kvm_main.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_window", &kvm_stat.irq_window_exits },
  56. { "halt_exits", &kvm_stat.halt_exits },
  57. { "request_irq", &kvm_stat.request_irq_exits },
  58. { "irq_exits", &kvm_stat.irq_exits },
  59. { 0, 0 }
  60. };
  61. static struct dentry *debugfs_dir;
  62. #define MAX_IO_MSRS 256
  63. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  64. #define LMSW_GUEST_MASK 0x0eULL
  65. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  66. #define CR8_RESEVED_BITS (~0x0fULL)
  67. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  68. #ifdef CONFIG_X86_64
  69. // LDT or TSS descriptor in the GDT. 16 bytes.
  70. struct segment_descriptor_64 {
  71. struct segment_descriptor s;
  72. u32 base_higher;
  73. u32 pad_zero;
  74. };
  75. #endif
  76. unsigned long segment_base(u16 selector)
  77. {
  78. struct descriptor_table gdt;
  79. struct segment_descriptor *d;
  80. unsigned long table_base;
  81. typedef unsigned long ul;
  82. unsigned long v;
  83. if (selector == 0)
  84. return 0;
  85. asm ("sgdt %0" : "=m"(gdt));
  86. table_base = gdt.base;
  87. if (selector & 4) { /* from ldt */
  88. u16 ldt_selector;
  89. asm ("sldt %0" : "=g"(ldt_selector));
  90. table_base = segment_base(ldt_selector);
  91. }
  92. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  93. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  94. #ifdef CONFIG_X86_64
  95. if (d->system == 0
  96. && (d->type == 2 || d->type == 9 || d->type == 11))
  97. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  98. #endif
  99. return v;
  100. }
  101. EXPORT_SYMBOL_GPL(segment_base);
  102. static inline int valid_vcpu(int n)
  103. {
  104. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  105. }
  106. int kvm_read_guest(struct kvm_vcpu *vcpu,
  107. gva_t addr,
  108. unsigned long size,
  109. void *dest)
  110. {
  111. unsigned char *host_buf = dest;
  112. unsigned long req_size = size;
  113. while (size) {
  114. hpa_t paddr;
  115. unsigned now;
  116. unsigned offset;
  117. hva_t guest_buf;
  118. paddr = gva_to_hpa(vcpu, addr);
  119. if (is_error_hpa(paddr))
  120. break;
  121. guest_buf = (hva_t)kmap_atomic(
  122. pfn_to_page(paddr >> PAGE_SHIFT),
  123. KM_USER0);
  124. offset = addr & ~PAGE_MASK;
  125. guest_buf |= offset;
  126. now = min(size, PAGE_SIZE - offset);
  127. memcpy(host_buf, (void*)guest_buf, now);
  128. host_buf += now;
  129. addr += now;
  130. size -= now;
  131. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  132. }
  133. return req_size - size;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_read_guest);
  136. int kvm_write_guest(struct kvm_vcpu *vcpu,
  137. gva_t addr,
  138. unsigned long size,
  139. void *data)
  140. {
  141. unsigned char *host_buf = data;
  142. unsigned long req_size = size;
  143. while (size) {
  144. hpa_t paddr;
  145. unsigned now;
  146. unsigned offset;
  147. hva_t guest_buf;
  148. paddr = gva_to_hpa(vcpu, addr);
  149. if (is_error_hpa(paddr))
  150. break;
  151. guest_buf = (hva_t)kmap_atomic(
  152. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  153. offset = addr & ~PAGE_MASK;
  154. guest_buf |= offset;
  155. now = min(size, PAGE_SIZE - offset);
  156. memcpy((void*)guest_buf, host_buf, now);
  157. host_buf += now;
  158. addr += now;
  159. size -= now;
  160. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  161. }
  162. return req_size - size;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_write_guest);
  165. static int vcpu_slot(struct kvm_vcpu *vcpu)
  166. {
  167. return vcpu - vcpu->kvm->vcpus;
  168. }
  169. /*
  170. * Switches to specified vcpu, until a matching vcpu_put()
  171. */
  172. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  173. {
  174. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  175. mutex_lock(&vcpu->mutex);
  176. if (unlikely(!vcpu->vmcs)) {
  177. mutex_unlock(&vcpu->mutex);
  178. return 0;
  179. }
  180. return kvm_arch_ops->vcpu_load(vcpu);
  181. }
  182. static void vcpu_put(struct kvm_vcpu *vcpu)
  183. {
  184. kvm_arch_ops->vcpu_put(vcpu);
  185. mutex_unlock(&vcpu->mutex);
  186. }
  187. static int kvm_dev_open(struct inode *inode, struct file *filp)
  188. {
  189. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  190. int i;
  191. if (!kvm)
  192. return -ENOMEM;
  193. spin_lock_init(&kvm->lock);
  194. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  195. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  196. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  197. mutex_init(&vcpu->mutex);
  198. vcpu->mmu.root_hpa = INVALID_PAGE;
  199. INIT_LIST_HEAD(&vcpu->free_pages);
  200. }
  201. filp->private_data = kvm;
  202. return 0;
  203. }
  204. /*
  205. * Free any memory in @free but not in @dont.
