x86.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/intel-iommu.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/msr.h>
  38. #include <asm/desc.h>
  39. #define MAX_IO_MSRS 256
  40. #define CR0_RESERVED_BITS \
  41. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  42. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  43. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  44. #define CR4_RESERVED_BITS \
  45. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  46. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  47. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  48. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  49. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  50. /* EFER defaults:
  51. * - enable syscall per default because its emulated by KVM
  52. * - enable LME and LMA per default on 64 bit KVM
  53. */
  54. #ifdef CONFIG_X86_64
  55. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  56. #else
  57. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  58. #endif
  59. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  60. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  61. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  62. struct kvm_cpuid_entry2 __user *entries);
  63. struct kvm_x86_ops *kvm_x86_ops;
  64. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  65. struct kvm_stats_debugfs_item debugfs_entries[] = {
  66. { "pf_fixed", VCPU_STAT(pf_fixed) },
  67. { "pf_guest", VCPU_STAT(pf_guest) },
  68. { "tlb_flush", VCPU_STAT(tlb_flush) },
  69. { "invlpg", VCPU_STAT(invlpg) },
  70. { "exits", VCPU_STAT(exits) },
  71. { "io_exits", VCPU_STAT(io_exits) },
  72. { "mmio_exits", VCPU_STAT(mmio_exits) },
  73. { "signal_exits", VCPU_STAT(signal_exits) },
  74. { "irq_window", VCPU_STAT(irq_window_exits) },
  75. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  76. { "halt_exits", VCPU_STAT(halt_exits) },
  77. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  78. { "hypercalls", VCPU_STAT(hypercalls) },
  79. { "request_irq", VCPU_STAT(request_irq_exits) },
  80. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  81. { "irq_exits", VCPU_STAT(irq_exits) },
  82. { "host_state_reload", VCPU_STAT(host_state_reload) },
  83. { "efer_reload", VCPU_STAT(efer_reload) },
  84. { "fpu_reload", VCPU_STAT(fpu_reload) },
  85. { "insn_emulation", VCPU_STAT(insn_emulation) },
  86. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  87. { "irq_injections", VCPU_STAT(irq_injections) },
  88. { "nmi_injections", VCPU_STAT(nmi_injections) },
  89. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  90. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  91. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  92. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  93. { "mmu_flooded", VM_STAT(mmu_flooded) },
  94. { "mmu_recycled", VM_STAT(mmu_recycled) },
  95. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  96. { "mmu_unsync", VM_STAT(mmu_unsync) },
  97. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  98. { "largepages", VM_STAT(lpages) },
  99. { NULL }
  100. };
  101. unsigned long segment_base(u16 selector)
  102. {
  103. struct descriptor_table gdt;
  104. struct desc_struct *d;
  105. unsigned long table_base;
  106. unsigned long v;
  107. if (selector == 0)
  108. return 0;
  109. asm("sgdt %0" : "=m"(gdt));
  110. table_base = gdt.base;
  111. if (selector & 4) { /* from ldt */
  112. u16 ldt_selector;
  113. asm("sldt %0" : "=g"(ldt_selector));
  114. table_base = segment_base(ldt_selector);
  115. }
  116. d = (struct desc_struct *)(table_base + (selector & ~7));
  117. v = d->base0 | ((unsigned long)d->base1 << 16) |
  118. ((unsigned long)d->base2 << 24);
  119. #ifdef CONFIG_X86_64
  120. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  121. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  122. #endif
  123. return v;
  124. }
  125. EXPORT_SYMBOL_GPL(segment_base);
  126. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  127. {
  128. if (irqchip_in_kernel(vcpu->kvm))
  129. return vcpu->arch.apic_base;
  130. else
  131. return vcpu->arch.apic_base;
  132. }
  133. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  134. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  135. {
  136. /* TODO: reserve bits check */
  137. if (irqchip_in_kernel(vcpu->kvm))
  138. kvm_lapic_set_base(vcpu, data);
  139. else
  140. vcpu->arch.apic_base = data;
  141. }
  142. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  143. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  144. {
  145. WARN_ON(vcpu->arch.exception.pending);
  146. vcpu->arch.exception.pending = true;
  147. vcpu->arch.exception.has_error_code = false;
  148. vcpu->arch.exception.nr = nr;
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  151. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  152. u32 error_code)
  153. {
  154. ++vcpu->stat.pf_guest;
  155. if (vcpu->arch.exception.pending) {
  156. if (vcpu->arch.exception.nr == PF_VECTOR) {
  157. printk(KERN_DEBUG "kvm: inject_page_fault:"
  158. " double fault 0x%lx\n", addr);
  159. vcpu->arch.exception.nr = DF_VECTOR;
  160. vcpu->arch.exception.error_code = 0;
  161. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  162. /* triple fault -> shutdown */
  163. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  164. }
  165. return;
  166. }
  167. vcpu->arch.cr2 = addr;
  168. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  169. }
  170. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  171. {
  172. vcpu->arch.nmi_pending = 1;
  173. }
  174. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  175. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  176. {
  177. WARN_ON(vcpu->arch.exception.pending);
  178. vcpu->arch.exception.pending = true;
  179. vcpu->arch.exception.has_error_code = true;
  180. vcpu->arch.exception.nr = nr;
  181. vcpu->arch.exception.error_code = error_code;
  182. }
  183. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  184. static void __queue_exception(struct kvm_vcpu *vcpu)
  185. {
  186. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  187. vcpu->arch.exception.has_error_code,
  188. vcpu->arch.exception.error_code);
  189. }
  190. /*
  191. * Load the pae pdptrs. Return true is they are all valid.
  192. */
  193. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  194. {
  195. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  196. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  197. int i;
  198. int ret;
  199. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  200. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  201. offset * sizeof(u64), sizeof(pdpte));
  202. if (ret < 0) {
  203. ret = 0;
  204. goto out;
  205. }
  206. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  207. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  208. ret = 0;
  209. goto out;
  210. }
  211. }
  212. ret = 1;
  213. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  214. out:
  215. return ret;
  216. }
  217. EXPORT_SYMBOL_GPL(load_pdptrs);
  218. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  219. {
  220. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  221. bool changed = true;
  222. int r;
  223. if (is_long_mode(vcpu) || !is_pae(vcpu))
  224. return false;
  225. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  226. if (r < 0)
  227. goto out;
  228. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  229. out:
  230. return changed;
  231. }
  232. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  233. {
  234. if (cr0 & CR0_RESERVED_BITS) {
  235. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  236. cr0, vcpu->arch.cr0);
  237. kvm_inject_gp(vcpu, 0);
  238. return;
  239. }
  240. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  241. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  242. kvm_inject_gp(vcpu, 0);
  243. return;
  244. }
  245. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  246. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  247. "and a clear PE flag\n");
  248. kvm_inject_gp(vcpu, 0);
  249. return;
  250. }
  251. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  252. #ifdef CONFIG_X86_64
  253. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  254. int cs_db, cs_l;
  255. if (!is_pae(vcpu)) {
  256. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  257. "in long mode while PAE is disabled\n");
  258. kvm_inject_gp(vcpu, 0);
  259. return;
  260. }
  261. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  262. if (cs_l) {
  263. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  264. "in long mode while CS.L == 1\n");
  265. kvm_inject_gp(vcpu, 0);
  266. return;
  267. }
  268. } else
  269. #endif
  270. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  272. "reserved bits\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. }
  277. kvm_x86_ops->set_cr0(vcpu, cr0);
  278. vcpu->arch.cr0 = cr0;
  279. kvm_mmu_reset_context(vcpu);
  280. return;
  281. }
  282. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  283. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  284. {
  285. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  286. KVMTRACE_1D(LMSW, vcpu,
  287. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  288. handler);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_lmsw);
  291. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  292. {
  293. if (cr4 & CR4_RESERVED_BITS) {
  294. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  295. kvm_inject_gp(vcpu, 0);
  296. return;
  297. }
  298. if (is_long_mode(vcpu)) {
  299. if (!(cr4 & X86_CR4_PAE)) {
  300. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  301. "in long mode\n");
  302. kvm_inject_gp(vcpu, 0);
  303. return;
  304. }
  305. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  306. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  307. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  308. kvm_inject_gp(vcpu, 0);
  309. return;
  310. }
  311. if (cr4 & X86_CR4_VMXE) {
  312. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  313. kvm_inject_gp(vcpu, 0);
  314. return;
  315. }
  316. kvm_x86_ops->set_cr4(vcpu, cr4);
  317. vcpu->arch.cr4 = cr4;
  318. kvm_mmu_reset_context(vcpu);
  319. }
  320. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  321. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  322. {
  323. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  324. kvm_mmu_sync_roots(vcpu);
  325. kvm_mmu_flush_tlb(vcpu);
  326. return;
  327. }
  328. if (is_long_mode(vcpu)) {
  329. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  330. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. } else {
  335. if (is_pae(vcpu)) {
  336. if (cr3 & CR3_PAE_RESERVED_BITS) {
  337. printk(KERN_DEBUG
  338. "set_cr3: #GP, reserved bits\n");
  339. kvm_inject_gp(vcpu, 0);
  340. return;
  341. }
  342. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  343. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  344. "reserved bits\n");
  345. kvm_inject_gp(vcpu, 0);
  346. return;
  347. }
  348. }
  349. /*
  350. * We don't check reserved bits in nonpae mode, because
  351. * this isn't enforced, and VMware depends on this.
  352. */
  353. }
  354. /*
  355. * Does the new cr3 value map to physical memory? (Note, we
  356. * catch an invalid cr3 even in real-mode, because it would
  357. * cause trouble later on when we turn on paging anyway.)
  358. *
  359. * A real CPU would silently accept an invalid cr3 and would
  360. * attempt to use it - with largely undefined (and often hard
  361. * to debug) behavior on the guest side.
  362. */
  363. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  364. kvm_inject_gp(vcpu, 0);
  365. else {
  366. vcpu->arch.cr3 = cr3;
  367. vcpu->arch.mmu.new_cr3(vcpu);
  368. }
  369. }
  370. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  371. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  372. {
  373. if (cr8 & CR8_RESERVED_BITS) {
  374. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  375. kvm_inject_gp(vcpu, 0);
  376. return;
  377. }
  378. if (irqchip_in_kernel(vcpu->kvm))
  379. kvm_lapic_set_tpr(vcpu, cr8);
  380. else
  381. vcpu->arch.cr8 = cr8;
  382. }
  383. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  384. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  385. {
  386. if (irqchip_in_kernel(vcpu->kvm))
  387. return kvm_lapic_get_cr8(vcpu);
  388. else
  389. return vcpu->arch.cr8;
  390. }
  391. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  392. /*
  393. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  394. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  395. *
  396. * This list is modified at module load time to reflect the
  397. * capabilities of the host cpu.
  398. */
  399. static u32 msrs_to_save[] = {
  400. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  401. MSR_K6_STAR,
  402. #ifdef CONFIG_X86_64
  403. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  404. #endif
  405. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  406. MSR_IA32_PERF_STATUS,
  407. };
  408. static unsigned num_msrs_to_save;
  409. static u32 emulated_msrs[] = {
  410. MSR_IA32_MISC_ENABLE,
  411. };
  412. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  413. {
  414. if (efer & efer_reserved_bits) {
  415. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  416. efer);
  417. kvm_inject_gp(vcpu, 0);
  418. return;
  419. }
  420. if (is_paging(vcpu)
  421. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  422. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  423. kvm_inject_gp(vcpu, 0);
  424. return;
  425. }
  426. kvm_x86_ops->set_efer(vcpu, efer);
  427. efer &= ~EFER_LMA;
  428. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  429. vcpu->arch.shadow_efer = efer;
  430. }
  431. void kvm_enable_efer_bits(u64 mask)
  432. {
  433. efer_reserved_bits &= ~mask;
  434. }
  435. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  436. /*
  437. * Writes msr value into into the appropriate "register".
  438. * Returns 0 on success, non-0 otherwise.
  439. * Assumes vcpu_load() was already called.
  440. */
  441. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  442. {
  443. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  444. }
  445. /*
  446. * Adapt set_msr() to msr_io()'s calling convention
  447. */
  448. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  449. {
  450. return kvm_set_msr(vcpu, index, *data);
  451. }
  452. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  453. {
  454. static int version;
  455. struct pvclock_wall_clock wc;
  456. struct timespec now, sys, boot;
  457. if (!wall_clock)
  458. return;
  459. version++;
  460. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  461. /*
  462. * The guest calculates current wall clock time by adding
  463. * system time (updated by kvm_write_guest_time below) to the
  464. * wall clock specified here. guest system time equals host
  465. * system time for us, thus we must fill in host boot time here.
