }
  1467. /*
  1468. * Both basic or both extended?
  1469. */
  1470. if (((e->function ^ function) & 0x80000000) == 0)
  1471. if (!best || e->function > best->function)
  1472. best = e;
  1473. }
  1474. if (best) {
  1475. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1476. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1477. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1478. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1479. }
  1480. kvm_x86_ops->decache_regs(vcpu);
  1481. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1482. }
  1483. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1484. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1485. {
  1486. void *p = vcpu->pio_data;
  1487. void *q;
  1488. unsigned bytes;
  1489. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1490. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1491. PAGE_KERNEL);
  1492. if (!q) {
  1493. free_pio_guest_pages(vcpu);
  1494. return -ENOMEM;
  1495. }
  1496. q += vcpu->pio.guest_page_offset;
  1497. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1498. if (vcpu->pio.in)
  1499. memcpy(q, p, bytes);
  1500. else
  1501. memcpy(p, q, bytes);
  1502. q -= vcpu->pio.guest_page_offset;
  1503. vunmap(q);
  1504. free_pio_guest_pages(vcpu);
  1505. return 0;
  1506. }
  1507. static int complete_pio(struct kvm_vcpu *vcpu)
  1508. {
  1509. struct kvm_pio_request *io = &vcpu->pio;
  1510. long delta;
  1511. int r;
  1512. kvm_x86_ops->cache_regs(vcpu);
  1513. if (!io->string) {
  1514. if (io->in)
  1515. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1516. io->size);
  1517. } else {
  1518. if (io->in) {
  1519. r = pio_copy_data(vcpu);
  1520. if (r) {
  1521. kvm_x86_ops->cache_regs(vcpu);
  1522. return r;
  1523. }
  1524. }
  1525. delta = 1;
  1526. if (io->rep) {
  1527. delta *= io->cur_count;
  1528. /*
  1529. * The size of the register should really depend on
  1530. * current address size.
  1531. */
  1532. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1533. }
  1534. if (io->down)
  1535. delta = -delta;
  1536. delta *= io->size;
  1537. if (io->in)
  1538. vcpu->regs[VCPU_REGS_RDI] += delta;
  1539. else
  1540. vcpu->regs[VCPU_REGS_RSI] += delta;
  1541. }
  1542. kvm_x86_ops->decache_regs(vcpu);
  1543. io->count -= io->cur_count;
  1544. io->cur_count = 0;
  1545. return 0;
  1546. }
  1547. static void kernel_pio(struct kvm_io_device *pio_dev,
  1548. struct kvm_vcpu *vcpu,
  1549. void *pd)
  1550. {
  1551. /* TODO: String I/O for in kernel device */
  1552. mutex_lock(&vcpu->kvm->lock);
  1553. if (vcpu->pio.in)
  1554. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1555. vcpu->pio.size,
  1556. pd);
  1557. else
  1558. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1559. vcpu->pio.size,
  1560. pd);
  1561. mutex_unlock(&vcpu->kvm->lock);
  1562. }
  1563. static void pio_string_write(struct kvm_io_device *pio_dev,
  1564. struct kvm_vcpu *vcpu)
  1565. {
  1566. struct kvm_pio_request *io = &vcpu->pio;
  1567. void *pd = vcpu->pio_data;
  1568. int i;
  1569. mutex_lock(&vcpu->kvm->lock);
  1570. for (i = 0; i < io->cur_count; i++) {
  1571. kvm_iodevice_write(pio_dev, io->port,
  1572. io->size,
  1573. pd);
  1574. pd += io->size;
  1575. }
  1576. mutex_unlock(&vcpu->kvm->lock);
  1577. }
  1578. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1579. int size, unsigned port)
  1580. {
  1581. struct kvm_io_device *pio_dev;
  1582. vcpu->run->exit_reason = KVM_EXIT_IO;
  1583. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1584. vcpu->run->io.size = vcpu->pio.size = size;
  1585. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1586. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1587. vcpu->run->io.port = vcpu->pio.port = port;
  1588. vcpu->pio.in = in;
  1589. vcpu->pio.string = 0;
  1590. vcpu->pio.down = 0;
  1591. vcpu->pio.guest_page_offset = 0;
  1592. vcpu->pio.rep = 0;
  1593. kvm_x86_ops->cache_regs(vcpu);
  1594. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1595. kvm_x86_ops->decache_regs(vcpu);
  1596. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1597. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1598. if (pio_dev) {
  1599. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1600. complete_pio(vcpu);
  1601. return 1;
  1602. }
  1603. return 0;
  1604. }
  1605. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1606. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1607. int size, unsigned long count, int down,
  1608. gva_t address, int rep, unsigned port)
  1609. {
  1610. unsigned now, in_page;
  1611. int i, ret = 0;
  1612. int nr_pages = 1;
  1613. struct page *page;
  1614. struct kvm_io_device *pio_dev;
  1615. vcpu->run->exit_reason = KVM_EXIT_IO;
  1616. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1617. vcpu->run->io.size = vcpu->pio.size = size;
  1618. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1619. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1620. vcpu->run->io.port = vcpu->pio.port = port;
  1621. vcpu->pio.in = in;
  1622. vcpu->pio.string = 1;
  1623. vcpu->pio.down = down;
  1624. vcpu->pio.guest_page_offset = offset_in_page(address);
  1625. vcpu->pio.rep = rep;
  1626. if (!count) {
  1627. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1628. return 1;
  1629. }
  1630. if (!down)
  1631. in_page = PAGE_SIZE - offset_in_page(address);
  1632. else
  1633. in_page = offset_in_page(address) + size;
  1634. now = min(count, (unsigned long)in_page / size);
  1635. if (!now) {
  1636. /*
  1637. * String I/O straddles page boundary. Pin two guest pages
  1638. * so that we satisfy atomicity constraints. Do just one
  1639. * transaction to avoid complexity.
