disk-io.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #ifdef CONFIG_X86
  49. #include <asm/cpufeature.h>
  50. #endif
  51. static struct extent_io_ops btree_extent_io_ops;
  52. static void end_workqueue_fn(struct btrfs_work *work);
  53. static void free_fs_root(struct btrfs_root *root);
  54. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  55. int read_only);
  56. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  57. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  58. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  61. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  62. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  63. struct extent_io_tree *dirty_pages,
  64. int mark);
  65. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  66. struct extent_io_tree *pinned_extents);
  67. /*
  68. * end_io_wq structs are used to do processing in task context when an IO is
  69. * complete. This is used during reads to verify checksums, and it is used
  70. * by writes to insert metadata for new file extents after IO is complete.
  71. */
  72. struct end_io_wq {
  73. struct bio *bio;
  74. bio_end_io_t *end_io;
  75. void *private;
  76. struct btrfs_fs_info *info;
  77. int error;
  78. int metadata;
  79. struct list_head list;
  80. struct btrfs_work work;
  81. };
  82. /*
  83. * async submit bios are used to offload expensive checksumming
  84. * onto the worker threads. They checksum file and metadata bios
  85. * just before they are sent down the IO stack.
  86. */
  87. struct async_submit_bio {
  88. struct inode *inode;
  89. struct bio *bio;
  90. struct list_head list;
  91. extent_submit_bio_hook_t *submit_bio_start;
  92. extent_submit_bio_hook_t *submit_bio_done;
  93. int rw;
  94. int mirror_num;
  95. unsigned long bio_flags;
  96. /*
  97. * bio_offset is optional, can be used if the pages in the bio
  98. * can't tell us where in the file the bio should go
  99. */
  100. u64 bio_offset;
  101. struct btrfs_work work;
  102. int error;
  103. };
  104. /*
  105. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  106. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  107. * the level the eb occupies in the tree.
  108. *
  109. * Different roots are used for different purposes and may nest inside each
  110. * other and they require separate keysets. As lockdep keys should be
  111. * static, assign keysets according to the purpose of the root as indicated
  112. * by btrfs_root->objectid. This ensures that all special purpose roots
  113. * have separate keysets.
  114. *
  115. * Lock-nesting across peer nodes is always done with the immediate parent
  116. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  117. * subclass to avoid triggering lockdep warning in such cases.
  118. *
  119. * The key is set by the readpage_end_io_hook after the buffer has passed
  120. * csum validation but before the pages are unlocked. It is also set by
  121. * btrfs_init_new_buffer on freshly allocated blocks.
  122. *
  123. * We also add a check to make sure the highest level of the tree is the
  124. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  125. * needs update as well.
  126. */
  127. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  128. # if BTRFS_MAX_LEVEL != 8
  129. # error
  130. # endif
  131. static struct btrfs_lockdep_keyset {
  132. u64 id; /* root objectid */
  133. const char *name_stem; /* lock name stem */
  134. char names[BTRFS_MAX_LEVEL + 1][20];
  135. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  136. } btrfs_lockdep_keysets[] = {
  137. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  138. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  139. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  140. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  141. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  142. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  143. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  144. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  145. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  146. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  147. { .id = 0, .name_stem = "tree" },
  148. };
  149. void __init btrfs_init_lockdep(void)
  150. {
  151. int i, j;
  152. /* initialize lockdep class names */
  153. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  154. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  155. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  156. snprintf(ks->names[j], sizeof(ks->names[j]),
  157. "btrfs-%s-%02d", ks->name_stem, j);
  158. }
  159. }
  160. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  161. int level)
  162. {
  163. struct btrfs_lockdep_keyset *ks;
  164. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  165. /* find the matching keyset, id 0 is the default entry */
  166. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  167. if (ks->id == objectid)
  168. break;
  169. lockdep_set_class_and_name(&eb->lock,
  170. &ks->keys[level], ks->names[level]);
  171. }
  172. #endif
  173. /*
  174. * extents on the btree inode are pretty simple, there's one extent
  175. * that covers the entire device
  176. */
  177. static struct extent_map *btree_get_extent(struct inode *inode,
  178. struct page *page, size_t pg_offset, u64 start, u64 len,
  179. int create)
  180. {
  181. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  182. struct extent_map *em;
  183. int ret;
  184. read_lock(&em_tree->lock);
  185. em = lookup_extent_mapping(em_tree, start, len);
  186. if (em) {
  187. em->bdev =
  188. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  189. read_unlock(&em_tree->lock);
  190. goto out;
  191. }
  192. read_unlock(&em_tree->lock);
  193. em = alloc_extent_map();
  194. if (!em) {
  195. em = ERR_PTR(-ENOMEM);
  196. goto out;
  197. }
  198. em->start = 0;
  199. em->len = (u64)-1;
  200. em->block_len = (u64)-1;
  201. em->block_start = 0;
  202. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  203. write_lock(&em_tree->lock);
  204. ret = add_extent_mapping(em_tree, em);
  205. if (ret == -EEXIST) {
  206. free_extent_map(em);
  207. em = lookup_extent_mapping(em_tree, start, len);
  208. if (!em)
  209. em = ERR_PTR(-EIO);
  210. } else if (ret) {
  211. free_extent_map(em);
  212. em = ERR_PTR(ret);
  213. }
  214. write_unlock(&em_tree->lock);
  215. out:
  216. return em;
  217. }
  218. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  219. {
  220. return crc32c(seed, data, len);
  221. }
  222. void btrfs_csum_final(u32 crc, char *result)
  223. {
  224. put_unaligned_le32(~crc, result);
  225. }
  226. /*
  227. * compute the csum for a btree block, and either verify it or write it
  228. * into the csum field of the block.
  229. */
  230. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  231. int verify)
  232. {
  233. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  234. char *result = NULL;
  235. unsigned long len;
  236. unsigned long cur_len;
  237. unsigned long offset = BTRFS_CSUM_SIZE;
  238. char *kaddr;
  239. unsigned long map_start;
  240. unsigned long map_len;
  241. int err;
  242. u32 crc = ~(u32)0;
  243. unsigned long inline_result;
  244. len = buf->len - offset;
  245. while (len > 0) {
  246. err = map_private_extent_buffer(buf, offset, 32,
  247. &kaddr, &map_start, &map_len);
  248. if (err)
  249. return 1;
  250. cur_len = min(len, map_len - (offset - map_start));
  251. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  252. crc, cur_len);
  253. len -= cur_len;
  254. offset += cur_len;
  255. }
  256. if (csum_size > sizeof(inline_result)) {
  257. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  258. if (!result)
  259. return 1;
  260. } else {
  261. result = (char *)&inline_result;
  262. }
  263. btrfs_csum_final(crc, result);
  264. if (verify) {
  265. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  266. u32 val;
  267. u32 found = 0;
  268. memcpy(&found, result, csum_size);
  269. read_extent_buffer(buf, &val, 0, csum_size);
  270. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  271. "failed on %llu wanted %X found %X "
  272. "level %d\n",
  273. root->fs_info->sb->s_id,
  274. (unsigned long long)buf->start, val, found,
  275. btrfs_header_level(buf));
  276. if (result != (char *)&inline_result)
  277. kfree(result);
  278. return 1;
  279. }
  280. } else {
  281. write_extent_buffer(buf, result, 0, csum_size);
  282. }
  283. if (result != (char *)&inline_result)
  284. kfree(result);
  285. return 0;
  286. }
  287. /*
  288. * we can't consider a given block up to date unless the transid of the
  289. * block matches the transid in the parent node's pointer. This is how we
  290. * detect blocks that either didn't get written at all or got written
  291. * in the wrong place.
  292. */
  293. static int verify_parent_transid(struct extent_io_tree *io_tree,
  294. struct extent_buffer *eb, u64 parent_transid,
  295. int atomic)
  296. {
  297. struct extent_state *cached_state = NULL;
  298. int ret;
  299. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  300. return 0;
  301. if (atomic)
  302. return -EAGAIN;
  303. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  304. 0, &cached_state);
  305. if (extent_buffer_uptodate(eb) &&
  306. btrfs_header_generation(eb) == parent_transid) {
  307. ret = 0;
  308. goto out;
  309. }
  310. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  311. "found %llu\n",
  312. (unsigned long long)eb->start,
  313. (unsigned long long)parent_transid,
  314. (unsigned long long)btrfs_header_generation(eb));
  315. ret = 1;
  316. clear_extent_buffer_uptodate(eb);
  317. out:
  318. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  319. &cached_state, GFP_NOFS);
  320. return ret;
  321. }
  322. /*
  323. * helper to read a given tree block, doing retries as required when
  324. * the checksums don't match and we have alternate mirrors to try.
  325. */
  326. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  327. struct extent_buffer *eb,
  328. u64 start, u64 parent_transid)
  329. {
  330. struct extent_io_tree *io_tree;
  331. int failed = 0;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. int failed_mirror = 0;
  336. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  337. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  338. while (1) {
  339. ret = read_extent_buffer_pages(io_tree, eb, start,
  340. WAIT_COMPLETE,
  341. btree_get_extent, mirror_num);
  342. if (!ret) {
  343. if (!verify_parent_transid(io_tree, eb,
  344. parent_transid, 0))
  345. break;
  346. else
  347. ret = -EIO;
  348. }
  349. /*
  350. * This buffer's crc is fine, but its contents are corrupted, so
  351. * there is no reason to read the other copies, they won't be
  352. * any less wrong.
  353. */
  354. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  355. break;
  356. num_copies = btrfs_num_copies(root->fs_info,
  357. eb->start, eb->len);
  358. if (num_copies == 1)
  359. break;
  360. if (!failed_mirror) {
  361. failed = 1;
  362. failed_mirror = eb->read_mirror;
  363. }
  364. mirror_num++;
  365. if (mirror_num == failed_mirror)
  366. mirror_num++;
  367. if (mirror_num > num_copies)
  368. break;
  369. }
  370. if (failed && !ret && failed_mirror)
  371. repair_eb_io_failure(root, eb, failed_mirror);
  372. return ret;
  373. }
  374. /*
  375. * checksum a dirty tree block before IO. This has extra checks to make sure
  376. * we only fill in the checksum field in the first page of a multi-page block
  377. */
  378. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  379. {
  380. struct extent_io_tree *tree;
  381. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  382. u64 found_start;
  383. struct extent_buffer *eb;
  384. tree = &BTRFS_I(page->mapping->host)->io_tree;
  385. eb = (struct extent_buffer *)page->private;
  386. if (page != eb->pages[0])
  387. return 0;
  388. found_start = btrfs_header_bytenr(eb);
  389. if (found_start != start) {
  390. WARN_ON(1);
  391. return 0;
  392. }
  393. if (!PageUptodate(page)) {
  394. WARN_ON(1);
  395. return 0;
  396. }
  397. csum_tree_block(root, eb, 0);
  398. return 0;
  399. }
  400. static int check_tree_block_fsid(struct btrfs_root *root,
  401. struct extent_buffer *eb)
  402. {
  403. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  404. u8 fsid[BTRFS_UUID_SIZE];
  405. int ret = 1;
  406. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  407. BTRFS_FSID_SIZE);
  408. while (fs_devices) {
  409. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  410. ret = 0;
  411. break;
  412. }
  413. fs_devices = fs_devices->seed;
  414. }
  415. return ret;
  416. }
  417. #define CORRUPT(reason, eb, root, slot) \
  418. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  419. "root=%llu, slot=%d\n", reason, \
  420. (unsigned long long)btrfs_header_bytenr(eb), \
  421. (unsigned long long)root->objectid, slot)
  422. static noinline int check_leaf(struct btrfs_root *root,
  423. struct extent_buffer *leaf)
  424. {
  425. struct btrfs_key key;
  426. struct btrfs_key leaf_key;
  427. u32 nritems = btrfs_header_nritems(leaf);
  428. int slot;
  429. if (nritems == 0)
  430. return 0;
  431. /* Check the 0 item */
  432. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  433. BTRFS_LEAF_DATA_SIZE(root)) {
  434. CORRUPT("invalid item offset size pair", leaf, root, 0);
  435. return -EIO;
  436. }
  437. /*
  438. * Check to make sure each items keys are in the correct order and their
  439. * offsets make sense. We only have to loop through nritems-1 because
  440. * we check the current slot against the next slot, which verifies the
  441. * next slot's offset+size makes sense and that the current's slot
  442. * offset is correct.
  443. */
  444. for (slot = 0; slot < nritems - 1; slot++) {
  445. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  446. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  447. /* Make sure the keys are in the right order */
  448. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  449. CORRUPT("bad key order", leaf, root, slot);
  450. return -EIO;
  451. }
  452. /*
  453. * Make sure the offset and ends are right, remember that the
  454. * item data starts at the end of the leaf and grows towards the
  455. * front.
  456. */
  457. if (btrfs_item_offset_nr(leaf, slot) !=
  458. btrfs_item_end_nr(leaf, slot + 1)) {
  459. CORRUPT("slot offset bad", leaf, root, slot);
  460. return -EIO;
  461. }
  462. /*
  463. * Check to make sure that we don't point outside of the leaf,
  464. * just incase all the items are consistent to eachother, but
  465. * all point outside of the leaf.
  466. */
  467. if (btrfs_item_end_nr(leaf, slot) >
  468. BTRFS_LEAF_DATA_SIZE(root)) {
  469. CORRUPT("slot end outside of leaf", leaf, root, slot);
  470. return -EIO;
  471. }
  472. }
  473. return 0;
  474. }
  475. struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
  476. struct page *page, int max_walk)
  477. {
  478. struct extent_buffer *eb;
  479. u64 start = page_offset(page);
  480. u64 target = start;
  481. u64 min_start;
  482. if (start < max_walk)
  483. min_start = 0;
  484. else
  485. min_start = start - max_walk;
  486. while (start >= min_start) {
  487. eb = find_extent_buffer(tree, start, 0);
  488. if (eb) {
  489. /*
  490. * we found an extent buffer and it contains our page
  491. * horray!
