af_key.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. } dump;
  54. };
  55. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  56. {
  57. return (struct pfkey_sock *)sk;
  58. }
  59. static int pfkey_can_dump(struct sock *sk)
  60. {
  61. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  62. return 1;
  63. return 0;
  64. }
  65. static int pfkey_do_dump(struct pfkey_sock *pfk)
  66. {
  67. int rc;
  68. rc = pfk->dump.dump(pfk);
  69. if (rc == -ENOBUFS)
  70. return 0;
  71. pfk->dump.done(pfk);
  72. pfk->dump.dump = NULL;
  73. pfk->dump.done = NULL;
  74. return rc;
  75. }
  76. static void pfkey_sock_destruct(struct sock *sk)
  77. {
  78. skb_queue_purge(&sk->sk_receive_queue);
  79. if (!sock_flag(sk, SOCK_DEAD)) {
  80. printk("Attempt to release alive pfkey socket: %p\n", sk);
  81. return;
  82. }
  83. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  84. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  85. atomic_dec(&pfkey_socks_nr);
  86. }
  87. static void pfkey_table_grab(void)
  88. {
  89. write_lock_bh(&pfkey_table_lock);
  90. if (atomic_read(&pfkey_table_users)) {
  91. DECLARE_WAITQUEUE(wait, current);
  92. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  93. for(;;) {
  94. set_current_state(TASK_UNINTERRUPTIBLE);
  95. if (atomic_read(&pfkey_table_users) == 0)
  96. break;
  97. write_unlock_bh(&pfkey_table_lock);
  98. schedule();
  99. write_lock_bh(&pfkey_table_lock);
  100. }
  101. __set_current_state(TASK_RUNNING);
  102. remove_wait_queue(&pfkey_table_wait, &wait);
  103. }
  104. }
  105. static __inline__ void pfkey_table_ungrab(void)
  106. {
  107. write_unlock_bh(&pfkey_table_lock);
  108. wake_up(&pfkey_table_wait);
  109. }
  110. static __inline__ void pfkey_lock_table(void)
  111. {
  112. /* read_lock() synchronizes us to pfkey_table_grab */
  113. read_lock(&pfkey_table_lock);
  114. atomic_inc(&pfkey_table_users);
  115. read_unlock(&pfkey_table_lock);
  116. }
  117. static __inline__ void pfkey_unlock_table(void)
  118. {
  119. if (atomic_dec_and_test(&pfkey_table_users))
  120. wake_up(&pfkey_table_wait);
  121. }
  122. static const struct proto_ops pfkey_ops;
  123. static void pfkey_insert(struct sock *sk)
  124. {
  125. pfkey_table_grab();
  126. sk_add_node(sk, &pfkey_table);
  127. pfkey_table_ungrab();
  128. }
  129. static void pfkey_remove(struct sock *sk)
  130. {
  131. pfkey_table_grab();
  132. sk_del_node_init(sk);
  133. pfkey_table_ungrab();
  134. }
  135. static struct proto key_proto = {
  136. .name = "KEY",
  137. .owner = THIS_MODULE,
  138. .obj_size = sizeof(struct pfkey_sock),
  139. };
  140. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  141. {
  142. struct sock *sk;
  143. int err;
  144. if (net != &init_net)
  145. return -EAFNOSUPPORT;
  146. if (!capable(CAP_NET_ADMIN))
  147. return -EPERM;
  148. if (sock->type != SOCK_RAW)
  149. return -ESOCKTNOSUPPORT;
  150. if (protocol != PF_KEY_V2)
  151. return -EPROTONOSUPPORT;
  152. err = -ENOMEM;
  153. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  154. if (sk == NULL)
  155. goto out;
  156. sock->ops = &pfkey_ops;
  157. sock_init_data(sock, sk);
  158. sk->sk_family = PF_KEY;
  159. sk->sk_destruct = pfkey_sock_destruct;
  160. atomic_inc(&pfkey_socks_nr);
  161. pfkey_insert(sk);
  162. return 0;
  163. out:
  164. return err;
  165. }
  166. static int pfkey_release(struct socket *sock)
  167. {
  168. struct sock *sk = sock->sk;
  169. if (!sk)
  170. return 0;
  171. pfkey_remove(sk);
  172. sock_orphan(sk);
  173. sock->sk = NULL;
  174. skb_queue_purge(&sk->sk_write_queue);
  175. sock_put(sk);
  176. return 0;
  177. }
  178. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  179. gfp_t allocation, struct sock *sk)
  180. {
  181. int err = -ENOBUFS;
  182. sock_hold(sk);
  183. if (*skb2 == NULL) {
  184. if (atomic_read(&skb->users) != 1) {
  185. *skb2 = skb_clone(skb, allocation);
  186. } else {
  187. *skb2 = skb;
  188. atomic_inc(&skb->users);
  189. }
  190. }
  191. if (*skb2 != NULL) {
  192. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  193. skb_orphan(*skb2);
  194. skb_set_owner_r(*skb2, sk);
  195. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  196. sk->sk_data_ready(sk, (*skb2)->len);
  197. *skb2 = NULL;
  198. err = 0;
  199. }
  200. }
  201. sock_put(sk);
  202. return err;
  203. }
  204. /* Send SKB to all pfkey sockets matching selected criteria. */
  205. #define BROADCAST_ALL 0
  206. #define BROADCAST_ONE 1
  207. #define BROADCAST_REGISTERED 2
  208. #define BROADCAST_PROMISC_ONLY 4
  209. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  210. int broadcast_flags, struct sock *one_sk)
  211. {
  212. struct sock *sk;
  213. struct hlist_node *node;
  214. struct sk_buff *skb2 = NULL;
  215. int err = -ESRCH;
  216. /* XXX Do we need something like netlink_overrun? I think
  217. * XXX PF_KEY socket apps will not mind current behavior.
  218. */
  219. if (!skb)
  220. return -ENOMEM;
  221. pfkey_lock_table();
  222. sk_for_each(sk, node, &pfkey_table) {
  223. struct pfkey_sock *pfk = pfkey_sk(sk);
  224. int err2;
  225. /* Yes, it means that if you are meant to receive this
  226. * pfkey message you receive it twice as promiscuous
  227. * socket.
  228. */
  229. if (pfk->promisc)
  230. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  231. /* the exact target will be processed later */
  232. if (sk == one_sk)
  233. continue;
  234. if (broadcast_flags != BROADCAST_ALL) {
  235. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  236. continue;
  237. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  238. !pfk->registered)
  239. continue;
  240. if (broadcast_flags & BROADCAST_ONE)
  241. continue;
  242. }
  243. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  244. /* Error is cleare after succecful sending to at least one
  245. * registered KM */
  246. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  247. err = err2;
  248. }
  249. pfkey_unlock_table();
  250. if (one_sk != NULL)
  251. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  252. if (skb2)
  253. kfree_skb(skb2);
  254. kfree_skb(skb);
  255. return err;
  256. }
  257. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  258. {
  259. *new = *orig;
  260. }
  261. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  262. {
  263. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  264. struct sadb_msg *hdr;
  265. if (!skb)
  266. return -ENOBUFS;
  267. /* Woe be to the platform trying to support PFKEY yet
  268. * having normal errnos outside the 1-255 range, inclusive.
  269. */
  270. err = -err;
  271. if (err == ERESTARTSYS ||
  272. err == ERESTARTNOHAND ||
  273. err == ERESTARTNOINTR)
  274. err = EINTR;
  275. if (err >= 512)
  276. err = EINVAL;
  277. BUG_ON(err <= 0 || err >= 256);
  278. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  279. pfkey_hdr_dup(hdr, orig);
  280. hdr->sadb_msg_errno = (uint8_t) err;
  281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  282. sizeof(uint64_t));
  283. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  284. return 0;
  285. }
  286. static u8 sadb_ext_min_len[] = {
  287. [SADB_EXT_RESERVED] = (u8) 0,
  288. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  289. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  292. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  295. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  297. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  299. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  300. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  301. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  303. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  304. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  305. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  306. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  307. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  308. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  310. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  311. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(void *p)
  315. {
  316. struct sadb_address *sp = p;
  317. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  318. struct sockaddr_in *sin;
  319. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  320. struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. break;
  350. }
  351. return 0;
  352. }
  353. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  354. {
  355. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  356. sec_ctx->sadb_x_ctx_len,
  357. sizeof(uint64_t));
  358. }
  359. static inline int verify_sec_ctx_len(void *p)
  360. {
  361. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  362. int len = sec_ctx->sadb_x_ctx_len;
  363. if (len > PAGE_SIZE)
  364. return -EINVAL;
  365. len = pfkey_sec_ctx_len(sec_ctx);
  366. if (sec_ctx->sadb_x_sec_len != len)
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(struct sadb_address *src,
  387. struct sadb_address *dst)
  388. {
  389. struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (struct sockaddr *)(src + 1);
  393. d_addr = (struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. break;
  458. default:
  459. return 0;
  460. }
  461. /* NOTREACHED */
  462. }
  463. static uint8_t
  464. pfkey_proto2satype(uint16_t proto)
  465. {
  466. switch (proto) {
  467. case IPPROTO_AH:
  468. return SADB_SATYPE_AH;
  469. case IPPROTO_ESP:
  470. return SADB_SATYPE_ESP;
  471. case IPPROTO_COMP:
  472. return SADB_X_SATYPE_IPCOMP;
  473. break;
  474. default:
  475. return 0;
  476. }
  477. /* NOTREACHED */
  478. }
  479. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  480. * say specifically 'just raw sockets' as we encode them as 255.
