sched.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/mutex.h>
  19. #include <linux/sunrpc/clnt.h>
  20. #include "sunrpc.h"
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #endif
  24. /*
  25. * RPC slabs and memory pools
  26. */
  27. #define RPC_BUFFER_MAXSIZE (2048)
  28. #define RPC_BUFFER_POOLSIZE (8)
  29. #define RPC_TASK_POOLSIZE (8)
  30. static struct kmem_cache *rpc_task_slabp __read_mostly;
  31. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  32. static mempool_t *rpc_task_mempool __read_mostly;
  33. static mempool_t *rpc_buffer_mempool __read_mostly;
  34. static void rpc_async_schedule(struct work_struct *);
  35. static void rpc_release_task(struct rpc_task *task);
  36. static void __rpc_queue_timer_fn(unsigned long ptr);
  37. /*
  38. * RPC tasks sit here while waiting for conditions to improve.
  39. */
  40. static struct rpc_wait_queue delay_queue;
  41. /*
  42. * rpciod-related stuff
  43. */
  44. struct workqueue_struct *rpciod_workqueue;
  45. /*
  46. * Disable the timer for a given RPC task. Should be called with
  47. * queue->lock and bh_disabled in order to avoid races within
  48. * rpc_run_timer().
  49. */
  50. static void
  51. __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  52. {
  53. if (task->tk_timeout == 0)
  54. return;
  55. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  56. task->tk_timeout = 0;
  57. list_del(&task->u.tk_wait.timer_list);
  58. if (list_empty(&queue->timer_list.list))
  59. del_timer(&queue->timer_list.timer);
  60. }
  61. static void
  62. rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  63. {
  64. queue->timer_list.expires = expires;
  65. mod_timer(&queue->timer_list.timer, expires);
  66. }
  67. /*
  68. * Set up a timer for the current task.
  69. */
  70. static void
  71. __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  72. {
  73. if (!task->tk_timeout)
  74. return;
  75. dprintk("RPC: %5u setting alarm for %lu ms\n",
  76. task->tk_pid, task->tk_timeout * 1000 / HZ);
  77. task->u.tk_wait.expires = jiffies + task->tk_timeout;
  78. if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  79. rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  80. list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  81. }
  82. /*
  83. * Add new request to a priority queue.
  84. */
  85. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
  86. {
  87. struct list_head *q;
  88. struct rpc_task *t;
  89. INIT_LIST_HEAD(&task->u.tk_wait.links);
  90. q = &queue->tasks[task->tk_priority];
  91. if (unlikely(task->tk_priority > queue->maxpriority))
  92. q = &queue->tasks[queue->maxpriority];
  93. list_for_each_entry(t, q, u.tk_wait.list) {
  94. if (t->tk_owner == task->tk_owner) {
  95. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  96. return;
  97. }
  98. }
  99. list_add_tail(&task->u.tk_wait.list, q);
  100. }
  101. /*
  102. * Add new request to wait queue.
  103. *
  104. * Swapper tasks always get inserted at the head of the queue.
  105. * This should avoid many nasty memory deadlocks and hopefully
  106. * improve overall performance.
  107. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  108. */
  109. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  110. {
  111. BUG_ON (RPC_IS_QUEUED(task));
  112. if (RPC_IS_PRIORITY(queue))
  113. __rpc_add_wait_queue_priority(queue, task);
  114. else if (RPC_IS_SWAPPER(task))
  115. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  116. else
  117. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  118. task->tk_waitqueue = queue;
  119. queue->qlen++;
  120. rpc_set_queued(task);
  121. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  122. task->tk_pid, queue, rpc_qname(queue));
  123. }
  124. /*
  125. * Remove request from a priority queue.
  126. */
  127. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  128. {
  129. struct rpc_task *t;
  130. if (!list_empty(&task->u.tk_wait.links)) {
  131. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  132. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  133. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  134. }
  135. }
  136. /*
  137. * Remove request from queue.
  138. * Note: must be called with spin lock held.