  492. */
  493. if (eb->start <= target &&
  494. eb->start + eb->len > target)
  495. return eb;
  496. /* we found an extent buffer that wasn't for us */
  497. free_extent_buffer(eb);
  498. return NULL;
  499. }
  500. if (start == 0)
  501. break;
  502. start -= PAGE_CACHE_SIZE;
  503. }
  504. return NULL;
  505. }
  506. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  507. struct extent_state *state, int mirror)
  508. {
  509. struct extent_io_tree *tree;
  510. u64 found_start;
  511. int found_level;
  512. struct extent_buffer *eb;
  513. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  514. int ret = 0;
  515. int reads_done;
  516. if (!page->private)
  517. goto out;
  518. tree = &BTRFS_I(page->mapping->host)->io_tree;
  519. eb = (struct extent_buffer *)page->private;
  520. /* the pending IO might have been the only thing that kept this buffer
  521. * in memory. Make sure we have a ref for all this other checks
  522. */
  523. extent_buffer_get(eb);
  524. reads_done = atomic_dec_and_test(&eb->io_pages);
  525. if (!reads_done)
  526. goto err;
  527. eb->read_mirror = mirror;
  528. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  529. ret = -EIO;
  530. goto err;
  531. }
  532. found_start = btrfs_header_bytenr(eb);
  533. if (found_start != eb->start) {
  534. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  535. "%llu %llu\n",
  536. (unsigned long long)found_start,
  537. (unsigned long long)eb->start);
  538. ret = -EIO;
  539. goto err;
  540. }
  541. if (check_tree_block_fsid(root, eb)) {
  542. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  543. (unsigned long long)eb->start);
  544. ret = -EIO;
  545. goto err;
  546. }
  547. found_level = btrfs_header_level(eb);
  548. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  549. eb, found_level);
  550. ret = csum_tree_block(root, eb, 1);
  551. if (ret) {
  552. ret = -EIO;
  553. goto err;
  554. }
  555. /*
  556. * If this is a leaf block and it is corrupt, set the corrupt bit so
  557. * that we don't try and read the other copies of this block, just
  558. * return -EIO.
  559. */
  560. if (found_level == 0 && check_leaf(root, eb)) {
  561. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  562. ret = -EIO;
  563. }
  564. if (!ret)
  565. set_extent_buffer_uptodate(eb);
  566. err:
  567. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  568. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  569. btree_readahead_hook(root, eb, eb->start, ret);
  570. }
  571. if (ret)
  572. clear_extent_buffer_uptodate(eb);
  573. free_extent_buffer(eb);
  574. out:
  575. return ret;
  576. }
  577. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  578. {
  579. struct extent_buffer *eb;
  580. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  581. eb = (struct extent_buffer *)page->private;
  582. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  583. eb->read_mirror = failed_mirror;
  584. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, -EIO);
  586. return -EIO; /* we fixed nothing */
  587. }
  588. static void end_workqueue_bio(struct bio *bio, int err)
  589. {
  590. struct end_io_wq *end_io_wq = bio->bi_private;
  591. struct btrfs_fs_info *fs_info;
  592. fs_info = end_io_wq->info;
  593. end_io_wq->error = err;
  594. end_io_wq->work.func = end_workqueue_fn;
  595. end_io_wq->work.flags = 0;
  596. if (bio->bi_rw & REQ_WRITE) {
  597. if (end_io_wq->metadata == 1)
  598. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  599. &end_io_wq->work);
  600. else if (end_io_wq->metadata == 2)
  601. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  602. &end_io_wq->work);
  603. else
  604. btrfs_queue_worker(&fs_info->endio_write_workers,
  605. &end_io_wq->work);
  606. } else {
  607. if (end_io_wq->metadata)
  608. btrfs_queue_worker(&fs_info->endio_meta_workers,
  609. &end_io_wq->work);
  610. else
  611. btrfs_queue_worker(&fs_info->endio_workers,
  612. &end_io_wq->work);
  613. }
  614. }
  615. /*
  616. * For the metadata arg you want
  617. *
  618. * 0 - if data
  619. * 1 - if normal metadta
  620. * 2 - if writing to the free space cache area
  621. */
  622. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  623. int metadata)
  624. {
  625. struct end_io_wq *end_io_wq;
  626. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  627. if (!end_io_wq)
  628. return -ENOMEM;
  629. end_io_wq->private = bio->bi_private;
  630. end_io_wq->end_io = bio->bi_end_io;
  631. end_io_wq->info = info;
  632. end_io_wq->error = 0;
  633. end_io_wq->bio = bio;
  634. end_io_wq->metadata = metadata;
  635. bio->bi_private = end_io_wq;
  636. bio->bi_end_io = end_workqueue_bio;
  637. return 0;
  638. }
  639. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  640. {
  641. unsigned long limit = min_t(unsigned long,
  642. info->workers.max_workers,
  643. info->fs_devices->open_devices);
  644. return 256 * limit;
  645. }
  646. static void run_one_async_start(struct btrfs_work *work)
  647. {
  648. struct async_submit_bio *async;
  649. int ret;
  650. async = container_of(work, struct async_submit_bio, work);
  651. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  652. async->mirror_num, async->bio_flags,
  653. async->bio_offset);
  654. if (ret)
  655. async->error = ret;
  656. }
  657. static void run_one_async_done(struct btrfs_work *work)
  658. {
  659. struct btrfs_fs_info *fs_info;
  660. struct async_submit_bio *async;
  661. int limit;
  662. async = container_of(work, struct async_submit_bio, work);
  663. fs_info = BTRFS_I(async->inode)->root->fs_info;
  664. limit = btrfs_async_submit_limit(fs_info);
  665. limit = limit * 2 / 3;
  666. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  667. waitqueue_active(&fs_info->async_submit_wait))
  668. wake_up(&fs_info->async_submit_wait);
  669. /* If an error occured we just want to clean up the bio and move on */
  670. if (async->error) {
  671. bio_endio(async->bio, async->error);
  672. return;
  673. }
  674. async->submit_bio_done(async->inode, async->rw, async->bio,
  675. async->mirror_num, async->bio_flags,
  676. async->bio_offset);
  677. }
  678. static void run_one_async_free(struct btrfs_work *work)
  679. {
  680. struct async_submit_bio *async;
  681. async = container_of(work, struct async_submit_bio, work);
  682. kfree(async);
  683. }
  684. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  685. int rw, struct bio *bio, int mirror_num,
  686. unsigned long bio_flags,
  687. u64 bio_offset,
  688. extent_submit_bio_hook_t *submit_bio_start,
  689. extent_submit_bio_hook_t *submit_bio_done)
  690. {
  691. struct async_submit_bio *async;
  692. async = kmalloc(sizeof(*async), GFP_NOFS);
  693. if (!async)
  694. return -ENOMEM;
  695. async->inode = inode;
  696. async->rw = rw;
  697. async->bio = bio;
  698. async->mirror_num = mirror_num;
  699. async->submit_bio_start = submit_bio_start;
  700. async->submit_bio_done = submit_bio_done;
  701. async->work.func = run_one_async_start;
  702. async->work.ordered_func = run_one_async_done;
  703. async->work.ordered_free = run_one_async_free;
  704. async->work.flags = 0;
  705. async->bio_flags = bio_flags;
  706. async->bio_offset = bio_offset;
  707. async->error = 0;
  708. atomic_inc(&fs_info->nr_async_submits);
  709. if (rw & REQ_SYNC)
  710. btrfs_set_work_high_prio(&async->work);
  711. btrfs_queue_worker(&fs_info->workers, &async->work);
  712. while (atomic_read(&fs_info->async_submit_draining) &&
  713. atomic_read(&fs_info->nr_async_submits)) {
  714. wait_event(fs_info->async_submit_wait,
  715. (atomic_read(&fs_info->nr_async_submits) == 0));
  716. }
  717. return 0;
  718. }
  719. static int btree_csum_one_bio(struct bio *bio)
  720. {
  721. struct bio_vec *bvec = bio->bi_io_vec;
  722. int bio_index = 0;
  723. struct btrfs_root *root;
  724. int ret = 0;
  725. WARN_ON(bio->bi_vcnt <= 0);
  726. while (bio_index < bio->bi_vcnt) {
  727. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  728. ret = csum_dirty_buffer(root, bvec->bv_page);
  729. if (ret)
  730. break;
  731. bio_index++;
  732. bvec++;
  733. }
  734. return ret;
  735. }
  736. static int __btree_submit_bio_start(struct inode *inode, int rw,
  737. struct bio *bio, int mirror_num,
  738. unsigned long bio_flags,
  739. u64 bio_offset)
  740. {
  741. /*
  742. * when we're called for a write, we're already in the async
  743. * submission context. Just jump into btrfs_map_bio
  744. */
  745. return btree_csum_one_bio(bio);
  746. }
  747. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  748. int mirror_num, unsigned long bio_flags,
  749. u64 bio_offset)
  750. {
  751. int ret;
  752. /*
  753. * when we're called for a write, we're already in the async
  754. * submission context. Just jump into btrfs_map_bio
  755. */
  756. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  757. if (ret)
  758. bio_endio(bio, ret);
  759. return ret;
  760. }
  761. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  762. {
  763. if (bio_flags & EXTENT_BIO_TREE_LOG)
  764. return 0;
  765. #ifdef CONFIG_X86
  766. if (cpu_has_xmm4_2)
  767. return 0;
  768. #endif
  769. return 1;
  770. }
  771. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  772. int mirror_num, unsigned long bio_flags,
  773. u64 bio_offset)
  774. {
  775. int async = check_async_write(inode, bio_flags);
  776. int ret;
  777. if (!(rw & REQ_WRITE)) {
  778. /*
  779. * called for a read, do the setup so that checksum validation
  780. * can happen in the async kernel threads
  781. */
  782. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  783. bio, 1);
  784. if (ret)
  785. goto out_w_error;
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  787. mirror_num, 0);
  788. } else if (!async) {
  789. ret = btree_csum_one_bio(bio);
  790. if (ret)
  791. goto out_w_error;
  792. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  793. mirror_num, 0);
  794. } else {
  795. /*
  796. * kthread helpers are used to submit writes so that
  797. * checksumming can happen in parallel across all CPUs
  798. */
  799. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  800. inode, rw, bio, mirror_num, 0,
  801. bio_offset,
  802. __btree_submit_bio_start,
  803. __btree_submit_bio_done);
  804. }
  805. if (ret) {
  806. out_w_error:
  807. bio_endio(bio, ret);
  808. }
  809. return ret;
  810. }
  811. #ifdef CONFIG_MIGRATION
  812. static int btree_migratepage(struct address_space *mapping,
  813. struct page *newpage, struct page *page,
  814. enum migrate_mode mode)
  815. {
  816. /*
  817. * we can't safely write a btree page from here,
  818. * we haven't done the locking hook
  819. */
  820. if (PageDirty(page))
  821. return -EAGAIN;
  822. /*
  823. * Buffers may be managed in a filesystem specific way.
  824. * We must have no buffers or drop them.
  825. */
  826. if (page_has_private(page) &&
  827. !try_to_release_page(page, GFP_KERNEL))
  828. return -EAGAIN;
  829. return migrate_page(mapping, newpage, page, mode);
  830. }
  831. #endif
  832. static int btree_writepages(struct address_space *mapping,
  833. struct writeback_control *wbc)
  834. {
  835. struct extent_io_tree *tree;
  836. tree = &BTRFS_I(mapping->host)->io_tree;
  837. if (wbc->sync_mode == WB_SYNC_NONE) {
  838. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  839. u64 num_dirty;
  840. unsigned long thresh = 32 * 1024 * 1024;
  841. if (wbc->for_kupdate)
  842. return 0;
  843. /* this is a bit racy, but that's ok */
  844. num_dirty = root->fs_info->dirty_metadata_bytes;
  845. if (num_dirty < thresh)
  846. return 0;
  847. }
  848. return btree_write_cache_pages(mapping, wbc);
  849. }
  850. static int btree_readpage(struct file *file, struct page *page)
  851. {
  852. struct extent_io_tree *tree;
  853. tree = &BTRFS_I(page->mapping->host)->io_tree;
  854. return extent_read_full_page(tree, page, btree_get_extent, 0);
  855. }
  856. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  857. {
  858. if (PageWriteback(page) || PageDirty(page))
  859. return 0;
  860. /*
  861. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  862. * slab allocation from alloc_extent_state down the callchain where
  863. * it'd hit a BUG_ON as those flags are not allowed.