  1640. */
  1641. nr_pages = 2;
  1642. now = 1;
  1643. }
  1644. if (down) {
  1645. /*
  1646. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1647. */
  1648. pr_unimpl(vcpu, "guest string pio down\n");
  1649. inject_gp(vcpu);
  1650. return 1;
  1651. }
  1652. vcpu->run->io.count = now;
  1653. vcpu->pio.cur_count = now;
  1654. if (vcpu->pio.cur_count == vcpu->pio.count)
  1655. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1656. for (i = 0; i < nr_pages; ++i) {
  1657. mutex_lock(&vcpu->kvm->lock);
  1658. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1659. vcpu->pio.guest_pages[i] = page;
  1660. mutex_unlock(&vcpu->kvm->lock);
  1661. if (!page) {
  1662. inject_gp(vcpu);
  1663. free_pio_guest_pages(vcpu);
  1664. return 1;
  1665. }
  1666. }
  1667. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1668. if (!vcpu->pio.in) {
  1669. /* string PIO write */
  1670. ret = pio_copy_data(vcpu);
  1671. if (ret >= 0 && pio_dev) {
  1672. pio_string_write(pio_dev, vcpu);
  1673. complete_pio(vcpu);
  1674. if (vcpu->pio.count == 0)
  1675. ret = 1;
  1676. }
  1677. } else if (pio_dev)
  1678. pr_unimpl(vcpu, "no string pio read support yet, "
  1679. "port %x size %d count %ld\n",
  1680. port, size, count);
  1681. return ret;
  1682. }
  1683. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1684. /*
  1685. * Check if userspace requested an interrupt window, and that the
  1686. * interrupt window is open.
  1687. *
  1688. * No need to exit to userspace if we already have an interrupt queued.
  1689. */
  1690. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1691. struct kvm_run *kvm_run)
  1692. {
  1693. return (!vcpu->irq_summary &&
  1694. kvm_run->request_interrupt_window &&
  1695. vcpu->interrupt_window_open &&
  1696. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1697. }
  1698. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1699. struct kvm_run *kvm_run)
  1700. {
  1701. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1702. kvm_run->cr8 = get_cr8(vcpu);
  1703. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1704. if (irqchip_in_kernel(vcpu->kvm))
  1705. kvm_run->ready_for_interrupt_injection = 1;
  1706. else
  1707. kvm_run->ready_for_interrupt_injection =
  1708. (vcpu->interrupt_window_open &&
  1709. vcpu->irq_summary == 0);
  1710. }
  1711. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1712. {
  1713. int r;
  1714. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1715. pr_debug("vcpu %d received sipi with vector # %x\n",
  1716. vcpu->vcpu_id, vcpu->sipi_vector);
  1717. kvm_lapic_reset(vcpu);
  1718. r = kvm_x86_ops->vcpu_reset(vcpu);
  1719. if (r)
  1720. return r;
  1721. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1722. }
  1723. preempted:
  1724. if (vcpu->guest_debug.enabled)
  1725. kvm_x86_ops->guest_debug_pre(vcpu);
  1726. again:
  1727. r = kvm_mmu_reload(vcpu);
  1728. if (unlikely(r))
  1729. goto out;
  1730. kvm_inject_pending_timer_irqs(vcpu);
  1731. preempt_disable();
  1732. kvm_x86_ops->prepare_guest_switch(vcpu);
  1733. kvm_load_guest_fpu(vcpu);
  1734. local_irq_disable();
  1735. if (signal_pending(current)) {
  1736. local_irq_enable();
  1737. preempt_enable();
  1738. r = -EINTR;
  1739. kvm_run->exit_reason = KVM_EXIT_INTR;
  1740. ++vcpu->stat.signal_exits;
  1741. goto out;
  1742. }
  1743. if (irqchip_in_kernel(vcpu->kvm))
  1744. kvm_x86_ops->inject_pending_irq(vcpu);
  1745. else if (!vcpu->mmio_read_completed)
  1746. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1747. vcpu->guest_mode = 1;
  1748. kvm_guest_enter();
  1749. if (vcpu->requests)
  1750. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  1751. kvm_x86_ops->tlb_flush(vcpu);
  1752. kvm_x86_ops->run(vcpu, kvm_run);
  1753. vcpu->guest_mode = 0;
  1754. local_irq_enable();
  1755. ++vcpu->stat.exits;
  1756. /*
  1757. * We must have an instruction between local_irq_enable() and
  1758. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1759. * the interrupt shadow. The stat.exits increment will do nicely.