  481. */
  482. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  483. {
  484. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  485. }
  486. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  487. {
  488. return (proto ? proto : IPSEC_PROTO_ANY);
  489. }
  490. static inline int pfkey_sockaddr_len(sa_family_t family)
  491. {
  492. switch (family) {
  493. case AF_INET:
  494. return sizeof(struct sockaddr_in);
  495. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  496. case AF_INET6:
  497. return sizeof(struct sockaddr_in6);
  498. #endif
  499. }
  500. return 0;
  501. }
  502. static
  503. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  504. {
  505. switch (sa->sa_family) {
  506. case AF_INET:
  507. xaddr->a4 =
  508. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  509. return AF_INET;
  510. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  511. case AF_INET6:
  512. memcpy(xaddr->a6,
  513. &((struct sockaddr_in6 *)sa)->sin6_addr,
  514. sizeof(struct in6_addr));
  515. return AF_INET6;
  516. #endif
  517. }
  518. return 0;
  519. }
  520. static
  521. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  522. {
  523. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  524. xaddr);
  525. }
  526. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  527. {
  528. struct sadb_sa *sa;
  529. struct sadb_address *addr;
  530. uint16_t proto;
  531. unsigned short family;
  532. xfrm_address_t *xaddr;
  533. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  534. if (sa == NULL)
  535. return NULL;
  536. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  537. if (proto == 0)
  538. return NULL;
  539. /* sadb_address_len should be checked by caller */
  540. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  541. if (addr == NULL)
  542. return NULL;
  543. family = ((struct sockaddr *)(addr + 1))->sa_family;
  544. switch (family) {
  545. case AF_INET:
  546. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  547. break;
  548. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  549. case AF_INET6:
  550. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  551. break;
  552. #endif
  553. default:
  554. xaddr = NULL;
  555. }
  556. if (!xaddr)
  557. return NULL;
  558. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  559. }
  560. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  561. static int
  562. pfkey_sockaddr_size(sa_family_t family)
  563. {
  564. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  565. }
  566. static inline int pfkey_mode_from_xfrm(int mode)
  567. {
  568. switch(mode) {
  569. case XFRM_MODE_TRANSPORT:
  570. return IPSEC_MODE_TRANSPORT;
  571. case XFRM_MODE_TUNNEL:
  572. return IPSEC_MODE_TUNNEL;
  573. case XFRM_MODE_BEET:
  574. return IPSEC_MODE_BEET;
  575. default:
  576. return -1;
  577. }
  578. }
  579. static inline int pfkey_mode_to_xfrm(int mode)
  580. {
  581. switch(mode) {
  582. case IPSEC_MODE_ANY: /*XXX*/
  583. case IPSEC_MODE_TRANSPORT:
  584. return XFRM_MODE_TRANSPORT;
  585. case IPSEC_MODE_TUNNEL:
  586. return XFRM_MODE_TUNNEL;
  587. case IPSEC_MODE_BEET:
  588. return XFRM_MODE_BEET;
  589. default:
  590. return -1;
  591. }
  592. }
  593. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  594. struct sockaddr *sa,
  595. unsigned short family)
  596. {
  597. switch (family) {
  598. case AF_INET:
  599. {
  600. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  601. sin->sin_family = AF_INET;
  602. sin->sin_port = port;
  603. sin->sin_addr.s_addr = xaddr->a4;
  604. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  605. return 32;
  606. }
  607. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  608. case AF_INET6:
  609. {
  610. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  611. sin6->sin6_family = AF_INET6;
  612. sin6->sin6_port = port;
  613. sin6->sin6_flowinfo = 0;
  614. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  615. sin6->sin6_scope_id = 0;
  616. return 128;
  617. }
  618. #endif
  619. }
  620. return 0;
  621. }
  622. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  623. int add_keys, int hsc)
  624. {
  625. struct sk_buff *skb;
  626. struct sadb_msg *hdr;
  627. struct sadb_sa *sa;
  628. struct sadb_lifetime *lifetime;
  629. struct sadb_address *addr;
  630. struct sadb_key *key;
  631. struct sadb_x_sa2 *sa2;
  632. struct sadb_x_sec_ctx *sec_ctx;
  633. struct xfrm_sec_ctx *xfrm_ctx;
  634. int ctx_size = 0;
  635. int size;
  636. int auth_key_size = 0;
  637. int encrypt_key_size = 0;
  638. int sockaddr_size;
  639. struct xfrm_encap_tmpl *natt = NULL;
  640. int mode;
  641. /* address family check */
  642. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  643. if (!sockaddr_size)
  644. return ERR_PTR(-EINVAL);
  645. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  646. key(AE), (identity(SD),) (sensitivity)> */
  647. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  648. sizeof(struct sadb_lifetime) +
  649. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  650. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  651. sizeof(struct sadb_address)*2 +
  652. sockaddr_size*2 +
  653. sizeof(struct sadb_x_sa2);
  654. if ((xfrm_ctx = x->security)) {
  655. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  656. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  657. }
  658. /* identity & sensitivity */
  659. if ((x->props.family == AF_INET &&
  660. x->sel.saddr.a4 != x->props.saddr.a4)
  661. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  662. || (x->props.family == AF_INET6 &&
  663. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  664. #endif
  665. )
  666. size += sizeof(struct sadb_address) + sockaddr_size;
  667. if (add_keys) {
  668. if (x->aalg && x->aalg->alg_key_len) {
  669. auth_key_size =
  670. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  671. size += sizeof(struct sadb_key) + auth_key_size;
  672. }
  673. if (x->ealg && x->ealg->alg_key_len) {
  674. encrypt_key_size =
  675. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  676. size += sizeof(struct sadb_key) + encrypt_key_size;
  677. }
  678. }
  679. if (x->encap)
  680. natt = x->encap;
  681. if (natt && natt->encap_type) {
  682. size += sizeof(struct sadb_x_nat_t_type);
  683. size += sizeof(struct sadb_x_nat_t_port);
  684. size += sizeof(struct sadb_x_nat_t_port);
  685. }
  686. skb = alloc_skb(size + 16, GFP_ATOMIC);
  687. if (skb == NULL)
  688. return ERR_PTR(-ENOBUFS);
  689. /* call should fill header later */
  690. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  691. memset(hdr, 0, size); /* XXX do we need this ? */
  692. hdr->sadb_msg_len = size / sizeof(uint64_t);
  693. /* sa */
  694. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  695. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  696. sa->sadb_sa_exttype = SADB_EXT_SA;
  697. sa->sadb_sa_spi = x->id.spi;
  698. sa->sadb_sa_replay = x->props.replay_window;
  699. switch (x->km.state) {
  700. case XFRM_STATE_VALID:
  701. sa->sadb_sa_state = x->km.dying ?
  702. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  703. break;
  704. case XFRM_STATE_ACQ:
  705. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  706. break;
  707. default:
  708. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  709. break;
  710. }
  711. sa->sadb_sa_auth = 0;
  712. if (x->aalg) {
  713. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  714. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  715. }
  716. sa->sadb_sa_encrypt = 0;
  717. BUG_ON(x->ealg && x->calg);
  718. if (x->ealg) {
  719. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  720. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  721. }
  722. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  723. if (x->calg) {
  724. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  725. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  726. }
  727. sa->sadb_sa_flags = 0;
  728. if (x->props.flags & XFRM_STATE_NOECN)
  729. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  730. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  731. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  732. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  733. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  734. /* hard time */
  735. if (hsc & 2) {
  736. lifetime = (struct sadb_lifetime *) skb_put(skb,
  737. sizeof(struct sadb_lifetime));
  738. lifetime->sadb_lifetime_len =
  739. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  740. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  741. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  742. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  743. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  744. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  745. }
  746. /* soft time */
  747. if (hsc & 1) {
  748. lifetime = (struct sadb_lifetime *) skb_put(skb,
  749. sizeof(struct sadb_lifetime));
  750. lifetime->sadb_lifetime_len =
  751. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  752. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  753. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  754. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  755. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  756. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  757. }
  758. /* current time */
  759. lifetime = (struct sadb_lifetime *) skb_put(skb,
  760. sizeof(struct sadb_lifetime));
  761. lifetime->sadb_lifetime_len =
  762. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  763. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  764. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  765. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  766. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  767. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  768. /* src address */
  769. addr = (struct sadb_address*) skb_put(skb,
  770. sizeof(struct sadb_address)+sockaddr_size);
  771. addr->sadb_address_len =
  772. (sizeof(struct sadb_address)+sockaddr_size)/
  773. sizeof(uint64_t);
  774. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  775. /* "if the ports are non-zero, then the sadb_address_proto field,
  776. normally zero, MUST be filled in with the transport
  777. protocol's number." - RFC2367 */
  778. addr->sadb_address_proto = 0;
  779. addr->sadb_address_reserved = 0;
  780. addr->sadb_address_prefixlen =
  781. pfkey_sockaddr_fill(&x->props.saddr, 0,
  782. (struct sockaddr *) (addr + 1),
  783. x->props.family);
  784. if (!addr->sadb_address_prefixlen)
  785. BUG();
  786. /* dst address */
  787. addr = (struct sadb_address*) skb_put(skb,
  788. sizeof(struct sadb_address)+sockaddr_size);
  789. addr->sadb_address_len =
  790. (sizeof(struct sadb_address)+sockaddr_size)/
  791. sizeof(uint64_t);
  792. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  793. addr->sadb_address_proto = 0;
  794. addr->sadb_address_reserved = 0;
  795. addr->sadb_address_prefixlen =
  796. pfkey_sockaddr_fill(&x->id.daddr, 0,
  797. (struct sockaddr *) (addr + 1),
  798. x->props.family);
  799. if (!addr->sadb_address_prefixlen)
  800. BUG();
  801. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  802. x->props.family)) {
  803. addr = (struct sadb_address*) skb_put(skb,
  804. sizeof(struct sadb_address)+sockaddr_size);
  805. addr->sadb_address_len =
  806. (sizeof(struct sadb_address)+sockaddr_size)/
  807. sizeof(uint64_t);
  808. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  809. addr->sadb_address_proto =
  810. pfkey_proto_from_xfrm(x->sel.proto);
  811. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  812. addr->sadb_address_reserved = 0;
  813. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  814. (struct sockaddr *) (addr + 1),
  815. x->props.family);
  816. }
  817. /* auth key */
  818. if (add_keys && auth_key_size) {
  819. key = (struct sadb_key *) skb_put(skb,
  820. sizeof(struct sadb_key)+auth_key_size);
  821. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  822. sizeof(uint64_t);
  823. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  824. key->sadb_key_bits = x->aalg->alg_key_len;
  825. key->sadb_key_reserved = 0;
  826. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  827. }
  828. /* encrypt key */
  829. if (add_keys && encrypt_key_size) {
  830. key = (struct sadb_key *) skb_put(skb,
  831. sizeof(struct sadb_key)+encrypt_key_size);
  832. key->sadb_key_len = (sizeof(struct sadb_key) +
  833. encrypt_key_size) / sizeof(uint64_t);
  834. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  835. key->sadb_key_bits = x->ealg->alg_key_len;
  836. key->sadb_key_reserved = 0;
  837. memcpy(key + 1, x->ealg->alg_key,
  838. (x->ealg->alg_key_len+7)/8);
  839. }
  840. /* sa */
  841. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  842. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  843. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  844. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  845. kfree_skb(skb);
  846. return ERR_PTR(-EINVAL);
  847. }
  848. sa2->sadb_x_sa2_mode = mode;
  849. sa2->sadb_x_sa2_reserved1 = 0;
  850. sa2->sadb_x_sa2_reserved2 = 0;
  851. sa2->sadb_x_sa2_sequence = 0;
  852. sa2->sadb_x_sa2_reqid = x->props.reqid;
  853. if (natt && natt->encap_type) {
  854. struct sadb_x_nat_t_type *n_type;
  855. struct sadb_x_nat_t_port *n_port;
  856. /* type */
  857. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  858. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  859. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  860. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  861. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  862. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  863. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  864. /* source port */
  865. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  866. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  867. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  868. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  869. n_port->sadb_x_nat_t_port_reserved = 0;
  870. /* dest port */
  871. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  872. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  873. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  874. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  875. n_port->sadb_x_nat_t_port_reserved = 0;
  876. }
  877. /* security context */
  878. if (xfrm_ctx) {
  879. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  880. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  881. sec_ctx->sadb_x_sec_len =
  882. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  883. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  884. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  885. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  886. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  887. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  888. xfrm_ctx->ctx_len);
  889. }
  890. return skb;
  891. }
  892. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  893. {
  894. struct sk_buff *skb;
  895. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  896. return skb;
  897. }
  898. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  899. int hsc)
  900. {
  901. return __pfkey_xfrm_state2msg(x, 0, hsc);
  902. }
  903. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  904. void **ext_hdrs)
  905. {
  906. struct xfrm_state *x;
  907. struct sadb_lifetime *lifetime;
  908. struct sadb_sa *sa;
  909. struct sadb_key *key;
  910. struct sadb_x_sec_ctx *sec_ctx;
  911. uint16_t proto;
  912. int err;
  913. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  914. if (!sa ||
  915. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  916. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  917. return ERR_PTR(-EINVAL);
  918. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  919. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  920. return ERR_PTR(-EINVAL);
  921. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  922. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  923. return ERR_PTR(-EINVAL);
  924. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  925. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  926. return ERR_PTR(-EINVAL);
  927. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  928. if (proto == 0)
  929. return ERR_PTR(-EINVAL);
  930. /* default error is no buffer space */
  931. err = -ENOBUFS;
  932. /* RFC2367:
  933. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  934. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  935. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  936. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  937. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  938. not true.