  139. */
  140. static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  141. {
  142. __rpc_disable_timer(queue, task);
  143. if (RPC_IS_PRIORITY(queue))
  144. __rpc_remove_wait_queue_priority(task);
  145. list_del(&task->u.tk_wait.list);
  146. queue->qlen--;
  147. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  148. task->tk_pid, queue, rpc_qname(queue));
  149. }
  150. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  151. {
  152. queue->priority = priority;
  153. queue->count = 1 << (priority * 2);
  154. }
  155. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  156. {
  157. queue->owner = pid;
  158. queue->nr = RPC_BATCH_COUNT;
  159. }
  160. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  161. {
  162. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  163. rpc_set_waitqueue_owner(queue, 0);
  164. }
  165. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  166. {
  167. int i;
  168. spin_lock_init(&queue->lock);
  169. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  170. INIT_LIST_HEAD(&queue->tasks[i]);
  171. queue->maxpriority = nr_queues - 1;
  172. rpc_reset_waitqueue_priority(queue);
  173. queue->qlen = 0;
  174. setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
  175. INIT_LIST_HEAD(&queue->timer_list.list);
  176. #ifdef RPC_DEBUG
  177. queue->name = qname;
  178. #endif
  179. }
  180. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  181. {
  182. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  183. }
  184. EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
  185. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  186. {
  187. __rpc_init_priority_wait_queue(queue, qname, 1);
  188. }
  189. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  190. void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
  191. {
  192. del_timer_sync(&queue->timer_list.timer);
  193. }
  194. EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
  195. static int rpc_wait_bit_killable(void *word)
  196. {
  197. if (fatal_signal_pending(current))
  198. return -ERESTARTSYS;
  199. schedule();
  200. return 0;
  201. }
  202. #ifdef RPC_DEBUG
  203. static void rpc_task_set_debuginfo(struct rpc_task *task)
  204. {
  205. static atomic_t rpc_pid;
  206. task->tk_pid = atomic_inc_return(&rpc_pid);
  207. }
  208. #else
  209. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  210. {
  211. }
  212. #endif
  213. static void rpc_set_active(struct rpc_task *task)
  214. {
  215. rpc_task_set_debuginfo(task);
  216. set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  217. }
  218. /*
  219. * Mark an RPC call as having completed by clearing the 'active' bit
  220. * and then waking up all tasks that were sleeping.
  221. */
  222. static int rpc_complete_task(struct rpc_task *task)
  223. {
  224. void *m = &task->tk_runstate;
  225. wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
  226. struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
  227. unsigned long flags;
  228. int ret;
  229. spin_lock_irqsave(&wq->lock, flags);
  230. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  231. ret = atomic_dec_and_test(&task->tk_count);
  232. if (waitqueue_active(wq))
  233. __wake_up_locked_key(wq, TASK_NORMAL, &k);
  234. spin_unlock_irqrestore(&wq->lock, flags);
  235. return ret;
  236. }
  237. /*
  238. * Allow callers to wait for completion of an RPC call
  239. *
  240. * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
  241. * to enforce taking of the wq->lock and hence avoid races with
  242. * rpc_complete_task().
  243. */
  244. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  245. {
  246. if (action == NULL)
  247. action = rpc_wait_bit_killable;
  248. return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  249. action, TASK_KILLABLE);
  250. }
  251. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  252. /*
  253. * Make an RPC task runnable.
  254. *
  255. * Note: If the task is ASYNC, this must be called with
  256. * the spinlock held to protect the wait queue operation.
  257. */
  258. static void rpc_make_runnable(struct rpc_task *task)
  259. {
  260. rpc_clear_queued(task);
  261. if (rpc_test_and_set_running(task))
  262. return;
  263. if (RPC_IS_ASYNC(task)) {
  264. int status;
  265. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  266. status = queue_work(rpciod_workqueue, &task->u.tk_work);
  267. if (status < 0) {
  268. printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
  269. task->tk_status = status;
  270. return;
  271. }
  272. } else
  273. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  274. }
  275. /*
  276. * Prepare for sleeping on a wait queue.
  277. * By always appending tasks to the list we ensure FIFO behavior.
  278. * NB: An RPC task will only receive interrupt-driven events as long
  279. * as it's on a wait queue.
  280. */
  281. static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  282. rpc_action action)
  283. {
  284. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  285. task->tk_pid, rpc_qname(q), jiffies);
  286. __rpc_add_wait_queue(q, task);
  287. BUG_ON(task->tk_callback != NULL);
  288. task->tk_callback = action;
  289. __rpc_add_timer(q, task);
  290. }
  291. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  292. rpc_action action)
  293. {
  294. /* We shouldn't ever put an inactive task to sleep */
  295. BUG_ON(!RPC_IS_ACTIVATED(task));
  296. /*
  297. * Protect the queue operations.