  864. */
  865. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  866. return try_release_extent_buffer(page, gfp_flags);
  867. }
  868. static void btree_invalidatepage(struct page *page, unsigned long offset)
  869. {
  870. struct extent_io_tree *tree;
  871. tree = &BTRFS_I(page->mapping->host)->io_tree;
  872. extent_invalidatepage(tree, page, offset);
  873. btree_releasepage(page, GFP_NOFS);
  874. if (PagePrivate(page)) {
  875. printk(KERN_WARNING "btrfs warning page private not zero "
  876. "on page %llu\n", (unsigned long long)page_offset(page));
  877. ClearPagePrivate(page);
  878. set_page_private(page, 0);
  879. page_cache_release(page);
  880. }
  881. }
  882. static int btree_set_page_dirty(struct page *page)
  883. {
  884. struct extent_buffer *eb;
  885. BUG_ON(!PagePrivate(page));
  886. eb = (struct extent_buffer *)page->private;
  887. BUG_ON(!eb);
  888. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  889. BUG_ON(!atomic_read(&eb->refs));
  890. btrfs_assert_tree_locked(eb);
  891. return __set_page_dirty_nobuffers(page);
  892. }
  893. static const struct address_space_operations btree_aops = {
  894. .readpage = btree_readpage,
  895. .writepages = btree_writepages,
  896. .releasepage = btree_releasepage,
  897. .invalidatepage = btree_invalidatepage,
  898. #ifdef CONFIG_MIGRATION
  899. .migratepage = btree_migratepage,
  900. #endif
  901. .set_page_dirty = btree_set_page_dirty,
  902. };
  903. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  904. u64 parent_transid)
  905. {
  906. struct extent_buffer *buf = NULL;
  907. struct inode *btree_inode = root->fs_info->btree_inode;
  908. int ret = 0;
  909. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  910. if (!buf)
  911. return 0;
  912. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  913. buf, 0, WAIT_NONE, btree_get_extent, 0);
  914. free_extent_buffer(buf);
  915. return ret;
  916. }
  917. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  918. int mirror_num, struct extent_buffer **eb)
  919. {
  920. struct extent_buffer *buf = NULL;
  921. struct inode *btree_inode = root->fs_info->btree_inode;
  922. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  923. int ret;
  924. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  925. if (!buf)
  926. return 0;
  927. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  928. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  929. btree_get_extent, mirror_num);
  930. if (ret) {
  931. free_extent_buffer(buf);
  932. return ret;
  933. }
  934. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  935. free_extent_buffer(buf);
  936. return -EIO;
  937. } else if (extent_buffer_uptodate(buf)) {
  938. *eb = buf;
  939. } else {
  940. free_extent_buffer(buf);
  941. }
  942. return 0;
  943. }
  944. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  945. u64 bytenr, u32 blocksize)
  946. {
  947. struct inode *btree_inode = root->fs_info->btree_inode;
  948. struct extent_buffer *eb;
  949. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  950. bytenr, blocksize);
  951. return eb;
  952. }
  953. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  954. u64 bytenr, u32 blocksize)
  955. {
  956. struct inode *btree_inode = root->fs_info->btree_inode;
  957. struct extent_buffer *eb;
  958. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  959. bytenr, blocksize);
  960. return eb;
  961. }
  962. int btrfs_write_tree_block(struct extent_buffer *buf)
  963. {
  964. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  965. buf->start + buf->len - 1);
  966. }
  967. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  968. {
  969. return filemap_fdatawait_range(buf->pages[0]->mapping,
  970. buf->start, buf->start + buf->len - 1);
  971. }
  972. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  973. u32 blocksize, u64 parent_transid)
  974. {
  975. struct extent_buffer *buf = NULL;
  976. int ret;
  977. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  978. if (!buf)
  979. return NULL;
  980. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  981. return buf;
  982. }
  983. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  984. struct extent_buffer *buf)
  985. {
  986. if (btrfs_header_generation(buf) ==
  987. root->fs_info->running_transaction->transid) {
  988. btrfs_assert_tree_locked(buf);
  989. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  990. spin_lock(&root->fs_info->delalloc_lock);
  991. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  992. root->fs_info->dirty_metadata_bytes -= buf->len;
  993. else {
  994. spin_unlock(&root->fs_info->delalloc_lock);
  995. btrfs_panic(root->fs_info, -EOVERFLOW,
  996. "Can't clear %lu bytes from "
  997. " dirty_mdatadata_bytes (%llu)",
  998. buf->len,
  999. root->fs_info->dirty_metadata_bytes);
  1000. }
  1001. spin_unlock(&root->fs_info->delalloc_lock);
  1002. }
  1003. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1004. btrfs_set_lock_blocking(buf);
  1005. clear_extent_buffer_dirty(buf);
  1006. }
  1007. }
  1008. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1009. u32 stripesize, struct btrfs_root *root,
  1010. struct btrfs_fs_info *fs_info,
  1011. u64 objectid)
  1012. {
  1013. root->node = NULL;
  1014. root->commit_root = NULL;
  1015. root->sectorsize = sectorsize;
  1016. root->nodesize = nodesize;
  1017. root->leafsize = leafsize;
  1018. root->stripesize = stripesize;
  1019. root->ref_cows = 0;
  1020. root->track_dirty = 0;
  1021. root->in_radix = 0;
  1022. root->orphan_item_inserted = 0;
  1023. root->orphan_cleanup_state = 0;
  1024. root->objectid = objectid;
  1025. root->last_trans = 0;
  1026. root->highest_objectid = 0;
  1027. root->name = NULL;
  1028. root->inode_tree = RB_ROOT;
  1029. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1030. root->block_rsv = NULL;
  1031. root->orphan_block_rsv = NULL;
  1032. INIT_LIST_HEAD(&root->dirty_list);
  1033. INIT_LIST_HEAD(&root->root_list);
  1034. spin_lock_init(&root->orphan_lock);
  1035. spin_lock_init(&root->inode_lock);
  1036. spin_lock_init(&root->accounting_lock);
  1037. mutex_init(&root->objectid_mutex);
  1038. mutex_init(&root->log_mutex);
  1039. init_waitqueue_head(&root->log_writer_wait);
  1040. init_waitqueue_head(&root->log_commit_wait[0]);
  1041. init_waitqueue_head(&root->log_commit_wait[1]);
  1042. atomic_set(&root->log_commit[0], 0);
  1043. atomic_set(&root->log_commit[1], 0);
  1044. atomic_set(&root->log_writers, 0);
  1045. atomic_set(&root->log_batch, 0);
  1046. atomic_set(&root->orphan_inodes, 0);
  1047. root->log_transid = 0;
  1048. root->last_log_commit = 0;
  1049. extent_io_tree_init(&root->dirty_log_pages,
  1050. fs_info->btree_inode->i_mapping);
  1051. memset(&root->root_key, 0, sizeof(root->root_key));
  1052. memset(&root->root_item, 0, sizeof(root->root_item));
  1053. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1054. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1055. root->defrag_trans_start = fs_info->generation;
  1056. init_completion(&root->kobj_unregister);
  1057. root->defrag_running = 0;
  1058. root->root_key.objectid = objectid;
  1059. root->anon_dev = 0;
  1060. spin_lock_init(&root->root_item_lock);
  1061. }
  1062. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1063. struct btrfs_fs_info *fs_info,
  1064. u64 objectid,
  1065. struct btrfs_root *root)
  1066. {
  1067. int ret;
  1068. u32 blocksize;
  1069. u64 generation;
  1070. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1071. tree_root->sectorsize, tree_root->stripesize,
  1072. root, fs_info, objectid);
  1073. ret = btrfs_find_last_root(tree_root, objectid,
  1074. &root->root_item, &root->root_key);
  1075. if (ret > 0)
  1076. return -ENOENT;
  1077. else if (ret < 0)
  1078. return ret;
  1079. generation = btrfs_root_generation(&root->root_item);
  1080. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1081. root->commit_root = NULL;
  1082. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1083. blocksize, generation);
  1084. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1085. free_extent_buffer(root->node);
  1086. root->node = NULL;
  1087. return -EIO;
  1088. }
  1089. root->commit_root = btrfs_root_node(root);
  1090. return 0;
  1091. }
  1092. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1093. {
  1094. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1095. if (root)
  1096. root->fs_info = fs_info;
  1097. return root;
  1098. }
  1099. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1100. struct btrfs_fs_info *fs_info,
  1101. u64 objectid)
  1102. {
  1103. struct extent_buffer *leaf;
  1104. struct btrfs_root *tree_root = fs_info->tree_root;
  1105. struct btrfs_root *root;
  1106. struct btrfs_key key;
  1107. int ret = 0;
  1108. u64 bytenr;
  1109. root = btrfs_alloc_root(fs_info);
  1110. if (!root)
  1111. return ERR_PTR(-ENOMEM);
  1112. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1113. tree_root->sectorsize, tree_root->stripesize,
  1114. root, fs_info, objectid);
  1115. root->root_key.objectid = objectid;
  1116. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1117. root->root_key.offset = 0;
  1118. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1119. 0, objectid, NULL, 0, 0, 0);
  1120. if (IS_ERR(leaf)) {
  1121. ret = PTR_ERR(leaf);
  1122. goto fail;
  1123. }
  1124. bytenr = leaf->start;
  1125. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1126. btrfs_set_header_bytenr(leaf, leaf->start);
  1127. btrfs_set_header_generation(leaf, trans->transid);
  1128. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1129. btrfs_set_header_owner(leaf, objectid);
  1130. root->node = leaf;
  1131. write_extent_buffer(leaf, fs_info->fsid,
  1132. (unsigned long)btrfs_header_fsid(leaf),
  1133. BTRFS_FSID_SIZE);
  1134. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1135. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1136. BTRFS_UUID_SIZE);
  1137. btrfs_mark_buffer_dirty(leaf);
  1138. root->commit_root = btrfs_root_node(root);
  1139. root->track_dirty = 1;
  1140. root->root_item.flags = 0;
  1141. root->root_item.byte_limit = 0;
  1142. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1143. btrfs_set_root_generation(&root->root_item, trans->transid);
  1144. btrfs_set_root_level(&root->root_item, 0);
  1145. btrfs_set_root_refs(&root->root_item, 1);
  1146. btrfs_set_root_used(&root->root_item, leaf->len);
  1147. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1148. btrfs_set_root_dirid(&root->root_item, 0);
  1149. root->root_item.drop_level = 0;
  1150. key.objectid = objectid;
  1151. key.type = BTRFS_ROOT_ITEM_KEY;
  1152. key.offset = 0;
  1153. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1154. if (ret)
  1155. goto fail;
  1156. btrfs_tree_unlock(leaf);
  1157. fail:
  1158. if (ret)
  1159. return ERR_PTR(ret);
  1160. return root;
  1161. }
  1162. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1163. struct btrfs_fs_info *fs_info)
  1164. {
  1165. struct btrfs_root *root;
  1166. struct btrfs_root *tree_root = fs_info->tree_root;
  1167. struct extent_buffer *leaf;
  1168. root = btrfs_alloc_root(fs_info);
  1169. if (!root)
  1170. return ERR_PTR(-ENOMEM);
  1171. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1172. tree_root->sectorsize, tree_root->stripesize,
  1173. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1174. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1175. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1176. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1177. /*
  1178. * log trees do not get reference counted because they go away
  1179. * before a real commit is actually done. They do store pointers
  1180. * to file data extents, and those reference counts still get
  1181. * updated (along with back refs to the log tree).
  1182. */
  1183. root->ref_cows = 0;
  1184. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1185. BTRFS_TREE_LOG_OBJECTID, NULL,
  1186. 0, 0, 0);
  1187. if (IS_ERR(leaf)) {
  1188. kfree(root);
  1189. return ERR_CAST(leaf);
  1190. }
  1191. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1192. btrfs_set_header_bytenr(leaf, leaf->start);
  1193. btrfs_set_header_generation(leaf, trans->transid);
  1194. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1195. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1196. root->node = leaf;
  1197. write_extent_buffer(root->node, root->fs_info->fsid,
  1198. (unsigned long)btrfs_header_fsid(root->node),
  1199. BTRFS_FSID_SIZE);
  1200. btrfs_mark_buffer_dirty(root->node);
  1201. btrfs_tree_unlock(root->node);
  1202. return root;
  1203. }
  1204. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1205. struct btrfs_fs_info *fs_info)
  1206. {
  1207. struct btrfs_root *log_root;
  1208. log_root = alloc_log_tree(trans, fs_info);
  1209. if (IS_ERR(log_root))
  1210. return PTR_ERR(log_root);
  1211. WARN_ON(fs_info->log_root_tree);
  1212. fs_info->log_root_tree = log_root;
  1213. return 0;
  1214. }
  1215. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1216. struct btrfs_root *root)
  1217. {
  1218. struct btrfs_root *log_root;
  1219. struct btrfs_inode_item *inode_item;
  1220. log_root = alloc_log_tree(trans, root->fs_info);
  1221. if (IS_ERR(log_root))
  1222. return PTR_ERR(log_root);
  1223. log_root->last_trans = trans->transid;
  1224. log_root->root_key.offset = root->root_key.objectid;
  1225. inode_item = &log_root->root_item.inode;
  1226. inode_item->generation = cpu_to_le64(1);
  1227. inode_item->size = cpu_to_le64(3);
  1228. inode_item->nlink = cpu_to_le32(1);
  1229. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1230. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1231. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1232. WARN_ON(root->log_root);
  1233. root->log_root = log_root;
  1234. root->log_transid = 0;
  1235. root->last_log_commit = 0;
  1236. return 0;
  1237. }
  1238. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1239. struct btrfs_key *location)
  1240. {
  1241. struct btrfs_root *root;
  1242. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1243. struct btrfs_path *path;
  1244. struct extent_buffer *l;
  1245. u64 generation;
  1246. u32 blocksize;
  1247. int ret = 0;
  1248. int slot;
  1249. root = btrfs_alloc_root(fs_info);
  1250. if (!root)
  1251. return ERR_PTR(-ENOMEM);
  1252. if (location->offset == (u64)-1) {
  1253. ret = find_and_setup_root(tree_root, fs_info,
  1254. location->objectid, root);
  1255. if (ret) {
  1256. kfree(root);
  1257. return ERR_PTR(ret);
  1258. }
  1259. goto out;
  1260. }
  1261. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1262. tree_root->sectorsize, tree_root->stripesize,
  1263. root, fs_info, location->objectid);
  1264. path = btrfs_alloc_path();
  1265. if (!path) {
  1266. kfree(root);
  1267. return ERR_PTR(-ENOMEM);
  1268. }
  1269. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1270. if (ret == 0) {
  1271. l = path->nodes[0];
  1272. slot = path->slots[0];
  1273. btrfs_read_root_item(tree_root, l, slot, &root->root_item);
  1274. memcpy(&root->root_key, location, sizeof(*location));
  1275. }
  1276. btrfs_free_path(path);
  1277. if (ret) {
  1278. kfree(root);
  1279. if (ret > 0)
  1280. ret = -ENOENT;
  1281. return ERR_PTR(ret);
  1282. }
  1283. generation = btrfs_root_generation(&root->root_item);
  1284. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1285. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1286. blocksize, generation);
  1287. root->commit_root = btrfs_root_node(root);
  1288. BUG_ON(!root->node); /* -ENOMEM */
  1289. out:
  1290. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1291. root->ref_cows = 1;
  1292. btrfs_check_and_init_root_item(&root->root_item);
  1293. }
  1294. return root;
  1295. }
  1296. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1297. struct btrfs_key *location)
  1298. {
  1299. struct btrfs_root *root;
  1300. int ret;
  1301. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1302. return fs_info->tree_root;
  1303. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1304. return fs_info->extent_root;
  1305. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1306. return fs_info->chunk_root;
  1307. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1308. return fs_info->dev_root;
  1309. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1310. return fs_info->csum_root;
  1311. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1312. return fs_info->quota_root ? fs_info->quota_root :
  1313. ERR_PTR(-ENOENT);
  1314. again:
  1315. spin_lock(&fs_info->fs_roots_radix_lock);
  1316. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1317. (unsigned long)location->objectid);
  1318. spin_unlock(&fs_info->fs_roots_radix_lock);
  1319. if (root)
  1320. return root;
  1321. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1322. if (IS_ERR(root))
  1323. return root;
  1324. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1325. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1326. GFP_NOFS);
  1327. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1328. ret = -ENOMEM;
  1329. goto fail;
  1330. }
  1331. btrfs_init_free_ino_ctl(root);
  1332. mutex_init(&root->fs_commit_mutex);
  1333. spin_lock_init(&root->cache_lock);
  1334. init_waitqueue_head(&root->cache_wait);
  1335. ret = get_anon_bdev(&root->anon_dev);
  1336. if (ret)
  1337. goto fail;
  1338. if (btrfs_root_refs(&root->root_item) == 0) {
  1339. ret = -ENOENT;
  1340. goto fail;
  1341. }
  1342. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1343. if (ret < 0)
  1344. goto fail;
  1345. if (ret == 0)
  1346. root->orphan_item_inserted = 1;
  1347. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1348. if (ret)
  1349. goto fail;
  1350. spin_lock(&fs_info->fs_roots_radix_lock);
  1351. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1352. (unsigned long)root->root_key.objectid,
  1353. root);
  1354. if (ret == 0)
  1355. root->in_radix = 1;
  1356. spin_unlock(&fs_info->fs_roots_radix_lock);
  1357. radix_tree_preload_end();
  1358. if (ret) {
  1359. if (ret == -EEXIST) {
  1360. free_fs_root(root);
  1361. goto again;
  1362. }
  1363. goto fail;
  1364. }
  1365. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1366. root->root_key.objectid);
  1367. WARN_ON(ret);
  1368. return root;
  1369. fail:
  1370. free_fs_root(root);
  1371. return ERR_PTR(ret);
  1372. }
  1373. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1374. {
  1375. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1376. int ret = 0;
  1377. struct btrfs_device *device;
  1378. struct backing_dev_info *bdi;
  1379. rcu_read_lock();
  1380. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1381. if (!device->bdev)
  1382. continue;
  1383. bdi = blk_get_backing_dev_info(device->bdev);
  1384. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1385. ret = 1;
  1386. break;
  1387. }
  1388. }
  1389. rcu_read_unlock();
  1390. return ret;
  1391. }
  1392. /*
  1393. * If this fails, caller must call bdi_destroy() to get rid of the
  1394. * bdi again.