  1760. * But we need to prevent reordering, hence this barrier():
  1761. */
  1762. barrier();
  1763. kvm_guest_exit();
  1764. preempt_enable();
  1765. /*
  1766. * Profile KVM exit RIPs:
  1767. */
  1768. if (unlikely(prof_on == KVM_PROFILING)) {
  1769. kvm_x86_ops->cache_regs(vcpu);
  1770. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1771. }
  1772. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1773. if (r > 0) {
  1774. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1775. r = -EINTR;
  1776. kvm_run->exit_reason = KVM_EXIT_INTR;
  1777. ++vcpu->stat.request_irq_exits;
  1778. goto out;
  1779. }
  1780. if (!need_resched()) {
  1781. ++vcpu->stat.light_exits;
  1782. goto again;
  1783. }
  1784. }
  1785. out:
  1786. if (r > 0) {
  1787. kvm_resched(vcpu);
  1788. goto preempted;
  1789. }
  1790. post_kvm_run_save(vcpu, kvm_run);
  1791. return r;
  1792. }
  1793. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1794. {
  1795. int r;
  1796. sigset_t sigsaved;
  1797. vcpu_load(vcpu);
  1798. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1799. kvm_vcpu_block(vcpu);
  1800. vcpu_put(vcpu);
  1801. return -EAGAIN;
  1802. }
  1803. if (vcpu->sigset_active)
  1804. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1805. /* re-sync apic's tpr */
  1806. if (!irqchip_in_kernel(vcpu->kvm))
  1807. set_cr8(vcpu, kvm_run->cr8);
  1808. if (vcpu->pio.cur_count) {
  1809. r = complete_pio(vcpu);
  1810. if (r)
  1811. goto out;
  1812. }
  1813. #if CONFIG_HAS_IOMEM
  1814. if (vcpu->mmio_needed) {
  1815. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1816. vcpu->mmio_read_completed = 1;
  1817. vcpu->mmio_needed = 0;
  1818. r = emulate_instruction(vcpu, kvm_run,
  1819. vcpu->mmio_fault_cr2, 0, 1);
  1820. if (r == EMULATE_DO_MMIO) {
  1821. /*
  1822. * Read-modify-write. Back to userspace.
  1823. */
  1824. r = 0;
  1825. goto out;
  1826. }
  1827. }
  1828. #endif
  1829. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1830. kvm_x86_ops->cache_regs(vcpu);
  1831. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1832. kvm_x86_ops->decache_regs(vcpu);
  1833. }
  1834. r = __vcpu_run(vcpu, kvm_run);
  1835. out:
  1836. if (vcpu->sigset_active)
  1837. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1838. vcpu_put(vcpu);
  1839. return r;
  1840. }
  1841. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1842. struct kvm_regs *regs)
  1843. {
  1844. vcpu_load(vcpu);
  1845. kvm_x86_ops->cache_regs(vcpu);
  1846. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1847. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1848. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1849. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1850. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1851. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1852. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1853. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1854. #ifdef CONFIG_X86_64
  1855. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1856. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1857. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1858. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1859. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1860. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1861. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1862. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1863. #endif
  1864. regs->rip = vcpu->rip;
  1865. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1866. /*
  1867. * Don't leak debug flags in case they were set for guest debugging
  1868. */
  1869. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1870. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1871. vcpu_put(vcpu);
  1872. return 0;
  1873. }
  1874. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1875. struct kvm_regs *regs)
  1876. {
  1877. vcpu_load(vcpu);
  1878. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1879. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1880. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1881. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1882. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1883. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1884. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1885. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1886. #ifdef CONFIG_X86_64
  1887. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1888. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1889. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1890. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1891. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1892. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1893. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1894. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1895. #endif
  1896. vcpu->rip = regs->rip;
  1897. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1898. kvm_x86_ops->decache_regs(vcpu);
  1899. vcpu_put(vcpu);
  1900. return 0;
  1901. }
  1902. static void get_segment(struct kvm_vcpu *vcpu,
  1903. struct kvm_segment *var, int seg)
  1904. {
  1905. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1906. }
  1907. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1908. struct kvm_sregs *sregs)
  1909. {
  1910. struct descriptor_table dt;
  1911. int pending_vec;
  1912. vcpu_load(vcpu);
  1913. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1914. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1915. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1916. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1917. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1918. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1919. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1920. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1921. kvm_x86_ops->get_idt(vcpu, &dt);
  1922. sregs->idt.limit = dt.limit;
  1923. sregs->idt.base = dt.base;
  1924. kvm_x86_ops->get_gdt(vcpu, &dt);
  1925. sregs->gdt.limit = dt.limit;
  1926. sregs->gdt.base = dt.base;
  1927. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1928. sregs->cr0 = vcpu->cr0;
  1929. sregs->cr2 = vcpu->cr2;
  1930. sregs->cr3 = vcpu->cr3;
  1931. sregs->cr4 = vcpu->cr4;
  1932. sregs->cr8 = get_cr8(vcpu);
  1933. sregs->efer = vcpu->shadow_efer;
  1934. sregs->apic_base = kvm_get_apic_base(vcpu);
  1935. if (irqchip_in_kernel(vcpu->kvm)) {
  1936. memset(sregs->interrupt_bitmap, 0,
  1937. sizeof sregs->interrupt_bitmap);
  1938. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1939. if (pending_vec >= 0)
  1940. set_bit(pending_vec,
  1941. (unsigned long *)sregs->interrupt_bitmap);
  1942. } else
  1943. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1944. sizeof sregs->interrupt_bitmap);
  1945. vcpu_put(vcpu);
  1946. return 0;
  1947. }
  1948. static void set_segment(struct kvm_vcpu *vcpu,
  1949. struct kvm_segment *var, int seg)
  1950. {
  1951. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1952. }
  1953. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1954. struct kvm_sregs *sregs)
  1955. {
  1956. int mmu_reset_needed = 0;
  1957. int i, pending_vec, max_bits;
  1958. struct descriptor_table dt;
  1959. vcpu_load(vcpu);
  1960. dt.limit = sregs->idt.limit;
  1961. dt.base = sregs->idt.base;
  1962. kvm_x86_ops->set_idt(vcpu, &dt);
  1963. dt.limit = sregs->gdt.limit;
  1964. dt.base = sregs->gdt.base;
  1965. kvm_x86_ops->set_gdt(vcpu, &dt);
  1966. vcpu->cr2 = sregs->cr2;
  1967. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1968. vcpu->cr3 = sregs->cr3;
  1969. set_cr8(vcpu, sregs->cr8);
  1970. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1971. #ifdef CONFIG_X86_64
  1972. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1973. #endif
  1974. kvm_set_apic_base(vcpu, sregs->apic_base);
  1975. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1976. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1977. vcpu->cr0 = sregs->cr0;
  1978. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1979. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1980. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1981. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1982. load_pdptrs(vcpu, vcpu->cr3);
  1983. if (mmu_reset_needed)
  1984. kvm_mmu_reset_context(vcpu);
  1985. if (!irqchip_in_kernel(vcpu->kvm)) {
  1986. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1987. sizeof vcpu->irq_pending);
  1988. vcpu->irq_summary = 0;
  1989. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1990. if (vcpu->irq_pending[i])
  1991. __set_bit(i, &vcpu->irq_summary);
  1992. } else {
  1993. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1994. pending_vec = find_first_bit(
  1995. (const unsigned long *)sregs->interrupt_bitmap,
  1996. max_bits);
  1997. /* Only pending external irq is handled here */
  1998. if (pending_vec < max_bits) {
  1999. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2000. pr_debug("Set back pending irq %d\n",
  2001. pending_vec);
  2002. }
  2003. }
  2004. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2005. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2006. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2007. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2008. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2009. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2010. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2011. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2012. vcpu_put(vcpu);
  2013. return 0;
  2014. }
  2015. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2016. {
  2017. struct kvm_segment cs;
  2018. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2019. *db = cs.db;
  2020. *l = cs.l;
  2021. }
  2022. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2023. /*
  2024. * Translate a guest virtual address to a guest physical address.