  466. */
  467. now = current_kernel_time();
  468. ktime_get_ts(&sys);
  469. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  470. wc.sec = boot.tv_sec;
  471. wc.nsec = boot.tv_nsec;
  472. wc.version = version;
  473. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  474. version++;
  475. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  476. }
  477. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  478. {
  479. uint32_t quotient, remainder;
  480. /* Don't try to replace with do_div(), this one calculates
  481. * "(dividend << 32) / divisor" */
  482. __asm__ ( "divl %4"
  483. : "=a" (quotient), "=d" (remainder)
  484. : "0" (0), "1" (dividend), "r" (divisor) );
  485. return quotient;
  486. }
  487. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  488. {
  489. uint64_t nsecs = 1000000000LL;
  490. int32_t shift = 0;
  491. uint64_t tps64;
  492. uint32_t tps32;
  493. tps64 = tsc_khz * 1000LL;
  494. while (tps64 > nsecs*2) {
  495. tps64 >>= 1;
  496. shift--;
  497. }
  498. tps32 = (uint32_t)tps64;
  499. while (tps32 <= (uint32_t)nsecs) {
  500. tps32 <<= 1;
  501. shift++;
  502. }
  503. hv_clock->tsc_shift = shift;
  504. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  505. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  506. __func__, tsc_khz, hv_clock->tsc_shift,
  507. hv_clock->tsc_to_system_mul);
  508. }
  509. static void kvm_write_guest_time(struct kvm_vcpu *v)
  510. {
  511. struct timespec ts;
  512. unsigned long flags;
  513. struct kvm_vcpu_arch *vcpu = &v->arch;
  514. void *shared_kaddr;
  515. if ((!vcpu->time_page))
  516. return;
  517. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  518. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  519. vcpu->hv_clock_tsc_khz = tsc_khz;
  520. }
  521. /* Keep irq disabled to prevent changes to the clock */
  522. local_irq_save(flags);
  523. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  524. &vcpu->hv_clock.tsc_timestamp);
  525. ktime_get_ts(&ts);
  526. local_irq_restore(flags);
  527. /* With all the info we got, fill in the values */
  528. vcpu->hv_clock.system_time = ts.tv_nsec +
  529. (NSEC_PER_SEC * (u64)ts.tv_sec);
  530. /*
  531. * The interface expects us to write an even number signaling that the
  532. * update is finished. Since the guest won't see the intermediate
  533. * state, we just increase by 2 at the end.
  534. */
  535. vcpu->hv_clock.version += 2;
  536. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  537. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  538. sizeof(vcpu->hv_clock));
  539. kunmap_atomic(shared_kaddr, KM_USER0);
  540. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  541. }
  542. static bool msr_mtrr_valid(unsigned msr)
  543. {
  544. switch (msr) {
  545. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  546. case MSR_MTRRfix64K_00000:
  547. case MSR_MTRRfix16K_80000:
  548. case MSR_MTRRfix16K_A0000:
  549. case MSR_MTRRfix4K_C0000:
  550. case MSR_MTRRfix4K_C8000:
  551. case MSR_MTRRfix4K_D0000:
  552. case MSR_MTRRfix4K_D8000:
  553. case MSR_MTRRfix4K_E0000:
  554. case MSR_MTRRfix4K_E8000:
  555. case MSR_MTRRfix4K_F0000:
  556. case MSR_MTRRfix4K_F8000:
  557. case MSR_MTRRdefType:
  558. case MSR_IA32_CR_PAT:
  559. return true;
  560. case 0x2f8:
  561. return true;
  562. }
  563. return false;
  564. }
  565. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  566. {
  567. if (!msr_mtrr_valid(msr))
  568. return 1;
  569. vcpu->arch.mtrr[msr - 0x200] = data;
  570. return 0;
  571. }
  572. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  573. {
  574. switch (msr) {
  575. case MSR_EFER:
  576. set_efer(vcpu, data);
  577. break;
  578. case MSR_IA32_MC0_STATUS:
  579. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  580. __func__, data);
  581. break;
  582. case MSR_IA32_MCG_STATUS:
  583. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  584. __func__, data);
  585. break;
  586. case MSR_IA32_MCG_CTL:
  587. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  588. __func__, data);
  589. break;
  590. case MSR_IA32_DEBUGCTLMSR:
  591. if (!data) {
  592. /* We support the non-activated case already */
  593. break;
  594. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  595. /* Values other than LBR and BTF are vendor-specific,
  596. thus reserved and should throw a #GP */
  597. return 1;
  598. }
  599. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  600. __func__, data);
  601. break;
  602. case MSR_IA32_UCODE_REV:
  603. case MSR_IA32_UCODE_WRITE:
  604. break;
  605. case 0x200 ... 0x2ff:
  606. return set_msr_mtrr(vcpu, msr, data);
  607. case MSR_IA32_APICBASE:
  608. kvm_set_apic_base(vcpu, data);
  609. break;
  610. case MSR_IA32_MISC_ENABLE:
  611. vcpu->arch.ia32_misc_enable_msr = data;
  612. break;
  613. case MSR_KVM_WALL_CLOCK:
  614. vcpu->kvm->arch.wall_clock = data;
  615. kvm_write_wall_clock(vcpu->kvm, data);
  616. break;
  617. case MSR_KVM_SYSTEM_TIME: {
  618. if (vcpu->arch.time_page) {
  619. kvm_release_page_dirty(vcpu->arch.time_page);
  620. vcpu->arch.time_page = NULL;
  621. }
  622. vcpu->arch.time = data;
  623. /* we verify if the enable bit is set... */
  624. if (!(data & 1))
  625. break;
  626. /* ...but clean it before doing the actual write */
  627. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  628. vcpu->arch.time_page =
  629. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  630. if (is_error_page(vcpu->arch.time_page)) {
  631. kvm_release_page_clean(vcpu->arch.time_page);
  632. vcpu->arch.time_page = NULL;
  633. }
  634. kvm_write_guest_time(vcpu);
  635. break;
  636. }
  637. default:
  638. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  639. return 1;
  640. }
  641. return 0;
  642. }
  643. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  644. /*
  645. * Reads an msr value (of 'msr_index') into 'pdata'.
  646. * Returns 0 on success, non-0 otherwise.
  647. * Assumes vcpu_load() was already called.
  648. */
  649. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  650. {
  651. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  652. }
  653. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  654. {
  655. if (!msr_mtrr_valid(msr))
  656. return 1;
  657. *pdata = vcpu->arch.mtrr[msr - 0x200];
  658. return 0;
  659. }
  660. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  661. {
  662. u64 data;
  663. switch (msr) {
  664. case 0xc0010010: /* SYSCFG */
  665. case 0xc0010015: /* HWCR */
  666. case MSR_IA32_PLATFORM_ID:
  667. case MSR_IA32_P5_MC_ADDR:
  668. case MSR_IA32_P5_MC_TYPE:
  669. case MSR_IA32_MC0_CTL:
  670. case MSR_IA32_MCG_STATUS:
  671. case MSR_IA32_MCG_CAP:
  672. case MSR_IA32_MCG_CTL:
  673. case MSR_IA32_MC0_MISC:
  674. case MSR_IA32_MC0_MISC+4:
  675. case MSR_IA32_MC0_MISC+8:
  676. case MSR_IA32_MC0_MISC+12:
  677. case MSR_IA32_MC0_MISC+16:
  678. case MSR_IA32_MC0_MISC+20:
  679. case MSR_IA32_UCODE_REV:
  680. case MSR_IA32_EBL_CR_POWERON:
  681. case MSR_IA32_DEBUGCTLMSR:
  682. case MSR_IA32_LASTBRANCHFROMIP:
  683. case MSR_IA32_LASTBRANCHTOIP:
  684. case MSR_IA32_LASTINTFROMIP:
  685. case MSR_IA32_LASTINTTOIP:
  686. data = 0;
  687. break;
  688. case MSR_MTRRcap:
  689. data = 0x500 | KVM_NR_VAR_MTRR;
  690. break;
  691. case 0x200 ... 0x2ff:
  692. return get_msr_mtrr(vcpu, msr, pdata);
  693. case 0xcd: /* fsb frequency */
  694. data = 3;
  695. break;
  696. case MSR_IA32_APICBASE:
  697. data = kvm_get_apic_base(vcpu);
  698. break;
  699. case MSR_IA32_MISC_ENABLE:
  700. data = vcpu->arch.ia32_misc_enable_msr;
  701. break;
  702. case MSR_IA32_PERF_STATUS:
  703. /* TSC increment by tick */
  704. data = 1000ULL;
  705. /* CPU multiplier */
  706. data |= (((uint64_t)4ULL) << 40);
  707. break;
  708. case MSR_EFER:
  709. data = vcpu->arch.shadow_efer;
  710. break;
  711. case MSR_KVM_WALL_CLOCK:
  712. data = vcpu->kvm->arch.wall_clock;
  713. break;
  714. case MSR_KVM_SYSTEM_TIME:
  715. data = vcpu->arch.time;
  716. break;
  717. default:
  718. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  719. return 1;
  720. }
  721. *pdata = data;
  722. return 0;
  723. }
  724. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  725. /*
  726. * Read or write a bunch of msrs. All parameters are kernel addresses.
  727. *
  728. * @return number of msrs set successfully.
  729. */
  730. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  731. struct kvm_msr_entry *entries,
  732. int (*do_msr)(struct kvm_vcpu *vcpu,
  733. unsigned index, u64 *data))
  734. {
  735. int i;
  736. vcpu_load(vcpu);
  737. down_read(&vcpu->kvm->slots_lock);
  738. for (i = 0; i < msrs->nmsrs; ++i)
  739. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  740. break;
  741. up_read(&vcpu->kvm->slots_lock);
  742. vcpu_put(vcpu);
  743. return i;
  744. }
  745. /*
  746. * Read or write a bunch of msrs. Parameters are user addresses.
  747. *
  748. * @return number of msrs set successfully.
  749. */
  750. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  751. int (*do_msr)(struct kvm_vcpu *vcpu,
  752. unsigned index, u64 *data),
  753. int writeback)
  754. {
  755. struct kvm_msrs msrs;
  756. struct kvm_msr_entry *entries;
  757. int r, n;
  758. unsigned size;
  759. r = -EFAULT;
  760. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  761. goto out;
  762. r = -E2BIG;
  763. if (msrs.nmsrs >= MAX_IO_MSRS)
  764. goto out;
  765. r = -ENOMEM;
  766. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  767. entries = vmalloc(size);
  768. if (!entries)
  769. goto out;
  770. r = -EFAULT;
  771. if (copy_from_user(entries, user_msrs->entries, size))
  772. goto out_free;
  773. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  774. if (r < 0)
  775. goto out_free;
  776. r = -EFAULT;
  777. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  778. goto out_free;
  779. r = n;
  780. out_free:
  781. vfree(entries);
  782. out:
  783. return r;
  784. }
  785. int kvm_dev_ioctl_check_extension(long ext)
  786. {
  787. int r;
  788. switch (ext) {
  789. case KVM_CAP_IRQCHIP:
  790. case KVM_CAP_HLT:
  791. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  792. case KVM_CAP_USER_MEMORY:
  793. case KVM_CAP_SET_TSS_ADDR:
  794. case KVM_CAP_EXT_CPUID:
  795. case KVM_CAP_CLOCKSOURCE:
  796. case KVM_CAP_PIT:
  797. case KVM_CAP_NOP_IO_DELAY:
  798. case KVM_CAP_MP_STATE:
  799. case KVM_CAP_SYNC_MMU:
  800. r = 1;
  801. break;
  802. case KVM_CAP_COALESCED_MMIO:
  803. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  804. break;
  805. case KVM_CAP_VAPIC:
  806. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  807. break;
  808. case KVM_CAP_NR_VCPUS:
  809. r = KVM_MAX_VCPUS;
  810. break;
  811. case KVM_CAP_NR_MEMSLOTS:
  812. r = KVM_MEMORY_SLOTS;
  813. break;
  814. case KVM_CAP_PV_MMU:
  815. r = !tdp_enabled;
  816. break;
  817. case KVM_CAP_IOMMU:
  818. r = intel_iommu_found();
  819. break;
  820. default:
  821. r = 0;
  822. break;
  823. }
  824. return r;
  825. }
  826. long kvm_arch_dev_ioctl(struct file *filp,
  827. unsigned int ioctl, unsigned long arg)
  828. {
  829. void __user *argp = (void __user *)arg;
  830. long r;
  831. switch (ioctl) {
  832. case KVM_GET_MSR_INDEX_LIST: {
  833. struct kvm_msr_list __user *user_msr_list = argp;
  834. struct kvm_msr_list msr_list;
  835. unsigned n;
  836. r = -EFAULT;
  837. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  838. goto out;
  839. n = msr_list.nmsrs;
  840. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  841. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  842. goto out;
  843. r = -E2BIG;
  844. if (n < num_msrs_to_save)
  845. goto out;
  846. r = -EFAULT;
  847. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  848. num_msrs_to_save * sizeof(u32)))
  849. goto out;
  850. if (copy_to_user(user_msr_list->indices
  851. + num_msrs_to_save * sizeof(u32),
  852. &emulated_msrs,
  853. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  854. goto out;
  855. r = 0;
  856. break;
  857. }
  858. case KVM_GET_SUPPORTED_CPUID: {
  859. struct kvm_cpuid2 __user *cpuid_arg = argp;
  860. struct kvm_cpuid2 cpuid;
  861. r = -EFAULT;
  862. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  863. goto out;
  864. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  865. cpuid_arg->entries);
  866. if (r)
  867. goto out;
  868. r = -EFAULT;
  869. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  870. goto out;
  871. r = 0;
  872. break;
  873. }
  874. default:
  875. r = -EINVAL;
  876. }
  877. out:
  878. return r;
  879. }
  880. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  881. {
  882. kvm_x86_ops->vcpu_load(vcpu, cpu);
  883. kvm_write_guest_time(vcpu);
  884. }
  885. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  886. {
  887. kvm_x86_ops->vcpu_put(vcpu);
  888. kvm_put_guest_fpu(vcpu);
  889. }
  890. static int is_efer_nx(void)
  891. {
  892. u64 efer;
  893. rdmsrl(MSR_EFER, efer);
  894. return efer & EFER_NX;
  895. }
  896. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  897. {
  898. int i;
  899. struct kvm_cpuid_entry2 *e, *entry;
  900. entry = NULL;
  901. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  902. e = &vcpu->arch.cpuid_entries[i];
  903. if (e->function == 0x80000001) {
  904. entry = e;
  905. break;
  906. }
  907. }
  908. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  909. entry->edx &= ~(1 << 20);
  910. printk(KERN_INFO "kvm: guest NX capability removed\n");
  911. }
  912. }
  913. /* when an old userspace process fills a new kernel module */
  914. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  915. struct kvm_cpuid *cpuid,
  916. struct kvm_cpuid_entry __user *entries)
  917. {
  918. int r, i;
  919. struct kvm_cpuid_entry *cpuid_entries;
  920. r = -E2BIG;
  921. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  922. goto out;