  298. */
  299. spin_lock_bh(&q->lock);
  300. __rpc_sleep_on(q, task, action);
  301. spin_unlock_bh(&q->lock);
  302. }
  303. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  304. /**
  305. * __rpc_do_wake_up_task - wake up a single rpc_task
  306. * @queue: wait queue
  307. * @task: task to be woken up
  308. *
  309. * Caller must hold queue->lock, and have cleared the task queued flag.
  310. */
  311. static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  312. {
  313. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  314. task->tk_pid, jiffies);
  315. /* Has the task been executed yet? If not, we cannot wake it up! */
  316. if (!RPC_IS_ACTIVATED(task)) {
  317. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  318. return;
  319. }
  320. __rpc_remove_wait_queue(queue, task);
  321. rpc_make_runnable(task);
  322. dprintk("RPC: __rpc_wake_up_task done\n");
  323. }
  324. /*
  325. * Wake up a queued task while the queue lock is being held
  326. */
  327. static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
  328. {
  329. if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
  330. __rpc_do_wake_up_task(queue, task);
  331. }
  332. /*
  333. * Tests whether rpc queue is empty
  334. */
  335. int rpc_queue_empty(struct rpc_wait_queue *queue)
  336. {
  337. int res;
  338. spin_lock_bh(&queue->lock);
  339. res = queue->qlen;
  340. spin_unlock_bh(&queue->lock);
  341. return res == 0;
  342. }
  343. EXPORT_SYMBOL_GPL(rpc_queue_empty);
  344. /*
  345. * Wake up a task on a specific queue
  346. */
  347. void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  348. {
  349. spin_lock_bh(&queue->lock);
  350. rpc_wake_up_task_queue_locked(queue, task);
  351. spin_unlock_bh(&queue->lock);
  352. }
  353. EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
  354. /*
  355. * Wake up the next task on a priority queue.
  356. */
  357. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  358. {
  359. struct list_head *q;
  360. struct rpc_task *task;
  361. /*
  362. * Service a batch of tasks from a single owner.
  363. */
  364. q = &queue->tasks[queue->priority];
  365. if (!list_empty(q)) {
  366. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  367. if (queue->owner == task->tk_owner) {
  368. if (--queue->nr)
  369. goto out;
  370. list_move_tail(&task->u.tk_wait.list, q);
  371. }
  372. /*
  373. * Check if we need to switch queues.
  374. */
  375. if (--queue->count)
  376. goto new_owner;
  377. }
  378. /*
  379. * Service the next queue.
  380. */
  381. do {
  382. if (q == &queue->tasks[0])
  383. q = &queue->tasks[queue->maxpriority];
  384. else
  385. q = q - 1;
  386. if (!list_empty(q)) {
  387. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  388. goto new_queue;
  389. }
  390. } while (q != &queue->tasks[queue->priority]);
  391. rpc_reset_waitqueue_priority(queue);
  392. return NULL;
  393. new_queue:
  394. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  395. new_owner:
  396. rpc_set_waitqueue_owner(queue, task->tk_owner);
  397. out:
  398. rpc_wake_up_task_queue_locked(queue, task);
  399. return task;
  400. }
  401. /*
  402. * Wake up the next task on the wait queue.