  2025. */
  2026. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2027. struct kvm_translation *tr)
  2028. {
  2029. unsigned long vaddr = tr->linear_address;
  2030. gpa_t gpa;
  2031. vcpu_load(vcpu);
  2032. mutex_lock(&vcpu->kvm->lock);
  2033. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2034. tr->physical_address = gpa;
  2035. tr->valid = gpa != UNMAPPED_GVA;
  2036. tr->writeable = 1;
  2037. tr->usermode = 0;
  2038. mutex_unlock(&vcpu->kvm->lock);
  2039. vcpu_put(vcpu);
  2040. return 0;
  2041. }
  2042. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2043. struct kvm_interrupt *irq)
  2044. {
  2045. if (irq->irq < 0 || irq->irq >= 256)
  2046. return -EINVAL;
  2047. if (irqchip_in_kernel(vcpu->kvm))
  2048. return -ENXIO;
  2049. vcpu_load(vcpu);
  2050. set_bit(irq->irq, vcpu->irq_pending);
  2051. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2052. vcpu_put(vcpu);
  2053. return 0;
  2054. }
  2055. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2056. struct kvm_debug_guest *dbg)
  2057. {
  2058. int r;
  2059. vcpu_load(vcpu);
  2060. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2061. vcpu_put(vcpu);
  2062. return r;
  2063. }
  2064. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2065. unsigned long address,
  2066. int *type)
  2067. {
  2068. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2069. unsigned long pgoff;
  2070. struct page *page;
  2071. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2072. if (pgoff == 0)
  2073. page = virt_to_page(vcpu->run);
  2074. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2075. page = virt_to_page(vcpu->pio_data);
  2076. else
  2077. return NOPAGE_SIGBUS;
  2078. get_page(page);
  2079. if (type != NULL)
  2080. *type = VM_FAULT_MINOR;
  2081. return page;
  2082. }
  2083. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2084. .nopage = kvm_vcpu_nopage,
  2085. };
  2086. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2087. {
  2088. vma->vm_ops = &kvm_vcpu_vm_ops;
  2089. return 0;
  2090. }
  2091. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2092. {
  2093. struct kvm_vcpu *vcpu = filp->private_data;
  2094. fput(vcpu->kvm->filp);
  2095. return 0;
  2096. }
  2097. static struct file_operations kvm_vcpu_fops = {
  2098. .release = kvm_vcpu_release,
  2099. .unlocked_ioctl = kvm_vcpu_ioctl,
  2100. .compat_ioctl = kvm_vcpu_ioctl,
  2101. .mmap = kvm_vcpu_mmap,
  2102. };
  2103. /*
  2104. * Allocates an inode for the vcpu.
  2105. */
  2106. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2107. {
  2108. int fd, r;
  2109. struct inode *inode;
  2110. struct file *file;
  2111. r = anon_inode_getfd(&fd, &inode, &file,
  2112. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2113. if (r)
  2114. return r;
  2115. atomic_inc(&vcpu->kvm->filp->f_count);
  2116. return fd;
  2117. }
  2118. /*
  2119. * Creates some virtual cpus. Good luck creating more than one.
