sb_edac.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856
  1. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  2. *
  3. * This driver supports the memory controllers found on the Intel
  4. * processor family Sandy Bridge.
  5. *
  6. * This file may be distributed under the terms of the
  7. * GNU General Public License version 2 only.
  8. *
  9. * Copyright (c) 2011 by:
  10. * Mauro Carvalho Chehab <mchehab@redhat.com>
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/pci.h>
  15. #include <linux/pci_ids.h>
  16. #include <linux/slab.h>
  17. #include <linux/delay.h>
  18. #include <linux/edac.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/smp.h>
  21. #include <linux/bitmap.h>
  22. #include <linux/math64.h>
  23. #include <asm/processor.h>
  24. #include <asm/mce.h>
  25. #include "edac_core.h"
  26. /* Static vars */
  27. static LIST_HEAD(sbridge_edac_list);
  28. static DEFINE_MUTEX(sbridge_edac_lock);
  29. static int probed;
  30. /*
  31. * Alter this version for the module when modifications are made
  32. */
  33. #define SBRIDGE_REVISION " Ver: 1.0.0 "
  34. #define EDAC_MOD_STR "sbridge_edac"
  35. /*
  36. * Debug macros
  37. */
  38. #define sbridge_printk(level, fmt, arg...) \
  39. edac_printk(level, "sbridge", fmt, ##arg)
  40. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  41. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  42. /*
  43. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  44. */
  45. #define GET_BITFIELD(v, lo, hi) \
  46. (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
  47. /*
  48. * sbridge Memory Controller Registers
  49. */
  50. /*
  51. * FIXME: For now, let's order by device function, as it makes
  52. * easier for driver's development process. This table should be
  53. * moved to pci_id.h when submitted upstream
  54. */
  55. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
  56. #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
  57. #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
  58. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
  59. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
  60. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
  61. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
  62. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
  63. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
  64. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
  65. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
  66. /*
  67. * Currently, unused, but will be needed in the future
  68. * implementations, as they hold the error counters
  69. */
  70. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
  71. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
  72. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
  73. #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
  74. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  75. static const u32 dram_rule[] = {
  76. 0x80, 0x88, 0x90, 0x98, 0xa0,
  77. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  78. };
  79. #define MAX_SAD ARRAY_SIZE(dram_rule)
  80. #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
  81. #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
  82. #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
  83. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  84. static char *get_dram_attr(u32 reg)
  85. {
  86. switch(DRAM_ATTR(reg)) {
  87. case 0:
  88. return "DRAM";
  89. case 1:
  90. return "MMCFG";
  91. case 2:
  92. return "NXM";
  93. default:
  94. return "unknown";
  95. }
  96. }
  97. static const u32 interleave_list[] = {
  98. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  99. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  100. };
  101. #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
  102. #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
  103. #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
  104. #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
  105. #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
  106. #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
  107. #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
  108. #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
  109. #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
  110. static inline int sad_pkg(u32 reg, int interleave)
  111. {
  112. switch (interleave) {
  113. case 0:
  114. return SAD_PKG0(reg);
  115. case 1:
  116. return SAD_PKG1(reg);
  117. case 2:
  118. return SAD_PKG2(reg);
  119. case 3:
  120. return SAD_PKG3(reg);
  121. case 4:
  122. return SAD_PKG4(reg);
  123. case 5:
  124. return SAD_PKG5(reg);
  125. case 6:
  126. return SAD_PKG6(reg);
  127. case 7:
  128. return SAD_PKG7(reg);
  129. default:
  130. return -EINVAL;
  131. }
  132. }
  133. /* Devices 12 Function 7 */
  134. #define TOLM 0x80
  135. #define TOHM 0x84
  136. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  137. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  138. /* Device 13 Function 6 */
  139. #define SAD_TARGET 0xf0
  140. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  141. #define SAD_CONTROL 0xf4
  142. #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
  143. /* Device 14 function 0 */
  144. static const u32 tad_dram_rule[] = {
  145. 0x40, 0x44, 0x48, 0x4c,
  146. 0x50, 0x54, 0x58, 0x5c,
  147. 0x60, 0x64, 0x68, 0x6c,
  148. };
  149. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  150. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  151. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  152. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  153. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  154. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  155. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  156. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  157. /* Device 15, function 0 */
  158. #define MCMTR 0x7c
  159. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  160. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  161. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  162. /* Device 15, function 1 */
  163. #define RASENABLES 0xac
  164. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  165. /* Device 15, functions 2-5 */
  166. static const int mtr_regs[] = {
  167. 0x80, 0x84, 0x88,
  168. };
  169. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  170. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  171. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  172. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  173. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  174. static const u32 tad_ch_nilv_offset[] = {
  175. 0x90, 0x94, 0x98, 0x9c,
  176. 0xa0, 0xa4, 0xa8, 0xac,
  177. 0xb0, 0xb4, 0xb8, 0xbc,
  178. };