  403. */
  404. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  405. {
  406. struct rpc_task *task = NULL;
  407. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  408. queue, rpc_qname(queue));
  409. spin_lock_bh(&queue->lock);
  410. if (RPC_IS_PRIORITY(queue))
  411. task = __rpc_wake_up_next_priority(queue);
  412. else {
  413. task_for_first(task, &queue->tasks[0])
  414. rpc_wake_up_task_queue_locked(queue, task);
  415. }
  416. spin_unlock_bh(&queue->lock);
  417. return task;
  418. }
  419. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  420. /**
  421. * rpc_wake_up - wake up all rpc_tasks
  422. * @queue: rpc_wait_queue on which the tasks are sleeping
  423. *
  424. * Grabs queue->lock
  425. */
  426. void rpc_wake_up(struct rpc_wait_queue *queue)
  427. {
  428. struct rpc_task *task, *next;
  429. struct list_head *head;
  430. spin_lock_bh(&queue->lock);
  431. head = &queue->tasks[queue->maxpriority];
  432. for (;;) {
  433. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  434. rpc_wake_up_task_queue_locked(queue, task);
  435. if (head == &queue->tasks[0])
  436. break;
  437. head--;
  438. }
  439. spin_unlock_bh(&queue->lock);
  440. }
  441. EXPORT_SYMBOL_GPL(rpc_wake_up);
  442. /**
  443. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  444. * @queue: rpc_wait_queue on which the tasks are sleeping
  445. * @status: status value to set
  446. *
  447. * Grabs queue->lock
  448. */
  449. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  450. {
  451. struct rpc_task *task, *next;
  452. struct list_head *head;
  453. spin_lock_bh(&queue->lock);
  454. head = &queue->tasks[queue->maxpriority];
  455. for (;;) {
  456. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  457. task->tk_status = status;
  458. rpc_wake_up_task_queue_locked(queue, task);
  459. }
  460. if (head == &queue->tasks[0])
  461. break;
  462. head--;
  463. }
  464. spin_unlock_bh(&queue->lock);
  465. }
  466. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  467. static void __rpc_queue_timer_fn(unsigned long ptr)
  468. {
  469. struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
  470. struct rpc_task *task, *n;
  471. unsigned long expires, now, timeo;
  472. spin_lock(&queue->lock);
  473. expires = now = jiffies;
  474. list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
  475. timeo = task->u.tk_wait.expires;
  476. if (time_after_eq(now, timeo)) {
  477. dprintk("RPC: %5u timeout\n", task->tk_pid);
  478. task->tk_status = -ETIMEDOUT;
  479. rpc_wake_up_task_queue_locked(queue, task);
  480. continue;
  481. }
  482. if (expires == now || time_after(expires, timeo))
  483. expires = timeo;
  484. }
  485. if (!list_empty(&queue->timer_list.list))
  486. rpc_set_queue_timer(queue, expires);
  487. spin_unlock(&queue->lock);
  488. }
  489. static void __rpc_atrun(struct rpc_task *task)
  490. {
  491. task->tk_status = 0;
  492. }
  493. /*
  494. * Run a task at a later time
  495. */
  496. void rpc_delay(struct rpc_task *task, unsigned long delay)
  497. {
  498. task->tk_timeout = delay;
  499. rpc_sleep_on(&delay_queue, task, __rpc_atrun);
  500. }
  501. EXPORT_SYMBOL_GPL(rpc_delay);
  502. /*
  503. * Helper to call task->tk_ops->rpc_call_prepare
  504. */
  505. void rpc_prepare_task(struct rpc_task *task)
  506. {
  507. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  508. }
  509. /*
  510. * Helper that calls task->tk_ops->rpc_call_done if it exists
  511. */
  512. void rpc_exit_task(struct rpc_task *task)
  513. {
  514. task->tk_action = NULL;
  515. if (task->tk_ops->rpc_call_done != NULL) {
  516. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  517. if (task->tk_action != NULL) {
  518. WARN_ON(RPC_ASSASSINATED(task));
  519. /* Always release the RPC slot and buffer memory */
  520. xprt_release(task);
  521. }
  522. }
  523. }
  524. void rpc_exit(struct rpc_task *task, int status)
  525. {
  526. task->tk_status = status;
  527. task->tk_action = rpc_exit_task;
  528. if (RPC_IS_QUEUED(task))
  529. rpc_wake_up_queued_task(task->tk_waitqueue, task);
  530. }
  531. EXPORT_SYMBOL_GPL(rpc_exit);
  532. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  533. {
  534. if (ops->rpc_release != NULL)
  535. ops->rpc_release(calldata);
  536. }
  537. /*
  538. * This is the RPC `scheduler' (or rather, the finite state machine).
  539. */
  540. static void __rpc_execute(struct rpc_task *task)
  541. {
  542. struct rpc_wait_queue *queue;
  543. int task_is_async = RPC_IS_ASYNC(task);
  544. int status = 0;
  545. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  546. task->tk_pid, task->tk_flags);
  547. BUG_ON(RPC_IS_QUEUED(task));
  548. for (;;) {
  549. /*
  550. * Execute any pending callback.