  939. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  940. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  941. */
  942. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  943. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  944. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  945. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  946. return ERR_PTR(-EINVAL);
  947. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  948. if (key != NULL &&
  949. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  950. ((key->sadb_key_bits+7) / 8 == 0 ||
  951. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  952. return ERR_PTR(-EINVAL);
  953. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  954. if (key != NULL &&
  955. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  956. ((key->sadb_key_bits+7) / 8 == 0 ||
  957. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  958. return ERR_PTR(-EINVAL);
  959. x = xfrm_state_alloc();
  960. if (x == NULL)
  961. return ERR_PTR(-ENOBUFS);
  962. x->id.proto = proto;
  963. x->id.spi = sa->sadb_sa_spi;
  964. x->props.replay_window = sa->sadb_sa_replay;
  965. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  966. x->props.flags |= XFRM_STATE_NOECN;
  967. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  968. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  969. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  970. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  971. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  972. if (lifetime != NULL) {
  973. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  974. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  975. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  976. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  977. }
  978. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  979. if (lifetime != NULL) {
  980. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  981. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  982. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  983. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  984. }
  985. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  986. if (sec_ctx != NULL) {
  987. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  988. if (!uctx)
  989. goto out;
  990. err = security_xfrm_state_alloc(x, uctx);
  991. kfree(uctx);
  992. if (err)
  993. goto out;
  994. }
  995. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  996. if (sa->sadb_sa_auth) {
  997. int keysize = 0;
  998. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  999. if (!a) {
  1000. err = -ENOSYS;
  1001. goto out;
  1002. }
  1003. if (key)
  1004. keysize = (key->sadb_key_bits + 7) / 8;
  1005. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1006. if (!x->aalg)
  1007. goto out;
  1008. strcpy(x->aalg->alg_name, a->name);
  1009. x->aalg->alg_key_len = 0;
  1010. if (key) {
  1011. x->aalg->alg_key_len = key->sadb_key_bits;
  1012. memcpy(x->aalg->alg_key, key+1, keysize);
  1013. }
  1014. x->props.aalgo = sa->sadb_sa_auth;
  1015. /* x->algo.flags = sa->sadb_sa_flags; */
  1016. }
  1017. if (sa->sadb_sa_encrypt) {
  1018. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1019. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1020. if (!a) {
  1021. err = -ENOSYS;
  1022. goto out;
  1023. }
  1024. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1025. if (!x->calg)
  1026. goto out;
  1027. strcpy(x->calg->alg_name, a->name);
  1028. x->props.calgo = sa->sadb_sa_encrypt;
  1029. } else {
  1030. int keysize = 0;
  1031. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1032. if (!a) {
  1033. err = -ENOSYS;
  1034. goto out;
  1035. }
  1036. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1037. if (key)
  1038. keysize = (key->sadb_key_bits + 7) / 8;
  1039. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1040. if (!x->ealg)
  1041. goto out;
  1042. strcpy(x->ealg->alg_name, a->name);
  1043. x->ealg->alg_key_len = 0;
  1044. if (key) {
  1045. x->ealg->alg_key_len = key->sadb_key_bits;
  1046. memcpy(x->ealg->alg_key, key+1, keysize);
  1047. }
  1048. x->props.ealgo = sa->sadb_sa_encrypt;
  1049. }
  1050. }
  1051. /* x->algo.flags = sa->sadb_sa_flags; */
  1052. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1053. &x->props.saddr);
  1054. if (!x->props.family) {
  1055. err = -EAFNOSUPPORT;
  1056. goto out;
  1057. }
  1058. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1059. &x->id.daddr);
  1060. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1061. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1062. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1063. if (mode < 0) {
  1064. err = -EINVAL;
  1065. goto out;
  1066. }
  1067. x->props.mode = mode;
  1068. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1069. }
  1070. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1071. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1072. /* Nobody uses this, but we try. */
  1073. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1074. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1075. }
  1076. if (!x->sel.family)
  1077. x->sel.family = x->props.family;
  1078. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1079. struct sadb_x_nat_t_type* n_type;
  1080. struct xfrm_encap_tmpl *natt;
  1081. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1082. if (!x->encap)
  1083. goto out;
  1084. natt = x->encap;
  1085. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1086. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1087. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1088. struct sadb_x_nat_t_port* n_port =
  1089. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1090. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1091. }
  1092. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1093. struct sadb_x_nat_t_port* n_port =
  1094. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1095. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1096. }
  1097. }
  1098. err = xfrm_init_state(x);
  1099. if (err)
  1100. goto out;
  1101. x->km.seq = hdr->sadb_msg_seq;
  1102. return x;
  1103. out:
  1104. x->km.state = XFRM_STATE_DEAD;
  1105. xfrm_state_put(x);
  1106. return ERR_PTR(err);
  1107. }
  1108. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1109. {
  1110. return -EOPNOTSUPP;
  1111. }
  1112. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1113. {
  1114. struct sk_buff *resp_skb;
  1115. struct sadb_x_sa2 *sa2;
  1116. struct sadb_address *saddr, *daddr;
  1117. struct sadb_msg *out_hdr;
  1118. struct sadb_spirange *range;
  1119. struct xfrm_state *x = NULL;
  1120. int mode;
  1121. int err;
  1122. u32 min_spi, max_spi;
  1123. u32 reqid;
  1124. u8 proto;
  1125. unsigned short family;
  1126. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1127. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1128. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1129. return -EINVAL;
  1130. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1131. if (proto == 0)
  1132. return -EINVAL;
  1133. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1134. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1135. if (mode < 0)
  1136. return -EINVAL;
  1137. reqid = sa2->sadb_x_sa2_reqid;
  1138. } else {
  1139. mode = 0;
  1140. reqid = 0;
  1141. }
  1142. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1143. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1144. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1145. switch (family) {
  1146. case AF_INET:
  1147. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1148. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1149. break;
  1150. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1151. case AF_INET6:
  1152. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1153. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1154. break;
  1155. #endif
  1156. }
  1157. if (hdr->sadb_msg_seq) {
  1158. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1159. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1160. xfrm_state_put(x);
  1161. x = NULL;
  1162. }
  1163. }
  1164. if (!x)
  1165. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1166. if (x == NULL)
  1167. return -ENOENT;
  1168. min_spi = 0x100;
  1169. max_spi = 0x0fffffff;
  1170. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1171. if (range) {
  1172. min_spi = range->sadb_spirange_min;
  1173. max_spi = range->sadb_spirange_max;
  1174. }
  1175. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1176. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1177. if (IS_ERR(resp_skb)) {
  1178. xfrm_state_put(x);
  1179. return PTR_ERR(resp_skb);
  1180. }
  1181. out_hdr = (struct sadb_msg *) resp_skb->data;
  1182. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1183. out_hdr->sadb_msg_type = SADB_GETSPI;
  1184. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1185. out_hdr->sadb_msg_errno = 0;
  1186. out_hdr->sadb_msg_reserved = 0;
  1187. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1188. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1189. xfrm_state_put(x);
  1190. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1191. return 0;
  1192. }
  1193. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1194. {
  1195. struct xfrm_state *x;
  1196. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1197. return -EOPNOTSUPP;
  1198. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1199. return 0;
  1200. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1201. if (x == NULL)
  1202. return 0;
  1203. spin_lock_bh(&x->lock);
  1204. if (x->km.state == XFRM_STATE_ACQ) {
  1205. x->km.state = XFRM_STATE_ERROR;
  1206. wake_up(&km_waitq);
  1207. }
  1208. spin_unlock_bh(&x->lock);
  1209. xfrm_state_put(x);
  1210. return 0;
  1211. }
  1212. static inline int event2poltype(int event)
  1213. {
  1214. switch (event) {
  1215. case XFRM_MSG_DELPOLICY:
  1216. return SADB_X_SPDDELETE;
  1217. case XFRM_MSG_NEWPOLICY:
  1218. return SADB_X_SPDADD;
  1219. case XFRM_MSG_UPDPOLICY:
  1220. return SADB_X_SPDUPDATE;
  1221. case XFRM_MSG_POLEXPIRE:
  1222. // return SADB_X_SPDEXPIRE;
  1223. default:
  1224. printk("pfkey: Unknown policy event %d\n", event);
  1225. break;
  1226. }
  1227. return 0;
  1228. }
  1229. static inline int event2keytype(int event)
  1230. {
  1231. switch (event) {
  1232. case XFRM_MSG_DELSA:
  1233. return SADB_DELETE;
  1234. case XFRM_MSG_NEWSA:
  1235. return SADB_ADD;
  1236. case XFRM_MSG_UPDSA:
  1237. return SADB_UPDATE;
  1238. case XFRM_MSG_EXPIRE:
  1239. return SADB_EXPIRE;
  1240. default:
  1241. printk("pfkey: Unknown SA event %d\n", event);
  1242. break;
  1243. }
  1244. return 0;
  1245. }
  1246. /* ADD/UPD/DEL */
  1247. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1248. {
  1249. struct sk_buff *skb;
  1250. struct sadb_msg *hdr;
  1251. skb = pfkey_xfrm_state2msg(x);
  1252. if (IS_ERR(skb))
  1253. return PTR_ERR(skb);
  1254. hdr = (struct sadb_msg *) skb->data;
  1255. hdr->sadb_msg_version = PF_KEY_V2;
  1256. hdr->sadb_msg_type = event2keytype(c->event);
  1257. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1258. hdr->sadb_msg_errno = 0;
  1259. hdr->sadb_msg_reserved = 0;
  1260. hdr->sadb_msg_seq = c->seq;
  1261. hdr->sadb_msg_pid = c->pid;
  1262. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1263. return 0;
  1264. }
  1265. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1266. {
  1267. struct xfrm_state *x;
  1268. int err;
  1269. struct km_event c;
  1270. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1271. if (IS_ERR(x))
  1272. return PTR_ERR(x);
  1273. xfrm_state_hold(x);
  1274. if (hdr->sadb_msg_type == SADB_ADD)
  1275. err = xfrm_state_add(x);
  1276. else
  1277. err = xfrm_state_update(x);
  1278. xfrm_audit_state_add(x, err ? 0 : 1,
  1279. audit_get_loginuid(current),
  1280. audit_get_sessionid(current), 0);
  1281. if (err < 0) {
  1282. x->km.state = XFRM_STATE_DEAD;
  1283. __xfrm_state_put(x);
  1284. goto out;
  1285. }
  1286. if (hdr->sadb_msg_type == SADB_ADD)
  1287. c.event = XFRM_MSG_NEWSA;
  1288. else
  1289. c.event = XFRM_MSG_UPDSA;
  1290. c.seq = hdr->sadb_msg_seq;
  1291. c.pid = hdr->sadb_msg_pid;
  1292. km_state_notify(x, &c);
  1293. out:
  1294. xfrm_state_put(x);
  1295. return err;
  1296. }
  1297. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1298. {
  1299. struct xfrm_state *x;
  1300. struct km_event c;
  1301. int err;
  1302. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1303. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1304. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1305. return -EINVAL;
  1306. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1307. if (x == NULL)
  1308. return -ESRCH;
  1309. if ((err = security_xfrm_state_delete(x)))
  1310. goto out;
  1311. if (xfrm_state_kern(x)) {
  1312. err = -EPERM;
  1313. goto out;
  1314. }
  1315. err = xfrm_state_delete(x);
  1316. if (err < 0)