  179. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  180. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  181. static const u32 rir_way_limit[] = {
  182. 0x108, 0x10c, 0x110, 0x114, 0x118,
  183. };
  184. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  185. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  186. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  187. #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
  188. #define MAX_RIR_WAY 8
  189. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  190. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  191. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  192. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  193. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  194. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  195. };
  196. #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
  197. #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
  198. /* Device 16, functions 2-7 */
  199. /*
  200. * FIXME: Implement the error count reads directly
  201. */
  202. static const u32 correrrcnt[] = {
  203. 0x104, 0x108, 0x10c, 0x110,
  204. };
  205. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  206. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  207. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  208. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  209. static const u32 correrrthrsld[] = {
  210. 0x11c, 0x120, 0x124, 0x128,
  211. };
  212. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  213. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  214. /* Device 17, function 0 */
  215. #define SB_RANK_CFG_A 0x0328
  216. #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
  217. /*
  218. * sbridge structs
  219. */
  220. #define NUM_CHANNELS 4
  221. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  222. struct sbridge_pvt;
  223. struct sbridge_info {
  224. u32 mcmtr;
  225. u32 rankcfgr;
  226. u64 (*get_tolm)(struct sbridge_pvt *pvt);
  227. };
  228. struct sbridge_channel {
  229. u32 ranks;
  230. u32 dimms;
  231. };
  232. struct pci_id_descr {
  233. int dev;
  234. int func;
  235. int dev_id;
  236. int optional;
  237. };
  238. struct pci_id_table {
  239. const struct pci_id_descr *descr;
  240. int n_devs;
  241. };
  242. struct sbridge_dev {
  243. struct list_head list;
  244. u8 bus, mc;
  245. u8 node_id, source_id;
  246. struct pci_dev **pdev;
  247. int n_devs;
  248. struct mem_ctl_info *mci;
  249. };
  250. struct sbridge_pvt {
  251. struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
  252. struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
  253. struct pci_dev *pci_br0;
  254. struct pci_dev *pci_tad[NUM_CHANNELS];
  255. struct sbridge_dev *sbridge_dev;
  256. struct sbridge_info info;
  257. struct sbridge_channel channel[NUM_CHANNELS];
  258. /* Memory type detection */
  259. bool is_mirrored, is_lockstep, is_close_pg;
  260. /* Fifo double buffers */
  261. struct mce mce_entry[MCE_LOG_LEN];
  262. struct mce mce_outentry[MCE_LOG_LEN];
  263. /* Fifo in/out counters */
  264. unsigned mce_in, mce_out;
  265. /* Count indicator to show errors not got */
  266. unsigned mce_overrun;
  267. /* Memory description */
  268. u64 tolm, tohm;
  269. };
  270. #define PCI_DESCR(device, function, device_id, opt) \
  271. .dev = (device), \
  272. .func = (function), \
  273. .dev_id = (device_id), \
  274. .optional = opt
  275. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  276. /* Processor Home Agent */
  277. { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) },
  278. /* Memory controller */
  279. { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) },
  280. { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) },
  281. { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) },
  282. { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) },
  283. { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) },
  284. { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) },
  285. { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) },
  286. /* System Address Decoder */
  287. { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) },
  288. { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) },
  289. /* Broadcast Registers */
  290. { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) },
  291. };
  292. #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
  293. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  294. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
  295. {0,} /* 0 terminated list. */
  296. };
  297. /*
  298. * pci_device_id table for which devices we are looking for
  299. */
  300. static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
  301. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
  302. {0,} /* 0 terminated list. */
  303. };
  304. /****************************************************************************
  305. Ancillary status routines
  306. ****************************************************************************/
  307. static inline int numrank(u32 mtr)
  308. {
  309. int ranks = (1 << RANK_CNT_BITS(mtr));
  310. if (ranks > 4) {
  311. edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
  312. ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  313. return -EINVAL;
  314. }
  315. return ranks;
  316. }
  317. static inline int numrow(u32 mtr)
  318. {
  319. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  320. if (rows < 13 || rows > 18) {
  321. edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
  322. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  323. return -EINVAL;
  324. }
  325. return 1 << rows;
  326. }
  327. static inline int numcol(u32 mtr)
  328. {
  329. int cols = (COL_WIDTH_BITS(mtr) + 10);
  330. if (cols > 12) {
  331. edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
  332. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  333. return -EINVAL;
  334. }
  335. return 1 << cols;
  336. }
  337. static struct sbridge_dev *get_sbridge_dev(u8 bus)
  338. {
  339. struct sbridge_dev *sbridge_dev;
  340. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  341. if (sbridge_dev->bus == bus)
  342. return sbridge_dev;
  343. }
  344. return NULL;
  345. }
  346. static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
  347. const struct pci_id_table *table)
  348. {
  349. struct sbridge_dev *sbridge_dev;
  350. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  351. if (!sbridge_dev)
  352. return NULL;
  353. sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
  354. GFP_KERNEL);
  355. if (!sbridge_dev->pdev) {
  356. kfree(sbridge_dev);
  357. return NULL;
  358. }
  359. sbridge_dev->bus = bus;
  360. sbridge_dev->n_devs = table->n_devs;
  361. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  362. return sbridge_dev;