  2120. */
  2121. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2122. {
  2123. int r;
  2124. struct kvm_vcpu *vcpu;
  2125. if (!valid_vcpu(n))
  2126. return -EINVAL;
  2127. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2128. if (IS_ERR(vcpu))
  2129. return PTR_ERR(vcpu);
  2130. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2131. /* We do fxsave: this must be aligned. */
  2132. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2133. vcpu_load(vcpu);
  2134. r = kvm_x86_ops->vcpu_reset(vcpu);
  2135. if (r == 0)
  2136. r = kvm_mmu_setup(vcpu);
  2137. vcpu_put(vcpu);
  2138. if (r < 0)
  2139. goto free_vcpu;
  2140. mutex_lock(&kvm->lock);
  2141. if (kvm->vcpus[n]) {
  2142. r = -EEXIST;
  2143. mutex_unlock(&kvm->lock);
  2144. goto mmu_unload;
  2145. }
  2146. kvm->vcpus[n] = vcpu;
  2147. mutex_unlock(&kvm->lock);
  2148. /* Now it's all set up, let userspace reach it */
  2149. r = create_vcpu_fd(vcpu);
  2150. if (r < 0)
  2151. goto unlink;
  2152. return r;
  2153. unlink:
  2154. mutex_lock(&kvm->lock);
  2155. kvm->vcpus[n] = NULL;
  2156. mutex_unlock(&kvm->lock);
  2157. mmu_unload:
  2158. vcpu_load(vcpu);
  2159. kvm_mmu_unload(vcpu);
  2160. vcpu_put(vcpu);
  2161. free_vcpu:
  2162. kvm_x86_ops->vcpu_free(vcpu);
  2163. return r;
  2164. }
  2165. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2166. {
  2167. if (sigset) {
  2168. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2169. vcpu->sigset_active = 1;
  2170. vcpu->sigset = *sigset;
  2171. } else
  2172. vcpu->sigset_active = 0;
  2173. return 0;
  2174. }
  2175. /*
  2176. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2177. * we have asm/x86/processor.h
  2178. */
  2179. struct fxsave {
  2180. u16 cwd;
  2181. u16 swd;
  2182. u16 twd;
  2183. u16 fop;
  2184. u64 rip;
  2185. u64 rdp;
  2186. u32 mxcsr;
  2187. u32 mxcsr_mask;
  2188. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2189. #ifdef CONFIG_X86_64
  2190. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2191. #else
  2192. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2193. #endif
  2194. };
  2195. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2196. {
  2197. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2198. vcpu_load(vcpu);
  2199. memcpy(fpu->fpr, fxsave->st_space, 128);
  2200. fpu->fcw = fxsave->cwd;
  2201. fpu->fsw = fxsave->swd;
  2202. fpu->ftwx = fxsave->twd;
  2203. fpu->last_opcode = fxsave->fop;
  2204. fpu->last_ip = fxsave->rip;
  2205. fpu->last_dp = fxsave->rdp;
  2206. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2207. vcpu_put(vcpu);
  2208. return 0;
  2209. }
  2210. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2211. {
  2212. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2213. vcpu_load(vcpu);
  2214. memcpy(fxsave->st_space, fpu->fpr, 128);
  2215. fxsave->cwd = fpu->fcw;
  2216. fxsave->swd = fpu->fsw;
  2217. fxsave->twd = fpu->ftwx;
  2218. fxsave->fop = fpu->last_opcode;
  2219. fxsave->rip = fpu->last_ip;
  2220. fxsave->rdp = fpu->last_dp;
  2221. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2222. vcpu_put(vcpu);
  2223. return 0;
  2224. }
  2225. static long kvm_vcpu_ioctl(struct file *filp,
  2226. unsigned int ioctl, unsigned long arg)
  2227. {
  2228. struct kvm_vcpu *vcpu = filp->private_data;
  2229. void __user *argp = (void __user *)arg;
  2230. int r;
  2231. switch (ioctl) {
  2232. case KVM_RUN:
  2233. r = -EINVAL;
  2234. if (arg)
  2235. goto out;
  2236. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2237. break;
  2238. case KVM_GET_REGS: {
  2239. struct kvm_regs kvm_regs;
  2240. memset(&kvm_regs, 0, sizeof kvm_regs);
  2241. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2242. if (r)
  2243. goto out;
  2244. r = -EFAULT;
  2245. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2246. goto out;
  2247. r = 0;
  2248. break;
  2249. }
  2250. case KVM_SET_REGS: {
  2251. struct kvm_regs kvm_regs;
  2252. r = -EFAULT;
  2253. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2254. goto out;
  2255. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2256. if (r)
  2257. goto out;
  2258. r = 0;
  2259. break;
  2260. }
  2261. case KVM_GET_SREGS: {
  2262. struct kvm_sregs kvm_sregs;
  2263. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2264. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2265. if (r)
  2266. goto out;
  2267. r = -EFAULT;
  2268. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2269. goto out;
  2270. r = 0;
  2271. break;
  2272. }
  2273. case KVM_SET_SREGS: {
  2274. struct kvm_sregs kvm_sregs;
  2275. r = -EFAULT;
  2276. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2277. goto out;
  2278. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2279. if (r)
  2280. goto out;
  2281. r = 0;
  2282. break;
  2283. }
  2284. case KVM_TRANSLATE: {
  2285. struct kvm_translation tr;
  2286. r = -EFAULT;
  2287. if (copy_from_user(&tr, argp, sizeof tr))
  2288. goto out;
  2289. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2290. if (r)
  2291. goto out;
  2292. r = -EFAULT;
  2293. if (copy_to_user(argp, &tr, sizeof tr))
  2294. goto out;
  2295. r = 0;
  2296. break;
  2297. }
  2298. case KVM_INTERRUPT: {
  2299. struct kvm_interrupt irq;
  2300. r = -EFAULT;
  2301. if (copy_from_user(&irq, argp, sizeof irq))
  2302. goto out;
  2303. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2304. if (r)
  2305. goto out;
  2306. r = 0;
  2307. break;
  2308. }
  2309. case KVM_DEBUG_GUEST: {
  2310. struct kvm_debug_guest dbg;
  2311. r = -EFAULT;
  2312. if (copy_from_user(&dbg, argp, sizeof dbg))