  551. */
  552. if (task->tk_callback) {
  553. void (*save_callback)(struct rpc_task *);
  554. /*
  555. * We set tk_callback to NULL before calling it,
  556. * in case it sets the tk_callback field itself:
  557. */
  558. save_callback = task->tk_callback;
  559. task->tk_callback = NULL;
  560. save_callback(task);
  561. }
  562. /*
  563. * Perform the next FSM step.
  564. * tk_action may be NULL when the task has been killed
  565. * by someone else.
  566. */
  567. if (!RPC_IS_QUEUED(task)) {
  568. if (task->tk_action == NULL)
  569. break;
  570. task->tk_action(task);
  571. }
  572. /*
  573. * Lockless check for whether task is sleeping or not.
  574. */
  575. if (!RPC_IS_QUEUED(task))
  576. continue;
  577. /*
  578. * The queue->lock protects against races with
  579. * rpc_make_runnable().
  580. *
  581. * Note that once we clear RPC_TASK_RUNNING on an asynchronous
  582. * rpc_task, rpc_make_runnable() can assign it to a
  583. * different workqueue. We therefore cannot assume that the
  584. * rpc_task pointer may still be dereferenced.
  585. */
  586. queue = task->tk_waitqueue;
  587. spin_lock_bh(&queue->lock);
  588. if (!RPC_IS_QUEUED(task)) {
  589. spin_unlock_bh(&queue->lock);
  590. continue;
  591. }
  592. rpc_clear_running(task);
  593. spin_unlock_bh(&queue->lock);
  594. if (task_is_async)
  595. return;
  596. /* sync task: sleep here */
  597. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  598. status = out_of_line_wait_on_bit(&task->tk_runstate,
  599. RPC_TASK_QUEUED, rpc_wait_bit_killable,
  600. TASK_KILLABLE);
  601. if (status == -ERESTARTSYS) {
  602. /*
  603. * When a sync task receives a signal, it exits with
  604. * -ERESTARTSYS. In order to catch any callbacks that
  605. * clean up after sleeping on some queue, we don't
  606. * break the loop here, but go around once more.
  607. */
  608. dprintk("RPC: %5u got signal\n", task->tk_pid);
  609. task->tk_flags |= RPC_TASK_KILLED;
  610. rpc_exit(task, -ERESTARTSYS);
  611. }
  612. rpc_set_running(task);
  613. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  614. }
  615. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  616. task->tk_status);
  617. /* Release all resources associated with the task */
  618. rpc_release_task(task);
  619. }
  620. /*
  621. * User-visible entry point to the scheduler.
  622. *
  623. * This may be called recursively if e.g. an async NFS task updates
  624. * the attributes and finds that dirty pages must be flushed.
  625. * NOTE: Upon exit of this function the task is guaranteed to be
  626. * released. In particular note that tk_release() will have
  627. * been called, so your task memory may have been freed.
  628. */
  629. void rpc_execute(struct rpc_task *task)
  630. {
  631. rpc_set_active(task);
  632. rpc_make_runnable(task);
  633. if (!RPC_IS_ASYNC(task))
  634. __rpc_execute(task);
  635. }
  636. static void rpc_async_schedule(struct work_struct *work)
  637. {
  638. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  639. }
  640. /**
  641. * rpc_malloc - allocate an RPC buffer
  642. * @task: RPC task that will use this buffer
  643. * @size: requested byte size
  644. *
  645. * To prevent rpciod from hanging, this allocator never sleeps,
  646. * returning NULL if the request cannot be serviced immediately.
  647. * The caller can arrange to sleep in a way that is safe for rpciod.
  648. *
  649. * Most requests are 'small' (under 2KiB) and can be serviced from a
  650. * mempool, ensuring that NFS reads and writes can always proceed,
  651. * and that there is good locality of reference for these buffers.
  652. *
  653. * In order to avoid memory starvation triggering more writebacks of
  654. * NFS requests, we avoid using GFP_KERNEL.