  363. }
  364. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  365. {
  366. list_del(&sbridge_dev->list);
  367. kfree(sbridge_dev->pdev);
  368. kfree(sbridge_dev);
  369. }
  370. static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
  371. {
  372. u32 reg;
  373. /* Address range is 32:28 */
  374. pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
  375. return GET_TOLM(reg);
  376. }
  377. /****************************************************************************
  378. Memory check routines
  379. ****************************************************************************/
  380. static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
  381. unsigned func)
  382. {
  383. struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
  384. int i;
  385. if (!sbridge_dev)
  386. return NULL;
  387. for (i = 0; i < sbridge_dev->n_devs; i++) {
  388. if (!sbridge_dev->pdev[i])
  389. continue;
  390. if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
  391. PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
  392. edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
  393. bus, slot, func, sbridge_dev->pdev[i]);
  394. return sbridge_dev->pdev[i];
  395. }
  396. }
  397. return NULL;
  398. }
  399. /**
  400. * check_if_ecc_is_active() - Checks if ECC is active
  401. * bus: Device bus
  402. */
  403. static int check_if_ecc_is_active(const u8 bus)
  404. {
  405. struct pci_dev *pdev = NULL;
  406. u32 mcmtr;
  407. pdev = get_pdev_slot_func(bus, 15, 0);
  408. if (!pdev) {
  409. sbridge_printk(KERN_ERR, "Couldn't find PCI device "
  410. "%2x.%02d.%d!!!\n",
  411. bus, 15, 0);
  412. return -ENODEV;
  413. }
  414. pci_read_config_dword(pdev, MCMTR, &mcmtr);
  415. if (!IS_ECC_ENABLED(mcmtr)) {
  416. sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
  417. return -ENODEV;
  418. }
  419. return 0;
  420. }
  421. static int get_dimm_config(struct mem_ctl_info *mci)
  422. {
  423. struct sbridge_pvt *pvt = mci->pvt_info;
  424. struct dimm_info *dimm;
  425. unsigned i, j, banks, ranks, rows, cols, npages;
  426. u64 size;
  427. u32 reg;
  428. enum edac_type mode;
  429. enum mem_type mtype;
  430. pvt->info.rankcfgr = SB_RANK_CFG_A;
  431. pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
  432. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  433. pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
  434. pvt->sbridge_dev->node_id = NODE_ID(reg);
  435. edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
  436. pvt->sbridge_dev->mc,
  437. pvt->sbridge_dev->node_id,
  438. pvt->sbridge_dev->source_id);
  439. pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
  440. if (IS_MIRROR_ENABLED(reg)) {
  441. edac_dbg(0, "Memory mirror is enabled\n");
  442. pvt->is_mirrored = true;
  443. } else {
  444. edac_dbg(0, "Memory mirror is disabled\n");
  445. pvt->is_mirrored = false;
  446. }
  447. pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
  448. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  449. edac_dbg(0, "Lockstep is enabled\n");
  450. mode = EDAC_S8ECD8ED;
  451. pvt->is_lockstep = true;
  452. } else {
  453. edac_dbg(0, "Lockstep is disabled\n");
  454. mode = EDAC_S4ECD4ED;
  455. pvt->is_lockstep = false;
  456. }
  457. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  458. edac_dbg(0, "address map is on closed page mode\n");
  459. pvt->is_close_pg = true;
  460. } else {
  461. edac_dbg(0, "address map is on open page mode\n");
  462. pvt->is_close_pg = false;
  463. }
  464. if (pvt->pci_ddrio) {
  465. pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
  466. &reg);
  467. if (IS_RDIMM_ENABLED(reg)) {
  468. /* FIXME: Can also be LRDIMM */
  469. edac_dbg(0, "Memory is registered\n");
  470. mtype = MEM_RDDR3;
  471. } else {
  472. edac_dbg(0, "Memory is unregistered\n");
  473. mtype = MEM_DDR3;
  474. }
  475. } else {
  476. edac_dbg(0, "Cannot determine memory type\n");
  477. mtype = MEM_UNKNOWN;
  478. }
  479. /* On all supported DDR3 DIMM types, there are 8 banks available */
  480. banks = 8;
  481. for (i = 0; i < NUM_CHANNELS; i++) {
  482. u32 mtr;
  483. for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
  484. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
  485. i, j, 0);
  486. pci_read_config_dword(pvt->pci_tad[i],
  487. mtr_regs[j], &mtr);
  488. edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
  489. if (IS_DIMM_PRESENT(mtr)) {
  490. pvt->channel[i].dimms++;
  491. ranks = numrank(mtr);
  492. rows = numrow(mtr);
  493. cols = numcol(mtr);
  494. /* DDR3 has 8 I/O banks */
  495. size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
  496. npages = MiB_TO_PAGES(size);
  497. edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  498. pvt->sbridge_dev->mc, i, j,
  499. size, npages,
  500. banks, ranks, rows, cols);
  501. dimm->nr_pages = npages;
  502. dimm->grain = 32;
  503. dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
  504. dimm->mtype = mtype;
  505. dimm->edac_mode = mode;
  506. snprintf(dimm->label, sizeof(dimm->label),
  507. "CPU_SrcID#%u_Channel#%u_DIMM#%u",
  508. pvt->sbridge_dev->source_id, i, j);
  509. }
  510. }
  511. }
  512. return 0;
  513. }
  514. static void get_memory_layout(const struct mem_ctl_info *mci)
  515. {
  516. struct sbridge_pvt *pvt = mci->pvt_info;
  517. int i, j, k, n_sads, n_tads, sad_interl;
  518. u32 reg;
  519. u64 limit, prv = 0;
  520. u64 tmp_mb;
  521. u32 mb, kb;
  522. u32 rir_way;
  523. /*
  524. * Step 1) Get TOLM/TOHM ranges
  525. */
  526. pvt->tolm = pvt->info.get_tolm(pvt);
  527. tmp_mb = (1 + pvt->tolm) >> 20;
  528. mb = div_u64_rem(tmp_mb, 1000, &kb);
  529. edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
  530. /* Address range is already 45:25 */
  531. pci_read_config_dword(pvt->pci_sad1, TOHM,
  532. &reg);
  533. pvt->tohm = GET_TOHM(reg);
  534. tmp_mb = (1 + pvt->tohm) >> 20;
  535. mb = div_u64_rem(tmp_mb, 1000, &kb);
  536. edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
  537. /*
  538. * Step 2) Get SAD range and SAD Interleave list
  539. * TAD registers contain the interleave wayness. However, it
  540. * seems simpler to just discover it indirectly, with the
  541. * algorithm bellow.
  542. */
  543. prv = 0;
  544. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  545. /* SAD_LIMIT Address range is 45:26 */
  546. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  547. &reg);
  548. limit = SAD_LIMIT(reg);
  549. if (!DRAM_RULE_ENABLE(reg))
  550. continue;
  551. if (limit <= prv)
  552. break;
  553. tmp_mb = (limit + 1) >> 20;
  554. mb = div_u64_rem(tmp_mb, 1000, &kb);
  555. edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
  556. n_sads,
  557. get_dram_attr(reg),
  558. mb, kb,
  559. ((u64)tmp_mb) << 20L,
  560. INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