  923. r = -ENOMEM;
  924. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  925. if (!cpuid_entries)
  926. goto out;
  927. r = -EFAULT;
  928. if (copy_from_user(cpuid_entries, entries,
  929. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  930. goto out_free;
  931. for (i = 0; i < cpuid->nent; i++) {
  932. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  933. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  934. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  935. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  936. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  937. vcpu->arch.cpuid_entries[i].index = 0;
  938. vcpu->arch.cpuid_entries[i].flags = 0;
  939. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  940. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  941. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  942. }
  943. vcpu->arch.cpuid_nent = cpuid->nent;
  944. cpuid_fix_nx_cap(vcpu);
  945. r = 0;
  946. out_free:
  947. vfree(cpuid_entries);
  948. out:
  949. return r;
  950. }
  951. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  952. struct kvm_cpuid2 *cpuid,
  953. struct kvm_cpuid_entry2 __user *entries)
  954. {
  955. int r;
  956. r = -E2BIG;
  957. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  958. goto out;
  959. r = -EFAULT;
  960. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  961. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  962. goto out;
  963. vcpu->arch.cpuid_nent = cpuid->nent;
  964. return 0;
  965. out:
  966. return r;
  967. }
  968. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  969. struct kvm_cpuid2 *cpuid,
  970. struct kvm_cpuid_entry2 __user *entries)
  971. {
  972. int r;
  973. r = -E2BIG;
  974. if (cpuid->nent < vcpu->arch.cpuid_nent)
  975. goto out;
  976. r = -EFAULT;
  977. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  978. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  979. goto out;
  980. return 0;
  981. out:
  982. cpuid->nent = vcpu->arch.cpuid_nent;
  983. return r;
  984. }
  985. static inline u32 bit(int bitno)
  986. {
  987. return 1 << (bitno & 31);
  988. }
  989. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  990. u32 index)
  991. {
  992. entry->function = function;
  993. entry->index = index;
  994. cpuid_count(entry->function, entry->index,
  995. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  996. entry->flags = 0;
  997. }
  998. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  999. u32 index, int *nent, int maxnent)
  1000. {
  1001. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1002. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1003. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1004. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1005. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1006. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1007. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1008. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1009. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1010. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1011. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1012. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1013. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1014. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1015. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1016. bit(X86_FEATURE_PGE) |
  1017. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1018. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1019. bit(X86_FEATURE_SYSCALL) |
  1020. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  1021. #ifdef CONFIG_X86_64
  1022. bit(X86_FEATURE_LM) |
  1023. #endif
  1024. bit(X86_FEATURE_MMXEXT) |
  1025. bit(X86_FEATURE_3DNOWEXT) |
  1026. bit(X86_FEATURE_3DNOW);
  1027. const u32 kvm_supported_word3_x86_features =
  1028. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1029. const u32 kvm_supported_word6_x86_features =
  1030. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  1031. /* all func 2 cpuid_count() should be called on the same cpu */
  1032. get_cpu();
  1033. do_cpuid_1_ent(entry, function, index);
  1034. ++*nent;
  1035. switch (function) {
  1036. case 0:
  1037. entry->eax = min(entry->eax, (u32)0xb);
  1038. break;
  1039. case 1:
  1040. entry->edx &= kvm_supported_word0_x86_features;
  1041. entry->ecx &= kvm_supported_word3_x86_features;
  1042. break;
  1043. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1044. * may return different values. This forces us to get_cpu() before
  1045. * issuing the first command, and also to emulate this annoying behavior
  1046. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1047. case 2: {
  1048. int t, times = entry->eax & 0xff;
  1049. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1050. for (t = 1; t < times && *nent < maxnent; ++t) {
  1051. do_cpuid_1_ent(&entry[t], function, 0);
  1052. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1053. ++*nent;
  1054. }
  1055. break;
  1056. }
  1057. /* function 4 and 0xb have additional index. */
  1058. case 4: {
  1059. int i, cache_type;
  1060. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1061. /* read more entries until cache_type is zero */
  1062. for (i = 1; *nent < maxnent; ++i) {
  1063. cache_type = entry[i - 1].eax & 0x1f;
  1064. if (!cache_type)
  1065. break;
  1066. do_cpuid_1_ent(&entry[i], function, i);
  1067. entry[i].flags |=
  1068. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1069. ++*nent;
  1070. }
  1071. break;
  1072. }
  1073. case 0xb: {
  1074. int i, level_type;
  1075. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1076. /* read more entries until level_type is zero */
  1077. for (i = 1; *nent < maxnent; ++i) {
  1078. level_type = entry[i - 1].ecx & 0xff;
  1079. if (!level_type)
  1080. break;
  1081. do_cpuid_1_ent(&entry[i], function, i);
  1082. entry[i].flags |=
  1083. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1084. ++*nent;
  1085. }
  1086. break;
  1087. }
  1088. case 0x80000000:
  1089. entry->eax = min(entry->eax, 0x8000001a);
  1090. break;
  1091. case 0x80000001:
  1092. entry->edx &= kvm_supported_word1_x86_features;
  1093. entry->ecx &= kvm_supported_word6_x86_features;
  1094. break;
  1095. }
  1096. put_cpu();
  1097. }
  1098. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1099. struct kvm_cpuid_entry2 __user *entries)
  1100. {
  1101. struct kvm_cpuid_entry2 *cpuid_entries;
  1102. int limit, nent = 0, r = -E2BIG;
  1103. u32 func;
  1104. if (cpuid->nent < 1)
  1105. goto out;
  1106. r = -ENOMEM;
  1107. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1108. if (!cpuid_entries)
  1109. goto out;
  1110. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1111. limit = cpuid_entries[0].eax;
  1112. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1113. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1114. &nent, cpuid->nent);
  1115. r = -E2BIG;
  1116. if (nent >= cpuid->nent)
  1117. goto out_free;
  1118. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1119. limit = cpuid_entries[nent - 1].eax;
  1120. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1121. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1122. &nent, cpuid->nent);
  1123. r = -EFAULT;
  1124. if (copy_to_user(entries, cpuid_entries,
  1125. nent * sizeof(struct kvm_cpuid_entry2)))
  1126. goto out_free;
  1127. cpuid->nent = nent;
  1128. r = 0;
  1129. out_free:
  1130. vfree(cpuid_entries);
  1131. out:
  1132. return r;
  1133. }
  1134. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1135. struct kvm_lapic_state *s)
  1136. {
  1137. vcpu_load(vcpu);
  1138. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1139. vcpu_put(vcpu);
  1140. return 0;
  1141. }
  1142. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1143. struct kvm_lapic_state *s)
  1144. {
  1145. vcpu_load(vcpu);
  1146. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1147. kvm_apic_post_state_restore(vcpu);
  1148. vcpu_put(vcpu);
  1149. return 0;
  1150. }
  1151. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1152. struct kvm_interrupt *irq)
  1153. {
  1154. if (irq->irq < 0 || irq->irq >= 256)
  1155. return -EINVAL;
  1156. if (irqchip_in_kernel(vcpu->kvm))
  1157. return -ENXIO;
  1158. vcpu_load(vcpu);
  1159. set_bit(irq->irq, vcpu->arch.irq_pending);
  1160. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1161. vcpu_put(vcpu);
  1162. return 0;
  1163. }
  1164. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1165. {
  1166. vcpu_load(vcpu);
  1167. kvm_inject_nmi(vcpu);
  1168. vcpu_put(vcpu);
  1169. return 0;
  1170. }
  1171. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1172. struct kvm_tpr_access_ctl *tac)
  1173. {
  1174. if (tac->flags)
  1175. return -EINVAL;
  1176. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1177. return 0;
  1178. }
  1179. long kvm_arch_vcpu_ioctl(struct file *filp,
  1180. unsigned int ioctl, unsigned long arg)
  1181. {
  1182. struct kvm_vcpu *vcpu = filp->private_data;
  1183. void __user *argp = (void __user *)arg;
  1184. int r;
  1185. struct kvm_lapic_state *lapic = NULL;
  1186. switch (ioctl) {
  1187. case KVM_GET_LAPIC: {
  1188. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1189. r = -ENOMEM;
  1190. if (!lapic)
  1191. goto out;
  1192. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1193. if (r)
  1194. goto out;
  1195. r = -EFAULT;
  1196. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1197. goto out;
  1198. r = 0;
  1199. break;
  1200. }
  1201. case KVM_SET_LAPIC: {
  1202. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1203. r = -ENOMEM;
  1204. if (!lapic)
  1205. goto out;
  1206. r = -EFAULT;
  1207. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1208. goto out;
  1209. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1210. if (r)
  1211. goto out;
  1212. r = 0;
  1213. break;
  1214. }
  1215. case KVM_INTERRUPT: {
  1216. struct kvm_interrupt irq;
  1217. r = -EFAULT;
  1218. if (copy_from_user(&irq, argp, sizeof irq))
  1219. goto out;
  1220. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1221. if (r)
  1222. goto out;
  1223. r = 0;
  1224. break;
  1225. }
  1226. case KVM_NMI: {
  1227. r = kvm_vcpu_ioctl_nmi(vcpu);
  1228. if (r)
  1229. goto out;
  1230. r = 0;
  1231. break;
  1232. }
  1233. case KVM_SET_CPUID: {
  1234. struct kvm_cpuid __user *cpuid_arg = argp;
  1235. struct kvm_cpuid cpuid;
  1236. r = -EFAULT;
  1237. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1238. goto out;
  1239. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1240. if (r)
  1241. goto out;
  1242. break;
  1243. }
  1244. case KVM_SET_CPUID2: {
  1245. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1246. struct kvm_cpuid2 cpuid;
  1247. r = -EFAULT;
  1248. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1249. goto out;
  1250. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1251. cpuid_arg->entries);
  1252. if (r)
  1253. goto out;
  1254. break;
  1255. }
  1256. case KVM_GET_CPUID2: {
  1257. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1258. struct kvm_cpuid2 cpuid;
  1259. r = -EFAULT;
  1260. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1261. goto out;
  1262. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1263. cpuid_arg->entries);
  1264. if (r)
  1265. goto out;
  1266. r = -EFAULT;
  1267. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1268. goto out;
  1269. r = 0;
  1270. break;
  1271. }
  1272. case KVM_GET_MSRS:
  1273. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1274. break;
  1275. case KVM_SET_MSRS:
  1276. r = msr_io(vcpu, argp, do_set_msr, 0);
  1277. break;
  1278. case KVM_TPR_ACCESS_REPORTING: {
  1279. struct kvm_tpr_access_ctl tac;
  1280. r = -EFAULT;
  1281. if (copy_from_user(&tac, argp, sizeof tac))
  1282. goto out;
  1283. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1284. if (r)
  1285. goto out;
  1286. r = -EFAULT;
  1287. if (copy_to_user(argp, &tac, sizeof tac))
  1288. goto out;
  1289. r = 0;
  1290. break;
  1291. };
  1292. case KVM_SET_VAPIC_ADDR: {
  1293. struct kvm_vapic_addr va;
  1294. r = -EINVAL;
  1295. if (!irqchip_in_kernel(vcpu->kvm))
  1296. goto out;
  1297. r = -EFAULT;
  1298. if (copy_from_user(&va, argp, sizeof va))
  1299. goto out;
  1300. r = 0;
  1301. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1302. break;
  1303. }
  1304. default:
  1305. r = -EINVAL;
  1306. }
  1307. out:
  1308. if (lapic)
  1309. kfree(lapic);
  1310. return r;
  1311. }
  1312. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1313. {
  1314. int ret;
  1315. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1316. return -1;
  1317. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1318. return ret;
  1319. }
  1320. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1321. u32 kvm_nr_mmu_pages)
  1322. {
  1323. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1324. return -EINVAL;
  1325. down_write(&kvm->slots_lock);
  1326. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1327. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1328. up_write(&kvm->slots_lock);
  1329. return 0;
  1330. }
  1331. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1332. {
  1333. return kvm->arch.n_alloc_mmu_pages;
  1334. }
  1335. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1336. {
  1337. int i;
  1338. struct kvm_mem_alias *alias;
  1339. for (i = 0; i < kvm->arch.naliases; ++i) {
  1340. alias = &kvm->arch.aliases[i];
  1341. if (gfn >= alias->base_gfn
  1342. && gfn < alias->base_gfn + alias->npages)
  1343. return alias->target_gfn + gfn - alias->base_gfn;
  1344. }
  1345. return gfn;
  1346. }
  1347. /*
  1348. * Set a new alias region. Aliases map a portion of physical memory into
  1349. * another portion. This is useful for memory windows, for example the PC
  1350. * VGA region.