  655. */
  656. void *rpc_malloc(struct rpc_task *task, size_t size)
  657. {
  658. struct rpc_buffer *buf;
  659. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  660. size += sizeof(struct rpc_buffer);
  661. if (size <= RPC_BUFFER_MAXSIZE)
  662. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  663. else
  664. buf = kmalloc(size, gfp);
  665. if (!buf)
  666. return NULL;
  667. buf->len = size;
  668. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  669. task->tk_pid, size, buf);
  670. return &buf->data;
  671. }
  672. EXPORT_SYMBOL_GPL(rpc_malloc);
  673. /**
  674. * rpc_free - free buffer allocated via rpc_malloc
  675. * @buffer: buffer to free
  676. *
  677. */
  678. void rpc_free(void *buffer)
  679. {
  680. size_t size;
  681. struct rpc_buffer *buf;
  682. if (!buffer)
  683. return;
  684. buf = container_of(buffer, struct rpc_buffer, data);
  685. size = buf->len;
  686. dprintk("RPC: freeing buffer of size %zu at %p\n",
  687. size, buf);
  688. if (size <= RPC_BUFFER_MAXSIZE)
  689. mempool_free(buf, rpc_buffer_mempool);
  690. else
  691. kfree(buf);
  692. }
  693. EXPORT_SYMBOL_GPL(rpc_free);
  694. /*
  695. * Creation and deletion of RPC task structures
  696. */
  697. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  698. {
  699. memset(task, 0, sizeof(*task));
  700. atomic_set(&task->tk_count, 1);
  701. task->tk_flags = task_setup_data->flags;
  702. task->tk_ops = task_setup_data->callback_ops;
  703. task->tk_calldata = task_setup_data->callback_data;
  704. INIT_LIST_HEAD(&task->tk_task);
  705. /* Initialize retry counters */
  706. task->tk_garb_retry = 2;
  707. task->tk_cred_retry = 2;
  708. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  709. task->tk_owner = current->tgid;
  710. /* Initialize workqueue for async tasks */
  711. task->tk_workqueue = task_setup_data->workqueue;
  712. if (task->tk_ops->rpc_call_prepare != NULL)
  713. task->tk_action = rpc_prepare_task;
  714. /* starting timestamp */
  715. task->tk_start = ktime_get();
  716. dprintk("RPC: new task initialized, procpid %u\n",
  717. task_pid_nr(current));
  718. }
  719. static struct rpc_task *
  720. rpc_alloc_task(void)
  721. {
  722. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  723. }
  724. /*
  725. * Create a new task for the specified client.
  726. */
  727. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  728. {
  729. struct rpc_task *task = setup_data->task;
  730. unsigned short flags = 0;
  731. if (task == NULL) {
  732. task = rpc_alloc_task();
  733. if (task == NULL) {
  734. rpc_release_calldata(setup_data->callback_ops,
  735. setup_data->callback_data);
  736. return ERR_PTR(-ENOMEM);
  737. }
  738. flags = RPC_TASK_DYNAMIC;
  739. }
  740. rpc_init_task(task, setup_data);
  741. if (task->tk_status < 0) {
  742. int err = task->tk_status;
  743. rpc_put_task(task);
  744. return ERR_PTR(err);
  745. }
  746. task->tk_flags |= flags;
  747. dprintk("RPC: allocated task %p\n", task);
  748. return task;
  749. }
  750. static void rpc_free_task(struct rpc_task *task)
  751. {
  752. const struct rpc_call_ops *tk_ops = task->tk_ops;
  753. void *calldata = task->tk_calldata;
  754. if (task->tk_flags & RPC_TASK_DYNAMIC) {
  755. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  756. mempool_free(task, rpc_task_mempool);
  757. }
  758. rpc_release_calldata(tk_ops, calldata);
  759. }
  760. static void rpc_async_release(struct work_struct *work)
  761. {
  762. rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
  763. }
  764. static void rpc_release_resources_task(struct rpc_task *task)
  765. {
  766. if (task->tk_rqstp)
  767. xprt_release(task);
  768. if (task->tk_msg.rpc_cred)
  769. put_rpccred(task->tk_msg.rpc_cred);
  770. rpc_task_release_client(task);
  771. }
  772. static void rpc_final_put_task(struct rpc_task *task,
  773. struct workqueue_struct *q)
  774. {
  775. if (q != NULL) {
  776. INIT_WORK(&task->u.tk_work, rpc_async_release);
  777. queue_work(q, &task->u.tk_work);
  778. } else
  779. rpc_free_task(task);
  780. }
  781. static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
  782. {
  783. if (atomic_dec_and_test(&task->tk_count)) {
  784. rpc_release_resources_task(task);
  785. rpc_final_put_task(task, q);
  786. }
  787. }
  788. void rpc_put_task(struct rpc_task *task)
  789. {
  790. rpc_do_put_task(task, NULL);
  791. }
  792. EXPORT_SYMBOL_GPL(rpc_put_task);
  793. void rpc_put_task_async(struct rpc_task *task)
  794. {
  795. rpc_do_put_task(task, task->tk_workqueue);
  796. }
  797. EXPORT_SYMBOL_GPL(rpc_put_task_async);
  798. static void rpc_release_task(struct rpc_task *task)
  799. {
  800. dprintk("RPC: %5u release task\n", task->tk_pid);
  801. BUG_ON (RPC_IS_QUEUED(task));
  802. rpc_release_resources_task(task);
  803. /*
  804. * Note: at this point we have been removed from rpc_clnt->cl_tasks,
  805. * so it should be safe to use task->tk_count as a test for whether
  806. * or not any other processes still hold references to our rpc_task.