  561. reg);
  562. prv = limit;
  563. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  564. &reg);
  565. sad_interl = sad_pkg(reg, 0);
  566. for (j = 0; j < 8; j++) {
  567. if (j > 0 && sad_interl == sad_pkg(reg, j))
  568. break;
  569. edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
  570. n_sads, j, sad_pkg(reg, j));
  571. }
  572. }
  573. /*
  574. * Step 3) Get TAD range
  575. */
  576. prv = 0;
  577. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  578. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  579. &reg);
  580. limit = TAD_LIMIT(reg);
  581. if (limit <= prv)
  582. break;
  583. tmp_mb = (limit + 1) >> 20;
  584. mb = div_u64_rem(tmp_mb, 1000, &kb);
  585. edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  586. n_tads, mb, kb,
  587. ((u64)tmp_mb) << 20L,
  588. (u32)TAD_SOCK(reg),
  589. (u32)TAD_CH(reg),
  590. (u32)TAD_TGT0(reg),
  591. (u32)TAD_TGT1(reg),
  592. (u32)TAD_TGT2(reg),
  593. (u32)TAD_TGT3(reg),
  594. reg);
  595. prv = limit;
  596. }
  597. /*
  598. * Step 4) Get TAD offsets, per each channel
  599. */
  600. for (i = 0; i < NUM_CHANNELS; i++) {
  601. if (!pvt->channel[i].dimms)
  602. continue;
  603. for (j = 0; j < n_tads; j++) {
  604. pci_read_config_dword(pvt->pci_tad[i],
  605. tad_ch_nilv_offset[j],
  606. &reg);
  607. tmp_mb = TAD_OFFSET(reg) >> 20;
  608. mb = div_u64_rem(tmp_mb, 1000, &kb);
  609. edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  610. i, j,
  611. mb, kb,
  612. ((u64)tmp_mb) << 20L,
  613. reg);
  614. }
  615. }
  616. /*
  617. * Step 6) Get RIR Wayness/Limit, per each channel
  618. */
  619. for (i = 0; i < NUM_CHANNELS; i++) {
  620. if (!pvt->channel[i].dimms)
  621. continue;
  622. for (j = 0; j < MAX_RIR_RANGES; j++) {
  623. pci_read_config_dword(pvt->pci_tad[i],
  624. rir_way_limit[j],
  625. &reg);
  626. if (!IS_RIR_VALID(reg))
  627. continue;
  628. tmp_mb = RIR_LIMIT(reg) >> 20;
  629. rir_way = 1 << RIR_WAY(reg);
  630. mb = div_u64_rem(tmp_mb, 1000, &kb);
  631. edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  632. i, j,
  633. mb, kb,
  634. ((u64)tmp_mb) << 20L,
  635. rir_way,
  636. reg);
  637. for (k = 0; k < rir_way; k++) {
  638. pci_read_config_dword(pvt->pci_tad[i],
  639. rir_offset[j][k],
  640. &reg);
  641. tmp_mb = RIR_OFFSET(reg) << 6;
  642. mb = div_u64_rem(tmp_mb, 1000, &kb);
  643. edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  644. i, j, k,
  645. mb, kb,
  646. ((u64)tmp_mb) << 20L,
  647. (u32)RIR_RNK_TGT(reg),
  648. reg);
  649. }
  650. }
  651. }
  652. }
  653. struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
  654. {
  655. struct sbridge_dev *sbridge_dev;
  656. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  657. if (sbridge_dev->node_id == node_id)
  658. return sbridge_dev->mci;
  659. }
  660. return NULL;
  661. }
  662. static int get_memory_error_data(struct mem_ctl_info *mci,
  663. u64 addr,
  664. u8 *socket,
  665. long *channel_mask,
  666. u8 *rank,
  667. char **area_type, char *msg)
  668. {
  669. struct mem_ctl_info *new_mci;
  670. struct sbridge_pvt *pvt = mci->pvt_info;
  671. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  672. int sad_interl, idx, base_ch;
  673. int interleave_mode;
  674. unsigned sad_interleave[MAX_INTERLEAVE];
  675. u32 reg;
  676. u8 ch_way,sck_way;
  677. u32 tad_offset;
  678. u32 rir_way;
  679. u32 mb, kb;
  680. u64 ch_addr, offset, limit, prv = 0;
  681. /*
  682. * Step 0) Check if the address is at special memory ranges
  683. * The check bellow is probably enough to fill all cases where
  684. * the error is not inside a memory, except for the legacy
  685. * range (e. g. VGA addresses). It is unlikely, however, that the
  686. * memory controller would generate an error on that range.
  687. */
  688. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  689. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  690. return -EINVAL;
  691. }
  692. if (addr >= (u64)pvt->tohm) {
  693. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  694. return -EINVAL;
  695. }
  696. /*
  697. * Step 1) Get socket
  698. */
  699. for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
  700. pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
  701. &reg);
  702. if (!DRAM_RULE_ENABLE(reg))
  703. continue;
  704. limit = SAD_LIMIT(reg);
  705. if (limit <= prv) {
  706. sprintf(msg, "Can't discover the memory socket");
  707. return -EINVAL;
  708. }
  709. if (addr <= limit)
  710. break;
  711. prv = limit;
  712. }
  713. if (n_sads == MAX_SAD) {
  714. sprintf(msg, "Can't discover the memory socket");
  715. return -EINVAL;
  716. }
  717. *area_type = get_dram_attr(reg);
  718. interleave_mode = INTERLEAVE_MODE(reg);
  719. pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
  720. &reg);
  721. sad_interl = sad_pkg(reg, 0);
  722. for (sad_way = 0; sad_way < 8; sad_way++) {
  723. if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
  724. break;
  725. sad_interleave[sad_way] = sad_pkg(reg, sad_way);
  726. edac_dbg(0, "SAD interleave #%d: %d\n",
  727. sad_way, sad_interleave[sad_way]);
  728. }
  729. edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  730. pvt->sbridge_dev->mc,
  731. n_sads,
  732. addr,
  733. limit,
  734. sad_way + 7,
  735. interleave_mode ? "" : "XOR[18:16]");
  736. if (interleave_mode)
  737. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  738. else
  739. idx = (addr >> 6) & 7;
  740. switch (sad_way) {
  741. case 1:
  742. idx = 0;
  743. break;
  744. case 2:
  745. idx = idx & 1;
  746. break;
  747. case 4:
  748. idx = idx & 3;
  749. break;
  750. case 8:
  751. break;
  752. default:
  753. sprintf(msg, "Can't discover socket interleave");
  754. return -EINVAL;
  755. }
  756. *socket = sad_interleave[idx];
  757. edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  758. idx, sad_way, *socket);
  759. /*
  760. * Move to the proper node structure, in order to access the
  761. * right PCI registers
  762. */
  763. new_mci = get_mci_for_node_id(*socket);
  764. if (!new_mci) {
  765. sprintf(msg, "Struct for socket #%u wasn't initialized",
  766. *socket);
  767. return -EINVAL;
  768. }
  769. mci = new_mci;
  770. pvt = mci->pvt_info;
  771. /*
  772. * Step 2) Get memory channel
  773. */
  774. prv = 0;
  775. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  776. pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
  777. &reg);
  778. limit = TAD_LIMIT(reg);
  779. if (limit <= prv) {
  780. sprintf(msg, "Can't discover the memory channel");
  781. return -EINVAL;
  782. }
  783. if (addr <= limit)
  784. break;
  785. prv = limit;
  786. }
  787. ch_way = TAD_CH(reg) + 1;
  788. sck_way = TAD_SOCK(reg) + 1;
  789. /*
  790. * FIXME: Is it right to always use channel 0 for offsets?