  1317. goto out;
  1318. c.seq = hdr->sadb_msg_seq;
  1319. c.pid = hdr->sadb_msg_pid;
  1320. c.event = XFRM_MSG_DELSA;
  1321. km_state_notify(x, &c);
  1322. out:
  1323. xfrm_audit_state_delete(x, err ? 0 : 1,
  1324. audit_get_loginuid(current),
  1325. audit_get_sessionid(current), 0);
  1326. xfrm_state_put(x);
  1327. return err;
  1328. }
  1329. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1330. {
  1331. __u8 proto;
  1332. struct sk_buff *out_skb;
  1333. struct sadb_msg *out_hdr;
  1334. struct xfrm_state *x;
  1335. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1336. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1337. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1338. return -EINVAL;
  1339. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1340. if (x == NULL)
  1341. return -ESRCH;
  1342. out_skb = pfkey_xfrm_state2msg(x);
  1343. proto = x->id.proto;
  1344. xfrm_state_put(x);
  1345. if (IS_ERR(out_skb))
  1346. return PTR_ERR(out_skb);
  1347. out_hdr = (struct sadb_msg *) out_skb->data;
  1348. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1349. out_hdr->sadb_msg_type = SADB_GET;
  1350. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1351. out_hdr->sadb_msg_errno = 0;
  1352. out_hdr->sadb_msg_reserved = 0;
  1353. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1354. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1355. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1356. return 0;
  1357. }
  1358. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1359. gfp_t allocation)
  1360. {
  1361. struct sk_buff *skb;
  1362. struct sadb_msg *hdr;
  1363. int len, auth_len, enc_len, i;
  1364. auth_len = xfrm_count_auth_supported();
  1365. if (auth_len) {
  1366. auth_len *= sizeof(struct sadb_alg);
  1367. auth_len += sizeof(struct sadb_supported);
  1368. }
  1369. enc_len = xfrm_count_enc_supported();
  1370. if (enc_len) {
  1371. enc_len *= sizeof(struct sadb_alg);
  1372. enc_len += sizeof(struct sadb_supported);
  1373. }
  1374. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1375. skb = alloc_skb(len + 16, allocation);
  1376. if (!skb)
  1377. goto out_put_algs;
  1378. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1379. pfkey_hdr_dup(hdr, orig);
  1380. hdr->sadb_msg_errno = 0;
  1381. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1382. if (auth_len) {
  1383. struct sadb_supported *sp;
  1384. struct sadb_alg *ap;
  1385. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1386. ap = (struct sadb_alg *) (sp + 1);
  1387. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1388. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1389. for (i = 0; ; i++) {
  1390. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1391. if (!aalg)
  1392. break;
  1393. if (aalg->available)
  1394. *ap++ = aalg->desc;
  1395. }
  1396. }
  1397. if (enc_len) {
  1398. struct sadb_supported *sp;
  1399. struct sadb_alg *ap;
  1400. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1401. ap = (struct sadb_alg *) (sp + 1);
  1402. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1403. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1404. for (i = 0; ; i++) {
  1405. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1406. if (!ealg)
  1407. break;
  1408. if (ealg->available)
  1409. *ap++ = ealg->desc;
  1410. }
  1411. }
  1412. out_put_algs:
  1413. return skb;
  1414. }
  1415. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1416. {
  1417. struct pfkey_sock *pfk = pfkey_sk(sk);
  1418. struct sk_buff *supp_skb;
  1419. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1420. return -EINVAL;
  1421. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1422. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1423. return -EEXIST;
  1424. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1425. }
  1426. xfrm_probe_algs();
  1427. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1428. if (!supp_skb) {
  1429. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1430. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1431. return -ENOBUFS;
  1432. }
  1433. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1434. return 0;
  1435. }
  1436. static int key_notify_sa_flush(struct km_event *c)
  1437. {
  1438. struct sk_buff *skb;
  1439. struct sadb_msg *hdr;
  1440. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1441. if (!skb)
  1442. return -ENOBUFS;
  1443. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1444. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1445. hdr->sadb_msg_type = SADB_FLUSH;
  1446. hdr->sadb_msg_seq = c->seq;
  1447. hdr->sadb_msg_pid = c->pid;
  1448. hdr->sadb_msg_version = PF_KEY_V2;
  1449. hdr->sadb_msg_errno = (uint8_t) 0;
  1450. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1451. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1452. return 0;
  1453. }
  1454. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1455. {
  1456. unsigned proto;
  1457. struct km_event c;
  1458. struct xfrm_audit audit_info;
  1459. int err;
  1460. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1461. if (proto == 0)
  1462. return -EINVAL;
  1463. audit_info.loginuid = audit_get_loginuid(current);
  1464. audit_info.sessionid = audit_get_sessionid(current);
  1465. audit_info.secid = 0;
  1466. err = xfrm_state_flush(proto, &audit_info);
  1467. if (err)
  1468. return err;
  1469. c.data.proto = proto;
  1470. c.seq = hdr->sadb_msg_seq;
  1471. c.pid = hdr->sadb_msg_pid;
  1472. c.event = XFRM_MSG_FLUSHSA;
  1473. km_state_notify(NULL, &c);
  1474. return 0;
  1475. }
  1476. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1477. {
  1478. struct pfkey_sock *pfk = ptr;
  1479. struct sk_buff *out_skb;
  1480. struct sadb_msg *out_hdr;
  1481. if (!pfkey_can_dump(&pfk->sk))
  1482. return -ENOBUFS;
  1483. out_skb = pfkey_xfrm_state2msg(x);
  1484. if (IS_ERR(out_skb))
  1485. return PTR_ERR(out_skb);
  1486. out_hdr = (struct sadb_msg *) out_skb->data;
  1487. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1488. out_hdr->sadb_msg_type = SADB_DUMP;
  1489. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1490. out_hdr->sadb_msg_errno = 0;
  1491. out_hdr->sadb_msg_reserved = 0;
  1492. out_hdr->sadb_msg_seq = count;
  1493. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1494. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  1495. return 0;
  1496. }
  1497. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1498. {
  1499. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1500. }
  1501. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1502. {
  1503. xfrm_state_walk_done(&pfk->dump.u.state);
  1504. }
  1505. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1506. {
  1507. u8 proto;
  1508. struct pfkey_sock *pfk = pfkey_sk(sk);
  1509. if (pfk->dump.dump != NULL)
  1510. return -EBUSY;
  1511. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1512. if (proto == 0)
  1513. return -EINVAL;
  1514. pfk->dump.msg_version = hdr->sadb_msg_version;
  1515. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1516. pfk->dump.dump = pfkey_dump_sa;
  1517. pfk->dump.done = pfkey_dump_sa_done;
  1518. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1519. return pfkey_do_dump(pfk);
  1520. }
  1521. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1522. {
  1523. struct pfkey_sock *pfk = pfkey_sk(sk);
  1524. int satype = hdr->sadb_msg_satype;
  1525. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1526. /* XXX we mangle packet... */
  1527. hdr->sadb_msg_errno = 0;
  1528. if (satype != 0 && satype != 1)
  1529. return -EINVAL;
  1530. pfk->promisc = satype;
  1531. }
  1532. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1533. return 0;
  1534. }
  1535. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1536. {
  1537. int i;
  1538. u32 reqid = *(u32*)ptr;
  1539. for (i=0; i<xp->xfrm_nr; i++) {
  1540. if (xp->xfrm_vec[i].reqid == reqid)
  1541. return -EEXIST;
  1542. }
  1543. return 0;
  1544. }
  1545. static u32 gen_reqid(void)
  1546. {
  1547. struct xfrm_policy_walk walk;
  1548. u32 start;
  1549. int rc;
  1550. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1551. start = reqid;
  1552. do {
  1553. ++reqid;
  1554. if (reqid == 0)
  1555. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1556. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1557. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1558. xfrm_policy_walk_done(&walk);
  1559. if (rc != -EEXIST)
  1560. return reqid;
  1561. } while (reqid != start);
  1562. return 0;
  1563. }
  1564. static int
  1565. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1566. {
  1567. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1568. int mode;
  1569. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1570. return -ELOOP;
  1571. if (rq->sadb_x_ipsecrequest_mode == 0)
  1572. return -EINVAL;
  1573. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1574. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1575. return -EINVAL;
  1576. t->mode = mode;
  1577. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1578. t->optional = 1;
  1579. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1580. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1581. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1582. t->reqid = 0;
  1583. if (!t->reqid && !(t->reqid = gen_reqid()))
  1584. return -ENOBUFS;
  1585. }
  1586. /* addresses present only in tunnel mode */
  1587. if (t->mode == XFRM_MODE_TUNNEL) {
  1588. u8 *sa = (u8 *) (rq + 1);
  1589. int family, socklen;
  1590. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1591. &t->saddr);
  1592. if (!family)
  1593. return -EINVAL;
  1594. socklen = pfkey_sockaddr_len(family);
  1595. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1596. &t->id.daddr) != family)
  1597. return -EINVAL;
  1598. t->encap_family = family;
  1599. } else
  1600. t->encap_family = xp->family;
  1601. /* No way to set this via kame pfkey */
  1602. t->allalgs = 1;
  1603. xp->xfrm_nr++;
  1604. return 0;
  1605. }
  1606. static int
  1607. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1608. {
  1609. int err;
  1610. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1611. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1612. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1613. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1614. return err;
  1615. len -= rq->sadb_x_ipsecrequest_len;
  1616. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1617. }
  1618. return 0;
  1619. }
  1620. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1621. {
  1622. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1623. if (xfrm_ctx) {
  1624. int len = sizeof(struct sadb_x_sec_ctx);
  1625. len += xfrm_ctx->ctx_len;
  1626. return PFKEY_ALIGN8(len);
  1627. }
  1628. return 0;
  1629. }
  1630. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1631. {
  1632. struct xfrm_tmpl *t;
  1633. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1634. int socklen = 0;
  1635. int i;
  1636. for (i=0; i<xp->xfrm_nr; i++) {
  1637. t = xp->xfrm_vec + i;
  1638. socklen += pfkey_sockaddr_len(t->encap_family);
  1639. }
  1640. return sizeof(struct sadb_msg) +
  1641. (sizeof(struct sadb_lifetime) * 3) +
  1642. (sizeof(struct sadb_address) * 2) +
  1643. (sockaddr_size * 2) +
  1644. sizeof(struct sadb_x_policy) +
  1645. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1646. (socklen * 2) +
  1647. pfkey_xfrm_policy2sec_ctx_size(xp);
  1648. }
  1649. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1650. {
  1651. struct sk_buff *skb;
  1652. int size;
  1653. size = pfkey_xfrm_policy2msg_size(xp);
  1654. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1655. if (skb == NULL)
  1656. return ERR_PTR(-ENOBUFS);
  1657. return skb;
  1658. }
  1659. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1660. {
  1661. struct sadb_msg *hdr;
  1662. struct sadb_address *addr;
  1663. struct sadb_lifetime *lifetime;
  1664. struct sadb_x_policy *pol;
  1665. struct sadb_x_sec_ctx *sec_ctx;
  1666. struct xfrm_sec_ctx *xfrm_ctx;
  1667. int i;
  1668. int size;
  1669. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1670. int socklen = pfkey_sockaddr_len(xp->family);
  1671. size = pfkey_xfrm_policy2msg_size(xp);
  1672. /* call should fill header later */
  1673. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1674. memset(hdr, 0, size); /* XXX do we need this ? */
  1675. /* src address */
  1676. addr = (struct sadb_address*) skb_put(skb,
  1677. sizeof(struct sadb_address)+sockaddr_size);
  1678. addr->sadb_address_len =
  1679. (sizeof(struct sadb_address)+sockaddr_size)/
  1680. sizeof(uint64_t);
  1681. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1682. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1683. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1684. addr->sadb_address_reserved = 0;
  1685. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1686. xp->selector.sport,
  1687. (struct sockaddr *) (addr + 1),
  1688. xp->family))