  206. */
  207. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  208. struct kvm_memory_slot *dont)
  209. {
  210. int i;
  211. if (!dont || free->phys_mem != dont->phys_mem)
  212. if (free->phys_mem) {
  213. for (i = 0; i < free->npages; ++i)
  214. if (free->phys_mem[i])
  215. __free_page(free->phys_mem[i]);
  216. vfree(free->phys_mem);
  217. }
  218. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  219. vfree(free->dirty_bitmap);
  220. free->phys_mem = 0;
  221. free->npages = 0;
  222. free->dirty_bitmap = 0;
  223. }
  224. static void kvm_free_physmem(struct kvm *kvm)
  225. {
  226. int i;
  227. for (i = 0; i < kvm->nmemslots; ++i)
  228. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  229. }
  230. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  231. {
  232. kvm_arch_ops->vcpu_free(vcpu);
  233. kvm_mmu_destroy(vcpu);
  234. }
  235. static void kvm_free_vcpus(struct kvm *kvm)
  236. {
  237. unsigned int i;
  238. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  239. kvm_free_vcpu(&kvm->vcpus[i]);
  240. }
  241. static int kvm_dev_release(struct inode *inode, struct file *filp)
  242. {
  243. struct kvm *kvm = filp->private_data;
  244. kvm_free_vcpus(kvm);
  245. kvm_free_physmem(kvm);
  246. kfree(kvm);
  247. return 0;
  248. }
  249. static void inject_gp(struct kvm_vcpu *vcpu)
  250. {
  251. kvm_arch_ops->inject_gp(vcpu, 0);
  252. }
  253. /*
  254. * Load the pae pdptrs. Return true is they are all valid.
  255. */
  256. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  257. {
  258. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  259. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  260. int i;
  261. u64 pdpte;
  262. u64 *pdpt;
  263. int ret;
  264. struct kvm_memory_slot *memslot;
  265. spin_lock(&vcpu->kvm->lock);
  266. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  267. /* FIXME: !memslot - emulate? 0xff? */
  268. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  269. ret = 1;
  270. for (i = 0; i < 4; ++i) {
  271. pdpte = pdpt[offset + i];
  272. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  273. ret = 0;
  274. goto out;
  275. }
  276. }
  277. for (i = 0; i < 4; ++i)
  278. vcpu->pdptrs[i] = pdpt[offset + i];
  279. out:
  280. kunmap_atomic(pdpt, KM_USER0);
  281. spin_unlock(&vcpu->kvm->lock);
  282. return ret;
  283. }
  284. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  285. {
  286. if (cr0 & CR0_RESEVED_BITS) {
  287. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  288. cr0, vcpu->cr0);
  289. inject_gp(vcpu);
  290. return;
  291. }
  292. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  293. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  294. inject_gp(vcpu);
  295. return;
  296. }
  297. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  298. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  299. "and a clear PE flag\n");
  300. inject_gp(vcpu);
  301. return;
  302. }
  303. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  304. #ifdef CONFIG_X86_64
  305. if ((vcpu->shadow_efer & EFER_LME)) {
  306. int cs_db, cs_l;
  307. if (!is_pae(vcpu)) {
  308. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  309. "in long mode while PAE is disabled\n");
  310. inject_gp(vcpu);
  311. return;
  312. }
  313. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  314. if (cs_l) {
  315. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  316. "in long mode while CS.L == 1\n");
  317. inject_gp(vcpu);
  318. return;
  319. }
  320. } else
  321. #endif
  322. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  323. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  324. "reserved bits\n");
  325. inject_gp(vcpu);
  326. return;
  327. }
  328. }
  329. kvm_arch_ops->set_cr0(vcpu, cr0);
  330. vcpu->cr0 = cr0;
  331. spin_lock(&vcpu->kvm->lock);
  332. kvm_mmu_reset_context(vcpu);
  333. spin_unlock(&vcpu->kvm->lock);
  334. return;
  335. }
  336. EXPORT_SYMBOL_GPL(set_cr0);
  337. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  338. {
  339. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  340. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  341. }
  342. EXPORT_SYMBOL_GPL(lmsw);