  2313. goto out;
  2314. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2315. if (r)
  2316. goto out;
  2317. r = 0;
  2318. break;
  2319. }
  2320. case KVM_SET_SIGNAL_MASK: {
  2321. struct kvm_signal_mask __user *sigmask_arg = argp;
  2322. struct kvm_signal_mask kvm_sigmask;
  2323. sigset_t sigset, *p;
  2324. p = NULL;
  2325. if (argp) {
  2326. r = -EFAULT;
  2327. if (copy_from_user(&kvm_sigmask, argp,
  2328. sizeof kvm_sigmask))
  2329. goto out;
  2330. r = -EINVAL;
  2331. if (kvm_sigmask.len != sizeof sigset)
  2332. goto out;
  2333. r = -EFAULT;
  2334. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2335. sizeof sigset))
  2336. goto out;
  2337. p = &sigset;
  2338. }
  2339. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2340. break;
  2341. }
  2342. case KVM_GET_FPU: {
  2343. struct kvm_fpu fpu;
  2344. memset(&fpu, 0, sizeof fpu);
  2345. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2346. if (r)
  2347. goto out;
  2348. r = -EFAULT;
  2349. if (copy_to_user(argp, &fpu, sizeof fpu))
  2350. goto out;
  2351. r = 0;
  2352. break;
  2353. }
  2354. case KVM_SET_FPU: {
  2355. struct kvm_fpu fpu;
  2356. r = -EFAULT;
  2357. if (copy_from_user(&fpu, argp, sizeof fpu))
  2358. goto out;
  2359. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2360. if (r)
  2361. goto out;
  2362. r = 0;
  2363. break;
  2364. }
  2365. default:
  2366. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2367. }
  2368. out:
  2369. return r;
  2370. }
  2371. static long kvm_vm_ioctl(struct file *filp,
  2372. unsigned int ioctl, unsigned long arg)
  2373. {
  2374. struct kvm *kvm = filp->private_data;
  2375. void __user *argp = (void __user *)arg;
  2376. int r;
  2377. switch (ioctl) {
  2378. case KVM_CREATE_VCPU:
  2379. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2380. if (r < 0)
  2381. goto out;
  2382. break;
  2383. case KVM_SET_USER_MEMORY_REGION: {
  2384. struct kvm_userspace_memory_region kvm_userspace_mem;
  2385. r = -EFAULT;
  2386. if (copy_from_user(&kvm_userspace_mem, argp,
  2387. sizeof kvm_userspace_mem))
  2388. goto out;
  2389. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2390. if (r)
  2391. goto out;
  2392. break;
  2393. }
  2394. case KVM_GET_DIRTY_LOG: {
  2395. struct kvm_dirty_log log;
  2396. r = -EFAULT;
  2397. if (copy_from_user(&log, argp, sizeof log))
  2398. goto out;
  2399. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2400. if (r)
  2401. goto out;
  2402. break;
  2403. }
  2404. default:
  2405. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  2406. }
  2407. out:
  2408. return r;
  2409. }
  2410. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2411. unsigned long address,
  2412. int *type)
  2413. {
  2414. struct kvm *kvm = vma->vm_file->private_data;
  2415. unsigned long pgoff;
  2416. struct page *page;
  2417. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2418. if (!kvm_is_visible_gfn(kvm, pgoff))
  2419. return NOPAGE_SIGBUS;
  2420. page = gfn_to_page(kvm, pgoff);
  2421. if (is_error_page(page)) {
  2422. kvm_release_page(page);
  2423. return NOPAGE_SIGBUS;
  2424. }
  2425. if (type != NULL)
  2426. *type = VM_FAULT_MINOR;
  2427. return page;
  2428. }
  2429. static struct vm_operations_struct kvm_vm_vm_ops = {
  2430. .nopage = kvm_vm_nopage,
  2431. };
  2432. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2433. {
  2434. vma->vm_ops = &kvm_vm_vm_ops;
  2435. return 0;
  2436. }
  2437. static struct file_operations kvm_vm_fops = {
  2438. .release = kvm_vm_release,
  2439. .unlocked_ioctl = kvm_vm_ioctl,
  2440. .compat_ioctl = kvm_vm_ioctl,
  2441. .mmap = kvm_vm_mmap,
  2442. };
  2443. static int kvm_dev_ioctl_create_vm(void)
  2444. {
  2445. int fd, r;
  2446. struct inode *inode;
  2447. struct file *file;
  2448. struct kvm *kvm;
  2449. kvm = kvm_create_vm();
  2450. if (IS_ERR(kvm))
  2451. return PTR_ERR(kvm);
  2452. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2453. if (r) {
  2454. kvm_destroy_vm(kvm);
  2455. return r;
  2456. }
  2457. kvm->filp = file;
  2458. return fd;
  2459. }
  2460. static long kvm_dev_ioctl(struct file *filp,
  2461. unsigned int ioctl, unsigned long arg)
  2462. {
  2463. void __user *argp = (void __user *)arg;
  2464. long r = -EINVAL;
  2465. switch (ioctl) {
  2466. case KVM_GET_API_VERSION:
  2467. r = -EINVAL;
  2468. if (arg)
  2469. goto out;
  2470. r = KVM_API_VERSION;
  2471. break;
  2472. case KVM_CREATE_VM:
  2473. r = -EINVAL;
  2474. if (arg)
  2475. goto out;
  2476. r = kvm_dev_ioctl_create_vm();
  2477. break;
  2478. case KVM_CHECK_EXTENSION: {
  2479. int ext = (long)argp;
  2480. switch (ext) {
  2481. case KVM_CAP_IRQCHIP:
  2482. case KVM_CAP_HLT:
  2483. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2484. case KVM_CAP_USER_MEMORY:
  2485. case KVM_CAP_SET_TSS_ADDR:
  2486. r = 1;
  2487. break;
  2488. default:
  2489. r = 0;
  2490. break;
  2491. }
  2492. break;
  2493. }
  2494. case KVM_GET_VCPU_MMAP_SIZE:
  2495. r = -EINVAL;
  2496. if (arg)
  2497. goto out;
  2498. r = 2 * PAGE_SIZE;
  2499. break;
  2500. default:
  2501. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2502. }
  2503. out:
  2504. return r;
  2505. }
  2506. static struct file_operations kvm_chardev_ops = {
  2507. .unlocked_ioctl = kvm_dev_ioctl,
  2508. .compat_ioctl = kvm_dev_ioctl,
  2509. };
  2510. static struct miscdevice kvm_dev = {
  2511. KVM_MINOR,
  2512. "kvm",
  2513. &kvm_chardev_ops,
  2514. };
  2515. /*
  2516. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2517. * cached on it.