  791. */
  792. pci_read_config_dword(pvt->pci_tad[0],
  793. tad_ch_nilv_offset[n_tads],
  794. &tad_offset);
  795. if (ch_way == 3)
  796. idx = addr >> 6;
  797. else
  798. idx = addr >> (6 + sck_way);
  799. idx = idx % ch_way;
  800. /*
  801. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  802. */
  803. switch (idx) {
  804. case 0:
  805. base_ch = TAD_TGT0(reg);
  806. break;
  807. case 1:
  808. base_ch = TAD_TGT1(reg);
  809. break;
  810. case 2:
  811. base_ch = TAD_TGT2(reg);
  812. break;
  813. case 3:
  814. base_ch = TAD_TGT3(reg);
  815. break;
  816. default:
  817. sprintf(msg, "Can't discover the TAD target");
  818. return -EINVAL;
  819. }
  820. *channel_mask = 1 << base_ch;
  821. if (pvt->is_mirrored) {
  822. *channel_mask |= 1 << ((base_ch + 2) % 4);
  823. switch(ch_way) {
  824. case 2:
  825. case 4:
  826. sck_xch = 1 << sck_way * (ch_way >> 1);
  827. break;
  828. default:
  829. sprintf(msg, "Invalid mirror set. Can't decode addr");
  830. return -EINVAL;
  831. }
  832. } else
  833. sck_xch = (1 << sck_way) * ch_way;
  834. if (pvt->is_lockstep)
  835. *channel_mask |= 1 << ((base_ch + 1) % 4);
  836. offset = TAD_OFFSET(tad_offset);
  837. edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  838. n_tads,
  839. addr,
  840. limit,
  841. (u32)TAD_SOCK(reg),
  842. ch_way,
  843. offset,
  844. idx,
  845. base_ch,
  846. *channel_mask);
  847. /* Calculate channel address */
  848. /* Remove the TAD offset */
  849. if (offset > addr) {
  850. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  851. offset, addr);
  852. return -EINVAL;
  853. }
  854. addr -= offset;
  855. /* Store the low bits [0:6] of the addr */
  856. ch_addr = addr & 0x7f;
  857. /* Remove socket wayness and remove 6 bits */
  858. addr >>= 6;
  859. addr = div_u64(addr, sck_xch);
  860. #if 0
  861. /* Divide by channel way */
  862. addr = addr / ch_way;
  863. #endif
  864. /* Recover the last 6 bits */
  865. ch_addr |= addr << 6;
  866. /*
  867. * Step 3) Decode rank
  868. */
  869. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  870. pci_read_config_dword(pvt->pci_tad[base_ch],
  871. rir_way_limit[n_rir],
  872. &reg);
  873. if (!IS_RIR_VALID(reg))
  874. continue;
  875. limit = RIR_LIMIT(reg);
  876. mb = div_u64_rem(limit >> 20, 1000, &kb);
  877. edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  878. n_rir,
  879. mb, kb,
  880. limit,
  881. 1 << RIR_WAY(reg));
  882. if (ch_addr <= limit)
  883. break;
  884. }
  885. if (n_rir == MAX_RIR_RANGES) {
  886. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  887. ch_addr);
  888. return -EINVAL;
  889. }
  890. rir_way = RIR_WAY(reg);
  891. if (pvt->is_close_pg)
  892. idx = (ch_addr >> 6);
  893. else
  894. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  895. idx %= 1 << rir_way;
  896. pci_read_config_dword(pvt->pci_tad[base_ch],
  897. rir_offset[n_rir][idx],
  898. &reg);
  899. *rank = RIR_RNK_TGT(reg);
  900. edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  901. n_rir,
  902. ch_addr,
  903. limit,
  904. rir_way,
  905. idx);
  906. return 0;
  907. }
  908. /****************************************************************************
  909. Device initialization routines: put/get, init/exit
  910. ****************************************************************************/
  911. /*
  912. * sbridge_put_all_devices 'put' all the devices that we have
  913. * reserved via 'get'
  914. */
  915. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  916. {
  917. int i;
  918. edac_dbg(0, "\n");
  919. for (i = 0; i < sbridge_dev->n_devs; i++) {
  920. struct pci_dev *pdev = sbridge_dev->pdev[i];
  921. if (!pdev)
  922. continue;
  923. edac_dbg(0, "Removing dev %02x:%02x.%d\n",
  924. pdev->bus->number,
  925. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  926. pci_dev_put(pdev);
  927. }
  928. }
  929. static void sbridge_put_all_devices(void)
  930. {
  931. struct sbridge_dev *sbridge_dev, *tmp;
  932. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  933. sbridge_put_devices(sbridge_dev);
  934. free_sbridge_dev(sbridge_dev);
  935. }
  936. }
  937. /*
  938. * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
  939. * device/functions we want to reference for this driver
  940. *
  941. * Need to 'get' device 16 func 1 and func 2
  942. */
  943. static int sbridge_get_onedevice(struct pci_dev **prev,
  944. u8 *num_mc,
  945. const struct pci_id_table *table,
  946. const unsigned devno)
  947. {
  948. struct sbridge_dev *sbridge_dev;
  949. const struct pci_id_descr *dev_descr = &table->descr[devno];
  950. struct pci_dev *pdev = NULL;
  951. u8 bus = 0;
  952. sbridge_printk(KERN_INFO,
  953. "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
  954. dev_descr->dev, dev_descr->func,
  955. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  956. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  957. dev_descr->dev_id, *prev);
  958. if (!pdev) {
  959. if (*prev) {
  960. *prev = pdev;
  961. return 0;
  962. }
  963. if (dev_descr->optional)
  964. return 0;
  965. if (devno == 0)
  966. return -ENODEV;
  967. sbridge_printk(KERN_INFO,
  968. "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
  969. dev_descr->dev, dev_descr->func,
  970. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  971. /* End of list, leave */
  972. return -ENODEV;
  973. }
  974. bus = pdev->bus->number;
  975. sbridge_dev = get_sbridge_dev(bus);
  976. if (!sbridge_dev) {
  977. sbridge_dev = alloc_sbridge_dev(bus, table);
  978. if (!sbridge_dev) {
  979. pci_dev_put(pdev);
  980. return -ENOMEM;
  981. }
  982. (*num_mc)++;
  983. }
  984. if (sbridge_dev->pdev[devno]) {
  985. sbridge_printk(KERN_ERR,
  986. "Duplicated device for "
  987. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  988. bus, dev_descr->dev, dev_descr->func,
  989. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  990. pci_dev_put(pdev);
  991. return -ENODEV;
  992. }
  993. sbridge_dev->pdev[devno] = pdev;
  994. /* Sanity check */
  995. if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
  996. PCI_FUNC(pdev->devfn) != dev_descr->func)) {
  997. sbridge_printk(KERN_ERR,
  998. "Device PCI ID %04x:%04x "
  999. "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
  1000. PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
  1001. bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1002. bus, dev_descr->dev, dev_descr->func);
  1003. return -ENODEV;
  1004. }
  1005. /* Be sure that the device is enabled */
  1006. if (unlikely(pci_enable_device(pdev) < 0)) {
  1007. sbridge_printk(KERN_ERR,
  1008. "Couldn't enable "
  1009. "dev %02x:%d.%d PCI ID %04x:%04x\n",
  1010. bus, dev_descr->dev, dev_descr->func,
  1011. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1012. return -ENODEV;
  1013. }
  1014. edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