  1395. */
  1396. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1397. {
  1398. int err;
  1399. bdi->capabilities = BDI_CAP_MAP_COPY;
  1400. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1401. if (err)
  1402. return err;
  1403. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1404. bdi->congested_fn = btrfs_congested_fn;
  1405. bdi->congested_data = info;
  1406. return 0;
  1407. }
  1408. /*
  1409. * called by the kthread helper functions to finally call the bio end_io
  1410. * functions. This is where read checksum verification actually happens
  1411. */
  1412. static void end_workqueue_fn(struct btrfs_work *work)
  1413. {
  1414. struct bio *bio;
  1415. struct end_io_wq *end_io_wq;
  1416. struct btrfs_fs_info *fs_info;
  1417. int error;
  1418. end_io_wq = container_of(work, struct end_io_wq, work);
  1419. bio = end_io_wq->bio;
  1420. fs_info = end_io_wq->info;
  1421. error = end_io_wq->error;
  1422. bio->bi_private = end_io_wq->private;
  1423. bio->bi_end_io = end_io_wq->end_io;
  1424. kfree(end_io_wq);
  1425. bio_endio(bio, error);
  1426. }
  1427. static int cleaner_kthread(void *arg)
  1428. {
  1429. struct btrfs_root *root = arg;
  1430. do {
  1431. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1432. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1433. btrfs_run_delayed_iputs(root);
  1434. btrfs_clean_old_snapshots(root);
  1435. mutex_unlock(&root->fs_info->cleaner_mutex);
  1436. btrfs_run_defrag_inodes(root->fs_info);
  1437. }
  1438. if (!try_to_freeze()) {
  1439. set_current_state(TASK_INTERRUPTIBLE);
  1440. if (!kthread_should_stop())
  1441. schedule();
  1442. __set_current_state(TASK_RUNNING);
  1443. }
  1444. } while (!kthread_should_stop());
  1445. return 0;
  1446. }
  1447. static int transaction_kthread(void *arg)
  1448. {
  1449. struct btrfs_root *root = arg;
  1450. struct btrfs_trans_handle *trans;
  1451. struct btrfs_transaction *cur;
  1452. u64 transid;
  1453. unsigned long now;
  1454. unsigned long delay;
  1455. bool cannot_commit;
  1456. do {
  1457. cannot_commit = false;
  1458. delay = HZ * 30;
  1459. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1460. spin_lock(&root->fs_info->trans_lock);
  1461. cur = root->fs_info->running_transaction;
  1462. if (!cur) {
  1463. spin_unlock(&root->fs_info->trans_lock);
  1464. goto sleep;
  1465. }
  1466. now = get_seconds();
  1467. if (!cur->blocked &&
  1468. (now < cur->start_time || now - cur->start_time < 30)) {
  1469. spin_unlock(&root->fs_info->trans_lock);
  1470. delay = HZ * 5;
  1471. goto sleep;
  1472. }
  1473. transid = cur->transid;
  1474. spin_unlock(&root->fs_info->trans_lock);
  1475. /* If the file system is aborted, this will always fail. */
  1476. trans = btrfs_attach_transaction(root);
  1477. if (IS_ERR(trans)) {
  1478. if (PTR_ERR(trans) != -ENOENT)
  1479. cannot_commit = true;
  1480. goto sleep;
  1481. }
  1482. if (transid == trans->transid) {
  1483. btrfs_commit_transaction(trans, root);
  1484. } else {
  1485. btrfs_end_transaction(trans, root);
  1486. }
  1487. sleep:
  1488. wake_up_process(root->fs_info->cleaner_kthread);
  1489. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1490. if (!try_to_freeze()) {
  1491. set_current_state(TASK_INTERRUPTIBLE);
  1492. if (!kthread_should_stop() &&
  1493. (!btrfs_transaction_blocked(root->fs_info) ||
  1494. cannot_commit))
  1495. schedule_timeout(delay);
  1496. __set_current_state(TASK_RUNNING);
  1497. }
  1498. } while (!kthread_should_stop());
  1499. return 0;
  1500. }
  1501. /*
  1502. * this will find the highest generation in the array of
  1503. * root backups. The index of the highest array is returned,
  1504. * or -1 if we can't find anything.
  1505. *
  1506. * We check to make sure the array is valid by comparing the
  1507. * generation of the latest root in the array with the generation
  1508. * in the super block. If they don't match we pitch it.
  1509. */
  1510. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1511. {
  1512. u64 cur;
  1513. int newest_index = -1;
  1514. struct btrfs_root_backup *root_backup;
  1515. int i;
  1516. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1517. root_backup = info->super_copy->super_roots + i;
  1518. cur = btrfs_backup_tree_root_gen(root_backup);
  1519. if (cur == newest_gen)
  1520. newest_index = i;
  1521. }
  1522. /* check to see if we actually wrapped around */
  1523. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1524. root_backup = info->super_copy->super_roots;
  1525. cur = btrfs_backup_tree_root_gen(root_backup);
  1526. if (cur == newest_gen)
  1527. newest_index = 0;
  1528. }
  1529. return newest_index;
  1530. }
  1531. /*
  1532. * find the oldest backup so we know where to store new entries
  1533. * in the backup array. This will set the backup_root_index
  1534. * field in the fs_info struct
  1535. */
  1536. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1537. u64 newest_gen)
  1538. {
  1539. int newest_index = -1;
  1540. newest_index = find_newest_super_backup(info, newest_gen);
  1541. /* if there was garbage in there, just move along */
  1542. if (newest_index == -1) {
  1543. info->backup_root_index = 0;
  1544. } else {
  1545. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1546. }
  1547. }
  1548. /*
  1549. * copy all the root pointers into the super backup array.
  1550. * this will bump the backup pointer by one when it is
  1551. * done
  1552. */
  1553. static void backup_super_roots(struct btrfs_fs_info *info)
  1554. {
  1555. int next_backup;
  1556. struct btrfs_root_backup *root_backup;
  1557. int last_backup;
  1558. next_backup = info->backup_root_index;
  1559. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1560. BTRFS_NUM_BACKUP_ROOTS;
  1561. /*
  1562. * just overwrite the last backup if we're at the same generation
  1563. * this happens only at umount
  1564. */
  1565. root_backup = info->super_for_commit->super_roots + last_backup;
  1566. if (btrfs_backup_tree_root_gen(root_backup) ==
  1567. btrfs_header_generation(info->tree_root->node))
  1568. next_backup = last_backup;
  1569. root_backup = info->super_for_commit->super_roots + next_backup;
  1570. /*
  1571. * make sure all of our padding and empty slots get zero filled
  1572. * regardless of which ones we use today
  1573. */
  1574. memset(root_backup, 0, sizeof(*root_backup));
  1575. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1576. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1577. btrfs_set_backup_tree_root_gen(root_backup,
  1578. btrfs_header_generation(info->tree_root->node));
  1579. btrfs_set_backup_tree_root_level(root_backup,
  1580. btrfs_header_level(info->tree_root->node));
  1581. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1582. btrfs_set_backup_chunk_root_gen(root_backup,
  1583. btrfs_header_generation(info->chunk_root->node));
  1584. btrfs_set_backup_chunk_root_level(root_backup,
  1585. btrfs_header_level(info->chunk_root->node));
  1586. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1587. btrfs_set_backup_extent_root_gen(root_backup,
  1588. btrfs_header_generation(info->extent_root->node));
  1589. btrfs_set_backup_extent_root_level(root_backup,
  1590. btrfs_header_level(info->extent_root->node));
  1591. /*
  1592. * we might commit during log recovery, which happens before we set
  1593. * the fs_root. Make sure it is valid before we fill it in.
  1594. */
  1595. if (info->fs_root && info->fs_root->node) {
  1596. btrfs_set_backup_fs_root(root_backup,
  1597. info->fs_root->node->start);
  1598. btrfs_set_backup_fs_root_gen(root_backup,
  1599. btrfs_header_generation(info->fs_root->node));
  1600. btrfs_set_backup_fs_root_level(root_backup,
  1601. btrfs_header_level(info->fs_root->node));
  1602. }
  1603. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1604. btrfs_set_backup_dev_root_gen(root_backup,
  1605. btrfs_header_generation(info->dev_root->node));
  1606. btrfs_set_backup_dev_root_level(root_backup,
  1607. btrfs_header_level(info->dev_root->node));
  1608. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1609. btrfs_set_backup_csum_root_gen(root_backup,
  1610. btrfs_header_generation(info->csum_root->node));
  1611. btrfs_set_backup_csum_root_level(root_backup,
  1612. btrfs_header_level(info->csum_root->node));
  1613. btrfs_set_backup_total_bytes(root_backup,
  1614. btrfs_super_total_bytes(info->super_copy));
  1615. btrfs_set_backup_bytes_used(root_backup,
  1616. btrfs_super_bytes_used(info->super_copy));
  1617. btrfs_set_backup_num_devices(root_backup,
  1618. btrfs_super_num_devices(info->super_copy));
  1619. /*
  1620. * if we don't copy this out to the super_copy, it won't get remembered
  1621. * for the next commit
  1622. */
  1623. memcpy(&info->super_copy->super_roots,
  1624. &info->super_for_commit->super_roots,
  1625. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1626. }
  1627. /*
  1628. * this copies info out of the root backup array and back into
  1629. * the in-memory super block. It is meant to help iterate through
  1630. * the array, so you send it the number of backups you've already
  1631. * tried and the last backup index you used.
  1632. *
  1633. * this returns -1 when it has tried all the backups
  1634. */
  1635. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1636. struct btrfs_super_block *super,
  1637. int *num_backups_tried, int *backup_index)
  1638. {
  1639. struct btrfs_root_backup *root_backup;
  1640. int newest = *backup_index;
  1641. if (*num_backups_tried == 0) {
  1642. u64 gen = btrfs_super_generation(super);
  1643. newest = find_newest_super_backup(info, gen);
  1644. if (newest == -1)
  1645. return -1;
  1646. *backup_index = newest;
  1647. *num_backups_tried = 1;
  1648. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1649. /* we've tried all the backups, all done */
  1650. return -1;
  1651. } else {
  1652. /* jump to the next oldest backup */
  1653. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1654. BTRFS_NUM_BACKUP_ROOTS;
  1655. *backup_index = newest;
  1656. *num_backups_tried += 1;
  1657. }
  1658. root_backup = super->super_roots + newest;
  1659. btrfs_set_super_generation(super,
  1660. btrfs_backup_tree_root_gen(root_backup));
  1661. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1662. btrfs_set_super_root_level(super,
  1663. btrfs_backup_tree_root_level(root_backup));
  1664. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1665. /*
  1666. * fixme: the total bytes and num_devices need to match or we should
  1667. * need a fsck
  1668. */
  1669. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1670. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1671. return 0;
  1672. }
  1673. /* helper to cleanup tree roots */
  1674. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1675. {
  1676. free_extent_buffer(info->tree_root->node);
  1677. free_extent_buffer(info->tree_root->commit_root);
  1678. free_extent_buffer(info->dev_root->node);
  1679. free_extent_buffer(info->dev_root->commit_root);
  1680. free_extent_buffer(info->extent_root->node);
  1681. free_extent_buffer(info->extent_root->commit_root);
  1682. free_extent_buffer(info->csum_root->node);
  1683. free_extent_buffer(info->csum_root->commit_root);
  1684. if (info->quota_root) {
  1685. free_extent_buffer(info->quota_root->node);
  1686. free_extent_buffer(info->quota_root->commit_root);
  1687. }
  1688. info->tree_root->node = NULL;
  1689. info->tree_root->commit_root = NULL;
  1690. info->dev_root->node = NULL;
  1691. info->dev_root->commit_root = NULL;
  1692. info->extent_root->node = NULL;
  1693. info->extent_root->commit_root = NULL;
  1694. info->csum_root->node = NULL;
  1695. info->csum_root->commit_root = NULL;
  1696. if (info->quota_root) {
  1697. info->quota_root->node = NULL;
  1698. info->quota_root->commit_root = NULL;
  1699. }
  1700. if (chunk_root) {
  1701. free_extent_buffer(info->chunk_root->node);
  1702. free_extent_buffer(info->chunk_root->commit_root);
  1703. info->chunk_root->node = NULL;
  1704. info->chunk_root->commit_root = NULL;
  1705. }
  1706. }
  1707. int open_ctree(struct super_block *sb,
  1708. struct btrfs_fs_devices *fs_devices,
  1709. char *options)
  1710. {
  1711. u32 sectorsize;
  1712. u32 nodesize;
  1713. u32 leafsize;
  1714. u32 blocksize;
  1715. u32 stripesize;
  1716. u64 generation;
  1717. u64 features;
  1718. struct btrfs_key location;
  1719. struct buffer_head *bh;
  1720. struct btrfs_super_block *disk_super;
  1721. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1722. struct btrfs_root *tree_root;
  1723. struct btrfs_root *extent_root;
  1724. struct btrfs_root *csum_root;
  1725. struct btrfs_root *chunk_root;
  1726. struct btrfs_root *dev_root;
  1727. struct btrfs_root *quota_root;
  1728. struct btrfs_root *log_tree_root;
  1729. int ret;
  1730. int err = -EINVAL;
  1731. int num_backups_tried = 0;
  1732. int backup_index = 0;
  1733. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1734. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1735. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1736. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1737. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1738. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1739. if (!tree_root || !extent_root || !csum_root ||
  1740. !chunk_root || !dev_root || !quota_root) {
  1741. err = -ENOMEM;
  1742. goto fail;
  1743. }
  1744. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1745. if (ret) {
  1746. err = ret;
  1747. goto fail;
  1748. }
  1749. ret = setup_bdi(fs_info, &fs_info->bdi);
  1750. if (ret) {
  1751. err = ret;
  1752. goto fail_srcu;
  1753. }
  1754. fs_info->btree_inode = new_inode(sb);
  1755. if (!fs_info->btree_inode) {
  1756. err = -ENOMEM;
  1757. goto fail_bdi;
  1758. }
  1759. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1760. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1761. INIT_LIST_HEAD(&fs_info->trans_list);
  1762. INIT_LIST_HEAD(&fs_info->dead_roots);
  1763. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1764. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1765. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1766. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1767. spin_lock_init(&fs_info->delalloc_lock);
  1768. spin_lock_init(&fs_info->trans_lock);
  1769. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1770. spin_lock_init(&fs_info->delayed_iput_lock);
  1771. spin_lock_init(&fs_info->defrag_inodes_lock);
  1772. spin_lock_init(&fs_info->free_chunk_lock);
  1773. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1774. rwlock_init(&fs_info->tree_mod_log_lock);
  1775. mutex_init(&fs_info->reloc_mutex);
  1776. init_completion(&fs_info->kobj_unregister);
  1777. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1778. INIT_LIST_HEAD(&fs_info->space_info);
  1779. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1780. btrfs_mapping_init(&fs_info->mapping_tree);
  1781. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1782. BTRFS_BLOCK_RSV_GLOBAL);
  1783. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1784. BTRFS_BLOCK_RSV_DELALLOC);
  1785. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1786. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1787. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1788. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1789. BTRFS_BLOCK_RSV_DELOPS);
  1790. atomic_set(&fs_info->nr_async_submits, 0);
  1791. atomic_set(&fs_info->async_delalloc_pages, 0);
  1792. atomic_set(&fs_info->async_submit_draining, 0);
  1793. atomic_set(&fs_info->nr_async_bios, 0);
  1794. atomic_set(&fs_info->defrag_running, 0);
  1795. atomic_set(&fs_info->tree_mod_seq, 0);
  1796. fs_info->sb = sb;
  1797. fs_info->max_inline = 8192 * 1024;
  1798. fs_info->metadata_ratio = 0;
  1799. fs_info->defrag_inodes = RB_ROOT;
  1800. fs_info->trans_no_join = 0;
  1801. fs_info->free_chunk_space = 0;
  1802. fs_info->tree_mod_log = RB_ROOT;
  1803. /* readahead state */
  1804. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1805. spin_lock_init(&fs_info->reada_lock);
  1806. fs_info->thread_pool_size = min_t(unsigned long,
  1807. num_online_cpus() + 2, 8);
  1808. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1809. spin_lock_init(&fs_info->ordered_extent_lock);
  1810. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1811. GFP_NOFS);
  1812. if (!fs_info->delayed_root) {
  1813. err = -ENOMEM;
  1814. goto fail_iput;
  1815. }
  1816. btrfs_init_delayed_root(fs_info->delayed_root);
  1817. mutex_init(&fs_info->scrub_lock);
  1818. atomic_set(&fs_info->scrubs_running, 0);
  1819. atomic_set(&fs_info->scrub_pause_req, 0);
  1820. atomic_set(&fs_info->scrubs_paused, 0);
  1821. atomic_set(&fs_info->scrub_cancel_req, 0);
  1822. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1823. init_rwsem(&fs_info->scrub_super_lock);
  1824. fs_info->scrub_workers_refcnt = 0;
  1825. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1826. fs_info->check_integrity_print_mask = 0;
  1827. #endif
  1828. spin_lock_init(&fs_info->balance_lock);
  1829. mutex_init(&fs_info->balance_mutex);
  1830. atomic_set(&fs_info->balance_running, 0);
  1831. atomic_set(&fs_info->balance_pause_req, 0);
  1832. atomic_set(&fs_info->balance_cancel_req, 0);
  1833. fs_info->balance_ctl = NULL;
  1834. init_waitqueue_head(&fs_info->balance_wait_q);
  1835. sb->s_blocksize = 4096;
  1836. sb->s_blocksize_bits = blksize_bits(4096);
  1837. sb->s_bdi = &fs_info->bdi;
  1838. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1839. set_nlink(fs_info->btree_inode, 1);
  1840. /*
  1841. * we set the i_size on the btree inode to the max possible int.