  1351. */
  1352. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1353. struct kvm_memory_alias *alias)
  1354. {
  1355. int r, n;
  1356. struct kvm_mem_alias *p;
  1357. r = -EINVAL;
  1358. /* General sanity checks */
  1359. if (alias->memory_size & (PAGE_SIZE - 1))
  1360. goto out;
  1361. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1362. goto out;
  1363. if (alias->slot >= KVM_ALIAS_SLOTS)
  1364. goto out;
  1365. if (alias->guest_phys_addr + alias->memory_size
  1366. < alias->guest_phys_addr)
  1367. goto out;
  1368. if (alias->target_phys_addr + alias->memory_size
  1369. < alias->target_phys_addr)
  1370. goto out;
  1371. down_write(&kvm->slots_lock);
  1372. spin_lock(&kvm->mmu_lock);
  1373. p = &kvm->arch.aliases[alias->slot];
  1374. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1375. p->npages = alias->memory_size >> PAGE_SHIFT;
  1376. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1377. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1378. if (kvm->arch.aliases[n - 1].npages)
  1379. break;
  1380. kvm->arch.naliases = n;
  1381. spin_unlock(&kvm->mmu_lock);
  1382. kvm_mmu_zap_all(kvm);
  1383. up_write(&kvm->slots_lock);
  1384. return 0;
  1385. out:
  1386. return r;
  1387. }
  1388. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1389. {
  1390. int r;
  1391. r = 0;
  1392. switch (chip->chip_id) {
  1393. case KVM_IRQCHIP_PIC_MASTER:
  1394. memcpy(&chip->chip.pic,
  1395. &pic_irqchip(kvm)->pics[0],
  1396. sizeof(struct kvm_pic_state));
  1397. break;
  1398. case KVM_IRQCHIP_PIC_SLAVE:
  1399. memcpy(&chip->chip.pic,
  1400. &pic_irqchip(kvm)->pics[1],
  1401. sizeof(struct kvm_pic_state));
  1402. break;
  1403. case KVM_IRQCHIP_IOAPIC:
  1404. memcpy(&chip->chip.ioapic,
  1405. ioapic_irqchip(kvm),
  1406. sizeof(struct kvm_ioapic_state));
  1407. break;
  1408. default:
  1409. r = -EINVAL;
  1410. break;
  1411. }
  1412. return r;
  1413. }
  1414. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1415. {
  1416. int r;
  1417. r = 0;
  1418. switch (chip->chip_id) {
  1419. case KVM_IRQCHIP_PIC_MASTER:
  1420. memcpy(&pic_irqchip(kvm)->pics[0],
  1421. &chip->chip.pic,
  1422. sizeof(struct kvm_pic_state));
  1423. break;
  1424. case KVM_IRQCHIP_PIC_SLAVE:
  1425. memcpy(&pic_irqchip(kvm)->pics[1],
  1426. &chip->chip.pic,
  1427. sizeof(struct kvm_pic_state));
  1428. break;
  1429. case KVM_IRQCHIP_IOAPIC:
  1430. memcpy(ioapic_irqchip(kvm),
  1431. &chip->chip.ioapic,
  1432. sizeof(struct kvm_ioapic_state));
  1433. break;
  1434. default:
  1435. r = -EINVAL;
  1436. break;
  1437. }
  1438. kvm_pic_update_irq(pic_irqchip(kvm));
  1439. return r;
  1440. }
  1441. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1442. {
  1443. int r = 0;
  1444. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1445. return r;
  1446. }
  1447. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1448. {
  1449. int r = 0;
  1450. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1451. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1452. return r;
  1453. }
  1454. /*
  1455. * Get (and clear) the dirty memory log for a memory slot.
  1456. */
  1457. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1458. struct kvm_dirty_log *log)
  1459. {
  1460. int r;
  1461. int n;
  1462. struct kvm_memory_slot *memslot;
  1463. int is_dirty = 0;
  1464. down_write(&kvm->slots_lock);
  1465. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1466. if (r)
  1467. goto out;
  1468. /* If nothing is dirty, don't bother messing with page tables. */
  1469. if (is_dirty) {
  1470. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1471. kvm_flush_remote_tlbs(kvm);
  1472. memslot = &kvm->memslots[log->slot];
  1473. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1474. memset(memslot->dirty_bitmap, 0, n);
  1475. }
  1476. r = 0;
  1477. out:
  1478. up_write(&kvm->slots_lock);
  1479. return r;
  1480. }
  1481. long kvm_arch_vm_ioctl(struct file *filp,
  1482. unsigned int ioctl, unsigned long arg)
  1483. {
  1484. struct kvm *kvm = filp->private_data;
  1485. void __user *argp = (void __user *)arg;
  1486. int r = -EINVAL;
  1487. /*
  1488. * This union makes it completely explicit to gcc-3.x
  1489. * that these two variables' stack usage should be
  1490. * combined, not added together.
  1491. */
  1492. union {
  1493. struct kvm_pit_state ps;
  1494. struct kvm_memory_alias alias;
  1495. } u;
  1496. switch (ioctl) {
  1497. case KVM_SET_TSS_ADDR:
  1498. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1499. if (r < 0)
  1500. goto out;
  1501. break;
  1502. case KVM_SET_MEMORY_REGION: {
  1503. struct kvm_memory_region kvm_mem;
  1504. struct kvm_userspace_memory_region kvm_userspace_mem;
  1505. r = -EFAULT;
  1506. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1507. goto out;
  1508. kvm_userspace_mem.slot = kvm_mem.slot;
  1509. kvm_userspace_mem.flags = kvm_mem.flags;
  1510. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1511. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1512. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1513. if (r)
  1514. goto out;
  1515. break;
  1516. }
  1517. case KVM_SET_NR_MMU_PAGES:
  1518. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1519. if (r)
  1520. goto out;
  1521. break;
  1522. case KVM_GET_NR_MMU_PAGES:
  1523. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1524. break;
  1525. case KVM_SET_MEMORY_ALIAS:
  1526. r = -EFAULT;
  1527. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1528. goto out;
  1529. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1530. if (r)
  1531. goto out;
  1532. break;
  1533. case KVM_CREATE_IRQCHIP:
  1534. r = -ENOMEM;
  1535. kvm->arch.vpic = kvm_create_pic(kvm);
  1536. if (kvm->arch.vpic) {
  1537. r = kvm_ioapic_init(kvm);
  1538. if (r) {
  1539. kfree(kvm->arch.vpic);
  1540. kvm->arch.vpic = NULL;
  1541. goto out;
  1542. }
  1543. } else
  1544. goto out;
  1545. break;
  1546. case KVM_CREATE_PIT:
  1547. r = -ENOMEM;
  1548. kvm->arch.vpit = kvm_create_pit(kvm);
  1549. if (kvm->arch.vpit)
  1550. r = 0;
  1551. break;
  1552. case KVM_IRQ_LINE: {
  1553. struct kvm_irq_level irq_event;
  1554. r = -EFAULT;
  1555. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1556. goto out;
  1557. if (irqchip_in_kernel(kvm)) {
  1558. mutex_lock(&kvm->lock);
  1559. kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1560. irq_event.irq, irq_event.level);
  1561. mutex_unlock(&kvm->lock);
  1562. r = 0;
  1563. }
  1564. break;
  1565. }
  1566. case KVM_GET_IRQCHIP: {
  1567. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1568. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1569. r = -ENOMEM;
  1570. if (!chip)
  1571. goto out;
  1572. r = -EFAULT;
  1573. if (copy_from_user(chip, argp, sizeof *chip))
  1574. goto get_irqchip_out;
  1575. r = -ENXIO;
  1576. if (!irqchip_in_kernel(kvm))
  1577. goto get_irqchip_out;
  1578. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1579. if (r)
  1580. goto get_irqchip_out;
  1581. r = -EFAULT;
  1582. if (copy_to_user(argp, chip, sizeof *chip))
  1583. goto get_irqchip_out;
  1584. r = 0;
  1585. get_irqchip_out:
  1586. kfree(chip);
  1587. if (r)
  1588. goto out;
  1589. break;
  1590. }
  1591. case KVM_SET_IRQCHIP: {
  1592. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1593. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1594. r = -ENOMEM;
  1595. if (!chip)
  1596. goto out;
  1597. r = -EFAULT;
  1598. if (copy_from_user(chip, argp, sizeof *chip))
  1599. goto set_irqchip_out;
  1600. r = -ENXIO;
  1601. if (!irqchip_in_kernel(kvm))
  1602. goto set_irqchip_out;
  1603. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1604. if (r)
  1605. goto set_irqchip_out;
  1606. r = 0;
  1607. set_irqchip_out:
  1608. kfree(chip);
  1609. if (r)
  1610. goto out;
  1611. break;
  1612. }
  1613. case KVM_GET_PIT: {
  1614. r = -EFAULT;
  1615. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1616. goto out;
  1617. r = -ENXIO;
  1618. if (!kvm->arch.vpit)
  1619. goto out;
  1620. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1621. if (r)
  1622. goto out;
  1623. r = -EFAULT;
  1624. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1625. goto out;
  1626. r = 0;
  1627. break;
  1628. }
  1629. case KVM_SET_PIT: {
  1630. r = -EFAULT;
  1631. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1632. goto out;
  1633. r = -ENXIO;
  1634. if (!kvm->arch.vpit)
  1635. goto out;
  1636. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1637. if (r)
  1638. goto out;
  1639. r = 0;
  1640. break;
  1641. }
  1642. default:
  1643. ;
  1644. }
  1645. out:
  1646. return r;
  1647. }
  1648. static void kvm_init_msr_list(void)
  1649. {
  1650. u32 dummy[2];
  1651. unsigned i, j;
  1652. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1653. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1654. continue;
  1655. if (j < i)
  1656. msrs_to_save[j] = msrs_to_save[i];
  1657. j++;
  1658. }
  1659. num_msrs_to_save = j;
  1660. }
  1661. /*
  1662. * Only apic need an MMIO device hook, so shortcut now..
  1663. */
  1664. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1665. gpa_t addr, int len,
  1666. int is_write)
  1667. {
  1668. struct kvm_io_device *dev;
  1669. if (vcpu->arch.apic) {
  1670. dev = &vcpu->arch.apic->dev;
  1671. if (dev->in_range(dev, addr, len, is_write))
  1672. return dev;
  1673. }
  1674. return NULL;
  1675. }
  1676. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1677. gpa_t addr, int len,
  1678. int is_write)
  1679. {
  1680. struct kvm_io_device *dev;
  1681. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1682. if (dev == NULL)
  1683. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1684. is_write);
  1685. return dev;
  1686. }
  1687. int emulator_read_std(unsigned long addr,
  1688. void *val,
  1689. unsigned int bytes,
  1690. struct kvm_vcpu *vcpu)
  1691. {
  1692. void *data = val;
  1693. int r = X86EMUL_CONTINUE;
  1694. while (bytes) {
  1695. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1696. unsigned offset = addr & (PAGE_SIZE-1);
  1697. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1698. int ret;
  1699. if (gpa == UNMAPPED_GVA) {
  1700. r = X86EMUL_PROPAGATE_FAULT;
  1701. goto out;
  1702. }
  1703. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1704. if (ret < 0) {
  1705. r = X86EMUL_UNHANDLEABLE;
  1706. goto out;
  1707. }
  1708. bytes -= tocopy;
  1709. data += tocopy;
  1710. addr += tocopy;
  1711. }
  1712. out:
  1713. return r;
  1714. }
  1715. EXPORT_SYMBOL_GPL(emulator_read_std);
  1716. static int emulator_read_emulated(unsigned long addr,
  1717. void *val,
  1718. unsigned int bytes,
  1719. struct kvm_vcpu *vcpu)
  1720. {
  1721. struct kvm_io_device *mmio_dev;
  1722. gpa_t gpa;
  1723. if (vcpu->mmio_read_completed) {
  1724. memcpy(val, vcpu->mmio_data, bytes);
  1725. vcpu->mmio_read_completed = 0;
  1726. return X86EMUL_CONTINUE;
  1727. }
  1728. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1729. /* For APIC access vmexit */
  1730. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1731. goto mmio;
  1732. if (emulator_read_std(addr, val, bytes, vcpu)
  1733. == X86EMUL_CONTINUE)
  1734. return X86EMUL_CONTINUE;
  1735. if (gpa == UNMAPPED_GVA)
  1736. return X86EMUL_PROPAGATE_FAULT;
  1737. mmio:
  1738. /*
  1739. * Is this MMIO handled locally?
  1740. */
  1741. mutex_lock(&vcpu->kvm->lock);
  1742. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1743. if (mmio_dev) {
  1744. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1745. mutex_unlock(&vcpu->kvm->lock);
  1746. return X86EMUL_CONTINUE;
  1747. }
  1748. mutex_unlock(&vcpu->kvm->lock);
  1749. vcpu->mmio_needed = 1;
  1750. vcpu->mmio_phys_addr = gpa;
  1751. vcpu->mmio_size = bytes;
  1752. vcpu->mmio_is_write = 0;
  1753. return X86EMUL_UNHANDLEABLE;
  1754. }
  1755. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1756. const void *val, int bytes)
  1757. {
  1758. int ret;
  1759. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1760. if (ret < 0)
  1761. return 0;
  1762. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1763. return 1;
  1764. }
  1765. static int emulator_write_emulated_onepage(unsigned long addr,
  1766. const void *val,
  1767. unsigned int bytes,
  1768. struct kvm_vcpu *vcpu)
  1769. {
  1770. struct kvm_io_device *mmio_dev;
  1771. gpa_t gpa;
  1772. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1773. if (gpa == UNMAPPED_GVA) {
  1774. kvm_inject_page_fault(vcpu, addr, 2);
  1775. return X86EMUL_PROPAGATE_FAULT;
  1776. }
  1777. /* For APIC access vmexit */
  1778. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1779. goto mmio;
  1780. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1781. return X86EMUL_CONTINUE;
  1782. mmio:
  1783. /*
  1784. * Is this MMIO handled locally?