  1015. bus, dev_descr->dev, dev_descr->func,
  1016. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  1017. /*
  1018. * As stated on drivers/pci/search.c, the reference count for
  1019. * @from is always decremented if it is not %NULL. So, as we need
  1020. * to get all devices up to null, we need to do a get for the device
  1021. */
  1022. pci_dev_get(pdev);
  1023. *prev = pdev;
  1024. return 0;
  1025. }
  1026. static int sbridge_get_all_devices(u8 *num_mc)
  1027. {
  1028. int i, rc;
  1029. struct pci_dev *pdev = NULL;
  1030. const struct pci_id_table *table = pci_dev_descr_sbridge_table;
  1031. while (table && table->descr) {
  1032. for (i = 0; i < table->n_devs; i++) {
  1033. pdev = NULL;
  1034. do {
  1035. rc = sbridge_get_onedevice(&pdev, num_mc,
  1036. table, i);
  1037. if (rc < 0) {
  1038. if (i == 0) {
  1039. i = table->n_devs;
  1040. break;
  1041. }
  1042. sbridge_put_all_devices();
  1043. return -ENODEV;
  1044. }
  1045. } while (pdev);
  1046. }
  1047. table++;
  1048. }
  1049. return 0;
  1050. }
  1051. static int mci_bind_devs(struct mem_ctl_info *mci,
  1052. struct sbridge_dev *sbridge_dev)
  1053. {
  1054. struct sbridge_pvt *pvt = mci->pvt_info;
  1055. struct pci_dev *pdev;
  1056. int i, func, slot;
  1057. for (i = 0; i < sbridge_dev->n_devs; i++) {
  1058. pdev = sbridge_dev->pdev[i];
  1059. if (!pdev)
  1060. continue;
  1061. slot = PCI_SLOT(pdev->devfn);
  1062. func = PCI_FUNC(pdev->devfn);
  1063. switch (slot) {
  1064. case 12:
  1065. switch (func) {
  1066. case 6:
  1067. pvt->pci_sad0 = pdev;
  1068. break;
  1069. case 7:
  1070. pvt->pci_sad1 = pdev;
  1071. break;
  1072. default:
  1073. goto error;
  1074. }
  1075. break;
  1076. case 13:
  1077. switch (func) {
  1078. case 6:
  1079. pvt->pci_br0 = pdev;
  1080. break;
  1081. default:
  1082. goto error;
  1083. }
  1084. break;
  1085. case 14:
  1086. switch (func) {
  1087. case 0:
  1088. pvt->pci_ha0 = pdev;
  1089. break;
  1090. default:
  1091. goto error;
  1092. }
  1093. break;
  1094. case 15:
  1095. switch (func) {
  1096. case 0:
  1097. pvt->pci_ta = pdev;
  1098. break;
  1099. case 1:
  1100. pvt->pci_ras = pdev;
  1101. break;
  1102. case 2:
  1103. case 3:
  1104. case 4:
  1105. case 5:
  1106. pvt->pci_tad[func - 2] = pdev;
  1107. break;
  1108. default:
  1109. goto error;
  1110. }
  1111. break;
  1112. case 17:
  1113. switch (func) {
  1114. case 0:
  1115. pvt->pci_ddrio = pdev;
  1116. break;
  1117. default:
  1118. goto error;
  1119. }
  1120. break;
  1121. default:
  1122. goto error;
  1123. }
  1124. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  1125. sbridge_dev->bus,
  1126. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  1127. pdev);
  1128. }
  1129. /* Check if everything were registered */
  1130. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
  1131. !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
  1132. goto enodev;
  1133. for (i = 0; i < NUM_CHANNELS; i++) {
  1134. if (!pvt->pci_tad[i])
  1135. goto enodev;
  1136. }
  1137. return 0;
  1138. enodev:
  1139. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  1140. return -ENODEV;
  1141. error:
  1142. sbridge_printk(KERN_ERR, "Device %d, function %d "
  1143. "is out of the expected range\n",
  1144. slot, func);
  1145. return -EINVAL;
  1146. }
  1147. /****************************************************************************
  1148. Error check routines
  1149. ****************************************************************************/
  1150. /*
  1151. * While Sandy Bridge has error count registers, SMI BIOS read values from
  1152. * and resets the counters. So, they are not reliable for the OS to read
  1153. * from them. So, we have no option but to just trust on whatever MCE is
  1154. * telling us about the errors.
  1155. */
  1156. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  1157. const struct mce *m)
  1158. {
  1159. struct mem_ctl_info *new_mci;
  1160. struct sbridge_pvt *pvt = mci->pvt_info;
  1161. enum hw_event_mc_err_type tp_event;
  1162. char *type, *optype, msg[256];
  1163. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  1164. bool overflow = GET_BITFIELD(m->status, 62, 62);
  1165. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  1166. bool recoverable = GET_BITFIELD(m->status, 56, 56);
  1167. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  1168. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  1169. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  1170. u32 channel = GET_BITFIELD(m->status, 0, 3);
  1171. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  1172. long channel_mask, first_channel;
  1173. u8 rank, socket;
  1174. int rc, dimm;
  1175. char *area_type = NULL;
  1176. if (uncorrected_error) {
  1177. if (ripv) {
  1178. type = "FATAL";
  1179. tp_event = HW_EVENT_ERR_FATAL;
  1180. } else {
  1181. type = "NON_FATAL";
  1182. tp_event = HW_EVENT_ERR_UNCORRECTED;
  1183. }
  1184. } else {
  1185. type = "CORRECTED";
  1186. tp_event = HW_EVENT_ERR_CORRECTED;
  1187. }
  1188. /*
  1189. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  1190. * memory errors should fit in this mask:
  1191. * 000f 0000 1mmm cccc (binary)
  1192. * where:
  1193. * f = Correction Report Filtering Bit. If 1, subsequent errors
  1194. * won't be shown
  1195. * mmm = error type
  1196. * cccc = channel
  1197. * If the mask doesn't match, report an error to the parsing logic
  1198. */
  1199. if (! ((errcode & 0xef80) == 0x80)) {
  1200. optype = "Can't parse: it is not a mem";
  1201. } else {
  1202. switch (optypenum) {
  1203. case 0:
  1204. optype = "generic undef request error";
  1205. break;
  1206. case 1:
  1207. optype = "memory read error";
  1208. break;
  1209. case 2:
  1210. optype = "memory write error";
  1211. break;
  1212. case 3:
  1213. optype = "addr/cmd error";
  1214. break;
  1215. case 4:
  1216. optype = "memory scrubbing error";
  1217. break;
  1218. default:
  1219. optype = "reserved";
  1220. break;
  1221. }
  1222. }
  1223. rc = get_memory_error_data(mci, m->addr, &socket,
  1224. &channel_mask, &rank, &area_type, msg);
  1225. if (rc < 0)
  1226. goto err_parsing;
  1227. new_mci = get_mci_for_node_id(socket);
  1228. if (!new_mci) {
  1229. strcpy(msg, "Error: socket got corrupted!");
  1230. goto err_parsing;
  1231. }
  1232. mci = new_mci;
  1233. pvt = mci->pvt_info;
  1234. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  1235. if (rank < 4)
  1236. dimm = 0;
  1237. else if (rank < 8)
  1238. dimm = 1;
  1239. else
  1240. dimm = 2;
  1241. /*
  1242. * FIXME: On some memory configurations (mirror, lockstep), the
  1243. * Memory Controller can't point the error to a single DIMM. The
  1244. * EDAC core should be handling the channel mask, in order to point
  1245. * to the group of dimm's where the error may be happening.