  1689. BUG();
  1690. /* dst address */
  1691. addr = (struct sadb_address*) skb_put(skb,
  1692. sizeof(struct sadb_address)+sockaddr_size);
  1693. addr->sadb_address_len =
  1694. (sizeof(struct sadb_address)+sockaddr_size)/
  1695. sizeof(uint64_t);
  1696. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1697. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1698. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1699. addr->sadb_address_reserved = 0;
  1700. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1701. (struct sockaddr *) (addr + 1),
  1702. xp->family);
  1703. /* hard time */
  1704. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1705. sizeof(struct sadb_lifetime));
  1706. lifetime->sadb_lifetime_len =
  1707. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1708. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1709. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1710. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1711. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1712. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1713. /* soft time */
  1714. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1715. sizeof(struct sadb_lifetime));
  1716. lifetime->sadb_lifetime_len =
  1717. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1718. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1719. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1720. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1721. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1722. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1723. /* current time */
  1724. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1725. sizeof(struct sadb_lifetime));
  1726. lifetime->sadb_lifetime_len =
  1727. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1728. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1729. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1730. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1731. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1732. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1733. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1734. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1735. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1736. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1737. if (xp->action == XFRM_POLICY_ALLOW) {
  1738. if (xp->xfrm_nr)
  1739. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1740. else
  1741. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1742. }
  1743. pol->sadb_x_policy_dir = dir+1;
  1744. pol->sadb_x_policy_id = xp->index;
  1745. pol->sadb_x_policy_priority = xp->priority;
  1746. for (i=0; i<xp->xfrm_nr; i++) {
  1747. struct sadb_x_ipsecrequest *rq;
  1748. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1749. int req_size;
  1750. int mode;
  1751. req_size = sizeof(struct sadb_x_ipsecrequest);
  1752. if (t->mode == XFRM_MODE_TUNNEL) {
  1753. socklen = pfkey_sockaddr_len(t->encap_family);
  1754. req_size += socklen * 2;
  1755. } else {
  1756. size -= 2*socklen;
  1757. socklen = 0;
  1758. }
  1759. rq = (void*)skb_put(skb, req_size);
  1760. pol->sadb_x_policy_len += req_size/8;
  1761. memset(rq, 0, sizeof(*rq));
  1762. rq->sadb_x_ipsecrequest_len = req_size;
  1763. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1764. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1765. return -EINVAL;
  1766. rq->sadb_x_ipsecrequest_mode = mode;
  1767. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1768. if (t->reqid)
  1769. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1770. if (t->optional)
  1771. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1772. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1773. if (t->mode == XFRM_MODE_TUNNEL) {
  1774. u8 *sa = (void *)(rq + 1);
  1775. pfkey_sockaddr_fill(&t->saddr, 0,
  1776. (struct sockaddr *)sa,
  1777. t->encap_family);
  1778. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1779. (struct sockaddr *) (sa + socklen),
  1780. t->encap_family);
  1781. }
  1782. }
  1783. /* security context */
  1784. if ((xfrm_ctx = xp->security)) {
  1785. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1786. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1787. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1788. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1789. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1790. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1791. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1792. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1793. xfrm_ctx->ctx_len);
  1794. }
  1795. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1796. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1797. return 0;
  1798. }
  1799. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1800. {
  1801. struct sk_buff *out_skb;
  1802. struct sadb_msg *out_hdr;
  1803. int err;
  1804. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1805. if (IS_ERR(out_skb)) {
  1806. err = PTR_ERR(out_skb);
  1807. goto out;
  1808. }
  1809. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1810. if (err < 0)
  1811. return err;
  1812. out_hdr = (struct sadb_msg *) out_skb->data;
  1813. out_hdr->sadb_msg_version = PF_KEY_V2;
  1814. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1815. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1816. else
  1817. out_hdr->sadb_msg_type = event2poltype(c->event);
  1818. out_hdr->sadb_msg_errno = 0;
  1819. out_hdr->sadb_msg_seq = c->seq;
  1820. out_hdr->sadb_msg_pid = c->pid;
  1821. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1822. out:
  1823. return 0;
  1824. }
  1825. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1826. {
  1827. int err = 0;
  1828. struct sadb_lifetime *lifetime;
  1829. struct sadb_address *sa;
  1830. struct sadb_x_policy *pol;
  1831. struct xfrm_policy *xp;
  1832. struct km_event c;
  1833. struct sadb_x_sec_ctx *sec_ctx;
  1834. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1835. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1836. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1837. return -EINVAL;
  1838. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1839. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1840. return -EINVAL;
  1841. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1842. return -EINVAL;
  1843. xp = xfrm_policy_alloc(GFP_KERNEL);
  1844. if (xp == NULL)
  1845. return -ENOBUFS;
  1846. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1847. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1848. xp->priority = pol->sadb_x_policy_priority;
  1849. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1850. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1851. if (!xp->family) {
  1852. err = -EINVAL;
  1853. goto out;
  1854. }
  1855. xp->selector.family = xp->family;
  1856. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1857. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1858. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1859. if (xp->selector.sport)
  1860. xp->selector.sport_mask = htons(0xffff);
  1861. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1862. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1863. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1864. /* Amusing, we set this twice. KAME apps appear to set same value
  1865. * in both addresses.
  1866. */
  1867. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1868. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1869. if (xp->selector.dport)
  1870. xp->selector.dport_mask = htons(0xffff);
  1871. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1872. if (sec_ctx != NULL) {
  1873. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1874. if (!uctx) {
  1875. err = -ENOBUFS;
  1876. goto out;
  1877. }
  1878. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1879. kfree(uctx);
  1880. if (err)
  1881. goto out;
  1882. }
  1883. xp->lft.soft_byte_limit = XFRM_INF;
  1884. xp->lft.hard_byte_limit = XFRM_INF;
  1885. xp->lft.soft_packet_limit = XFRM_INF;
  1886. xp->lft.hard_packet_limit = XFRM_INF;
  1887. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1888. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1889. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1890. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1891. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1892. }
  1893. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1894. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1895. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1896. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1897. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1898. }
  1899. xp->xfrm_nr = 0;
  1900. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1901. (err = parse_ipsecrequests(xp, pol)) < 0)
  1902. goto out;
  1903. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1904. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1905. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1906. audit_get_loginuid(current),
  1907. audit_get_sessionid(current), 0);
  1908. if (err)
  1909. goto out;
  1910. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1911. c.event = XFRM_MSG_UPDPOLICY;
  1912. else
  1913. c.event = XFRM_MSG_NEWPOLICY;
  1914. c.seq = hdr->sadb_msg_seq;
  1915. c.pid = hdr->sadb_msg_pid;
  1916. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1917. xfrm_pol_put(xp);
  1918. return 0;
  1919. out:
  1920. xp->dead = 1;
  1921. xfrm_policy_destroy(xp);
  1922. return err;
  1923. }
  1924. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1925. {
  1926. int err;
  1927. struct sadb_address *sa;
  1928. struct sadb_x_policy *pol;
  1929. struct xfrm_policy *xp;
  1930. struct xfrm_selector sel;
  1931. struct km_event c;
  1932. struct sadb_x_sec_ctx *sec_ctx;
  1933. struct xfrm_sec_ctx *pol_ctx = NULL;
  1934. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1935. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1936. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1937. return -EINVAL;
  1938. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1939. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1940. return -EINVAL;
  1941. memset(&sel, 0, sizeof(sel));
  1942. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1943. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1944. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1945. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1946. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1947. if (sel.sport)
  1948. sel.sport_mask = htons(0xffff);
  1949. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1950. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1951. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1952. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1953. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1954. if (sel.dport)
  1955. sel.dport_mask = htons(0xffff);
  1956. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1957. if (sec_ctx != NULL) {
  1958. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1959. if (!uctx)
  1960. return -ENOMEM;
  1961. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1962. kfree(uctx);
  1963. if (err)
  1964. return err;
  1965. }
  1966. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
  1967. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1968. 1, &err);
  1969. security_xfrm_policy_free(pol_ctx);
  1970. if (xp == NULL)
  1971. return -ENOENT;
  1972. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1973. audit_get_loginuid(current),
  1974. audit_get_sessionid(current), 0);
  1975. if (err)
  1976. goto out;
  1977. c.seq = hdr->sadb_msg_seq;
  1978. c.pid = hdr->sadb_msg_pid;
  1979. c.event = XFRM_MSG_DELPOLICY;
  1980. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1981. out:
  1982. xfrm_pol_put(xp);
  1983. return err;
  1984. }
  1985. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1986. {
  1987. int err;
  1988. struct sk_buff *out_skb;
  1989. struct sadb_msg *out_hdr;
  1990. err = 0;
  1991. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1992. if (IS_ERR(out_skb)) {
  1993. err = PTR_ERR(out_skb);
  1994. goto out;
  1995. }
  1996. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1997. if (err < 0)
  1998. goto out;
  1999. out_hdr = (struct sadb_msg *) out_skb->data;
  2000. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2001. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2002. out_hdr->sadb_msg_satype = 0;
  2003. out_hdr->sadb_msg_errno = 0;
  2004. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2005. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2006. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2007. err = 0;
  2008. out:
  2009. return err;
  2010. }
  2011. #ifdef CONFIG_NET_KEY_MIGRATE
  2012. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2013. {
  2014. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2015. }