  1842. * the real end of the address space is determined by all of
  1843. * the devices in the system
  1844. */
  1845. fs_info->btree_inode->i_size = OFFSET_MAX;
  1846. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1847. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1848. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1849. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1850. fs_info->btree_inode->i_mapping);
  1851. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1852. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1853. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1854. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1855. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1856. sizeof(struct btrfs_key));
  1857. set_bit(BTRFS_INODE_DUMMY,
  1858. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1859. insert_inode_hash(fs_info->btree_inode);
  1860. spin_lock_init(&fs_info->block_group_cache_lock);
  1861. fs_info->block_group_cache_tree = RB_ROOT;
  1862. extent_io_tree_init(&fs_info->freed_extents[0],
  1863. fs_info->btree_inode->i_mapping);
  1864. extent_io_tree_init(&fs_info->freed_extents[1],
  1865. fs_info->btree_inode->i_mapping);
  1866. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1867. fs_info->do_barriers = 1;
  1868. mutex_init(&fs_info->ordered_operations_mutex);
  1869. mutex_init(&fs_info->tree_log_mutex);
  1870. mutex_init(&fs_info->chunk_mutex);
  1871. mutex_init(&fs_info->transaction_kthread_mutex);
  1872. mutex_init(&fs_info->cleaner_mutex);
  1873. mutex_init(&fs_info->volume_mutex);
  1874. init_rwsem(&fs_info->extent_commit_sem);
  1875. init_rwsem(&fs_info->cleanup_work_sem);
  1876. init_rwsem(&fs_info->subvol_sem);
  1877. fs_info->dev_replace.lock_owner = 0;
  1878. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1879. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1880. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1881. mutex_init(&fs_info->dev_replace.lock);
  1882. spin_lock_init(&fs_info->qgroup_lock);
  1883. fs_info->qgroup_tree = RB_ROOT;
  1884. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1885. fs_info->qgroup_seq = 1;
  1886. fs_info->quota_enabled = 0;
  1887. fs_info->pending_quota_state = 0;
  1888. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1889. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1890. init_waitqueue_head(&fs_info->transaction_throttle);
  1891. init_waitqueue_head(&fs_info->transaction_wait);
  1892. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1893. init_waitqueue_head(&fs_info->async_submit_wait);
  1894. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1895. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1896. invalidate_bdev(fs_devices->latest_bdev);
  1897. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1898. if (!bh) {
  1899. err = -EINVAL;
  1900. goto fail_alloc;
  1901. }
  1902. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1903. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1904. sizeof(*fs_info->super_for_commit));
  1905. brelse(bh);
  1906. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1907. disk_super = fs_info->super_copy;
  1908. if (!btrfs_super_root(disk_super))
  1909. goto fail_alloc;
  1910. /* check FS state, whether FS is broken. */
  1911. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1912. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1913. if (ret) {
  1914. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1915. err = ret;
  1916. goto fail_alloc;
  1917. }
  1918. /*
  1919. * run through our array of backup supers and setup
  1920. * our ring pointer to the oldest one
  1921. */
  1922. generation = btrfs_super_generation(disk_super);
  1923. find_oldest_super_backup(fs_info, generation);
  1924. /*
  1925. * In the long term, we'll store the compression type in the super
  1926. * block, and it'll be used for per file compression control.
  1927. */
  1928. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1929. ret = btrfs_parse_options(tree_root, options);
  1930. if (ret) {
  1931. err = ret;
  1932. goto fail_alloc;
  1933. }
  1934. features = btrfs_super_incompat_flags(disk_super) &
  1935. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1936. if (features) {
  1937. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1938. "unsupported optional features (%Lx).\n",
  1939. (unsigned long long)features);
  1940. err = -EINVAL;
  1941. goto fail_alloc;
  1942. }
  1943. if (btrfs_super_leafsize(disk_super) !=
  1944. btrfs_super_nodesize(disk_super)) {
  1945. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1946. "blocksizes don't match. node %d leaf %d\n",
  1947. btrfs_super_nodesize(disk_super),
  1948. btrfs_super_leafsize(disk_super));
  1949. err = -EINVAL;
  1950. goto fail_alloc;
  1951. }
  1952. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  1953. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  1954. "blocksize (%d) was too large\n",
  1955. btrfs_super_leafsize(disk_super));
  1956. err = -EINVAL;
  1957. goto fail_alloc;
  1958. }
  1959. features = btrfs_super_incompat_flags(disk_super);
  1960. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1961. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  1962. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1963. /*
  1964. * flag our filesystem as having big metadata blocks if
  1965. * they are bigger than the page size
  1966. */
  1967. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  1968. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  1969. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  1970. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  1971. }
  1972. nodesize = btrfs_super_nodesize(disk_super);
  1973. leafsize = btrfs_super_leafsize(disk_super);
  1974. sectorsize = btrfs_super_sectorsize(disk_super);
  1975. stripesize = btrfs_super_stripesize(disk_super);
  1976. /*
  1977. * mixed block groups end up with duplicate but slightly offset
  1978. * extent buffers for the same range. It leads to corruptions
  1979. */
  1980. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  1981. (sectorsize != leafsize)) {
  1982. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  1983. "are not allowed for mixed block groups on %s\n",
  1984. sb->s_id);
  1985. goto fail_alloc;
  1986. }
  1987. btrfs_set_super_incompat_flags(disk_super, features);
  1988. features = btrfs_super_compat_ro_flags(disk_super) &
  1989. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1990. if (!(sb->s_flags & MS_RDONLY) && features) {
  1991. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1992. "unsupported option features (%Lx).\n",
  1993. (unsigned long long)features);
  1994. err = -EINVAL;
  1995. goto fail_alloc;
  1996. }
  1997. btrfs_init_workers(&fs_info->generic_worker,
  1998. "genwork", 1, NULL);
  1999. btrfs_init_workers(&fs_info->workers, "worker",
  2000. fs_info->thread_pool_size,
  2001. &fs_info->generic_worker);
  2002. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2003. fs_info->thread_pool_size,
  2004. &fs_info->generic_worker);
  2005. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2006. fs_info->thread_pool_size,
  2007. &fs_info->generic_worker);
  2008. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2009. min_t(u64, fs_devices->num_devices,
  2010. fs_info->thread_pool_size),
  2011. &fs_info->generic_worker);
  2012. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2013. 2, &fs_info->generic_worker);
  2014. /* a higher idle thresh on the submit workers makes it much more
  2015. * likely that bios will be send down in a sane order to the
  2016. * devices
  2017. */
  2018. fs_info->submit_workers.idle_thresh = 64;
  2019. fs_info->workers.idle_thresh = 16;
  2020. fs_info->workers.ordered = 1;
  2021. fs_info->delalloc_workers.idle_thresh = 2;
  2022. fs_info->delalloc_workers.ordered = 1;
  2023. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2024. &fs_info->generic_worker);
  2025. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2026. fs_info->thread_pool_size,
  2027. &fs_info->generic_worker);
  2028. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2029. fs_info->thread_pool_size,
  2030. &fs_info->generic_worker);
  2031. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2032. "endio-meta-write", fs_info->thread_pool_size,
  2033. &fs_info->generic_worker);
  2034. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2035. fs_info->thread_pool_size,
  2036. &fs_info->generic_worker);
  2037. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2038. 1, &fs_info->generic_worker);
  2039. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2040. fs_info->thread_pool_size,
  2041. &fs_info->generic_worker);
  2042. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2043. fs_info->thread_pool_size,
  2044. &fs_info->generic_worker);
  2045. /*
  2046. * endios are largely parallel and should have a very
  2047. * low idle thresh
  2048. */
  2049. fs_info->endio_workers.idle_thresh = 4;
  2050. fs_info->endio_meta_workers.idle_thresh = 4;
  2051. fs_info->endio_write_workers.idle_thresh = 2;
  2052. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2053. fs_info->readahead_workers.idle_thresh = 2;
  2054. /*
  2055. * btrfs_start_workers can really only fail because of ENOMEM so just
  2056. * return -ENOMEM if any of these fail.