  2518. */
  2519. static void decache_vcpus_on_cpu(int cpu)
  2520. {
  2521. struct kvm *vm;
  2522. struct kvm_vcpu *vcpu;
  2523. int i;
  2524. spin_lock(&kvm_lock);
  2525. list_for_each_entry(vm, &vm_list, vm_list)
  2526. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2527. vcpu = vm->vcpus[i];
  2528. if (!vcpu)
  2529. continue;
  2530. /*
  2531. * If the vcpu is locked, then it is running on some
  2532. * other cpu and therefore it is not cached on the
  2533. * cpu in question.
  2534. *
  2535. * If it's not locked, check the last cpu it executed
  2536. * on.
  2537. */
  2538. if (mutex_trylock(&vcpu->mutex)) {
  2539. if (vcpu->cpu == cpu) {
  2540. kvm_x86_ops->vcpu_decache(vcpu);
  2541. vcpu->cpu = -1;
  2542. }
  2543. mutex_unlock(&vcpu->mutex);
  2544. }
  2545. }
  2546. spin_unlock(&kvm_lock);
  2547. }
  2548. static void hardware_enable(void *junk)
  2549. {
  2550. int cpu = raw_smp_processor_id();
  2551. if (cpu_isset(cpu, cpus_hardware_enabled))
  2552. return;
  2553. cpu_set(cpu, cpus_hardware_enabled);
  2554. kvm_x86_ops->hardware_enable(NULL);
  2555. }
  2556. static void hardware_disable(void *junk)
  2557. {
  2558. int cpu = raw_smp_processor_id();
  2559. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2560. return;
  2561. cpu_clear(cpu, cpus_hardware_enabled);
  2562. decache_vcpus_on_cpu(cpu);
  2563. kvm_x86_ops->hardware_disable(NULL);
  2564. }
  2565. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2566. void *v)
  2567. {
  2568. int cpu = (long)v;
  2569. switch (val) {
  2570. case CPU_DYING:
  2571. case CPU_DYING_FROZEN:
  2572. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2573. cpu);
  2574. hardware_disable(NULL);
  2575. break;
  2576. case CPU_UP_CANCELED:
  2577. case CPU_UP_CANCELED_FROZEN:
  2578. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2579. cpu);
  2580. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2581. break;
  2582. case CPU_ONLINE:
  2583. case CPU_ONLINE_FROZEN:
  2584. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2585. cpu);
  2586. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2587. break;
  2588. }
  2589. return NOTIFY_OK;
  2590. }
  2591. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2592. void *v)
  2593. {
  2594. if (val == SYS_RESTART) {
  2595. /*
  2596. * Some (well, at least mine) BIOSes hang on reboot if
  2597. * in vmx root mode.
  2598. */
  2599. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2600. on_each_cpu(hardware_disable, NULL, 0, 1);
  2601. }
  2602. return NOTIFY_OK;
  2603. }
  2604. static struct notifier_block kvm_reboot_notifier = {
  2605. .notifier_call = kvm_reboot,
  2606. .priority = 0,
  2607. };
  2608. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2609. {
  2610. memset(bus, 0, sizeof(*bus));
  2611. }
  2612. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2613. {
  2614. int i;
  2615. for (i = 0; i < bus->dev_count; i++) {
  2616. struct kvm_io_device *pos = bus->devs[i];
  2617. kvm_iodevice_destructor(pos);
  2618. }
  2619. }
  2620. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2621. {
  2622. int i;
  2623. for (i = 0; i < bus->dev_count; i++) {
  2624. struct kvm_io_device *pos = bus->devs[i];
  2625. if (pos->in_range(pos, addr))
  2626. return pos;
  2627. }
  2628. return NULL;
  2629. }
  2630. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2631. {
  2632. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2633. bus->devs[bus->dev_count++] = dev;
  2634. }
  2635. static struct notifier_block kvm_cpu_notifier = {
  2636. .notifier_call = kvm_cpu_hotplug,
  2637. .priority = 20, /* must be > scheduler priority */
  2638. };
  2639. static u64 stat_get(void *_offset)
  2640. {
  2641. unsigned offset = (long)_offset;
  2642. u64 total = 0;
  2643. struct kvm *kvm;
  2644. struct kvm_vcpu *vcpu;
  2645. int i;
  2646. spin_lock(&kvm_lock);
  2647. list_for_each_entry(kvm, &vm_list, vm_list)
  2648. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2649. vcpu = kvm->vcpus[i];
  2650. if (vcpu)
  2651. total += *(u32 *)((void *)vcpu + offset);
  2652. }
  2653. spin_unlock(&kvm_lock);
  2654. return total;
  2655. }
  2656. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2657. static __init void kvm_init_debug(void)
  2658. {
  2659. struct kvm_stats_debugfs_item *p;
  2660. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2661. for (p = debugfs_entries; p->name; ++p)
  2662. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2663. (void *)(long)p->offset,
  2664. &stat_fops);
  2665. }
  2666. static void kvm_exit_debug(void)
  2667. {
  2668. struct kvm_stats_debugfs_item *p;
  2669. for (p = debugfs_entries; p->name; ++p)
  2670. debugfs_remove(p->dentry);