  1785. */
  1786. mutex_lock(&vcpu->kvm->lock);
  1787. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1788. if (mmio_dev) {
  1789. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1790. mutex_unlock(&vcpu->kvm->lock);
  1791. return X86EMUL_CONTINUE;
  1792. }
  1793. mutex_unlock(&vcpu->kvm->lock);
  1794. vcpu->mmio_needed = 1;
  1795. vcpu->mmio_phys_addr = gpa;
  1796. vcpu->mmio_size = bytes;
  1797. vcpu->mmio_is_write = 1;
  1798. memcpy(vcpu->mmio_data, val, bytes);
  1799. return X86EMUL_CONTINUE;
  1800. }
  1801. int emulator_write_emulated(unsigned long addr,
  1802. const void *val,
  1803. unsigned int bytes,
  1804. struct kvm_vcpu *vcpu)
  1805. {
  1806. /* Crossing a page boundary? */
  1807. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1808. int rc, now;
  1809. now = -addr & ~PAGE_MASK;
  1810. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1811. if (rc != X86EMUL_CONTINUE)
  1812. return rc;
  1813. addr += now;
  1814. val += now;
  1815. bytes -= now;
  1816. }
  1817. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1818. }
  1819. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1820. static int emulator_cmpxchg_emulated(unsigned long addr,
  1821. const void *old,
  1822. const void *new,
  1823. unsigned int bytes,
  1824. struct kvm_vcpu *vcpu)
  1825. {
  1826. static int reported;
  1827. if (!reported) {
  1828. reported = 1;
  1829. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1830. }
  1831. #ifndef CONFIG_X86_64
  1832. /* guests cmpxchg8b have to be emulated atomically */
  1833. if (bytes == 8) {
  1834. gpa_t gpa;
  1835. struct page *page;
  1836. char *kaddr;
  1837. u64 val;
  1838. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1839. if (gpa == UNMAPPED_GVA ||
  1840. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1841. goto emul_write;
  1842. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1843. goto emul_write;
  1844. val = *(u64 *)new;
  1845. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1846. kaddr = kmap_atomic(page, KM_USER0);
  1847. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1848. kunmap_atomic(kaddr, KM_USER0);
  1849. kvm_release_page_dirty(page);
  1850. }
  1851. emul_write:
  1852. #endif
  1853. return emulator_write_emulated(addr, new, bytes, vcpu);
  1854. }
  1855. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1856. {
  1857. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1858. }
  1859. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1860. {
  1861. kvm_mmu_invlpg(vcpu, address);
  1862. return X86EMUL_CONTINUE;
  1863. }
  1864. int emulate_clts(struct kvm_vcpu *vcpu)
  1865. {
  1866. KVMTRACE_0D(CLTS, vcpu, handler);
  1867. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1868. return X86EMUL_CONTINUE;
  1869. }
  1870. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1871. {
  1872. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1873. switch (dr) {
  1874. case 0 ... 3:
  1875. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1876. return X86EMUL_CONTINUE;
  1877. default:
  1878. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1879. return X86EMUL_UNHANDLEABLE;
  1880. }
  1881. }
  1882. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1883. {
  1884. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1885. int exception;
  1886. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1887. if (exception) {
  1888. /* FIXME: better handling */
  1889. return X86EMUL_UNHANDLEABLE;
  1890. }
  1891. return X86EMUL_CONTINUE;
  1892. }
  1893. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1894. {
  1895. u8 opcodes[4];
  1896. unsigned long rip = kvm_rip_read(vcpu);
  1897. unsigned long rip_linear;
  1898. if (!printk_ratelimit())
  1899. return;
  1900. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1901. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1902. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1903. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1904. }
  1905. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1906. static struct x86_emulate_ops emulate_ops = {
  1907. .read_std = emulator_read_std,
  1908. .read_emulated = emulator_read_emulated,
  1909. .write_emulated = emulator_write_emulated,
  1910. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1911. };
  1912. static void cache_all_regs(struct kvm_vcpu *vcpu)
  1913. {
  1914. kvm_register_read(vcpu, VCPU_REGS_RAX);
  1915. kvm_register_read(vcpu, VCPU_REGS_RSP);
  1916. kvm_register_read(vcpu, VCPU_REGS_RIP);
  1917. vcpu->arch.regs_dirty = ~0;
  1918. }
  1919. int emulate_instruction(struct kvm_vcpu *vcpu,
  1920. struct kvm_run *run,
  1921. unsigned long cr2,
  1922. u16 error_code,
  1923. int emulation_type)
  1924. {
  1925. int r;
  1926. struct decode_cache *c;
  1927. kvm_clear_exception_queue(vcpu);
  1928. vcpu->arch.mmio_fault_cr2 = cr2;
  1929. /*
  1930. * TODO: fix x86_emulate.c to use guest_read/write_register
  1931. * instead of direct ->regs accesses, can save hundred cycles
  1932. * on Intel for instructions that don't read/change RSP, for
  1933. * for example.
  1934. */
  1935. cache_all_regs(vcpu);
  1936. vcpu->mmio_is_write = 0;
  1937. vcpu->arch.pio.string = 0;
  1938. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1939. int cs_db, cs_l;
  1940. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1941. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1942. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1943. vcpu->arch.emulate_ctxt.mode =
  1944. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1945. ? X86EMUL_MODE_REAL : cs_l
  1946. ? X86EMUL_MODE_PROT64 : cs_db
  1947. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1948. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1949. /* Reject the instructions other than VMCALL/VMMCALL when
  1950. * try to emulate invalid opcode */
  1951. c = &vcpu->arch.emulate_ctxt.decode;
  1952. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1953. (!(c->twobyte && c->b == 0x01 &&
  1954. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1955. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1956. return EMULATE_FAIL;
  1957. ++vcpu->stat.insn_emulation;
  1958. if (r) {
  1959. ++vcpu->stat.insn_emulation_fail;
  1960. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1961. return EMULATE_DONE;
  1962. return EMULATE_FAIL;
  1963. }
  1964. }
  1965. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1966. if (vcpu->arch.pio.string)
  1967. return EMULATE_DO_MMIO;
  1968. if ((r || vcpu->mmio_is_write) && run) {
  1969. run->exit_reason = KVM_EXIT_MMIO;
  1970. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1971. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1972. run->mmio.len = vcpu->mmio_size;
  1973. run->mmio.is_write = vcpu->mmio_is_write;
  1974. }
  1975. if (r) {
  1976. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1977. return EMULATE_DONE;
  1978. if (!vcpu->mmio_needed) {
  1979. kvm_report_emulation_failure(vcpu, "mmio");
  1980. return EMULATE_FAIL;
  1981. }
  1982. return EMULATE_DO_MMIO;
  1983. }
  1984. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1985. if (vcpu->mmio_is_write) {
  1986. vcpu->mmio_needed = 0;
  1987. return EMULATE_DO_MMIO;
  1988. }
  1989. return EMULATE_DONE;
  1990. }
  1991. EXPORT_SYMBOL_GPL(emulate_instruction);
  1992. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1993. {
  1994. int i;
  1995. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1996. if (vcpu->arch.pio.guest_pages[i]) {
  1997. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1998. vcpu->arch.pio.guest_pages[i] = NULL;
  1999. }
  2000. }
  2001. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2002. {
  2003. void *p = vcpu->arch.pio_data;
  2004. void *q;
  2005. unsigned bytes;
  2006. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  2007. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  2008. PAGE_KERNEL);
  2009. if (!q) {
  2010. free_pio_guest_pages(vcpu);
  2011. return -ENOMEM;
  2012. }
  2013. q += vcpu->arch.pio.guest_page_offset;
  2014. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2015. if (vcpu->arch.pio.in)
  2016. memcpy(q, p, bytes);
  2017. else
  2018. memcpy(p, q, bytes);
  2019. q -= vcpu->arch.pio.guest_page_offset;
  2020. vunmap(q);
  2021. free_pio_guest_pages(vcpu);
  2022. return 0;
  2023. }
  2024. int complete_pio(struct kvm_vcpu *vcpu)
  2025. {
  2026. struct kvm_pio_request *io = &vcpu->arch.pio;
  2027. long delta;
  2028. int r;
  2029. unsigned long val;
  2030. if (!io->string) {
  2031. if (io->in) {
  2032. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2033. memcpy(&val, vcpu->arch.pio_data, io->size);
  2034. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2035. }
  2036. } else {
  2037. if (io->in) {
  2038. r = pio_copy_data(vcpu);
  2039. if (r)
  2040. return r;
  2041. }
  2042. delta = 1;
  2043. if (io->rep) {
  2044. delta *= io->cur_count;
  2045. /*
  2046. * The size of the register should really depend on
  2047. * current address size.
  2048. */
  2049. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2050. val -= delta;
  2051. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2052. }
  2053. if (io->down)
  2054. delta = -delta;
  2055. delta *= io->size;
  2056. if (io->in) {
  2057. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2058. val += delta;
  2059. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2060. } else {
  2061. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2062. val += delta;
  2063. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2064. }
  2065. }
  2066. io->count -= io->cur_count;
  2067. io->cur_count = 0;
  2068. return 0;
  2069. }
  2070. static void kernel_pio(struct kvm_io_device *pio_dev,
  2071. struct kvm_vcpu *vcpu,
  2072. void *pd)
  2073. {
  2074. /* TODO: String I/O for in kernel device */
  2075. mutex_lock(&vcpu->kvm->lock);
  2076. if (vcpu->arch.pio.in)
  2077. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2078. vcpu->arch.pio.size,
  2079. pd);
  2080. else
  2081. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2082. vcpu->arch.pio.size,
  2083. pd);
  2084. mutex_unlock(&vcpu->kvm->lock);
  2085. }
  2086. static void pio_string_write(struct kvm_io_device *pio_dev,
  2087. struct kvm_vcpu *vcpu)
  2088. {
  2089. struct kvm_pio_request *io = &vcpu->arch.pio;
  2090. void *pd = vcpu->arch.pio_data;
  2091. int i;
  2092. mutex_lock(&vcpu->kvm->lock);
  2093. for (i = 0; i < io->cur_count; i++) {
  2094. kvm_iodevice_write(pio_dev, io->port,
  2095. io->size,
  2096. pd);
  2097. pd += io->size;
  2098. }
  2099. mutex_unlock(&vcpu->kvm->lock);
  2100. }
  2101. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2102. gpa_t addr, int len,
  2103. int is_write)
  2104. {
  2105. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2106. }
  2107. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2108. int size, unsigned port)
  2109. {
  2110. struct kvm_io_device *pio_dev;
  2111. unsigned long val;
  2112. vcpu->run->exit_reason = KVM_EXIT_IO;
  2113. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2114. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2115. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2116. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2117. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2118. vcpu->arch.pio.in = in;
  2119. vcpu->arch.pio.string = 0;
  2120. vcpu->arch.pio.down = 0;
  2121. vcpu->arch.pio.guest_page_offset = 0;
  2122. vcpu->arch.pio.rep = 0;
  2123. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2124. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2125. handler);
  2126. else
  2127. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2128. handler);
  2129. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2130. memcpy(vcpu->arch.pio_data, &val, 4);
  2131. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2132. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2133. if (pio_dev) {
  2134. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2135. complete_pio(vcpu);
  2136. return 1;
  2137. }
  2138. return 0;
  2139. }
  2140. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2141. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2142. int size, unsigned long count, int down,
  2143. gva_t address, int rep, unsigned port)
  2144. {
  2145. unsigned now, in_page;
  2146. int i, ret = 0;
  2147. int nr_pages = 1;
  2148. struct page *page;
  2149. struct kvm_io_device *pio_dev;
  2150. vcpu->run->exit_reason = KVM_EXIT_IO;
  2151. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2152. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2153. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2154. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2155. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2156. vcpu->arch.pio.in = in;
  2157. vcpu->arch.pio.string = 1;
  2158. vcpu->arch.pio.down = down;
  2159. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2160. vcpu->arch.pio.rep = rep;
  2161. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2162. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2163. handler);
  2164. else
  2165. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2166. handler);
  2167. if (!count) {
  2168. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2169. return 1;
  2170. }
  2171. if (!down)
  2172. in_page = PAGE_SIZE - offset_in_page(address);
  2173. else
  2174. in_page = offset_in_page(address) + size;
  2175. now = min(count, (unsigned long)in_page / size);
  2176. if (!now) {
  2177. /*
  2178. * String I/O straddles page boundary. Pin two guest pages
  2179. * so that we satisfy atomicity constraints. Do just one
  2180. * transaction to avoid complexity.
  2181. */
  2182. nr_pages = 2;
  2183. now = 1;
  2184. }
  2185. if (down) {
  2186. /*
  2187. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2188. */
  2189. pr_unimpl(vcpu, "guest string pio down\n");
  2190. kvm_inject_gp(vcpu, 0);
  2191. return 1;
  2192. }
  2193. vcpu->run->io.count = now;
  2194. vcpu->arch.pio.cur_count = now;
  2195. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2196. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2197. for (i = 0; i < nr_pages; ++i) {
  2198. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2199. vcpu->arch.pio.guest_pages[i] = page;
  2200. if (!page) {
  2201. kvm_inject_gp(vcpu, 0);
  2202. free_pio_guest_pages(vcpu);
  2203. return 1;
  2204. }
  2205. }
  2206. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2207. vcpu->arch.pio.cur_count,
  2208. !vcpu->arch.pio.in);
  2209. if (!vcpu->arch.pio.in) {
  2210. /* string PIO write */
  2211. ret = pio_copy_data(vcpu);
  2212. if (ret >= 0 && pio_dev) {
  2213. pio_string_write(pio_dev, vcpu);
  2214. complete_pio(vcpu);
  2215. if (vcpu->arch.pio.count == 0)
  2216. ret = 1;
  2217. }
  2218. } else if (pio_dev)
  2219. pr_unimpl(vcpu, "no string pio read support yet, "
  2220. "port %x size %d count %ld\n",
  2221. port, size, count);
  2222. return ret;
  2223. }
  2224. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2225. int kvm_arch_init(void *opaque)
  2226. {
  2227. int r;
  2228. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2229. if (kvm_x86_ops) {
  2230. printk(KERN_ERR "kvm: already loaded the other module\n");
  2231. r = -EEXIST;
  2232. goto out;
  2233. }
  2234. if (!ops->cpu_has_kvm_support()) {
  2235. printk(KERN_ERR "kvm: no hardware support\n");
  2236. r = -EOPNOTSUPP;
  2237. goto out;
  2238. }
  2239. if (ops->disabled_by_bios()) {
  2240. printk(KERN_ERR "kvm: disabled by bios\n");
  2241. r = -EOPNOTSUPP;
  2242. goto out;
  2243. }
  2244. r = kvm_mmu_module_init();
  2245. if (r)
  2246. goto out;
  2247. kvm_init_msr_list();
  2248. kvm_x86_ops = ops;
  2249. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2250. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2251. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2252. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2253. return 0;
  2254. out:
  2255. return r;
  2256. }
  2257. void kvm_arch_exit(void)
  2258. {
  2259. kvm_x86_ops = NULL;
  2260. kvm_mmu_module_exit();
  2261. }
  2262. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2263. {
  2264. ++vcpu->stat.halt_exits;
  2265. KVMTRACE_0D(HLT, vcpu, handler);
  2266. if (irqchip_in_kernel(vcpu->kvm)) {
  2267. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2268. return 1;
  2269. } else {
  2270. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2271. return 0;
  2272. }
  2273. }
  2274. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2275. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2276. unsigned long a1)
  2277. {
  2278. if (is_long_mode(vcpu))
  2279. return a0;
  2280. else
  2281. return a0 | ((gpa_t)a1 << 32);
  2282. }
  2283. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2284. {
  2285. unsigned long nr, a0, a1, a2, a3, ret;
  2286. int r = 1;
  2287. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2288. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2289. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2290. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2291. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2292. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2293. if (!is_long_mode(vcpu)) {
  2294. nr &= 0xFFFFFFFF;
  2295. a0 &= 0xFFFFFFFF;
  2296. a1 &= 0xFFFFFFFF;
  2297. a2 &= 0xFFFFFFFF;
  2298. a3 &= 0xFFFFFFFF;
  2299. }
  2300. switch (nr) {
  2301. case KVM_HC_VAPIC_POLL_IRQ:
  2302. ret = 0;
  2303. break;
  2304. case KVM_HC_MMU_OP:
  2305. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2306. break;
  2307. default:
  2308. ret = -KVM_ENOSYS;
  2309. break;
  2310. }
  2311. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2312. ++vcpu->stat.hypercalls;
  2313. return r;
  2314. }
  2315. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2316. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2317. {
  2318. char instruction[3];
  2319. int ret = 0;
  2320. unsigned long rip = kvm_rip_read(vcpu);
  2321. /*
  2322. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2323. * to ensure that the updated hypercall appears atomically across all
  2324. * VCPUs.