  1246. */
  1247. snprintf(msg, sizeof(msg),
  1248. "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
  1249. overflow ? " OVERFLOW" : "",
  1250. (uncorrected_error && recoverable) ? " recoverable" : "",
  1251. area_type,
  1252. mscod, errcode,
  1253. socket,
  1254. channel_mask,
  1255. rank);
  1256. edac_dbg(0, "%s\n", msg);
  1257. /* FIXME: need support for channel mask */
  1258. /* Call the helper to output message */
  1259. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  1260. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  1261. channel, dimm, -1,
  1262. optype, msg);
  1263. return;
  1264. err_parsing:
  1265. edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
  1266. -1, -1, -1,
  1267. msg, "");
  1268. }
  1269. /*
  1270. * sbridge_check_error Retrieve and process errors reported by the
  1271. * hardware. Called by the Core module.
  1272. */
  1273. static void sbridge_check_error(struct mem_ctl_info *mci)
  1274. {
  1275. struct sbridge_pvt *pvt = mci->pvt_info;
  1276. int i;
  1277. unsigned count = 0;
  1278. struct mce *m;
  1279. /*
  1280. * MCE first step: Copy all mce errors into a temporary buffer
  1281. * We use a double buffering here, to reduce the risk of
  1282. * loosing an error.
  1283. */
  1284. smp_rmb();
  1285. count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
  1286. % MCE_LOG_LEN;
  1287. if (!count)
  1288. return;
  1289. m = pvt->mce_outentry;
  1290. if (pvt->mce_in + count > MCE_LOG_LEN) {
  1291. unsigned l = MCE_LOG_LEN - pvt->mce_in;
  1292. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
  1293. smp_wmb();
  1294. pvt->mce_in = 0;
  1295. count -= l;
  1296. m += l;
  1297. }
  1298. memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
  1299. smp_wmb();
  1300. pvt->mce_in += count;
  1301. smp_rmb();
  1302. if (pvt->mce_overrun) {
  1303. sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
  1304. pvt->mce_overrun);
  1305. smp_wmb();
  1306. pvt->mce_overrun = 0;
  1307. }
  1308. /*
  1309. * MCE second step: parse errors and display
  1310. */
  1311. for (i = 0; i < count; i++)
  1312. sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
  1313. }
  1314. /*
  1315. * sbridge_mce_check_error Replicates mcelog routine to get errors
  1316. * This routine simply queues mcelog errors, and
  1317. * return. The error itself should be handled later
  1318. * by sbridge_check_error.
  1319. * WARNING: As this routine should be called at NMI time, extra care should
  1320. * be taken to avoid deadlocks, and to be as fast as possible.
  1321. */
  1322. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  1323. void *data)
  1324. {
  1325. struct mce *mce = (struct mce *)data;
  1326. struct mem_ctl_info *mci;
  1327. struct sbridge_pvt *pvt;
  1328. mci = get_mci_for_node_id(mce->socketid);
  1329. if (!mci)
  1330. return NOTIFY_BAD;
  1331. pvt = mci->pvt_info;
  1332. /*
  1333. * Just let mcelog handle it if the error is
  1334. * outside the memory controller. A memory error
  1335. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  1336. * bit 12 has an special meaning.
  1337. */
  1338. if ((mce->status & 0xefff) >> 7 != 1)
  1339. return NOTIFY_DONE;
  1340. printk("sbridge: HANDLING MCE MEMORY ERROR\n");
  1341. printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
  1342. mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
  1343. printk("TSC %llx ", mce->tsc);
  1344. printk("ADDR %llx ", mce->addr);
  1345. printk("MISC %llx ", mce->misc);
  1346. printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
  1347. mce->cpuvendor, mce->cpuid, mce->time,
  1348. mce->socketid, mce->apicid);
  1349. /* Only handle if it is the right mc controller */
  1350. if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
  1351. return NOTIFY_DONE;
  1352. smp_rmb();
  1353. if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
  1354. smp_wmb();
  1355. pvt->mce_overrun++;
  1356. return NOTIFY_DONE;
  1357. }
  1358. /* Copy memory error at the ringbuffer */
  1359. memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
  1360. smp_wmb();
  1361. pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
  1362. /* Handle fatal errors immediately */
  1363. if (mce->mcgstatus & 1)
  1364. sbridge_check_error(mci);
  1365. /* Advice mcelog that the error were handled */
  1366. return NOTIFY_STOP;
  1367. }
  1368. static struct notifier_block sbridge_mce_dec = {
  1369. .notifier_call = sbridge_mce_check_error,
  1370. };
  1371. /****************************************************************************
  1372. EDAC register/unregister logic
  1373. ****************************************************************************/
  1374. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  1375. {
  1376. struct mem_ctl_info *mci = sbridge_dev->mci;
  1377. struct sbridge_pvt *pvt;
  1378. if (unlikely(!mci || !mci->pvt_info)) {
  1379. edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
  1380. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  1381. return;
  1382. }
  1383. pvt = mci->pvt_info;
  1384. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  1385. mci, &sbridge_dev->pdev[0]->dev);
  1386. /* Remove MC sysfs nodes */
  1387. edac_mc_del_mc(mci->pdev);
  1388. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  1389. kfree(mci->ctl_name);
  1390. edac_mc_free(mci);
  1391. sbridge_dev->mci = NULL;
  1392. }
  1393. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
  1394. {
  1395. struct mem_ctl_info *mci;
  1396. struct edac_mc_layer layers[2];
  1397. struct sbridge_pvt *pvt;
  1398. int rc;
  1399. /* Check the number of active and not disabled channels */
  1400. rc = check_if_ecc_is_active(sbridge_dev->bus);
  1401. if (unlikely(rc < 0))
  1402. return rc;
  1403. /* allocate a new MC control structure */
  1404. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  1405. layers[0].size = NUM_CHANNELS;