  2671. debugfs_remove(debugfs_dir);
  2672. }
  2673. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2674. {
  2675. hardware_disable(NULL);
  2676. return 0;
  2677. }
  2678. static int kvm_resume(struct sys_device *dev)
  2679. {
  2680. hardware_enable(NULL);
  2681. return 0;
  2682. }
  2683. static struct sysdev_class kvm_sysdev_class = {
  2684. .name = "kvm",
  2685. .suspend = kvm_suspend,
  2686. .resume = kvm_resume,
  2687. };
  2688. static struct sys_device kvm_sysdev = {
  2689. .id = 0,
  2690. .cls = &kvm_sysdev_class,
  2691. };
  2692. struct page *bad_page;
  2693. static inline
  2694. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2695. {
  2696. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2697. }
  2698. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2699. {
  2700. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2701. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2702. }
  2703. static void kvm_sched_out(struct preempt_notifier *pn,
  2704. struct task_struct *next)
  2705. {
  2706. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2707. kvm_x86_ops->vcpu_put(vcpu);
  2708. }
  2709. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2710. struct module *module)
  2711. {
  2712. int r;
  2713. int cpu;
  2714. if (kvm_x86_ops) {
  2715. printk(KERN_ERR "kvm: already loaded the other module\n");
  2716. return -EEXIST;
  2717. }
  2718. if (!ops->cpu_has_kvm_support()) {
  2719. printk(KERN_ERR "kvm: no hardware support\n");
  2720. return -EOPNOTSUPP;
  2721. }
  2722. if (ops->disabled_by_bios()) {
  2723. printk(KERN_ERR "kvm: disabled by bios\n");
  2724. return -EOPNOTSUPP;
  2725. }
  2726. kvm_x86_ops = ops;
  2727. r = kvm_x86_ops->hardware_setup();
  2728. if (r < 0)
  2729. goto out;
  2730. for_each_online_cpu(cpu) {
  2731. smp_call_function_single(cpu,
  2732. kvm_x86_ops->check_processor_compatibility,
  2733. &r, 0, 1);
  2734. if (r < 0)
  2735. goto out_free_0;
  2736. }
  2737. on_each_cpu(hardware_enable, NULL, 0, 1);
  2738. r = register_cpu_notifier(&kvm_cpu_notifier);
  2739. if (r)
  2740. goto out_free_1;
  2741. register_reboot_notifier(&kvm_reboot_notifier);
  2742. r = sysdev_class_register(&kvm_sysdev_class);
  2743. if (r)
  2744. goto out_free_2;
  2745. r = sysdev_register(&kvm_sysdev);
  2746. if (r)
  2747. goto out_free_3;
  2748. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2749. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2750. __alignof__(struct kvm_vcpu), 0, 0);
  2751. if (!kvm_vcpu_cache) {
  2752. r = -ENOMEM;
  2753. goto out_free_4;
  2754. }
  2755. kvm_chardev_ops.owner = module;
  2756. r = misc_register(&kvm_dev);
  2757. if (r) {
  2758. printk(KERN_ERR "kvm: misc device register failed\n");
  2759. goto out_free;
  2760. }
  2761. kvm_preempt_ops.sched_in = kvm_sched_in;
  2762. kvm_preempt_ops.sched_out = kvm_sched_out;
  2763. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2764. return 0;
  2765. out_free:
  2766. kmem_cache_destroy(kvm_vcpu_cache);
  2767. out_free_4:
  2768. sysdev_unregister(&kvm_sysdev);
  2769. out_free_3:
  2770. sysdev_class_unregister(&kvm_sysdev_class);
  2771. out_free_2:
  2772. unregister_reboot_notifier(&kvm_reboot_notifier);
  2773. unregister_cpu_notifier(&kvm_cpu_notifier);
  2774. out_free_1:
  2775. on_each_cpu(hardware_disable, NULL, 0, 1);
  2776. out_free_0:
  2777. kvm_x86_ops->hardware_unsetup();
  2778. out:
  2779. kvm_x86_ops = NULL;
  2780. return r;
  2781. }
  2782. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2783. void kvm_exit_x86(void)
  2784. {
  2785. misc_deregister(&kvm_dev);
  2786. kmem_cache_destroy(kvm_vcpu_cache);
  2787. sysdev_unregister(&kvm_sysdev);
  2788. sysdev_class_unregister(&kvm_sysdev_class);
  2789. unregister_reboot_notifier(&kvm_reboot_notifier);
  2790. unregister_cpu_notifier(&kvm_cpu_notifier);
  2791. on_each_cpu(hardware_disable, NULL, 0, 1);
  2792. kvm_x86_ops->hardware_unsetup();
  2793. kvm_x86_ops = NULL;
  2794. }
  2795. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2796. static __init int kvm_init(void)
  2797. {
  2798. int r;
  2799. r = kvm_mmu_module_init();
  2800. if (r)
  2801. goto out4;
  2802. kvm_init_debug();
  2803. kvm_arch_init();
  2804. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2805. if (bad_page == NULL) {
  2806. r = -ENOMEM;
  2807. goto out;
  2808. }
  2809. return 0;
  2810. out:
  2811. kvm_exit_debug();
  2812. kvm_mmu_module_exit();
  2813. out4:
  2814. return r;
  2815. }
  2816. static __exit void kvm_exit(void)
  2817. {
  2818. kvm_exit_debug();
  2819. __free_page(bad_page);
  2820. kvm_mmu_module_exit();
  2821. }
  2822. module_init(kvm_init)
  2823. module_exit(kvm_exit)