  2057. */
  2058. ret = btrfs_start_workers(&fs_info->workers);
  2059. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2060. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2061. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2062. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2063. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2064. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2065. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2066. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2067. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2068. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2069. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2070. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2071. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2072. if (ret) {
  2073. err = -ENOMEM;
  2074. goto fail_sb_buffer;
  2075. }
  2076. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2077. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2078. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2079. tree_root->nodesize = nodesize;
  2080. tree_root->leafsize = leafsize;
  2081. tree_root->sectorsize = sectorsize;
  2082. tree_root->stripesize = stripesize;
  2083. sb->s_blocksize = sectorsize;
  2084. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2085. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2086. sizeof(disk_super->magic))) {
  2087. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2088. goto fail_sb_buffer;
  2089. }
  2090. if (sectorsize != PAGE_SIZE) {
  2091. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2092. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2093. goto fail_sb_buffer;
  2094. }
  2095. mutex_lock(&fs_info->chunk_mutex);
  2096. ret = btrfs_read_sys_array(tree_root);
  2097. mutex_unlock(&fs_info->chunk_mutex);
  2098. if (ret) {
  2099. printk(KERN_WARNING "btrfs: failed to read the system "
  2100. "array on %s\n", sb->s_id);
  2101. goto fail_sb_buffer;
  2102. }
  2103. blocksize = btrfs_level_size(tree_root,
  2104. btrfs_super_chunk_root_level(disk_super));
  2105. generation = btrfs_super_chunk_root_generation(disk_super);
  2106. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2107. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2108. chunk_root->node = read_tree_block(chunk_root,
  2109. btrfs_super_chunk_root(disk_super),
  2110. blocksize, generation);
  2111. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2112. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2113. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2114. sb->s_id);
  2115. goto fail_tree_roots;
  2116. }
  2117. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2118. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2119. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2120. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2121. BTRFS_UUID_SIZE);
  2122. ret = btrfs_read_chunk_tree(chunk_root);
  2123. if (ret) {
  2124. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2125. sb->s_id);
  2126. goto fail_tree_roots;
  2127. }
  2128. /*
  2129. * keep the device that is marked to be the target device for the
  2130. * dev_replace procedure
  2131. */
  2132. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2133. if (!fs_devices->latest_bdev) {
  2134. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2135. sb->s_id);
  2136. goto fail_tree_roots;
  2137. }
  2138. retry_root_backup:
  2139. blocksize = btrfs_level_size(tree_root,
  2140. btrfs_super_root_level(disk_super));
  2141. generation = btrfs_super_generation(disk_super);
  2142. tree_root->node = read_tree_block(tree_root,
  2143. btrfs_super_root(disk_super),
  2144. blocksize, generation);
  2145. if (!tree_root->node ||
  2146. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2147. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2148. sb->s_id);
  2149. goto recovery_tree_root;
  2150. }
  2151. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2152. tree_root->commit_root = btrfs_root_node(tree_root);
  2153. ret = find_and_setup_root(tree_root, fs_info,
  2154. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2155. if (ret)
  2156. goto recovery_tree_root;
  2157. extent_root->track_dirty = 1;
  2158. ret = find_and_setup_root(tree_root, fs_info,
  2159. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2160. if (ret)
  2161. goto recovery_tree_root;
  2162. dev_root->track_dirty = 1;
  2163. ret = find_and_setup_root(tree_root, fs_info,
  2164. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2165. if (ret)
  2166. goto recovery_tree_root;
  2167. csum_root->track_dirty = 1;
  2168. ret = find_and_setup_root(tree_root, fs_info,
  2169. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2170. if (ret) {
  2171. kfree(quota_root);
  2172. quota_root = fs_info->quota_root = NULL;
  2173. } else {
  2174. quota_root->track_dirty = 1;
  2175. fs_info->quota_enabled = 1;
  2176. fs_info->pending_quota_state = 1;
  2177. }
  2178. fs_info->generation = generation;
  2179. fs_info->last_trans_committed = generation;
  2180. ret = btrfs_recover_balance(fs_info);
  2181. if (ret) {
  2182. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2183. goto fail_block_groups;
  2184. }
  2185. ret = btrfs_init_dev_stats(fs_info);
  2186. if (ret) {
  2187. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2188. ret);
  2189. goto fail_block_groups;
  2190. }
  2191. ret = btrfs_init_dev_replace(fs_info);
  2192. if (ret) {
  2193. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2194. goto fail_block_groups;
  2195. }
  2196. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2197. ret = btrfs_init_space_info(fs_info);
  2198. if (ret) {
  2199. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2200. goto fail_block_groups;
  2201. }
  2202. ret = btrfs_read_block_groups(extent_root);
  2203. if (ret) {
  2204. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2205. goto fail_block_groups;
  2206. }
  2207. fs_info->num_tolerated_disk_barrier_failures =
  2208. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2209. if (fs_info->fs_devices->missing_devices >
  2210. fs_info->num_tolerated_disk_barrier_failures &&
  2211. !(sb->s_flags & MS_RDONLY)) {
  2212. printk(KERN_WARNING
  2213. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2214. goto fail_block_groups;
  2215. }
  2216. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2217. "btrfs-cleaner");
  2218. if (IS_ERR(fs_info->cleaner_kthread))
  2219. goto fail_block_groups;
  2220. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2221. tree_root,
  2222. "btrfs-transaction");
  2223. if (IS_ERR(fs_info->transaction_kthread))
  2224. goto fail_cleaner;
  2225. if (!btrfs_test_opt(tree_root, SSD) &&
  2226. !btrfs_test_opt(tree_root, NOSSD) &&
  2227. !fs_info->fs_devices->rotating) {
  2228. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2229. "mode\n");
  2230. btrfs_set_opt(fs_info->mount_opt, SSD);
  2231. }
  2232. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2233. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2234. ret = btrfsic_mount(tree_root, fs_devices,
  2235. btrfs_test_opt(tree_root,
  2236. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2237. 1 : 0,
  2238. fs_info->check_integrity_print_mask);
  2239. if (ret)
  2240. printk(KERN_WARNING "btrfs: failed to initialize"
  2241. " integrity check module %s\n", sb->s_id);
  2242. }
  2243. #endif
  2244. ret = btrfs_read_qgroup_config(fs_info);
  2245. if (ret)
  2246. goto fail_trans_kthread;
  2247. /* do not make disk changes in broken FS */
  2248. if (btrfs_super_log_root(disk_super) != 0) {
  2249. u64 bytenr = btrfs_super_log_root(disk_super);
  2250. if (fs_devices->rw_devices == 0) {
  2251. printk(KERN_WARNING "Btrfs log replay required "
  2252. "on RO media\n");
  2253. err = -EIO;
  2254. goto fail_qgroup;
  2255. }
  2256. blocksize =
  2257. btrfs_level_size(tree_root,
  2258. btrfs_super_log_root_level(disk_super));
  2259. log_tree_root = btrfs_alloc_root(fs_info);
  2260. if (!log_tree_root) {
  2261. err = -ENOMEM;
  2262. goto fail_qgroup;
  2263. }
  2264. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2265. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2266. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2267. blocksize,
  2268. generation + 1);
  2269. /* returns with log_tree_root freed on success */
  2270. ret = btrfs_recover_log_trees(log_tree_root);
  2271. if (ret) {
  2272. btrfs_error(tree_root->fs_info, ret,
  2273. "Failed to recover log tree");
  2274. free_extent_buffer(log_tree_root->node);
  2275. kfree(log_tree_root);
  2276. goto fail_trans_kthread;
  2277. }
  2278. if (sb->s_flags & MS_RDONLY) {
  2279. ret = btrfs_commit_super(tree_root);
  2280. if (ret)
  2281. goto fail_trans_kthread;
  2282. }
  2283. }
  2284. ret = btrfs_find_orphan_roots(tree_root);
  2285. if (ret)
  2286. goto fail_trans_kthread;
  2287. if (!(sb->s_flags & MS_RDONLY)) {
  2288. ret = btrfs_cleanup_fs_roots(fs_info);
  2289. if (ret)
  2290. goto fail_trans_kthread;
  2291. ret = btrfs_recover_relocation(tree_root);
  2292. if (ret < 0) {
  2293. printk(KERN_WARNING
  2294. "btrfs: failed to recover relocation\n");
  2295. err = -EINVAL;
  2296. goto fail_qgroup;
  2297. }
  2298. }
  2299. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2300. location.type = BTRFS_ROOT_ITEM_KEY;
  2301. location.offset = (u64)-1;
  2302. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2303. if (!fs_info->fs_root)
  2304. goto fail_qgroup;
  2305. if (IS_ERR(fs_info->fs_root)) {
  2306. err = PTR_ERR(fs_info->fs_root);
  2307. goto fail_qgroup;
  2308. }
  2309. if (sb->s_flags & MS_RDONLY)
  2310. return 0;
  2311. down_read(&fs_info->cleanup_work_sem);
  2312. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2313. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2314. up_read(&fs_info->cleanup_work_sem);
  2315. close_ctree(tree_root);
  2316. return ret;
  2317. }
  2318. up_read(&fs_info->cleanup_work_sem);
  2319. ret = btrfs_resume_balance_async(fs_info);
  2320. if (ret) {
  2321. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2322. close_ctree(tree_root);
  2323. return ret;
  2324. }
  2325. ret = btrfs_resume_dev_replace_async(fs_info);
  2326. if (ret) {
  2327. pr_warn("btrfs: failed to resume dev_replace\n");
  2328. close_ctree(tree_root);
  2329. return ret;
  2330. }
  2331. return 0;
  2332. fail_qgroup:
  2333. btrfs_free_qgroup_config(fs_info);
  2334. fail_trans_kthread:
  2335. kthread_stop(fs_info->transaction_kthread);
  2336. fail_cleaner:
  2337. kthread_stop(fs_info->cleaner_kthread);
  2338. /*
  2339. * make sure we're done with the btree inode before we stop our
  2340. * kthreads
  2341. */
  2342. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2343. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2344. fail_block_groups:
  2345. btrfs_free_block_groups(fs_info);
  2346. fail_tree_roots:
  2347. free_root_pointers(fs_info, 1);
  2348. fail_sb_buffer:
  2349. btrfs_stop_workers(&fs_info->generic_worker);
  2350. btrfs_stop_workers(&fs_info->readahead_workers);
  2351. btrfs_stop_workers(&fs_info->fixup_workers);
  2352. btrfs_stop_workers(&fs_info->delalloc_workers);
  2353. btrfs_stop_workers(&fs_info->workers);
  2354. btrfs_stop_workers(&fs_info->endio_workers);
  2355. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2356. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2357. btrfs_stop_workers(&fs_info->endio_write_workers);
  2358. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2359. btrfs_stop_workers(&fs_info->submit_workers);
  2360. btrfs_stop_workers(&fs_info->delayed_workers);
  2361. btrfs_stop_workers(&fs_info->caching_workers);
  2362. btrfs_stop_workers(&fs_info->flush_workers);
  2363. fail_alloc:
  2364. fail_iput:
  2365. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2366. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2367. iput(fs_info->btree_inode);
  2368. fail_bdi:
  2369. bdi_destroy(&fs_info->bdi);
  2370. fail_srcu:
  2371. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2372. fail:
  2373. btrfs_close_devices(fs_info->fs_devices);
  2374. return err;
  2375. recovery_tree_root:
  2376. if (!btrfs_test_opt(tree_root, RECOVERY))
  2377. goto fail_tree_roots;
  2378. free_root_pointers(fs_info, 0);
  2379. /* don't use the log in recovery mode, it won't be valid */
  2380. btrfs_set_super_log_root(disk_super, 0);
  2381. /* we can't trust the free space cache either */
  2382. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2383. ret = next_root_backup(fs_info, fs_info->super_copy,
  2384. &num_backups_tried, &backup_index);
  2385. if (ret == -1)
  2386. goto fail_block_groups;
  2387. goto retry_root_backup;
  2388. }
  2389. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2390. {
  2391. if (uptodate) {
  2392. set_buffer_uptodate(bh);
  2393. } else {
  2394. struct btrfs_device *device = (struct btrfs_device *)
  2395. bh->b_private;
  2396. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2397. "I/O error on %s\n",
  2398. rcu_str_deref(device->name));
  2399. /* note, we dont' set_buffer_write_io_error because we have
  2400. * our own ways of dealing with the IO errors
  2401. */
  2402. clear_buffer_uptodate(bh);
  2403. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2404. }
  2405. unlock_buffer(bh);
  2406. put_bh(bh);
  2407. }
  2408. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2409. {
  2410. struct buffer_head *bh;
  2411. struct buffer_head *latest = NULL;
  2412. struct btrfs_super_block *super;
  2413. int i;
  2414. u64 transid = 0;
  2415. u64 bytenr;
  2416. /* we would like to check all the supers, but that would make
  2417. * a btrfs mount succeed after a mkfs from a different FS.
  2418. * So, we need to add a special mount option to scan for
  2419. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2420. */
  2421. for (i = 0; i < 1; i++) {
  2422. bytenr = btrfs_sb_offset(i);
  2423. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2424. break;
  2425. bh = __bread(bdev, bytenr / 4096, 4096);
  2426. if (!bh)
  2427. continue;
  2428. super = (struct btrfs_super_block *)bh->b_data;
  2429. if (btrfs_super_bytenr(super) != bytenr ||
  2430. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2431. sizeof(super->magic))) {
  2432. brelse(bh);
  2433. continue;
  2434. }
  2435. if (!latest || btrfs_super_generation(super) > transid) {
  2436. brelse(latest);
  2437. latest = bh;
  2438. transid = btrfs_super_generation(super);
  2439. } else {
  2440. brelse(bh);
  2441. }
  2442. }
  2443. return latest;
  2444. }
  2445. /*
  2446. * this should be called twice, once with wait == 0 and
  2447. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2448. * we write are pinned.
  2449. *
  2450. * They are released when wait == 1 is done.
  2451. * max_mirrors must be the same for both runs, and it indicates how
  2452. * many supers on this one device should be written.
  2453. *
  2454. * max_mirrors == 0 means to write them all.
  2455. */
  2456. static int write_dev_supers(struct btrfs_device *device,
  2457. struct btrfs_super_block *sb,
  2458. int do_barriers, int wait, int max_mirrors)
  2459. {
  2460. struct buffer_head *bh;
  2461. int i;
  2462. int ret;
  2463. int errors = 0;
  2464. u32 crc;
  2465. u64 bytenr;
  2466. if (max_mirrors == 0)
  2467. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2468. for (i = 0; i < max_mirrors; i++) {
  2469. bytenr = btrfs_sb_offset(i);
  2470. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2471. break;
  2472. if (wait) {
  2473. bh = __find_get_block(device->bdev, bytenr / 4096,
  2474. BTRFS_SUPER_INFO_SIZE);
  2475. BUG_ON(!bh);
  2476. wait_on_buffer(bh);
  2477. if (!buffer_uptodate(bh))
  2478. errors++;
  2479. /* drop our reference */
  2480. brelse(bh);
  2481. /* drop the reference from the wait == 0 run */
  2482. brelse(bh);
  2483. continue;
  2484. } else {
  2485. btrfs_set_super_bytenr(sb, bytenr);
  2486. crc = ~(u32)0;
  2487. crc = btrfs_csum_data(NULL, (char *)sb +
  2488. BTRFS_CSUM_SIZE, crc,
  2489. BTRFS_SUPER_INFO_SIZE -
  2490. BTRFS_CSUM_SIZE);
  2491. btrfs_csum_final(crc, sb->csum);
  2492. /*
  2493. * one reference for us, and we leave it for the
  2494. * caller
  2495. */
  2496. bh = __getblk(device->bdev, bytenr / 4096,
  2497. BTRFS_SUPER_INFO_SIZE);
  2498. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2499. /* one reference for submit_bh */
  2500. get_bh(bh);
  2501. set_buffer_uptodate(bh);
  2502. lock_buffer(bh);
  2503. bh->b_end_io = btrfs_end_buffer_write_sync;
  2504. bh->b_private = device;
  2505. }
  2506. /*
  2507. * we fua the first super. The others we allow
  2508. * to go down lazy.
  2509. */
  2510. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2511. if (ret)
  2512. errors++;
  2513. }
  2514. return errors < i ? 0 : -1;
  2515. }
  2516. /*
  2517. * endio for the write_dev_flush, this will wake anyone waiting
  2518. * for the barrier when it is done
  2519. */
  2520. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2521. {
  2522. if (err) {
  2523. if (err == -EOPNOTSUPP)
  2524. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2525. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2526. }
  2527. if (bio->bi_private)
  2528. complete(bio->bi_private);
  2529. bio_put(bio);
  2530. }
  2531. /*
  2532. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2533. * sent down. With wait == 1, it waits for the previous flush.