  1406. layers[0].is_virt_csrow = false;
  1407. layers[1].type = EDAC_MC_LAYER_SLOT;
  1408. layers[1].size = MAX_DIMMS;
  1409. layers[1].is_virt_csrow = true;
  1410. mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
  1411. sizeof(*pvt));
  1412. if (unlikely(!mci))
  1413. return -ENOMEM;
  1414. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  1415. mci, &sbridge_dev->pdev[0]->dev);
  1416. pvt = mci->pvt_info;
  1417. memset(pvt, 0, sizeof(*pvt));
  1418. /* Associate sbridge_dev and mci for future usage */
  1419. pvt->sbridge_dev = sbridge_dev;
  1420. sbridge_dev->mci = mci;
  1421. mci->mtype_cap = MEM_FLAG_DDR3;
  1422. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1423. mci->edac_cap = EDAC_FLAG_NONE;
  1424. mci->mod_name = "sbridge_edac.c";
  1425. mci->mod_ver = SBRIDGE_REVISION;
  1426. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
  1427. mci->dev_name = pci_name(sbridge_dev->pdev[0]);
  1428. mci->ctl_page_to_phys = NULL;
  1429. pvt->info.get_tolm = sbridge_get_tolm;
  1430. /* Set the function pointer to an actual operation function */
  1431. mci->edac_check = sbridge_check_error;
  1432. /* Store pci devices at mci for faster access */
  1433. rc = mci_bind_devs(mci, sbridge_dev);
  1434. if (unlikely(rc < 0))
  1435. goto fail0;
  1436. /* Get dimm basic config and the memory layout */
  1437. get_dimm_config(mci);
  1438. get_memory_layout(mci);
  1439. /* record ptr to the generic device */
  1440. mci->pdev = &sbridge_dev->pdev[0]->dev;
  1441. /* add this new MC control structure to EDAC's list of MCs */
  1442. if (unlikely(edac_mc_add_mc(mci))) {
  1443. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  1444. rc = -EINVAL;
  1445. goto fail0;
  1446. }
  1447. return 0;
  1448. fail0:
  1449. kfree(mci->ctl_name);
  1450. edac_mc_free(mci);
  1451. sbridge_dev->mci = NULL;
  1452. return rc;
  1453. }
  1454. /*
  1455. * sbridge_probe Probe for ONE instance of device to see if it is
  1456. * present.
  1457. * return:
  1458. * 0 for FOUND a device
  1459. * < 0 for error code
  1460. */
  1461. static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1462. {
  1463. int rc;
  1464. u8 mc, num_mc = 0;
  1465. struct sbridge_dev *sbridge_dev;
  1466. /* get the pci devices we want to reserve for our use */
  1467. mutex_lock(&sbridge_edac_lock);
  1468. /*
  1469. * All memory controllers are allocated at the first pass.
  1470. */
  1471. if (unlikely(probed >= 1)) {
  1472. mutex_unlock(&sbridge_edac_lock);
  1473. return -ENODEV;
  1474. }
  1475. probed++;
  1476. rc = sbridge_get_all_devices(&num_mc);
  1477. if (unlikely(rc < 0))
  1478. goto fail0;
  1479. mc = 0;
  1480. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1481. edac_dbg(0, "Registering MC#%d (%d of %d)\n",
  1482. mc, mc + 1, num_mc);
  1483. sbridge_dev->mc = mc++;
  1484. rc = sbridge_register_mci(sbridge_dev);
  1485. if (unlikely(rc < 0))
  1486. goto fail1;
  1487. }
  1488. sbridge_printk(KERN_INFO, "Driver loaded.\n");
  1489. mutex_unlock(&sbridge_edac_lock);
  1490. return 0;
  1491. fail1:
  1492. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1493. sbridge_unregister_mci(sbridge_dev);
  1494. sbridge_put_all_devices();
  1495. fail0:
  1496. mutex_unlock(&sbridge_edac_lock);
  1497. return rc;
  1498. }
  1499. /*
  1500. * sbridge_remove destructor for one instance of device
  1501. *
  1502. */
  1503. static void sbridge_remove(struct pci_dev *pdev)
  1504. {
  1505. struct sbridge_dev *sbridge_dev;
  1506. edac_dbg(0, "\n");
  1507. /*
  1508. * we have a trouble here: pdev value for removal will be wrong, since
  1509. * it will point to the X58 register used to detect that the machine
  1510. * is a Nehalem or upper design. However, due to the way several PCI
  1511. * devices are grouped together to provide MC functionality, we need
  1512. * to use a different method for releasing the devices
  1513. */
  1514. mutex_lock(&sbridge_edac_lock);
  1515. if (unlikely(!probed)) {
  1516. mutex_unlock(&sbridge_edac_lock);
  1517. return;
  1518. }
  1519. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  1520. sbridge_unregister_mci(sbridge_dev);
  1521. /* Release PCI resources */
  1522. sbridge_put_all_devices();
  1523. probed--;
  1524. mutex_unlock(&sbridge_edac_lock);
  1525. }
  1526. MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
  1527. /*
  1528. * sbridge_driver pci_driver structure for this module
  1529. *
  1530. */
  1531. static struct pci_driver sbridge_driver = {
  1532. .name = "sbridge_edac",
  1533. .probe = sbridge_probe,
  1534. .remove = sbridge_remove,
  1535. .id_table = sbridge_pci_tbl,
  1536. };
  1537. /*
  1538. * sbridge_init Module entry function
  1539. * Try to initialize this module for its devices
  1540. */
  1541. static int __init sbridge_init(void)
  1542. {
  1543. int pci_rc;
  1544. edac_dbg(2, "\n");
  1545. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  1546. opstate_init();
  1547. pci_rc = pci_register_driver(&sbridge_driver);
  1548. if (pci_rc >= 0) {
  1549. mce_register_decode_chain(&sbridge_mce_dec);
  1550. return 0;
  1551. }
  1552. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  1553. pci_rc);
  1554. return pci_rc;
  1555. }
  1556. /*
  1557. * sbridge_exit() Module exit function
  1558. * Unregister the driver
  1559. */
  1560. static void __exit sbridge_exit(void)
  1561. {
  1562. edac_dbg(2, "\n");
  1563. pci_unregister_driver(&sbridge_driver);
  1564. mce_unregister_decode_chain(&sbridge_mce_dec);
  1565. }
  1566. module_init(sbridge_init);
  1567. module_exit(sbridge_exit);
  1568. module_param(edac_op_state, int, 0444);
  1569. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  1570. MODULE_LICENSE("GPL");
  1571. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1572. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1573. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
  1574. SBRIDGE_REVISION);