  807. */
  808. if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
  809. /* Wake up anyone who may be waiting for task completion */
  810. if (!rpc_complete_task(task))
  811. return;
  812. } else {
  813. if (!atomic_dec_and_test(&task->tk_count))
  814. return;
  815. }
  816. rpc_final_put_task(task, task->tk_workqueue);
  817. }
  818. int rpciod_up(void)
  819. {
  820. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  821. }
  822. void rpciod_down(void)
  823. {
  824. module_put(THIS_MODULE);
  825. }
  826. /*
  827. * Start up the rpciod workqueue.
  828. */
  829. static int rpciod_start(void)
  830. {
  831. struct workqueue_struct *wq;
  832. /*
  833. * Create the rpciod thread and wait for it to start.
  834. */
  835. dprintk("RPC: creating workqueue rpciod\n");
  836. wq = alloc_workqueue("rpciod", WQ_RESCUER, 0);
  837. rpciod_workqueue = wq;
  838. return rpciod_workqueue != NULL;
  839. }
  840. static void rpciod_stop(void)
  841. {
  842. struct workqueue_struct *wq = NULL;
  843. if (rpciod_workqueue == NULL)
  844. return;
  845. dprintk("RPC: destroying workqueue rpciod\n");
  846. wq = rpciod_workqueue;
  847. rpciod_workqueue = NULL;
  848. destroy_workqueue(wq);
  849. }
  850. void
  851. rpc_destroy_mempool(void)
  852. {
  853. rpciod_stop();
  854. if (rpc_buffer_mempool)
  855. mempool_destroy(rpc_buffer_mempool);
  856. if (rpc_task_mempool)
  857. mempool_destroy(rpc_task_mempool);
  858. if (rpc_task_slabp)
  859. kmem_cache_destroy(rpc_task_slabp);
  860. if (rpc_buffer_slabp)
  861. kmem_cache_destroy(rpc_buffer_slabp);
  862. rpc_destroy_wait_queue(&delay_queue);
  863. }
  864. int
  865. rpc_init_mempool(void)
  866. {
  867. /*
  868. * The following is not strictly a mempool initialisation,
  869. * but there is no harm in doing it here
  870. */
  871. rpc_init_wait_queue(&delay_queue, "delayq");
  872. if (!rpciod_start())
  873. goto err_nomem;
  874. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  875. sizeof(struct rpc_task),
  876. 0, SLAB_HWCACHE_ALIGN,
  877. NULL);
  878. if (!rpc_task_slabp)
  879. goto err_nomem;
  880. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  881. RPC_BUFFER_MAXSIZE,
  882. 0, SLAB_HWCACHE_ALIGN,
  883. NULL);
  884. if (!rpc_buffer_slabp)
  885. goto err_nomem;
  886. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  887. rpc_task_slabp);
  888. if (!rpc_task_mempool)
  889. goto err_nomem;
  890. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  891. rpc_buffer_slabp);
  892. if (!rpc_buffer_mempool)
  893. goto err_nomem;
  894. return 0;
  895. err_nomem:
  896. rpc_destroy_mempool();
  897. return -ENOMEM;
  898. }