  2534. *
  2535. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2536. * capable
  2537. */
  2538. static int write_dev_flush(struct btrfs_device *device, int wait)
  2539. {
  2540. struct bio *bio;
  2541. int ret = 0;
  2542. if (device->nobarriers)
  2543. return 0;
  2544. if (wait) {
  2545. bio = device->flush_bio;
  2546. if (!bio)
  2547. return 0;
  2548. wait_for_completion(&device->flush_wait);
  2549. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2550. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2551. rcu_str_deref(device->name));
  2552. device->nobarriers = 1;
  2553. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2554. ret = -EIO;
  2555. btrfs_dev_stat_inc_and_print(device,
  2556. BTRFS_DEV_STAT_FLUSH_ERRS);
  2557. }
  2558. /* drop the reference from the wait == 0 run */
  2559. bio_put(bio);
  2560. device->flush_bio = NULL;
  2561. return ret;
  2562. }
  2563. /*
  2564. * one reference for us, and we leave it for the
  2565. * caller
  2566. */
  2567. device->flush_bio = NULL;
  2568. bio = bio_alloc(GFP_NOFS, 0);
  2569. if (!bio)
  2570. return -ENOMEM;
  2571. bio->bi_end_io = btrfs_end_empty_barrier;
  2572. bio->bi_bdev = device->bdev;
  2573. init_completion(&device->flush_wait);
  2574. bio->bi_private = &device->flush_wait;
  2575. device->flush_bio = bio;
  2576. bio_get(bio);
  2577. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2578. return 0;
  2579. }
  2580. /*
  2581. * send an empty flush down to each device in parallel,
  2582. * then wait for them
  2583. */
  2584. static int barrier_all_devices(struct btrfs_fs_info *info)
  2585. {
  2586. struct list_head *head;
  2587. struct btrfs_device *dev;
  2588. int errors_send = 0;
  2589. int errors_wait = 0;
  2590. int ret;
  2591. /* send down all the barriers */
  2592. head = &info->fs_devices->devices;
  2593. list_for_each_entry_rcu(dev, head, dev_list) {
  2594. if (!dev->bdev) {
  2595. errors_send++;
  2596. continue;
  2597. }
  2598. if (!dev->in_fs_metadata || !dev->writeable)
  2599. continue;
  2600. ret = write_dev_flush(dev, 0);
  2601. if (ret)
  2602. errors_send++;
  2603. }
  2604. /* wait for all the barriers */
  2605. list_for_each_entry_rcu(dev, head, dev_list) {
  2606. if (!dev->bdev) {
  2607. errors_wait++;
  2608. continue;
  2609. }
  2610. if (!dev->in_fs_metadata || !dev->writeable)
  2611. continue;
  2612. ret = write_dev_flush(dev, 1);
  2613. if (ret)
  2614. errors_wait++;
  2615. }
  2616. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2617. errors_wait > info->num_tolerated_disk_barrier_failures)
  2618. return -EIO;
  2619. return 0;
  2620. }
  2621. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2622. struct btrfs_fs_info *fs_info)
  2623. {
  2624. struct btrfs_ioctl_space_info space;
  2625. struct btrfs_space_info *sinfo;
  2626. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2627. BTRFS_BLOCK_GROUP_SYSTEM,
  2628. BTRFS_BLOCK_GROUP_METADATA,
  2629. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2630. int num_types = 4;
  2631. int i;
  2632. int c;
  2633. int num_tolerated_disk_barrier_failures =
  2634. (int)fs_info->fs_devices->num_devices;
  2635. for (i = 0; i < num_types; i++) {
  2636. struct btrfs_space_info *tmp;
  2637. sinfo = NULL;
  2638. rcu_read_lock();
  2639. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2640. if (tmp->flags == types[i]) {
  2641. sinfo = tmp;
  2642. break;
  2643. }
  2644. }
  2645. rcu_read_unlock();
  2646. if (!sinfo)
  2647. continue;
  2648. down_read(&sinfo->groups_sem);
  2649. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2650. if (!list_empty(&sinfo->block_groups[c])) {
  2651. u64 flags;
  2652. btrfs_get_block_group_info(
  2653. &sinfo->block_groups[c], &space);
  2654. if (space.total_bytes == 0 ||
  2655. space.used_bytes == 0)
  2656. continue;
  2657. flags = space.flags;
  2658. /*
  2659. * return
  2660. * 0: if dup, single or RAID0 is configured for
  2661. * any of metadata, system or data, else
  2662. * 1: if RAID5 is configured, or if RAID1 or
  2663. * RAID10 is configured and only two mirrors
  2664. * are used, else
  2665. * 2: if RAID6 is configured, else
  2666. * num_mirrors - 1: if RAID1 or RAID10 is
  2667. * configured and more than
  2668. * 2 mirrors are used.
  2669. */
  2670. if (num_tolerated_disk_barrier_failures > 0 &&
  2671. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2672. BTRFS_BLOCK_GROUP_RAID0)) ||
  2673. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2674. == 0)))
  2675. num_tolerated_disk_barrier_failures = 0;
  2676. else if (num_tolerated_disk_barrier_failures > 1
  2677. &&
  2678. (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2679. BTRFS_BLOCK_GROUP_RAID10)))
  2680. num_tolerated_disk_barrier_failures = 1;
  2681. }
  2682. }
  2683. up_read(&sinfo->groups_sem);
  2684. }
  2685. return num_tolerated_disk_barrier_failures;
  2686. }
  2687. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2688. {
  2689. struct list_head *head;
  2690. struct btrfs_device *dev;
  2691. struct btrfs_super_block *sb;
  2692. struct btrfs_dev_item *dev_item;
  2693. int ret;
  2694. int do_barriers;
  2695. int max_errors;
  2696. int total_errors = 0;
  2697. u64 flags;
  2698. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2699. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2700. backup_super_roots(root->fs_info);
  2701. sb = root->fs_info->super_for_commit;
  2702. dev_item = &sb->dev_item;
  2703. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2704. head = &root->fs_info->fs_devices->devices;
  2705. if (do_barriers) {
  2706. ret = barrier_all_devices(root->fs_info);
  2707. if (ret) {
  2708. mutex_unlock(
  2709. &root->fs_info->fs_devices->device_list_mutex);
  2710. btrfs_error(root->fs_info, ret,
  2711. "errors while submitting device barriers.");
  2712. return ret;
  2713. }
  2714. }
  2715. list_for_each_entry_rcu(dev, head, dev_list) {
  2716. if (!dev->bdev) {
  2717. total_errors++;
  2718. continue;
  2719. }
  2720. if (!dev->in_fs_metadata || !dev->writeable)
  2721. continue;
  2722. btrfs_set_stack_device_generation(dev_item, 0);
  2723. btrfs_set_stack_device_type(dev_item, dev->type);
  2724. btrfs_set_stack_device_id(dev_item, dev->devid);
  2725. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2726. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2727. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2728. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2729. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2730. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2731. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2732. flags = btrfs_super_flags(sb);
  2733. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2734. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2735. if (ret)
  2736. total_errors++;
  2737. }
  2738. if (total_errors > max_errors) {
  2739. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2740. total_errors);
  2741. /* This shouldn't happen. FUA is masked off if unsupported */
  2742. BUG();
  2743. }
  2744. total_errors = 0;
  2745. list_for_each_entry_rcu(dev, head, dev_list) {
  2746. if (!dev->bdev)
  2747. continue;
  2748. if (!dev->in_fs_metadata || !dev->writeable)
  2749. continue;
  2750. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2751. if (ret)
  2752. total_errors++;
  2753. }
  2754. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2755. if (total_errors > max_errors) {
  2756. btrfs_error(root->fs_info, -EIO,
  2757. "%d errors while writing supers", total_errors);
  2758. return -EIO;
  2759. }
  2760. return 0;
  2761. }
  2762. int write_ctree_super(struct btrfs_trans_handle *trans,
  2763. struct btrfs_root *root, int max_mirrors)
  2764. {
  2765. int ret;
  2766. ret = write_all_supers(root, max_mirrors);
  2767. return ret;
  2768. }
  2769. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2770. {
  2771. spin_lock(&fs_info->fs_roots_radix_lock);
  2772. radix_tree_delete(&fs_info->fs_roots_radix,
  2773. (unsigned long)root->root_key.objectid);
  2774. spin_unlock(&fs_info->fs_roots_radix_lock);
  2775. if (btrfs_root_refs(&root->root_item) == 0)
  2776. synchronize_srcu(&fs_info->subvol_srcu);
  2777. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2778. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2779. free_fs_root(root);
  2780. }
  2781. static void free_fs_root(struct btrfs_root *root)
  2782. {
  2783. iput(root->cache_inode);
  2784. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2785. if (root->anon_dev)
  2786. free_anon_bdev(root->anon_dev);
  2787. free_extent_buffer(root->node);
  2788. free_extent_buffer(root->commit_root);
  2789. kfree(root->free_ino_ctl);
  2790. kfree(root->free_ino_pinned);
  2791. kfree(root->name);
  2792. kfree(root);
  2793. }
  2794. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2795. {
  2796. int ret;
  2797. struct btrfs_root *gang[8];
  2798. int i;
  2799. while (!list_empty(&fs_info->dead_roots)) {
  2800. gang[0] = list_entry(fs_info->dead_roots.next,
  2801. struct btrfs_root, root_list);
  2802. list_del(&gang[0]->root_list);
  2803. if (gang[0]->in_radix) {
  2804. btrfs_free_fs_root(fs_info, gang[0]);
  2805. } else {
  2806. free_extent_buffer(gang[0]->node);
  2807. free_extent_buffer(gang[0]->commit_root);
  2808. kfree(gang[0]);
  2809. }
  2810. }
  2811. while (1) {
  2812. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2813. (void **)gang, 0,
  2814. ARRAY_SIZE(gang));
  2815. if (!ret)
  2816. break;
  2817. for (i = 0; i < ret; i++)
  2818. btrfs_free_fs_root(fs_info, gang[i]);
  2819. }
  2820. }
  2821. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2822. {
  2823. u64 root_objectid = 0;
  2824. struct btrfs_root *gang[8];
  2825. int i;
  2826. int ret;
  2827. while (1) {
  2828. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2829. (void **)gang, root_objectid,
  2830. ARRAY_SIZE(gang));
  2831. if (!ret)
  2832. break;
  2833. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2834. for (i = 0; i < ret; i++) {
  2835. int err;
  2836. root_objectid = gang[i]->root_key.objectid;
  2837. err = btrfs_orphan_cleanup(gang[i]);
  2838. if (err)
  2839. return err;
  2840. }
  2841. root_objectid++;
  2842. }
  2843. return 0;
  2844. }
  2845. int btrfs_commit_super(struct btrfs_root *root)
  2846. {
  2847. struct btrfs_trans_handle *trans;
  2848. int ret;
  2849. mutex_lock(&root->fs_info->cleaner_mutex);
  2850. btrfs_run_delayed_iputs(root);
  2851. btrfs_clean_old_snapshots(root);
  2852. mutex_unlock(&root->fs_info->cleaner_mutex);
  2853. /* wait until ongoing cleanup work done */
  2854. down_write(&root->fs_info->cleanup_work_sem);
  2855. up_write(&root->fs_info->cleanup_work_sem);
  2856. trans = btrfs_join_transaction(root);
  2857. if (IS_ERR(trans))
  2858. return PTR_ERR(trans);
  2859. ret = btrfs_commit_transaction(trans, root);
  2860. if (ret)
  2861. return ret;
  2862. /* run commit again to drop the original snapshot */
  2863. trans = btrfs_join_transaction(root);
  2864. if (IS_ERR(trans))
  2865. return PTR_ERR(trans);
  2866. ret = btrfs_commit_transaction(trans, root);
  2867. if (ret)
  2868. return ret;
  2869. ret = btrfs_write_and_wait_transaction(NULL, root);
  2870. if (ret) {
  2871. btrfs_error(root->fs_info, ret,
  2872. "Failed to sync btree inode to disk.");
  2873. return ret;
  2874. }
  2875. ret = write_ctree_super(NULL, root, 0);
  2876. return ret;
  2877. }
  2878. int close_ctree(struct btrfs_root *root)
  2879. {
  2880. struct btrfs_fs_info *fs_info = root->fs_info;
  2881. int ret;
  2882. fs_info->closing = 1;
  2883. smp_mb();
  2884. /* pause restriper - we want to resume on mount */
  2885. btrfs_pause_balance(fs_info);
  2886. btrfs_dev_replace_suspend_for_unmount(fs_info);
  2887. btrfs_scrub_cancel(fs_info);
  2888. /* wait for any defraggers to finish */
  2889. wait_event(fs_info->transaction_wait,
  2890. (atomic_read(&fs_info->defrag_running) == 0));
  2891. /* clear out the rbtree of defraggable inodes */
  2892. btrfs_cleanup_defrag_inodes(fs_info);
  2893. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2894. ret = btrfs_commit_super(root);
  2895. if (ret)
  2896. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2897. }
  2898. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2899. btrfs_error_commit_super(root);
  2900. btrfs_put_block_group_cache(fs_info);
  2901. kthread_stop(fs_info->transaction_kthread);
  2902. kthread_stop(fs_info->cleaner_kthread);
  2903. fs_info->closing = 2;
  2904. smp_mb();
  2905. btrfs_free_qgroup_config(root->fs_info);
  2906. if (fs_info->delalloc_bytes) {
  2907. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2908. (unsigned long long)fs_info->delalloc_bytes);
  2909. }
  2910. free_extent_buffer(fs_info->extent_root->node);
  2911. free_extent_buffer(fs_info->extent_root->commit_root);
  2912. free_extent_buffer(fs_info->tree_root->node);
  2913. free_extent_buffer(fs_info->tree_root->commit_root);
  2914. free_extent_buffer(fs_info->chunk_root->node);
  2915. free_extent_buffer(fs_info->chunk_root->commit_root);
  2916. free_extent_buffer(fs_info->dev_root->node);
  2917. free_extent_buffer(fs_info->dev_root->commit_root);
  2918. free_extent_buffer(fs_info->csum_root->node);
  2919. free_extent_buffer(fs_info->csum_root->commit_root);
  2920. if (fs_info->quota_root) {
  2921. free_extent_buffer(fs_info->quota_root->node);
  2922. free_extent_buffer(fs_info->quota_root->commit_root);
  2923. }
  2924. btrfs_free_block_groups(fs_info);
  2925. del_fs_roots(fs_info);
  2926. iput(fs_info->btree_inode);
  2927. btrfs_stop_workers(&fs_info->generic_worker);
  2928. btrfs_stop_workers(&fs_info->fixup_workers);
  2929. btrfs_stop_workers(&fs_info->delalloc_workers);
  2930. btrfs_stop_workers(&fs_info->workers);
  2931. btrfs_stop_workers(&fs_info->endio_workers);
  2932. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2933. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2934. btrfs_stop_workers(&fs_info->endio_write_workers);
  2935. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2936. btrfs_stop_workers(&fs_info->submit_workers);
  2937. btrfs_stop_workers(&fs_info->delayed_workers);
  2938. btrfs_stop_workers(&fs_info->caching_workers);