  2325. */
  2326. kvm_mmu_zap_all(vcpu->kvm);
  2327. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2328. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2329. != X86EMUL_CONTINUE)
  2330. ret = -EFAULT;
  2331. return ret;
  2332. }
  2333. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2334. {
  2335. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2336. }
  2337. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2338. {
  2339. struct descriptor_table dt = { limit, base };
  2340. kvm_x86_ops->set_gdt(vcpu, &dt);
  2341. }
  2342. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2343. {
  2344. struct descriptor_table dt = { limit, base };
  2345. kvm_x86_ops->set_idt(vcpu, &dt);
  2346. }
  2347. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2348. unsigned long *rflags)
  2349. {
  2350. kvm_lmsw(vcpu, msw);
  2351. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2352. }
  2353. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2354. {
  2355. unsigned long value;
  2356. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2357. switch (cr) {
  2358. case 0:
  2359. value = vcpu->arch.cr0;
  2360. break;
  2361. case 2:
  2362. value = vcpu->arch.cr2;
  2363. break;
  2364. case 3:
  2365. value = vcpu->arch.cr3;
  2366. break;
  2367. case 4:
  2368. value = vcpu->arch.cr4;
  2369. break;
  2370. case 8:
  2371. value = kvm_get_cr8(vcpu);
  2372. break;
  2373. default:
  2374. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2375. return 0;
  2376. }
  2377. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2378. (u32)((u64)value >> 32), handler);
  2379. return value;
  2380. }
  2381. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2382. unsigned long *rflags)
  2383. {
  2384. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2385. (u32)((u64)val >> 32), handler);
  2386. switch (cr) {
  2387. case 0:
  2388. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2389. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2390. break;
  2391. case 2:
  2392. vcpu->arch.cr2 = val;
  2393. break;
  2394. case 3:
  2395. kvm_set_cr3(vcpu, val);
  2396. break;
  2397. case 4:
  2398. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2399. break;
  2400. case 8:
  2401. kvm_set_cr8(vcpu, val & 0xfUL);
  2402. break;
  2403. default:
  2404. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2405. }
  2406. }
  2407. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2408. {
  2409. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2410. int j, nent = vcpu->arch.cpuid_nent;
  2411. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2412. /* when no next entry is found, the current entry[i] is reselected */
  2413. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2414. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2415. if (ej->function == e->function) {
  2416. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2417. return j;
  2418. }
  2419. }
  2420. return 0; /* silence gcc, even though control never reaches here */
  2421. }
  2422. /* find an entry with matching function, matching index (if needed), and that
  2423. * should be read next (if it's stateful) */
  2424. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2425. u32 function, u32 index)
  2426. {
  2427. if (e->function != function)
  2428. return 0;
  2429. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2430. return 0;
  2431. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2432. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2433. return 0;
  2434. return 1;
  2435. }
  2436. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2437. {
  2438. int i;
  2439. u32 function, index;
  2440. struct kvm_cpuid_entry2 *e, *best;
  2441. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2442. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2443. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2444. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2445. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2446. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2447. best = NULL;
  2448. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2449. e = &vcpu->arch.cpuid_entries[i];
  2450. if (is_matching_cpuid_entry(e, function, index)) {
  2451. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2452. move_to_next_stateful_cpuid_entry(vcpu, i);
  2453. best = e;
  2454. break;
  2455. }
  2456. /*
  2457. * Both basic or both extended?
  2458. */
  2459. if (((e->function ^ function) & 0x80000000) == 0)
  2460. if (!best || e->function > best->function)
  2461. best = e;
  2462. }
  2463. if (best) {
  2464. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2465. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2466. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2467. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2468. }
  2469. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2470. KVMTRACE_5D(CPUID, vcpu, function,
  2471. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2472. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2473. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2474. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2475. }
  2476. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2477. /*
  2478. * Check if userspace requested an interrupt window, and that the
  2479. * interrupt window is open.
  2480. *
  2481. * No need to exit to userspace if we already have an interrupt queued.
  2482. */
  2483. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2484. struct kvm_run *kvm_run)
  2485. {
  2486. return (!vcpu->arch.irq_summary &&
  2487. kvm_run->request_interrupt_window &&
  2488. vcpu->arch.interrupt_window_open &&
  2489. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2490. }
  2491. /*
  2492. * Check if userspace requested a NMI window, and that the NMI window
  2493. * is open.
  2494. *
  2495. * No need to exit to userspace if we already have a NMI queued.
  2496. */
  2497. static int dm_request_for_nmi_injection(struct kvm_vcpu *vcpu,
  2498. struct kvm_run *kvm_run)
  2499. {
  2500. return (!vcpu->arch.nmi_pending &&
  2501. kvm_run->request_nmi_window &&
  2502. vcpu->arch.nmi_window_open);
  2503. }
  2504. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2505. struct kvm_run *kvm_run)
  2506. {
  2507. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2508. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2509. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2510. if (irqchip_in_kernel(vcpu->kvm)) {
  2511. kvm_run->ready_for_interrupt_injection = 1;
  2512. kvm_run->ready_for_nmi_injection = 1;
  2513. } else {
  2514. kvm_run->ready_for_interrupt_injection =
  2515. (vcpu->arch.interrupt_window_open &&
  2516. vcpu->arch.irq_summary == 0);
  2517. kvm_run->ready_for_nmi_injection =
  2518. (vcpu->arch.nmi_window_open &&
  2519. vcpu->arch.nmi_pending == 0);
  2520. }
  2521. }
  2522. static void vapic_enter(struct kvm_vcpu *vcpu)
  2523. {
  2524. struct kvm_lapic *apic = vcpu->arch.apic;
  2525. struct page *page;
  2526. if (!apic || !apic->vapic_addr)
  2527. return;
  2528. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2529. vcpu->arch.apic->vapic_page = page;
  2530. }
  2531. static void vapic_exit(struct kvm_vcpu *vcpu)
  2532. {
  2533. struct kvm_lapic *apic = vcpu->arch.apic;
  2534. if (!apic || !apic->vapic_addr)
  2535. return;
  2536. down_read(&vcpu->kvm->slots_lock);
  2537. kvm_release_page_dirty(apic->vapic_page);
  2538. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2539. up_read(&vcpu->kvm->slots_lock);
  2540. }
  2541. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2542. {
  2543. int r;
  2544. if (vcpu->requests)
  2545. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2546. kvm_mmu_unload(vcpu);
  2547. r = kvm_mmu_reload(vcpu);
  2548. if (unlikely(r))
  2549. goto out;
  2550. if (vcpu->requests) {
  2551. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2552. __kvm_migrate_timers(vcpu);
  2553. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2554. kvm_mmu_sync_roots(vcpu);
  2555. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2556. kvm_x86_ops->tlb_flush(vcpu);
  2557. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2558. &vcpu->requests)) {
  2559. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2560. r = 0;
  2561. goto out;
  2562. }
  2563. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2564. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2565. r = 0;
  2566. goto out;
  2567. }
  2568. }
  2569. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2570. kvm_inject_pending_timer_irqs(vcpu);
  2571. preempt_disable();
  2572. kvm_x86_ops->prepare_guest_switch(vcpu);
  2573. kvm_load_guest_fpu(vcpu);
  2574. local_irq_disable();
  2575. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2576. local_irq_enable();
  2577. preempt_enable();
  2578. r = 1;
  2579. goto out;
  2580. }
  2581. if (vcpu->guest_debug.enabled)
  2582. kvm_x86_ops->guest_debug_pre(vcpu);
  2583. vcpu->guest_mode = 1;
  2584. /*
  2585. * Make sure that guest_mode assignment won't happen after
  2586. * testing the pending IRQ vector bitmap.
  2587. */
  2588. smp_wmb();
  2589. if (vcpu->arch.exception.pending)
  2590. __queue_exception(vcpu);
  2591. else if (irqchip_in_kernel(vcpu->kvm))
  2592. kvm_x86_ops->inject_pending_irq(vcpu);
  2593. else
  2594. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2595. kvm_lapic_sync_to_vapic(vcpu);
  2596. up_read(&vcpu->kvm->slots_lock);
  2597. kvm_guest_enter();
  2598. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2599. kvm_x86_ops->run(vcpu, kvm_run);
  2600. vcpu->guest_mode = 0;
  2601. local_irq_enable();
  2602. ++vcpu->stat.exits;
  2603. /*
  2604. * We must have an instruction between local_irq_enable() and
  2605. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2606. * the interrupt shadow. The stat.exits increment will do nicely.
  2607. * But we need to prevent reordering, hence this barrier():
  2608. */
  2609. barrier();
  2610. kvm_guest_exit();
  2611. preempt_enable();
  2612. down_read(&vcpu->kvm->slots_lock);
  2613. /*
  2614. * Profile KVM exit RIPs:
  2615. */
  2616. if (unlikely(prof_on == KVM_PROFILING)) {
  2617. unsigned long rip = kvm_rip_read(vcpu);
  2618. profile_hit(KVM_PROFILING, (void *)rip);
  2619. }
  2620. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2621. vcpu->arch.exception.pending = false;
  2622. kvm_lapic_sync_from_vapic(vcpu);
  2623. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2624. out:
  2625. return r;
  2626. }
  2627. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2628. {
  2629. int r;
  2630. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2631. pr_debug("vcpu %d received sipi with vector # %x\n",
  2632. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2633. kvm_lapic_reset(vcpu);
  2634. r = kvm_arch_vcpu_reset(vcpu);
  2635. if (r)
  2636. return r;
  2637. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2638. }
  2639. down_read(&vcpu->kvm->slots_lock);
  2640. vapic_enter(vcpu);
  2641. r = 1;
  2642. while (r > 0) {
  2643. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2644. r = vcpu_enter_guest(vcpu, kvm_run);
  2645. else {
  2646. up_read(&vcpu->kvm->slots_lock);
  2647. kvm_vcpu_block(vcpu);
  2648. down_read(&vcpu->kvm->slots_lock);
  2649. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2650. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  2651. vcpu->arch.mp_state =
  2652. KVM_MP_STATE_RUNNABLE;
  2653. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2654. r = -EINTR;
  2655. }
  2656. if (r > 0) {
  2657. if (dm_request_for_nmi_injection(vcpu, kvm_run)) {
  2658. r = -EINTR;
  2659. kvm_run->exit_reason = KVM_EXIT_NMI;
  2660. ++vcpu->stat.request_nmi_exits;
  2661. }
  2662. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2663. r = -EINTR;
  2664. kvm_run->exit_reason = KVM_EXIT_INTR;
  2665. ++vcpu->stat.request_irq_exits;
  2666. }
  2667. if (signal_pending(current)) {
  2668. r = -EINTR;
  2669. kvm_run->exit_reason = KVM_EXIT_INTR;
  2670. ++vcpu->stat.signal_exits;
  2671. }
  2672. if (need_resched()) {
  2673. up_read(&vcpu->kvm->slots_lock);
  2674. kvm_resched(vcpu);
  2675. down_read(&vcpu->kvm->slots_lock);
  2676. }
  2677. }
  2678. }
  2679. up_read(&vcpu->kvm->slots_lock);
  2680. post_kvm_run_save(vcpu, kvm_run);
  2681. vapic_exit(vcpu);
  2682. return r;
  2683. }
  2684. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2685. {
  2686. int r;
  2687. sigset_t sigsaved;
  2688. vcpu_load(vcpu);
  2689. if (vcpu->sigset_active)
  2690. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2691. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2692. kvm_vcpu_block(vcpu);
  2693. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2694. r = -EAGAIN;
  2695. goto out;
  2696. }
  2697. /* re-sync apic's tpr */
  2698. if (!irqchip_in_kernel(vcpu->kvm))
  2699. kvm_set_cr8(vcpu, kvm_run->cr8);
  2700. if (vcpu->arch.pio.cur_count) {
  2701. r = complete_pio(vcpu);
  2702. if (r)
  2703. goto out;
  2704. }
  2705. #if CONFIG_HAS_IOMEM
  2706. if (vcpu->mmio_needed) {
  2707. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2708. vcpu->mmio_read_completed = 1;
  2709. vcpu->mmio_needed = 0;
  2710. down_read(&vcpu->kvm->slots_lock);
  2711. r = emulate_instruction(vcpu, kvm_run,
  2712. vcpu->arch.mmio_fault_cr2, 0,
  2713. EMULTYPE_NO_DECODE);
  2714. up_read(&vcpu->kvm->slots_lock);
  2715. if (r == EMULATE_DO_MMIO) {
  2716. /*
  2717. * Read-modify-write. Back to userspace.