  2016. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2017. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2018. u16 *family)
  2019. {
  2020. u8 *sa = (u8 *) (rq + 1);
  2021. int af, socklen;
  2022. if (rq->sadb_x_ipsecrequest_len <
  2023. pfkey_sockaddr_pair_size(((struct sockaddr *)sa)->sa_family))
  2024. return -EINVAL;
  2025. af = pfkey_sockaddr_extract((struct sockaddr *) sa,
  2026. saddr);
  2027. if (!af)
  2028. return -EINVAL;
  2029. socklen = pfkey_sockaddr_len(af);
  2030. if (pfkey_sockaddr_extract((struct sockaddr *) (sa + socklen),
  2031. daddr) != af)
  2032. return -EINVAL;
  2033. *family = af;
  2034. return 0;
  2035. }
  2036. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2037. struct xfrm_migrate *m)
  2038. {
  2039. int err;
  2040. struct sadb_x_ipsecrequest *rq2;
  2041. int mode;
  2042. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2043. len < rq1->sadb_x_ipsecrequest_len)
  2044. return -EINVAL;
  2045. /* old endoints */
  2046. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2047. &m->old_family);
  2048. if (err)
  2049. return err;
  2050. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2051. len -= rq1->sadb_x_ipsecrequest_len;
  2052. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2053. len < rq2->sadb_x_ipsecrequest_len)
  2054. return -EINVAL;
  2055. /* new endpoints */
  2056. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2057. &m->new_family);
  2058. if (err)
  2059. return err;
  2060. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2061. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2062. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2063. return -EINVAL;
  2064. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2065. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2066. return -EINVAL;
  2067. m->mode = mode;
  2068. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2069. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2070. rq2->sadb_x_ipsecrequest_len));
  2071. }
  2072. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2073. struct sadb_msg *hdr, void **ext_hdrs)
  2074. {
  2075. int i, len, ret, err = -EINVAL;
  2076. u8 dir;
  2077. struct sadb_address *sa;
  2078. struct sadb_x_policy *pol;
  2079. struct sadb_x_ipsecrequest *rq;
  2080. struct xfrm_selector sel;
  2081. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2082. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2083. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2084. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2085. err = -EINVAL;
  2086. goto out;
  2087. }
  2088. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2089. if (!pol) {
  2090. err = -EINVAL;
  2091. goto out;
  2092. }
  2093. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2094. err = -EINVAL;
  2095. goto out;
  2096. }
  2097. dir = pol->sadb_x_policy_dir - 1;
  2098. memset(&sel, 0, sizeof(sel));
  2099. /* set source address info of selector */
  2100. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2101. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2102. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2103. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2104. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2105. if (sel.sport)
  2106. sel.sport_mask = htons(0xffff);
  2107. /* set destination address info of selector */
  2108. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2109. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2110. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2111. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2112. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2113. if (sel.dport)
  2114. sel.dport_mask = htons(0xffff);
  2115. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2116. /* extract ipsecrequests */
  2117. i = 0;
  2118. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2119. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2120. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2121. if (ret < 0) {
  2122. err = ret;
  2123. goto out;
  2124. } else {
  2125. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2126. len -= ret;
  2127. i++;
  2128. }
  2129. }
  2130. if (!i || len > 0) {
  2131. err = -EINVAL;
  2132. goto out;
  2133. }
  2134. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2135. out:
  2136. return err;
  2137. }
  2138. #else
  2139. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2140. struct sadb_msg *hdr, void **ext_hdrs)
  2141. {
  2142. return -ENOPROTOOPT;
  2143. }
  2144. #endif
  2145. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2146. {
  2147. unsigned int dir;
  2148. int err = 0, delete;
  2149. struct sadb_x_policy *pol;
  2150. struct xfrm_policy *xp;
  2151. struct km_event c;
  2152. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2153. return -EINVAL;
  2154. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2155. if (dir >= XFRM_POLICY_MAX)
  2156. return -EINVAL;
  2157. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2158. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2159. delete, &err);
  2160. if (xp == NULL)
  2161. return -ENOENT;
  2162. if (delete) {
  2163. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2164. audit_get_loginuid(current),
  2165. audit_get_sessionid(current), 0);
  2166. if (err)
  2167. goto out;
  2168. c.seq = hdr->sadb_msg_seq;
  2169. c.pid = hdr->sadb_msg_pid;
  2170. c.data.byid = 1;
  2171. c.event = XFRM_MSG_DELPOLICY;
  2172. km_policy_notify(xp, dir, &c);
  2173. } else {
  2174. err = key_pol_get_resp(sk, xp, hdr, dir);
  2175. }
  2176. out:
  2177. xfrm_pol_put(xp);
  2178. return err;
  2179. }
  2180. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2181. {
  2182. struct pfkey_sock *pfk = ptr;
  2183. struct sk_buff *out_skb;
  2184. struct sadb_msg *out_hdr;
  2185. int err;
  2186. if (!pfkey_can_dump(&pfk->sk))
  2187. return -ENOBUFS;
  2188. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2189. if (IS_ERR(out_skb))
  2190. return PTR_ERR(out_skb);
  2191. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2192. if (err < 0)
  2193. return err;
  2194. out_hdr = (struct sadb_msg *) out_skb->data;
  2195. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2196. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2197. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2198. out_hdr->sadb_msg_errno = 0;
  2199. out_hdr->sadb_msg_seq = count;
  2200. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2201. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  2202. return 0;
  2203. }
  2204. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2205. {
  2206. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2207. }
  2208. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2209. {
  2210. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2211. }
  2212. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2213. {
  2214. struct pfkey_sock *pfk = pfkey_sk(sk);
  2215. if (pfk->dump.dump != NULL)
  2216. return -EBUSY;
  2217. pfk->dump.msg_version = hdr->sadb_msg_version;
  2218. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2219. pfk->dump.dump = pfkey_dump_sp;
  2220. pfk->dump.done = pfkey_dump_sp_done;
  2221. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2222. return pfkey_do_dump(pfk);
  2223. }
  2224. static int key_notify_policy_flush(struct km_event *c)
  2225. {
  2226. struct sk_buff *skb_out;
  2227. struct sadb_msg *hdr;
  2228. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2229. if (!skb_out)
  2230. return -ENOBUFS;
  2231. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2232. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2233. hdr->sadb_msg_seq = c->seq;
  2234. hdr->sadb_msg_pid = c->pid;
  2235. hdr->sadb_msg_version = PF_KEY_V2;
  2236. hdr->sadb_msg_errno = (uint8_t) 0;
  2237. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2238. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2239. return 0;
  2240. }
  2241. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2242. {
  2243. struct km_event c;
  2244. struct xfrm_audit audit_info;
  2245. int err;
  2246. audit_info.loginuid = audit_get_loginuid(current);
  2247. audit_info.sessionid = audit_get_sessionid(current);
  2248. audit_info.secid = 0;
  2249. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2250. if (err)
  2251. return err;
  2252. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2253. c.event = XFRM_MSG_FLUSHPOLICY;
  2254. c.pid = hdr->sadb_msg_pid;
  2255. c.seq = hdr->sadb_msg_seq;
  2256. km_policy_notify(NULL, 0, &c);
  2257. return 0;
  2258. }
  2259. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2260. struct sadb_msg *hdr, void **ext_hdrs);
  2261. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2262. [SADB_RESERVED] = pfkey_reserved,
  2263. [SADB_GETSPI] = pfkey_getspi,
  2264. [SADB_UPDATE] = pfkey_add,
  2265. [SADB_ADD] = pfkey_add,
  2266. [SADB_DELETE] = pfkey_delete,
  2267. [SADB_GET] = pfkey_get,
  2268. [SADB_ACQUIRE] = pfkey_acquire,
  2269. [SADB_REGISTER] = pfkey_register,
  2270. [SADB_EXPIRE] = NULL,
  2271. [SADB_FLUSH] = pfkey_flush,
  2272. [SADB_DUMP] = pfkey_dump,
  2273. [SADB_X_PROMISC] = pfkey_promisc,
  2274. [SADB_X_PCHANGE] = NULL,
  2275. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2276. [SADB_X_SPDADD] = pfkey_spdadd,
  2277. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2278. [SADB_X_SPDGET] = pfkey_spdget,
  2279. [SADB_X_SPDACQUIRE] = NULL,
  2280. [SADB_X_SPDDUMP] = pfkey_spddump,
  2281. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2282. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2283. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2284. [SADB_X_MIGRATE] = pfkey_migrate,
  2285. };
  2286. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2287. {
  2288. void *ext_hdrs[SADB_EXT_MAX];
  2289. int err;
  2290. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2291. BROADCAST_PROMISC_ONLY, NULL);
  2292. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2293. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2294. if (!err) {
  2295. err = -EOPNOTSUPP;
  2296. if (pfkey_funcs[hdr->sadb_msg_type])
  2297. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2298. }
  2299. return err;
  2300. }
  2301. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2302. {
  2303. struct sadb_msg *hdr = NULL;
  2304. if (skb->len < sizeof(*hdr)) {
  2305. *errp = -EMSGSIZE;
  2306. } else {
  2307. hdr = (struct sadb_msg *) skb->data;
  2308. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2309. hdr->sadb_msg_reserved != 0 ||
  2310. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2311. hdr->sadb_msg_type > SADB_MAX)) {
  2312. hdr = NULL;
  2313. *errp = -EINVAL;
  2314. } else if (hdr->sadb_msg_len != (skb->len /
  2315. sizeof(uint64_t)) ||
  2316. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2317. sizeof(uint64_t))) {
  2318. hdr = NULL;
  2319. *errp = -EMSGSIZE;
  2320. } else {
  2321. *errp = 0;
  2322. }
  2323. }
  2324. return hdr;
  2325. }
  2326. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2327. {
  2328. unsigned int id = d->desc.sadb_alg_id;
  2329. if (id >= sizeof(t->aalgos) * 8)
  2330. return 0;
  2331. return (t->aalgos >> id) & 1;
  2332. }
  2333. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2334. {
  2335. unsigned int id = d->desc.sadb_alg_id;
  2336. if (id >= sizeof(t->ealgos) * 8)
  2337. return 0;
  2338. return (t->ealgos >> id) & 1;
  2339. }
  2340. static int count_ah_combs(struct xfrm_tmpl *t)
  2341. {
  2342. int i, sz = 0;
  2343. for (i = 0; ; i++) {
  2344. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2345. if (!aalg)
  2346. break;
  2347. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2348. sz += sizeof(struct sadb_comb);
  2349. }
  2350. return sz + sizeof(struct sadb_prop);
  2351. }
  2352. static int count_esp_combs(struct xfrm_tmpl *t)
  2353. {
  2354. int i, k, sz = 0;
  2355. for (i = 0; ; i++) {
  2356. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2357. if (!ealg)
  2358. break;
  2359. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2360. continue;
  2361. for (k = 1; ; k++) {
  2362. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2363. if (!aalg)
  2364. break;
  2365. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2366. sz += sizeof(struct sadb_comb);
  2367. }
  2368. }
  2369. return sz + sizeof(struct sadb_prop);
  2370. }
  2371. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2372. {
  2373. struct sadb_prop *p;
  2374. int i;
  2375. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2376. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2377. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2378. p->sadb_prop_replay = 32;
  2379. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2380. for (i = 0; ; i++) {
  2381. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2382. if (!aalg)
  2383. break;
  2384. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2385. struct sadb_comb *c;
  2386. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2387. memset(c, 0, sizeof(*c));