  2939. btrfs_stop_workers(&fs_info->readahead_workers);
  2940. btrfs_stop_workers(&fs_info->flush_workers);
  2941. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2942. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2943. btrfsic_unmount(root, fs_info->fs_devices);
  2944. #endif
  2945. btrfs_close_devices(fs_info->fs_devices);
  2946. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2947. bdi_destroy(&fs_info->bdi);
  2948. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2949. return 0;
  2950. }
  2951. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  2952. int atomic)
  2953. {
  2954. int ret;
  2955. struct inode *btree_inode = buf->pages[0]->mapping->host;
  2956. ret = extent_buffer_uptodate(buf);
  2957. if (!ret)
  2958. return ret;
  2959. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2960. parent_transid, atomic);
  2961. if (ret == -EAGAIN)
  2962. return ret;
  2963. return !ret;
  2964. }
  2965. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2966. {
  2967. return set_extent_buffer_uptodate(buf);
  2968. }
  2969. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2970. {
  2971. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  2972. u64 transid = btrfs_header_generation(buf);
  2973. int was_dirty;
  2974. btrfs_assert_tree_locked(buf);
  2975. if (transid != root->fs_info->generation)
  2976. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2977. "found %llu running %llu\n",
  2978. (unsigned long long)buf->start,
  2979. (unsigned long long)transid,
  2980. (unsigned long long)root->fs_info->generation);
  2981. was_dirty = set_extent_buffer_dirty(buf);
  2982. if (!was_dirty) {
  2983. spin_lock(&root->fs_info->delalloc_lock);
  2984. root->fs_info->dirty_metadata_bytes += buf->len;
  2985. spin_unlock(&root->fs_info->delalloc_lock);
  2986. }
  2987. }
  2988. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  2989. int flush_delayed)
  2990. {
  2991. /*
  2992. * looks as though older kernels can get into trouble with
  2993. * this code, they end up stuck in balance_dirty_pages forever
  2994. */
  2995. u64 num_dirty;
  2996. unsigned long thresh = 32 * 1024 * 1024;
  2997. if (current->flags & PF_MEMALLOC)
  2998. return;
  2999. if (flush_delayed)
  3000. btrfs_balance_delayed_items(root);
  3001. num_dirty = root->fs_info->dirty_metadata_bytes;
  3002. if (num_dirty > thresh) {
  3003. balance_dirty_pages_ratelimited_nr(
  3004. root->fs_info->btree_inode->i_mapping, 1);
  3005. }
  3006. return;
  3007. }
  3008. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3009. {
  3010. __btrfs_btree_balance_dirty(root, 1);
  3011. }
  3012. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3013. {
  3014. __btrfs_btree_balance_dirty(root, 0);
  3015. }
  3016. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3017. {
  3018. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3019. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3020. }
  3021. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3022. int read_only)
  3023. {
  3024. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  3025. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  3026. return -EINVAL;
  3027. }
  3028. if (read_only)
  3029. return 0;
  3030. return 0;
  3031. }
  3032. void btrfs_error_commit_super(struct btrfs_root *root)
  3033. {
  3034. mutex_lock(&root->fs_info->cleaner_mutex);
  3035. btrfs_run_delayed_iputs(root);
  3036. mutex_unlock(&root->fs_info->cleaner_mutex);
  3037. down_write(&root->fs_info->cleanup_work_sem);
  3038. up_write(&root->fs_info->cleanup_work_sem);
  3039. /* cleanup FS via transaction */
  3040. btrfs_cleanup_transaction(root);
  3041. }
  3042. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  3043. {
  3044. struct btrfs_inode *btrfs_inode;
  3045. struct list_head splice;
  3046. INIT_LIST_HEAD(&splice);
  3047. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3048. spin_lock(&root->fs_info->ordered_extent_lock);
  3049. list_splice_init(&root->fs_info->ordered_operations, &splice);
  3050. while (!list_empty(&splice)) {
  3051. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3052. ordered_operations);
  3053. list_del_init(&btrfs_inode->ordered_operations);
  3054. btrfs_invalidate_inodes(btrfs_inode->root);
  3055. }
  3056. spin_unlock(&root->fs_info->ordered_extent_lock);
  3057. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3058. }
  3059. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3060. {
  3061. struct list_head splice;
  3062. struct btrfs_ordered_extent *ordered;
  3063. struct inode *inode;
  3064. INIT_LIST_HEAD(&splice);
  3065. spin_lock(&root->fs_info->ordered_extent_lock);
  3066. list_splice_init(&root->fs_info->ordered_extents, &splice);
  3067. while (!list_empty(&splice)) {
  3068. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  3069. root_extent_list);
  3070. list_del_init(&ordered->root_extent_list);
  3071. atomic_inc(&ordered->refs);
  3072. /* the inode may be getting freed (in sys_unlink path). */
  3073. inode = igrab(ordered->inode);
  3074. spin_unlock(&root->fs_info->ordered_extent_lock);
  3075. if (inode)
  3076. iput(inode);
  3077. atomic_set(&ordered->refs, 1);
  3078. btrfs_put_ordered_extent(ordered);
  3079. spin_lock(&root->fs_info->ordered_extent_lock);
  3080. }
  3081. spin_unlock(&root->fs_info->ordered_extent_lock);
  3082. }
  3083. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3084. struct btrfs_root *root)
  3085. {
  3086. struct rb_node *node;
  3087. struct btrfs_delayed_ref_root *delayed_refs;
  3088. struct btrfs_delayed_ref_node *ref;
  3089. int ret = 0;
  3090. delayed_refs = &trans->delayed_refs;
  3091. spin_lock(&delayed_refs->lock);
  3092. if (delayed_refs->num_entries == 0) {
  3093. spin_unlock(&delayed_refs->lock);
  3094. printk(KERN_INFO "delayed_refs has NO entry\n");
  3095. return ret;
  3096. }
  3097. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3098. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3099. atomic_set(&ref->refs, 1);
  3100. if (btrfs_delayed_ref_is_head(ref)) {
  3101. struct btrfs_delayed_ref_head *head;
  3102. head = btrfs_delayed_node_to_head(ref);
  3103. if (!mutex_trylock(&head->mutex)) {
  3104. atomic_inc(&ref->refs);
  3105. spin_unlock(&delayed_refs->lock);
  3106. /* Need to wait for the delayed ref to run */
  3107. mutex_lock(&head->mutex);
  3108. mutex_unlock(&head->mutex);
  3109. btrfs_put_delayed_ref(ref);
  3110. spin_lock(&delayed_refs->lock);
  3111. continue;
  3112. }
  3113. kfree(head->extent_op);
  3114. delayed_refs->num_heads--;
  3115. if (list_empty(&head->cluster))
  3116. delayed_refs->num_heads_ready--;
  3117. list_del_init(&head->cluster);
  3118. }
  3119. ref->in_tree = 0;
  3120. rb_erase(&ref->rb_node, &delayed_refs->root);
  3121. delayed_refs->num_entries--;
  3122. spin_unlock(&delayed_refs->lock);
  3123. btrfs_put_delayed_ref(ref);
  3124. cond_resched();
  3125. spin_lock(&delayed_refs->lock);
  3126. }
  3127. spin_unlock(&delayed_refs->lock);
  3128. return ret;
  3129. }
  3130. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  3131. {
  3132. struct btrfs_pending_snapshot *snapshot;
  3133. struct list_head splice;
  3134. INIT_LIST_HEAD(&splice);
  3135. list_splice_init(&t->pending_snapshots, &splice);
  3136. while (!list_empty(&splice)) {
  3137. snapshot = list_entry(splice.next,
  3138. struct btrfs_pending_snapshot,
  3139. list);
  3140. list_del_init(&snapshot->list);
  3141. kfree(snapshot);
  3142. }
  3143. }
  3144. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3145. {
  3146. struct btrfs_inode *btrfs_inode;
  3147. struct list_head splice;
  3148. INIT_LIST_HEAD(&splice);
  3149. spin_lock(&root->fs_info->delalloc_lock);
  3150. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3151. while (!list_empty(&splice)) {
  3152. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3153. delalloc_inodes);
  3154. list_del_init(&btrfs_inode->delalloc_inodes);
  3155. btrfs_invalidate_inodes(btrfs_inode->root);
  3156. }
  3157. spin_unlock(&root->fs_info->delalloc_lock);
  3158. }
  3159. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3160. struct extent_io_tree *dirty_pages,
  3161. int mark)
  3162. {
  3163. int ret;
  3164. struct page *page;
  3165. struct inode *btree_inode = root->fs_info->btree_inode;
  3166. struct extent_buffer *eb;
  3167. u64 start = 0;
  3168. u64 end;
  3169. u64 offset;
  3170. unsigned long index;
  3171. while (1) {
  3172. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3173. mark, NULL);
  3174. if (ret)
  3175. break;
  3176. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3177. while (start <= end) {
  3178. index = start >> PAGE_CACHE_SHIFT;
  3179. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3180. page = find_get_page(btree_inode->i_mapping, index);
  3181. if (!page)
  3182. continue;
  3183. offset = page_offset(page);
  3184. spin_lock(&dirty_pages->buffer_lock);
  3185. eb = radix_tree_lookup(
  3186. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3187. offset >> PAGE_CACHE_SHIFT);
  3188. spin_unlock(&dirty_pages->buffer_lock);
  3189. if (eb)
  3190. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3191. &eb->bflags);
  3192. if (PageWriteback(page))
  3193. end_page_writeback(page);
  3194. lock_page(page);
  3195. if (PageDirty(page)) {
  3196. clear_page_dirty_for_io(page);
  3197. spin_lock_irq(&page->mapping->tree_lock);
  3198. radix_tree_tag_clear(&page->mapping->page_tree,
  3199. page_index(page),
  3200. PAGECACHE_TAG_DIRTY);
  3201. spin_unlock_irq(&page->mapping->tree_lock);
  3202. }
  3203. unlock_page(page);
  3204. page_cache_release(page);
  3205. }
  3206. }
  3207. return ret;
  3208. }
  3209. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3210. struct extent_io_tree *pinned_extents)
  3211. {
  3212. struct extent_io_tree *unpin;
  3213. u64 start;
  3214. u64 end;
  3215. int ret;
  3216. bool loop = true;
  3217. unpin = pinned_extents;
  3218. again:
  3219. while (1) {
  3220. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3221. EXTENT_DIRTY, NULL);
  3222. if (ret)
  3223. break;
  3224. /* opt_discard */
  3225. if (btrfs_test_opt(root, DISCARD))
  3226. ret = btrfs_error_discard_extent(root, start,
  3227. end + 1 - start,
  3228. NULL);
  3229. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3230. btrfs_error_unpin_extent_range(root, start, end);
  3231. cond_resched();
  3232. }
  3233. if (loop) {
  3234. if (unpin == &root->fs_info->freed_extents[0])
  3235. unpin = &root->fs_info->freed_extents[1];
  3236. else
  3237. unpin = &root->fs_info->freed_extents[0];
  3238. loop = false;
  3239. goto again;
  3240. }
  3241. return 0;
  3242. }
  3243. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3244. struct btrfs_root *root)
  3245. {
  3246. btrfs_destroy_delayed_refs(cur_trans, root);
  3247. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3248. cur_trans->dirty_pages.dirty_bytes);
  3249. /* FIXME: cleanup wait for commit */
  3250. cur_trans->in_commit = 1;
  3251. cur_trans->blocked = 1;
  3252. wake_up(&root->fs_info->transaction_blocked_wait);
  3253. cur_trans->blocked = 0;
  3254. wake_up(&root->fs_info->transaction_wait);
  3255. cur_trans->commit_done = 1;
  3256. wake_up(&cur_trans->commit_wait);
  3257. btrfs_destroy_delayed_inodes(root);
  3258. btrfs_assert_delayed_root_empty(root);
  3259. btrfs_destroy_pending_snapshots(cur_trans);
  3260. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3261. EXTENT_DIRTY);
  3262. btrfs_destroy_pinned_extent(root,
  3263. root->fs_info->pinned_extents);
  3264. /*
  3265. memset(cur_trans, 0, sizeof(*cur_trans));
  3266. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3267. */
  3268. }
  3269. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3270. {
  3271. struct btrfs_transaction *t;
  3272. LIST_HEAD(list);
  3273. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3274. spin_lock(&root->fs_info->trans_lock);
  3275. list_splice_init(&root->fs_info->trans_list, &list);
  3276. root->fs_info->trans_no_join = 1;
  3277. spin_unlock(&root->fs_info->trans_lock);
  3278. while (!list_empty(&list)) {
  3279. t = list_entry(list.next, struct btrfs_transaction, list);
  3280. if (!t)
  3281. break;
  3282. btrfs_destroy_ordered_operations(root);
  3283. btrfs_destroy_ordered_extents(root);
  3284. btrfs_destroy_delayed_refs(t, root);
  3285. btrfs_block_rsv_release(root,
  3286. &root->fs_info->trans_block_rsv,
  3287. t->dirty_pages.dirty_bytes);
  3288. /* FIXME: cleanup wait for commit */
  3289. t->in_commit = 1;
  3290. t->blocked = 1;
  3291. smp_mb();
  3292. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3293. wake_up(&root->fs_info->transaction_blocked_wait);
  3294. t->blocked = 0;
  3295. smp_mb();
  3296. if (waitqueue_active(&root->fs_info->transaction_wait))
  3297. wake_up(&root->fs_info->transaction_wait);
  3298. t->commit_done = 1;
  3299. smp_mb();
  3300. if (waitqueue_active(&t->commit_wait))
  3301. wake_up(&t->commit_wait);
  3302. btrfs_destroy_delayed_inodes(root);
  3303. btrfs_assert_delayed_root_empty(root);
  3304. btrfs_destroy_pending_snapshots(t);
  3305. btrfs_destroy_delalloc_inodes(root);
  3306. spin_lock(&root->fs_info->trans_lock);
  3307. root->fs_info->running_transaction = NULL;
  3308. spin_unlock(&root->fs_info->trans_lock);
  3309. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3310. EXTENT_DIRTY);
  3311. btrfs_destroy_pinned_extent(root,
  3312. root->fs_info->pinned_extents);
  3313. atomic_set(&t->use_count, 0);
  3314. list_del_init(&t->list);
  3315. memset(t, 0, sizeof(*t));
  3316. kmem_cache_free(btrfs_transaction_cachep, t);
  3317. }
  3318. spin_lock(&root->fs_info->trans_lock);
  3319. root->fs_info->trans_no_join = 0;
  3320. spin_unlock(&root->fs_info->trans_lock);
  3321. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3322. return 0;
  3323. }
  3324. static struct extent_io_ops btree_extent_io_ops = {
  3325. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3326. .readpage_io_failed_hook = btree_io_failed_hook,
  3327. .submit_bio_hook = btree_submit_bio_hook,
  3328. /* note we're sharing with inode.c for the merge bio hook */
  3329. .merge_bio_hook = btrfs_merge_bio_hook,
  3330. };