  2718. */
  2719. r = 0;
  2720. goto out;
  2721. }
  2722. }
  2723. #endif
  2724. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2725. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2726. kvm_run->hypercall.ret);
  2727. r = __vcpu_run(vcpu, kvm_run);
  2728. out:
  2729. if (vcpu->sigset_active)
  2730. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2731. vcpu_put(vcpu);
  2732. return r;
  2733. }
  2734. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2735. {
  2736. vcpu_load(vcpu);
  2737. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2738. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2739. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2740. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2741. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2742. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2743. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2744. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2745. #ifdef CONFIG_X86_64
  2746. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2747. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2748. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2749. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2750. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2751. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2752. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2753. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2754. #endif
  2755. regs->rip = kvm_rip_read(vcpu);
  2756. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2757. /*
  2758. * Don't leak debug flags in case they were set for guest debugging
  2759. */
  2760. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2761. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2762. vcpu_put(vcpu);
  2763. return 0;
  2764. }
  2765. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2766. {
  2767. vcpu_load(vcpu);
  2768. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2769. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2770. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2771. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2772. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2773. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2774. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2775. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2776. #ifdef CONFIG_X86_64
  2777. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2778. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2779. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2780. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2781. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2782. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2783. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2784. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2785. #endif
  2786. kvm_rip_write(vcpu, regs->rip);
  2787. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2788. vcpu->arch.exception.pending = false;
  2789. vcpu_put(vcpu);
  2790. return 0;
  2791. }
  2792. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2793. struct kvm_segment *var, int seg)
  2794. {
  2795. kvm_x86_ops->get_segment(vcpu, var, seg);
  2796. }
  2797. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2798. {
  2799. struct kvm_segment cs;
  2800. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2801. *db = cs.db;
  2802. *l = cs.l;
  2803. }
  2804. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2805. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2806. struct kvm_sregs *sregs)
  2807. {
  2808. struct descriptor_table dt;
  2809. int pending_vec;
  2810. vcpu_load(vcpu);
  2811. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2812. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2813. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2814. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2815. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2816. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2817. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2818. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2819. kvm_x86_ops->get_idt(vcpu, &dt);
  2820. sregs->idt.limit = dt.limit;
  2821. sregs->idt.base = dt.base;
  2822. kvm_x86_ops->get_gdt(vcpu, &dt);
  2823. sregs->gdt.limit = dt.limit;
  2824. sregs->gdt.base = dt.base;
  2825. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2826. sregs->cr0 = vcpu->arch.cr0;
  2827. sregs->cr2 = vcpu->arch.cr2;
  2828. sregs->cr3 = vcpu->arch.cr3;
  2829. sregs->cr4 = vcpu->arch.cr4;
  2830. sregs->cr8 = kvm_get_cr8(vcpu);
  2831. sregs->efer = vcpu->arch.shadow_efer;
  2832. sregs->apic_base = kvm_get_apic_base(vcpu);
  2833. if (irqchip_in_kernel(vcpu->kvm)) {
  2834. memset(sregs->interrupt_bitmap, 0,
  2835. sizeof sregs->interrupt_bitmap);
  2836. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2837. if (pending_vec >= 0)
  2838. set_bit(pending_vec,
  2839. (unsigned long *)sregs->interrupt_bitmap);
  2840. } else
  2841. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2842. sizeof sregs->interrupt_bitmap);
  2843. vcpu_put(vcpu);
  2844. return 0;
  2845. }
  2846. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2847. struct kvm_mp_state *mp_state)
  2848. {
  2849. vcpu_load(vcpu);
  2850. mp_state->mp_state = vcpu->arch.mp_state;
  2851. vcpu_put(vcpu);
  2852. return 0;
  2853. }
  2854. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2855. struct kvm_mp_state *mp_state)
  2856. {
  2857. vcpu_load(vcpu);
  2858. vcpu->arch.mp_state = mp_state->mp_state;
  2859. vcpu_put(vcpu);
  2860. return 0;
  2861. }
  2862. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2863. struct kvm_segment *var, int seg)
  2864. {
  2865. kvm_x86_ops->set_segment(vcpu, var, seg);
  2866. }
  2867. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2868. struct kvm_segment *kvm_desct)
  2869. {
  2870. kvm_desct->base = seg_desc->base0;
  2871. kvm_desct->base |= seg_desc->base1 << 16;
  2872. kvm_desct->base |= seg_desc->base2 << 24;
  2873. kvm_desct->limit = seg_desc->limit0;
  2874. kvm_desct->limit |= seg_desc->limit << 16;
  2875. if (seg_desc->g) {
  2876. kvm_desct->limit <<= 12;
  2877. kvm_desct->limit |= 0xfff;
  2878. }
  2879. kvm_desct->selector = selector;
  2880. kvm_desct->type = seg_desc->type;
  2881. kvm_desct->present = seg_desc->p;
  2882. kvm_desct->dpl = seg_desc->dpl;
  2883. kvm_desct->db = seg_desc->d;
  2884. kvm_desct->s = seg_desc->s;
  2885. kvm_desct->l = seg_desc->l;
  2886. kvm_desct->g = seg_desc->g;
  2887. kvm_desct->avl = seg_desc->avl;
  2888. if (!selector)
  2889. kvm_desct->unusable = 1;
  2890. else
  2891. kvm_desct->unusable = 0;
  2892. kvm_desct->padding = 0;
  2893. }
  2894. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2895. u16 selector,
  2896. struct descriptor_table *dtable)
  2897. {
  2898. if (selector & 1 << 2) {
  2899. struct kvm_segment kvm_seg;
  2900. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2901. if (kvm_seg.unusable)
  2902. dtable->limit = 0;
  2903. else
  2904. dtable->limit = kvm_seg.limit;
  2905. dtable->base = kvm_seg.base;
  2906. }
  2907. else
  2908. kvm_x86_ops->get_gdt(vcpu, dtable);
  2909. }
  2910. /* allowed just for 8 bytes segments */
  2911. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2912. struct desc_struct *seg_desc)
  2913. {
  2914. gpa_t gpa;
  2915. struct descriptor_table dtable;
  2916. u16 index = selector >> 3;
  2917. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2918. if (dtable.limit < index * 8 + 7) {
  2919. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2920. return 1;
  2921. }
  2922. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2923. gpa += index * 8;
  2924. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  2925. }
  2926. /* allowed just for 8 bytes segments */
  2927. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2928. struct desc_struct *seg_desc)
  2929. {
  2930. gpa_t gpa;
  2931. struct descriptor_table dtable;
  2932. u16 index = selector >> 3;
  2933. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2934. if (dtable.limit < index * 8 + 7)
  2935. return 1;
  2936. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2937. gpa += index * 8;
  2938. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  2939. }
  2940. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2941. struct desc_struct *seg_desc)
  2942. {
  2943. u32 base_addr;
  2944. base_addr = seg_desc->base0;
  2945. base_addr |= (seg_desc->base1 << 16);
  2946. base_addr |= (seg_desc->base2 << 24);
  2947. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  2948. }
  2949. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2950. {
  2951. struct kvm_segment kvm_seg;
  2952. kvm_get_segment(vcpu, &kvm_seg, seg);
  2953. return kvm_seg.selector;
  2954. }
  2955. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2956. u16 selector,
  2957. struct kvm_segment *kvm_seg)
  2958. {
  2959. struct desc_struct seg_desc;
  2960. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2961. return 1;
  2962. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2963. return 0;
  2964. }
  2965. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  2966. {
  2967. struct kvm_segment segvar = {
  2968. .base = selector << 4,
  2969. .limit = 0xffff,
  2970. .selector = selector,
  2971. .type = 3,
  2972. .present = 1,
  2973. .dpl = 3,
  2974. .db = 0,
  2975. .s = 1,
  2976. .l = 0,
  2977. .g = 0,
  2978. .avl = 0,
  2979. .unusable = 0,
  2980. };
  2981. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  2982. return 0;
  2983. }
  2984. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2985. int type_bits, int seg)
  2986. {
  2987. struct kvm_segment kvm_seg;
  2988. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  2989. return kvm_load_realmode_segment(vcpu, selector, seg);
  2990. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2991. return 1;
  2992. kvm_seg.type |= type_bits;
  2993. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2994. seg != VCPU_SREG_LDTR)
  2995. if (!kvm_seg.s)
  2996. kvm_seg.unusable = 1;
  2997. kvm_set_segment(vcpu, &kvm_seg, seg);
  2998. return 0;
  2999. }
  3000. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3001. struct tss_segment_32 *tss)
  3002. {
  3003. tss->cr3 = vcpu->arch.cr3;
  3004. tss->eip = kvm_rip_read(vcpu);
  3005. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3006. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3007. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3008. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3009. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3010. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3011. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3012. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3013. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3014. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3015. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3016. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3017. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3018. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3019. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3020. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3021. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3022. }
  3023. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3024. struct tss_segment_32 *tss)
  3025. {
  3026. kvm_set_cr3(vcpu, tss->cr3);
  3027. kvm_rip_write(vcpu, tss->eip);
  3028. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3029. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3030. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3031. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3032. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3033. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3034. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3035. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3036. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3037. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3038. return 1;
  3039. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3040. return 1;
  3041. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3042. return 1;
  3043. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3044. return 1;
  3045. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3046. return 1;
  3047. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3048. return 1;
  3049. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3050. return 1;
  3051. return 0;
  3052. }
  3053. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3054. struct tss_segment_16 *tss)
  3055. {
  3056. tss->ip = kvm_rip_read(vcpu);
  3057. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3058. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3059. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3060. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3061. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3062. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3063. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3064. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3065. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3066. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3067. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3068. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3069. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3070. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3071. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3072. }
  3073. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3074. struct tss_segment_16 *tss)
  3075. {
  3076. kvm_rip_write(vcpu, tss->ip);
  3077. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3078. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3079. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3080. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3081. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3082. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3083. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3084. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3085. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3086. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3087. return 1;
  3088. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3089. return 1;
  3090. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3091. return 1;
  3092. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3093. return 1;
  3094. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3095. return 1;
  3096. return 0;
  3097. }
  3098. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3099. u32 old_tss_base,
  3100. struct desc_struct *nseg_desc)
  3101. {
  3102. struct tss_segment_16 tss_segment_16;
  3103. int ret = 0;
  3104. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3105. sizeof tss_segment_16))
  3106. goto out;
  3107. save_state_to_tss16(vcpu, &tss_segment_16);
  3108. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3109. sizeof tss_segment_16))
  3110. goto out;
  3111. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3112. &tss_segment_16, sizeof tss_segment_16))
  3113. goto out;
  3114. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3115. goto out;
  3116. ret = 1;
  3117. out:
  3118. return ret;
  3119. }
  3120. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3121. u32 old_tss_base,
  3122. struct desc_struct *nseg_desc)
  3123. {
  3124. struct tss_segment_32 tss_segment_32;
  3125. int ret = 0;
  3126. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3127. sizeof tss_segment_32))
  3128. goto out;
  3129. save_state_to_tss32(vcpu, &tss_segment_32);
  3130. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3131. sizeof tss_segment_32))
  3132. goto out;
  3133. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3134. &tss_segment_32, sizeof tss_segment_32))
  3135. goto out;
  3136. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3137. goto out;
  3138. ret = 1;
  3139. out:
  3140. return ret;
  3141. }
  3142. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3143. {
  3144. struct kvm_segment tr_seg;
  3145. struct desc_struct cseg_desc;
  3146. struct desc_struct nseg_desc;
  3147. int ret = 0;
  3148. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3149. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3150. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3151. /* FIXME: Handle errors. Failure to read either TSS or their
  3152. * descriptors should generate a pagefault.