  2388. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2389. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2390. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2391. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2392. c->sadb_comb_hard_addtime = 24*60*60;
  2393. c->sadb_comb_soft_addtime = 20*60*60;
  2394. c->sadb_comb_hard_usetime = 8*60*60;
  2395. c->sadb_comb_soft_usetime = 7*60*60;
  2396. }
  2397. }
  2398. }
  2399. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2400. {
  2401. struct sadb_prop *p;
  2402. int i, k;
  2403. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2404. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2405. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2406. p->sadb_prop_replay = 32;
  2407. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2408. for (i=0; ; i++) {
  2409. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2410. if (!ealg)
  2411. break;
  2412. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2413. continue;
  2414. for (k = 1; ; k++) {
  2415. struct sadb_comb *c;
  2416. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2417. if (!aalg)
  2418. break;
  2419. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2420. continue;
  2421. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2422. memset(c, 0, sizeof(*c));
  2423. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2424. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2425. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2426. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2427. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2428. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2429. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2430. c->sadb_comb_hard_addtime = 24*60*60;
  2431. c->sadb_comb_soft_addtime = 20*60*60;
  2432. c->sadb_comb_hard_usetime = 8*60*60;
  2433. c->sadb_comb_soft_usetime = 7*60*60;
  2434. }
  2435. }
  2436. }
  2437. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2438. {
  2439. return 0;
  2440. }
  2441. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2442. {
  2443. struct sk_buff *out_skb;
  2444. struct sadb_msg *out_hdr;
  2445. int hard;
  2446. int hsc;
  2447. hard = c->data.hard;
  2448. if (hard)
  2449. hsc = 2;
  2450. else
  2451. hsc = 1;
  2452. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2453. if (IS_ERR(out_skb))
  2454. return PTR_ERR(out_skb);
  2455. out_hdr = (struct sadb_msg *) out_skb->data;
  2456. out_hdr->sadb_msg_version = PF_KEY_V2;
  2457. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2458. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2459. out_hdr->sadb_msg_errno = 0;
  2460. out_hdr->sadb_msg_reserved = 0;
  2461. out_hdr->sadb_msg_seq = 0;
  2462. out_hdr->sadb_msg_pid = 0;
  2463. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2464. return 0;
  2465. }
  2466. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2467. {
  2468. switch (c->event) {
  2469. case XFRM_MSG_EXPIRE:
  2470. return key_notify_sa_expire(x, c);
  2471. case XFRM_MSG_DELSA:
  2472. case XFRM_MSG_NEWSA:
  2473. case XFRM_MSG_UPDSA:
  2474. return key_notify_sa(x, c);
  2475. case XFRM_MSG_FLUSHSA:
  2476. return key_notify_sa_flush(c);
  2477. case XFRM_MSG_NEWAE: /* not yet supported */
  2478. break;
  2479. default:
  2480. printk("pfkey: Unknown SA event %d\n", c->event);
  2481. break;
  2482. }
  2483. return 0;
  2484. }
  2485. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2486. {
  2487. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2488. return 0;
  2489. switch (c->event) {
  2490. case XFRM_MSG_POLEXPIRE:
  2491. return key_notify_policy_expire(xp, c);
  2492. case XFRM_MSG_DELPOLICY:
  2493. case XFRM_MSG_NEWPOLICY:
  2494. case XFRM_MSG_UPDPOLICY:
  2495. return key_notify_policy(xp, dir, c);
  2496. case XFRM_MSG_FLUSHPOLICY:
  2497. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2498. break;
  2499. return key_notify_policy_flush(c);
  2500. default:
  2501. printk("pfkey: Unknown policy event %d\n", c->event);
  2502. break;
  2503. }
  2504. return 0;
  2505. }
  2506. static u32 get_acqseq(void)
  2507. {
  2508. u32 res;
  2509. static u32 acqseq;
  2510. static DEFINE_SPINLOCK(acqseq_lock);
  2511. spin_lock_bh(&acqseq_lock);
  2512. res = (++acqseq ? : ++acqseq);
  2513. spin_unlock_bh(&acqseq_lock);
  2514. return res;
  2515. }
  2516. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2517. {
  2518. struct sk_buff *skb;
  2519. struct sadb_msg *hdr;
  2520. struct sadb_address *addr;
  2521. struct sadb_x_policy *pol;
  2522. int sockaddr_size;
  2523. int size;
  2524. struct sadb_x_sec_ctx *sec_ctx;
  2525. struct xfrm_sec_ctx *xfrm_ctx;
  2526. int ctx_size = 0;
  2527. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2528. if (!sockaddr_size)
  2529. return -EINVAL;
  2530. size = sizeof(struct sadb_msg) +
  2531. (sizeof(struct sadb_address) * 2) +
  2532. (sockaddr_size * 2) +
  2533. sizeof(struct sadb_x_policy);
  2534. if (x->id.proto == IPPROTO_AH)
  2535. size += count_ah_combs(t);
  2536. else if (x->id.proto == IPPROTO_ESP)
  2537. size += count_esp_combs(t);
  2538. if ((xfrm_ctx = x->security)) {
  2539. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2540. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2541. }
  2542. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2543. if (skb == NULL)
  2544. return -ENOMEM;
  2545. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2546. hdr->sadb_msg_version = PF_KEY_V2;
  2547. hdr->sadb_msg_type = SADB_ACQUIRE;
  2548. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2549. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2550. hdr->sadb_msg_errno = 0;
  2551. hdr->sadb_msg_reserved = 0;
  2552. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2553. hdr->sadb_msg_pid = 0;
  2554. /* src address */
  2555. addr = (struct sadb_address*) skb_put(skb,
  2556. sizeof(struct sadb_address)+sockaddr_size);
  2557. addr->sadb_address_len =
  2558. (sizeof(struct sadb_address)+sockaddr_size)/
  2559. sizeof(uint64_t);
  2560. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2561. addr->sadb_address_proto = 0;
  2562. addr->sadb_address_reserved = 0;
  2563. addr->sadb_address_prefixlen =
  2564. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2565. (struct sockaddr *) (addr + 1),
  2566. x->props.family);
  2567. if (!addr->sadb_address_prefixlen)
  2568. BUG();
  2569. /* dst address */
  2570. addr = (struct sadb_address*) skb_put(skb,
  2571. sizeof(struct sadb_address)+sockaddr_size);
  2572. addr->sadb_address_len =
  2573. (sizeof(struct sadb_address)+sockaddr_size)/
  2574. sizeof(uint64_t);
  2575. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2576. addr->sadb_address_proto = 0;
  2577. addr->sadb_address_reserved = 0;
  2578. addr->sadb_address_prefixlen =
  2579. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2580. (struct sockaddr *) (addr + 1),
  2581. x->props.family);
  2582. if (!addr->sadb_address_prefixlen)
  2583. BUG();
  2584. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2585. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2586. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2587. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2588. pol->sadb_x_policy_dir = dir+1;
  2589. pol->sadb_x_policy_id = xp->index;
  2590. /* Set sadb_comb's. */
  2591. if (x->id.proto == IPPROTO_AH)
  2592. dump_ah_combs(skb, t);
  2593. else if (x->id.proto == IPPROTO_ESP)
  2594. dump_esp_combs(skb, t);
  2595. /* security context */
  2596. if (xfrm_ctx) {
  2597. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2598. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2599. sec_ctx->sadb_x_sec_len =
  2600. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2601. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2602. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2603. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2604. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2605. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2606. xfrm_ctx->ctx_len);
  2607. }
  2608. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2609. }
  2610. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2611. u8 *data, int len, int *dir)
  2612. {
  2613. struct xfrm_policy *xp;
  2614. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2615. struct sadb_x_sec_ctx *sec_ctx;
  2616. switch (sk->sk_family) {
  2617. case AF_INET:
  2618. if (opt != IP_IPSEC_POLICY) {
  2619. *dir = -EOPNOTSUPP;
  2620. return NULL;
  2621. }
  2622. break;
  2623. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2624. case AF_INET6:
  2625. if (opt != IPV6_IPSEC_POLICY) {
  2626. *dir = -EOPNOTSUPP;
  2627. return NULL;
  2628. }
  2629. break;
  2630. #endif
  2631. default:
  2632. *dir = -EINVAL;
  2633. return NULL;
  2634. }
  2635. *dir = -EINVAL;
  2636. if (len < sizeof(struct sadb_x_policy) ||
  2637. pol->sadb_x_policy_len*8 > len ||
  2638. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2639. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2640. return NULL;
  2641. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2642. if (xp == NULL) {
  2643. *dir = -ENOBUFS;
  2644. return NULL;
  2645. }
  2646. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2647. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2648. xp->lft.soft_byte_limit = XFRM_INF;
  2649. xp->lft.hard_byte_limit = XFRM_INF;
  2650. xp->lft.soft_packet_limit = XFRM_INF;
  2651. xp->lft.hard_packet_limit = XFRM_INF;
  2652. xp->family = sk->sk_family;
  2653. xp->xfrm_nr = 0;
  2654. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2655. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2656. goto out;
  2657. /* security context too */
  2658. if (len >= (pol->sadb_x_policy_len*8 +
  2659. sizeof(struct sadb_x_sec_ctx))) {
  2660. char *p = (char *)pol;
  2661. struct xfrm_user_sec_ctx *uctx;
  2662. p += pol->sadb_x_policy_len*8;
  2663. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2664. if (len < pol->sadb_x_policy_len*8 +
  2665. sec_ctx->sadb_x_sec_len) {
  2666. *dir = -EINVAL;
  2667. goto out;
  2668. }
  2669. if ((*dir = verify_sec_ctx_len(p)))
  2670. goto out;
  2671. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2672. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2673. kfree(uctx);
  2674. if (*dir)
  2675. goto out;
  2676. }
  2677. *dir = pol->sadb_x_policy_dir-1;
  2678. return xp;
  2679. out:
  2680. xfrm_policy_destroy(xp);
  2681. return NULL;
  2682. }
  2683. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2684. {
  2685. struct sk_buff *skb;
  2686. struct sadb_msg *hdr;
  2687. struct sadb_sa *sa;
  2688. struct sadb_address *addr;
  2689. struct sadb_x_nat_t_port *n_port;
  2690. int sockaddr_size;
  2691. int size;
  2692. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2693. struct xfrm_encap_tmpl *natt = NULL;
  2694. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2695. if (!sockaddr_size)
  2696. return -EINVAL;
  2697. if (!satype)
  2698. return -EINVAL;
  2699. if (!x->encap)
  2700. return -EINVAL;
  2701. natt = x->encap;
  2702. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2703. *
  2704. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2705. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2706. */
  2707. size = sizeof(struct sadb_msg) +
  2708. sizeof(struct sadb_sa) +
  2709. (sizeof(struct sadb_address) * 2) +
  2710. (sockaddr_size * 2) +
  2711. (sizeof(struct sadb_x_nat_t_port) * 2);
  2712. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2713. if (skb == NULL)
  2714. return -ENOMEM;
  2715. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2716. hdr->sadb_msg_version = PF_KEY_V2;
  2717. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2718. hdr->sadb_msg_satype = satype;
  2719. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2720. hdr->sadb_msg_errno = 0;
  2721. hdr->sadb_msg_reserved = 0;
  2722. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2723. hdr->sadb_msg_pid = 0;
  2724. /* SA */
  2725. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2726. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2727. sa->sadb_sa_exttype = SADB_EXT_SA;
  2728. sa->sadb_sa_spi = x->id.spi;
  2729. sa->sadb_sa_replay = 0;
  2730. sa->sadb_sa_state = 0;
  2731. sa->sadb_sa_auth = 0;
  2732. sa->sadb_sa_encrypt = 0;
  2733. sa->sadb_sa_flags = 0;
  2734. /* ADDRESS_SRC (old addr) */
  2735. addr = (struct sadb_address*)
  2736. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2737. addr->sadb_address_len =
  2738. (sizeof(struct sadb_address)+sockaddr_size)/
  2739. sizeof(uint64_t);
  2740. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2741. addr->sadb_address_proto = 0;
  2742. addr->sadb_address_reserved = 0;
  2743. addr->sadb_address_prefixlen =
  2744. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2745. (struct sockaddr *) (addr + 1),
  2746. x->props.family);
  2747. if (!addr->sadb_address_prefixlen)
  2748. BUG();
  2749. /* NAT_T_SPORT (old port) */
  2750. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2751. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2752. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2753. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2754. n_port->sadb_x_nat_t_port_reserved = 0;
  2755. /* ADDRESS_DST (new addr) */
  2756. addr = (struct sadb_address*)
  2757. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2758. addr->sadb_address_len =
  2759. (sizeof(struct sadb_address)+sockaddr_size)/
  2760. sizeof(uint64_t);
  2761. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2762. addr->sadb_address_proto = 0;
  2763. addr->sadb_address_reserved = 0;
  2764. addr->sadb_address_prefixlen =
  2765. pfkey_sockaddr_fill(ipaddr, 0,
  2766. (struct sockaddr *) (addr + 1),
  2767. x->props.family);
  2768. if (!addr->sadb_address_prefixlen)
  2769. BUG();
  2770. /* NAT_T_DPORT (new port) */
  2771. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2772. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2773. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2774. n_port->sadb_x_nat_t_port_port = sport;
  2775. n_port->sadb_x_nat_t_port_reserved = 0;
  2776. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2777. }
  2778. #ifdef CONFIG_NET_KEY_MIGRATE
  2779. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2780. struct xfrm_selector *sel)
  2781. {
  2782. struct sadb_address *addr;
  2783. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2784. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2785. addr->sadb_address_exttype = type;
  2786. addr->sadb_address_proto = sel->proto;
  2787. addr->sadb_address_reserved = 0;
  2788. switch (type) {
  2789. case SADB_EXT_ADDRESS_SRC:
  2790. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2791. pfkey_sockaddr_fill(&sel->saddr, 0,
  2792. (struct sockaddr *)(addr + 1),
  2793. sel->family);
  2794. break;
  2795. case SADB_EXT_ADDRESS_DST:
  2796. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2797. pfkey_sockaddr_fill(&sel->daddr, 0,
  2798. (struct sockaddr *)(addr + 1),
  2799. sel->family);
  2800. break;
  2801. default:
  2802. return -EINVAL;
  2803. }
  2804. return 0;
  2805. }
  2806. static int set_ipsecrequest(struct sk_buff *skb,
  2807. uint8_t proto, uint8_t mode, int level,
  2808. uint32_t reqid, uint8_t family,
  2809. xfrm_address_t *src, xfrm_address_t *dst)
  2810. {
  2811. struct sadb_x_ipsecrequest *rq;
  2812. u8 *sa;
  2813. int socklen = pfkey_sockaddr_len(family);
  2814. int size_req;
  2815. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2816. pfkey_sockaddr_pair_size(family);
  2817. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2818. memset(rq, 0, size_req);
  2819. rq->sadb_x_ipsecrequest_len = size_req;
  2820. rq->sadb_x_ipsecrequest_proto = proto;
  2821. rq->sadb_x_ipsecrequest_mode = mode;
  2822. rq->sadb_x_ipsecrequest_level = level;
  2823. rq->sadb_x_ipsecrequest_reqid = reqid;
  2824. sa = (u8 *) (rq + 1);
  2825. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2826. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2827. return -EINVAL;
  2828. return 0;
  2829. }
  2830. #endif
  2831. #ifdef CONFIG_NET_KEY_MIGRATE
  2832. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2833. struct xfrm_migrate *m, int num_bundles)
  2834. {
  2835. int i;
  2836. int sasize_sel;
  2837. int size = 0;
  2838. int size_pol = 0;
  2839. struct sk_buff *skb;
  2840. struct sadb_msg *hdr;
  2841. struct sadb_x_policy *pol;
  2842. struct xfrm_migrate *mp;
  2843. if (type != XFRM_POLICY_TYPE_MAIN)
  2844. return 0;
  2845. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2846. return -EINVAL;
  2847. /* selector */
  2848. sasize_sel = pfkey_sockaddr_size(sel->family);
  2849. if (!sasize_sel)
  2850. return -EINVAL;
  2851. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2852. /* policy info */
  2853. size_pol += sizeof(struct sadb_x_policy);
  2854. /* ipsecrequests */
  2855. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2856. /* old locator pair */
  2857. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2858. pfkey_sockaddr_pair_size(mp->old_family);
  2859. /* new locator pair */
  2860. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2861. pfkey_sockaddr_pair_size(mp->new_family);
  2862. }
  2863. size += sizeof(struct sadb_msg) + size_pol;
  2864. /* alloc buffer */
  2865. skb = alloc_skb(size, GFP_ATOMIC);
  2866. if (skb == NULL)
  2867. return -ENOMEM;
  2868. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2869. hdr->sadb_msg_version = PF_KEY_V2;
  2870. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2871. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2872. hdr->sadb_msg_len = size / 8;
  2873. hdr->sadb_msg_errno = 0;
  2874. hdr->sadb_msg_reserved = 0;
  2875. hdr->sadb_msg_seq = 0;
  2876. hdr->sadb_msg_pid = 0;
  2877. /* selector src */
  2878. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2879. /* selector dst */
  2880. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2881. /* policy information */
  2882. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2883. pol->sadb_x_policy_len = size_pol / 8;
  2884. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2885. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2886. pol->sadb_x_policy_dir = dir + 1;
  2887. pol->sadb_x_policy_id = 0;
  2888. pol->sadb_x_policy_priority = 0;
  2889. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2890. /* old ipsecrequest */
  2891. int mode = pfkey_mode_from_xfrm(mp->mode);
  2892. if (mode < 0)
  2893. goto err;
  2894. if (set_ipsecrequest(skb, mp->proto, mode,
  2895. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2896. mp->reqid, mp->old_family,
  2897. &mp->old_saddr, &mp->old_daddr) < 0)
  2898. goto err;
  2899. /* new ipsecrequest */
  2900. if (set_ipsecrequest(skb, mp->proto, mode,
  2901. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2902. mp->reqid, mp->new_family,
  2903. &mp->new_saddr, &mp->new_daddr) < 0)
  2904. goto err;
  2905. }
  2906. /* broadcast migrate message to sockets */
  2907. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2908. return 0;
  2909. err:
  2910. kfree_skb(skb);
  2911. return -EINVAL;
  2912. }
  2913. #else
  2914. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2915. struct xfrm_migrate *m, int num_bundles)
  2916. {
  2917. return -ENOPROTOOPT;
  2918. }
  2919. #endif
  2920. static int pfkey_sendmsg(struct kiocb *kiocb,
  2921. struct socket *sock, struct msghdr *msg, size_t len)
  2922. {
  2923. struct sock *sk = sock->sk;
  2924. struct sk_buff *skb = NULL;
  2925. struct sadb_msg *hdr = NULL;
  2926. int err;
  2927. err = -EOPNOTSUPP;
  2928. if (msg->msg_flags & MSG_OOB)
  2929. goto out;
  2930. err = -EMSGSIZE;
  2931. if ((unsigned)len > sk->sk_sndbuf - 32)
  2932. goto out;
  2933. err = -ENOBUFS;
  2934. skb = alloc_skb(len, GFP_KERNEL);
  2935. if (skb == NULL)
  2936. goto out;
  2937. err = -EFAULT;
  2938. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2939. goto out;
  2940. hdr = pfkey_get_base_msg(skb, &err);
  2941. if (!hdr)
  2942. goto out;
  2943. mutex_lock(&xfrm_cfg_mutex);
  2944. err = pfkey_process(sk, skb, hdr);
  2945. mutex_unlock(&xfrm_cfg_mutex);
  2946. out:
  2947. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2948. err = 0;
  2949. if (skb)
  2950. kfree_skb(skb);
  2951. return err ? : len;
  2952. }
  2953. static int pfkey_recvmsg(struct kiocb *kiocb,
  2954. struct socket *sock, struct msghdr *msg, size_t len,
  2955. int flags)
  2956. {
  2957. struct sock *sk = sock->sk;
  2958. struct pfkey_sock *pfk = pfkey_sk(sk);
  2959. struct sk_buff *skb;
  2960. int copied, err;
  2961. err = -EINVAL;
  2962. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2963. goto out;
  2964. msg->msg_namelen = 0;
  2965. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2966. if (skb == NULL)
  2967. goto out;
  2968. copied = skb->len;
  2969. if (copied > len) {
  2970. msg->msg_flags |= MSG_TRUNC;
  2971. copied = len;
  2972. }
  2973. skb_reset_transport_header(skb);
  2974. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2975. if (err)
  2976. goto out_free;
  2977. sock_recv_timestamp(msg, sk, skb);
  2978. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2979. if (pfk->dump.dump != NULL &&
  2980. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  2981. pfkey_do_dump(pfk);
  2982. out_free:
  2983. skb_free_datagram(sk, skb);
  2984. out:
  2985. return err;
  2986. }
  2987. static const struct proto_ops pfkey_ops = {
  2988. .family = PF_KEY,
  2989. .owner = THIS_MODULE,
  2990. /* Operations that make no sense on pfkey sockets. */
  2991. .bind = sock_no_bind,
  2992. .connect = sock_no_connect,
  2993. .socketpair = sock_no_socketpair,
  2994. .accept = sock_no_accept,
  2995. .getname = sock_no_getname,
  2996. .ioctl = sock_no_ioctl,
  2997. .listen = sock_no_listen,
  2998. .shutdown = sock_no_shutdown,
  2999. .setsockopt = sock_no_setsockopt,
  3000. .getsockopt = sock_no_getsockopt,
  3001. .mmap = sock_no_mmap,
  3002. .sendpage = sock_no_sendpage,
  3003. /* Now the operations that really occur. */
  3004. .release = pfkey_release,
  3005. .poll = datagram_poll,
  3006. .sendmsg = pfkey_sendmsg,
  3007. .recvmsg = pfkey_recvmsg,
  3008. };
  3009. static struct net_proto_family pfkey_family_ops = {
  3010. .family = PF_KEY,
  3011. .create = pfkey_create,
  3012. .owner = THIS_MODULE,
  3013. };
  3014. #ifdef CONFIG_PROC_FS
  3015. static int pfkey_seq_show(struct seq_file *f, void *v)
  3016. {
  3017. struct sock *s;
  3018. s = (struct sock *)v;
  3019. if (v == SEQ_START_TOKEN)
  3020. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3021. else
  3022. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3023. s,
  3024. atomic_read(&s->sk_refcnt),
  3025. atomic_read(&s->sk_rmem_alloc),
  3026. atomic_read(&s->sk_wmem_alloc),
  3027. sock_i_uid(s),
  3028. sock_i_ino(s)
  3029. );
  3030. return 0;
  3031. }
  3032. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3033. {
  3034. struct sock *s;
  3035. struct hlist_node *node;
  3036. loff_t pos = *ppos;
  3037. read_lock(&pfkey_table_lock);
  3038. if (pos == 0)
  3039. return SEQ_START_TOKEN;
  3040. sk_for_each(s, node, &pfkey_table)
  3041. if (pos-- == 1)
  3042. return s;
  3043. return NULL;
  3044. }
  3045. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3046. {
  3047. ++*ppos;
  3048. return (v == SEQ_START_TOKEN) ?
  3049. sk_head(&pfkey_table) :
  3050. sk_next((struct sock *)v);
  3051. }
  3052. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3053. {
  3054. read_unlock(&pfkey_table_lock);
  3055. }
  3056. static struct seq_operations pfkey_seq_ops = {
  3057. .start = pfkey_seq_start,
  3058. .next = pfkey_seq_next,
  3059. .stop = pfkey_seq_stop,
  3060. .show = pfkey_seq_show,
  3061. };
  3062. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3063. {
  3064. return seq_open(file, &pfkey_seq_ops);
  3065. }
  3066. static struct file_operations pfkey_proc_ops = {
  3067. .open = pfkey_seq_open,
  3068. .read = seq_read,
  3069. .llseek = seq_lseek,
  3070. .release = seq_release,
  3071. };
  3072. static int pfkey_init_proc(void)
  3073. {
  3074. struct proc_dir_entry *e;
  3075. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3076. if (e == NULL)
  3077. return -ENOMEM;
  3078. return 0;
  3079. }
  3080. static void pfkey_exit_proc(void)
  3081. {
  3082. proc_net_remove(&init_net, "pfkey");
  3083. }
  3084. #else
  3085. static inline int pfkey_init_proc(void)
  3086. {
  3087. return 0;
  3088. }
  3089. static inline void pfkey_exit_proc(void)
  3090. {
  3091. }
  3092. #endif
  3093. static struct xfrm_mgr pfkeyv2_mgr =
  3094. {
  3095. .id = "pfkeyv2",
  3096. .notify = pfkey_send_notify,
  3097. .acquire = pfkey_send_acquire,
  3098. .compile_policy = pfkey_compile_policy,
  3099. .new_mapping = pfkey_send_new_mapping,
  3100. .notify_policy = pfkey_send_policy_notify,
  3101. .migrate = pfkey_send_migrate,
  3102. };
  3103. static void __exit ipsec_pfkey_exit(void)
  3104. {
  3105. xfrm_unregister_km(&pfkeyv2_mgr);
  3106. pfkey_exit_proc();
  3107. sock_unregister(PF_KEY);
  3108. proto_unregister(&key_proto);
  3109. }
  3110. static int __init ipsec_pfkey_init(void)
  3111. {
  3112. int err = proto_register(&key_proto, 0);
  3113. if (err != 0)
  3114. goto out;
  3115. err = sock_register(&pfkey_family_ops);
  3116. if (err != 0)
  3117. goto out_unregister_key_proto;
  3118. err = pfkey_init_proc();
  3119. if (err != 0)
  3120. goto out_sock_unregister;
  3121. err = xfrm_register_km(&pfkeyv2_mgr);
  3122. if (err != 0)
  3123. goto out_remove_proc_entry;
  3124. out:
  3125. return err;
  3126. out_remove_proc_entry:
  3127. pfkey_exit_proc();
  3128. out_sock_unregister:
  3129. sock_unregister(PF_KEY);
  3130. out_unregister_key_proto:
  3131. proto_unregister(&key_proto);
  3132. goto out;
  3133. }
  3134. module_init(ipsec_pfkey_init);
  3135. module_exit(ipsec_pfkey_exit);
  3136. MODULE_LICENSE("GPL");
  3137. MODULE_ALIAS_NETPROTO(PF_KEY);