  3153. */
  3154. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3155. goto out;
  3156. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3157. goto out;
  3158. if (reason != TASK_SWITCH_IRET) {
  3159. int cpl;
  3160. cpl = kvm_x86_ops->get_cpl(vcpu);
  3161. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3162. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3163. return 1;
  3164. }
  3165. }
  3166. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3167. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3168. return 1;
  3169. }
  3170. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3171. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3172. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3173. }
  3174. if (reason == TASK_SWITCH_IRET) {
  3175. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3176. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3177. }
  3178. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3179. if (nseg_desc.type & 8)
  3180. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3181. &nseg_desc);
  3182. else
  3183. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3184. &nseg_desc);
  3185. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3186. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3187. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3188. }
  3189. if (reason != TASK_SWITCH_IRET) {
  3190. nseg_desc.type |= (1 << 1);
  3191. save_guest_segment_descriptor(vcpu, tss_selector,
  3192. &nseg_desc);
  3193. }
  3194. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3195. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3196. tr_seg.type = 11;
  3197. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3198. out:
  3199. return ret;
  3200. }
  3201. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3202. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3203. struct kvm_sregs *sregs)
  3204. {
  3205. int mmu_reset_needed = 0;
  3206. int i, pending_vec, max_bits;
  3207. struct descriptor_table dt;
  3208. vcpu_load(vcpu);
  3209. dt.limit = sregs->idt.limit;
  3210. dt.base = sregs->idt.base;
  3211. kvm_x86_ops->set_idt(vcpu, &dt);
  3212. dt.limit = sregs->gdt.limit;
  3213. dt.base = sregs->gdt.base;
  3214. kvm_x86_ops->set_gdt(vcpu, &dt);
  3215. vcpu->arch.cr2 = sregs->cr2;
  3216. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3217. vcpu->arch.cr3 = sregs->cr3;
  3218. kvm_set_cr8(vcpu, sregs->cr8);
  3219. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3220. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3221. kvm_set_apic_base(vcpu, sregs->apic_base);
  3222. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3223. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3224. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3225. vcpu->arch.cr0 = sregs->cr0;
  3226. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3227. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3228. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3229. load_pdptrs(vcpu, vcpu->arch.cr3);
  3230. if (mmu_reset_needed)
  3231. kvm_mmu_reset_context(vcpu);
  3232. if (!irqchip_in_kernel(vcpu->kvm)) {
  3233. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3234. sizeof vcpu->arch.irq_pending);
  3235. vcpu->arch.irq_summary = 0;
  3236. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3237. if (vcpu->arch.irq_pending[i])
  3238. __set_bit(i, &vcpu->arch.irq_summary);
  3239. } else {
  3240. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3241. pending_vec = find_first_bit(
  3242. (const unsigned long *)sregs->interrupt_bitmap,
  3243. max_bits);
  3244. /* Only pending external irq is handled here */
  3245. if (pending_vec < max_bits) {
  3246. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3247. pr_debug("Set back pending irq %d\n",
  3248. pending_vec);
  3249. }
  3250. kvm_pic_clear_isr_ack(vcpu->kvm);
  3251. }
  3252. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3253. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3254. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3255. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3256. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3257. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3258. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3259. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3260. /* Older userspace won't unhalt the vcpu on reset. */
  3261. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3262. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3263. !(vcpu->arch.cr0 & X86_CR0_PE))
  3264. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3265. vcpu_put(vcpu);
  3266. return 0;
  3267. }
  3268. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3269. struct kvm_debug_guest *dbg)
  3270. {
  3271. int r;
  3272. vcpu_load(vcpu);
  3273. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3274. vcpu_put(vcpu);
  3275. return r;
  3276. }
  3277. /*
  3278. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3279. * we have asm/x86/processor.h
  3280. */
  3281. struct fxsave {
  3282. u16 cwd;
  3283. u16 swd;
  3284. u16 twd;
  3285. u16 fop;
  3286. u64 rip;
  3287. u64 rdp;
  3288. u32 mxcsr;
  3289. u32 mxcsr_mask;
  3290. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3291. #ifdef CONFIG_X86_64
  3292. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3293. #else
  3294. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3295. #endif
  3296. };
  3297. /*
  3298. * Translate a guest virtual address to a guest physical address.
  3299. */
  3300. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3301. struct kvm_translation *tr)
  3302. {
  3303. unsigned long vaddr = tr->linear_address;
  3304. gpa_t gpa;
  3305. vcpu_load(vcpu);
  3306. down_read(&vcpu->kvm->slots_lock);
  3307. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3308. up_read(&vcpu->kvm->slots_lock);
  3309. tr->physical_address = gpa;
  3310. tr->valid = gpa != UNMAPPED_GVA;
  3311. tr->writeable = 1;
  3312. tr->usermode = 0;
  3313. vcpu_put(vcpu);
  3314. return 0;
  3315. }
  3316. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3317. {
  3318. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3319. vcpu_load(vcpu);
  3320. memcpy(fpu->fpr, fxsave->st_space, 128);
  3321. fpu->fcw = fxsave->cwd;
  3322. fpu->fsw = fxsave->swd;
  3323. fpu->ftwx = fxsave->twd;
  3324. fpu->last_opcode = fxsave->fop;
  3325. fpu->last_ip = fxsave->rip;
  3326. fpu->last_dp = fxsave->rdp;
  3327. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3328. vcpu_put(vcpu);
  3329. return 0;
  3330. }
  3331. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3332. {
  3333. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3334. vcpu_load(vcpu);
  3335. memcpy(fxsave->st_space, fpu->fpr, 128);
  3336. fxsave->cwd = fpu->fcw;
  3337. fxsave->swd = fpu->fsw;
  3338. fxsave->twd = fpu->ftwx;
  3339. fxsave->fop = fpu->last_opcode;
  3340. fxsave->rip = fpu->last_ip;
  3341. fxsave->rdp = fpu->last_dp;
  3342. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3343. vcpu_put(vcpu);
  3344. return 0;
  3345. }
  3346. void fx_init(struct kvm_vcpu *vcpu)
  3347. {
  3348. unsigned after_mxcsr_mask;
  3349. /*
  3350. * Touch the fpu the first time in non atomic context as if
  3351. * this is the first fpu instruction the exception handler
  3352. * will fire before the instruction returns and it'll have to
  3353. * allocate ram with GFP_KERNEL.
  3354. */
  3355. if (!used_math())
  3356. kvm_fx_save(&vcpu->arch.host_fx_image);
  3357. /* Initialize guest FPU by resetting ours and saving into guest's */
  3358. preempt_disable();
  3359. kvm_fx_save(&vcpu->arch.host_fx_image);
  3360. kvm_fx_finit();
  3361. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3362. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3363. preempt_enable();
  3364. vcpu->arch.cr0 |= X86_CR0_ET;
  3365. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3366. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3367. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3368. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3369. }
  3370. EXPORT_SYMBOL_GPL(fx_init);
  3371. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3372. {
  3373. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3374. return;
  3375. vcpu->guest_fpu_loaded = 1;
  3376. kvm_fx_save(&vcpu->arch.host_fx_image);
  3377. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3378. }
  3379. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3380. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3381. {
  3382. if (!vcpu->guest_fpu_loaded)
  3383. return;
  3384. vcpu->guest_fpu_loaded = 0;
  3385. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3386. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3387. ++vcpu->stat.fpu_reload;
  3388. }
  3389. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3390. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3391. {
  3392. kvm_x86_ops->vcpu_free(vcpu);
  3393. }
  3394. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3395. unsigned int id)
  3396. {
  3397. return kvm_x86_ops->vcpu_create(kvm, id);
  3398. }
  3399. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3400. {
  3401. int r;
  3402. /* We do fxsave: this must be aligned. */
  3403. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3404. vcpu_load(vcpu);
  3405. r = kvm_arch_vcpu_reset(vcpu);
  3406. if (r == 0)
  3407. r = kvm_mmu_setup(vcpu);
  3408. vcpu_put(vcpu);
  3409. if (r < 0)
  3410. goto free_vcpu;
  3411. return 0;
  3412. free_vcpu:
  3413. kvm_x86_ops->vcpu_free(vcpu);
  3414. return r;
  3415. }
  3416. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3417. {
  3418. vcpu_load(vcpu);
  3419. kvm_mmu_unload(vcpu);
  3420. vcpu_put(vcpu);
  3421. kvm_x86_ops->vcpu_free(vcpu);
  3422. }
  3423. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3424. {
  3425. vcpu->arch.nmi_pending = false;
  3426. vcpu->arch.nmi_injected = false;
  3427. return kvm_x86_ops->vcpu_reset(vcpu);
  3428. }
  3429. void kvm_arch_hardware_enable(void *garbage)
  3430. {
  3431. kvm_x86_ops->hardware_enable(garbage);
  3432. }
  3433. void kvm_arch_hardware_disable(void *garbage)
  3434. {
  3435. kvm_x86_ops->hardware_disable(garbage);
  3436. }
  3437. int kvm_arch_hardware_setup(void)
  3438. {
  3439. return kvm_x86_ops->hardware_setup();
  3440. }
  3441. void kvm_arch_hardware_unsetup(void)
  3442. {
  3443. kvm_x86_ops->hardware_unsetup();
  3444. }
  3445. void kvm_arch_check_processor_compat(void *rtn)
  3446. {
  3447. kvm_x86_ops->check_processor_compatibility(rtn);
  3448. }
  3449. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3450. {
  3451. struct page *page;
  3452. struct kvm *kvm;
  3453. int r;
  3454. BUG_ON(vcpu->kvm == NULL);
  3455. kvm = vcpu->kvm;
  3456. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3457. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3458. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3459. else
  3460. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3461. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3462. if (!page) {
  3463. r = -ENOMEM;
  3464. goto fail;
  3465. }
  3466. vcpu->arch.pio_data = page_address(page);
  3467. r = kvm_mmu_create(vcpu);
  3468. if (r < 0)
  3469. goto fail_free_pio_data;
  3470. if (irqchip_in_kernel(kvm)) {
  3471. r = kvm_create_lapic(vcpu);
  3472. if (r < 0)
  3473. goto fail_mmu_destroy;
  3474. }
  3475. return 0;
  3476. fail_mmu_destroy:
  3477. kvm_mmu_destroy(vcpu);
  3478. fail_free_pio_data:
  3479. free_page((unsigned long)vcpu->arch.pio_data);
  3480. fail:
  3481. return r;
  3482. }
  3483. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3484. {
  3485. kvm_free_lapic(vcpu);
  3486. down_read(&vcpu->kvm->slots_lock);
  3487. kvm_mmu_destroy(vcpu);
  3488. up_read(&vcpu->kvm->slots_lock);
  3489. free_page((unsigned long)vcpu->arch.pio_data);
  3490. }
  3491. struct kvm *kvm_arch_create_vm(void)
  3492. {
  3493. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3494. if (!kvm)
  3495. return ERR_PTR(-ENOMEM);
  3496. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3497. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3498. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3499. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3500. return kvm;
  3501. }
  3502. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3503. {
  3504. vcpu_load(vcpu);
  3505. kvm_mmu_unload(vcpu);
  3506. vcpu_put(vcpu);
  3507. }
  3508. static void kvm_free_vcpus(struct kvm *kvm)
  3509. {
  3510. unsigned int i;
  3511. /*
  3512. * Unpin any mmu pages first.
  3513. */
  3514. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3515. if (kvm->vcpus[i])
  3516. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3517. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3518. if (kvm->vcpus[i]) {
  3519. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3520. kvm->vcpus[i] = NULL;
  3521. }
  3522. }
  3523. }
  3524. void kvm_arch_destroy_vm(struct kvm *kvm)
  3525. {
  3526. kvm_iommu_unmap_guest(kvm);
  3527. kvm_free_all_assigned_devices(kvm);
  3528. kvm_free_pit(kvm);
  3529. kfree(kvm->arch.vpic);
  3530. kfree(kvm->arch.vioapic);
  3531. kvm_free_vcpus(kvm);
  3532. kvm_free_physmem(kvm);
  3533. if (kvm->arch.apic_access_page)
  3534. put_page(kvm->arch.apic_access_page);
  3535. if (kvm->arch.ept_identity_pagetable)
  3536. put_page(kvm->arch.ept_identity_pagetable);
  3537. kfree(kvm);
  3538. }
  3539. int kvm_arch_set_memory_region(struct kvm *kvm,
  3540. struct kvm_userspace_memory_region *mem,
  3541. struct kvm_memory_slot old,
  3542. int user_alloc)
  3543. {
  3544. int npages = mem->memory_size >> PAGE_SHIFT;
  3545. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3546. /*To keep backward compatibility with older userspace,
  3547. *x86 needs to hanlde !user_alloc case.
  3548. */
  3549. if (!user_alloc) {
  3550. if (npages && !old.rmap) {
  3551. unsigned long userspace_addr;
  3552. down_write(&current->mm->mmap_sem);
  3553. userspace_addr = do_mmap(NULL, 0,
  3554. npages * PAGE_SIZE,
  3555. PROT_READ | PROT_WRITE,
  3556. MAP_PRIVATE | MAP_ANONYMOUS,
  3557. 0);
  3558. up_write(&current->mm->mmap_sem);
  3559. if (IS_ERR((void *)userspace_addr))
  3560. return PTR_ERR((void *)userspace_addr);
  3561. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3562. spin_lock(&kvm->mmu_lock);
  3563. memslot->userspace_addr = userspace_addr;
  3564. spin_unlock(&kvm->mmu_lock);
  3565. } else {
  3566. if (!old.user_alloc && old.rmap) {
  3567. int ret;
  3568. down_write(&current->mm->mmap_sem);
  3569. ret = do_munmap(current->mm, old.userspace_addr,
  3570. old.npages * PAGE_SIZE);
  3571. up_write(&current->mm->mmap_sem);
  3572. if (ret < 0)
  3573. printk(KERN_WARNING
  3574. "kvm_vm_ioctl_set_memory_region: "
  3575. "failed to munmap memory\n");
  3576. }
  3577. }
  3578. }
  3579. if (!kvm->arch.n_requested_mmu_pages) {
  3580. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3581. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3582. }
  3583. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3584. kvm_flush_remote_tlbs(kvm);
  3585. return 0;
  3586. }
  3587. void kvm_arch_flush_shadow(struct kvm *kvm)
  3588. {
  3589. kvm_mmu_zap_all(kvm);
  3590. }
  3591. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3592. {
  3593. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3594. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3595. || vcpu->arch.nmi_pending;
  3596. }
  3597. static void vcpu_kick_intr(void *info)
  3598. {
  3599. #ifdef DEBUG
  3600. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3601. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3602. #endif
  3603. }
  3604. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3605. {
  3606. int ipi_pcpu = vcpu->cpu;
  3607. int cpu = get_cpu();
  3608. if (waitqueue_active(&vcpu->wq)) {
  3609. wake_up_interruptible(&vcpu->wq);
  3610. ++vcpu->stat.halt_wakeup;
  3611. }
  3612. /*
  3613. * We may be called synchronously with irqs disabled in guest mode,
  3614. * So need not to call smp_call_function_single() in that case.
  3615. */
  3616. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3617. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3618. put_cpu();
  3619. }