  343. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  344. {
  345. if (cr4 & CR4_RESEVED_BITS) {
  346. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  347. inject_gp(vcpu);
  348. return;
  349. }
  350. if (is_long_mode(vcpu)) {
  351. if (!(cr4 & CR4_PAE_MASK)) {
  352. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  353. "in long mode\n");
  354. inject_gp(vcpu);
  355. return;
  356. }
  357. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  358. && !load_pdptrs(vcpu, vcpu->cr3)) {
  359. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  360. inject_gp(vcpu);
  361. }
  362. if (cr4 & CR4_VMXE_MASK) {
  363. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  364. inject_gp(vcpu);
  365. return;
  366. }
  367. kvm_arch_ops->set_cr4(vcpu, cr4);
  368. spin_lock(&vcpu->kvm->lock);
  369. kvm_mmu_reset_context(vcpu);
  370. spin_unlock(&vcpu->kvm->lock);
  371. }
  372. EXPORT_SYMBOL_GPL(set_cr4);
  373. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  374. {
  375. if (is_long_mode(vcpu)) {
  376. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  377. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  378. inject_gp(vcpu);
  379. return;
  380. }
  381. } else {
  382. if (cr3 & CR3_RESEVED_BITS) {
  383. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  384. inject_gp(vcpu);
  385. return;
  386. }
  387. if (is_paging(vcpu) && is_pae(vcpu) &&
  388. !load_pdptrs(vcpu, cr3)) {
  389. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  390. "reserved bits\n");
  391. inject_gp(vcpu);
  392. return;
  393. }
  394. }
  395. vcpu->cr3 = cr3;
  396. spin_lock(&vcpu->kvm->lock);
  397. vcpu->mmu.new_cr3(vcpu);
  398. spin_unlock(&vcpu->kvm->lock);
  399. }
  400. EXPORT_SYMBOL_GPL(set_cr3);
  401. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  402. {
  403. if ( cr8 & CR8_RESEVED_BITS) {
  404. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  405. inject_gp(vcpu);
  406. return;
  407. }
  408. vcpu->cr8 = cr8;
  409. }
  410. EXPORT_SYMBOL_GPL(set_cr8);
  411. void fx_init(struct kvm_vcpu *vcpu)
  412. {
  413. struct __attribute__ ((__packed__)) fx_image_s {
  414. u16 control; //fcw
  415. u16 status; //fsw
  416. u16 tag; // ftw
  417. u16 opcode; //fop
  418. u64 ip; // fpu ip
  419. u64 operand;// fpu dp
  420. u32 mxcsr;
  421. u32 mxcsr_mask;
  422. } *fx_image;
  423. fx_save(vcpu->host_fx_image);
  424. fpu_init();
  425. fx_save(vcpu->guest_fx_image);
  426. fx_restore(vcpu->host_fx_image);
  427. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  428. fx_image->mxcsr = 0x1f80;
  429. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  430. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  431. }
  432. EXPORT_SYMBOL_GPL(fx_init);
  433. /*
  434. * Creates some virtual cpus. Good luck creating more than one.
  435. */
  436. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  437. {
  438. int r;
  439. struct kvm_vcpu *vcpu;
  440. r = -EINVAL;
  441. if (!valid_vcpu(n))
  442. goto out;
  443. vcpu = &kvm->vcpus[n];
  444. mutex_lock(&vcpu->mutex);
  445. if (vcpu->vmcs) {
  446. mutex_unlock(&vcpu->mutex);
  447. return -EEXIST;
  448. }
  449. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  450. FX_IMAGE_ALIGN);
  451. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  452. vcpu->cpu = -1; /* First load will set up TR */
  453. vcpu->kvm = kvm;
  454. r = kvm_arch_ops->vcpu_create(vcpu);
  455. if (r < 0)
  456. goto out_free_vcpus;
  457. r = kvm_mmu_create(vcpu);
  458. if (r < 0)
  459. goto out_free_vcpus;
  460. kvm_arch_ops->vcpu_load(vcpu);
  461. r = kvm_mmu_setup(vcpu);
  462. if (r >= 0)
  463. r = kvm_arch_ops->vcpu_setup(vcpu);
  464. vcpu_put(vcpu);
  465. if (r < 0)
  466. goto out_free_vcpus;
  467. return 0;
  468. out_free_vcpus:
  469. kvm_free_vcpu(vcpu);
  470. mutex_unlock(&vcpu->mutex);
  471. out:
  472. return r;
  473. }
  474. /*
  475. * Allocate some memory and give it an address in the guest physical address
  476. * space.
  477. *
  478. * Discontiguous memory is allowed, mostly for framebuffers.
  479. */
  480. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  481. struct kvm_memory_region *mem)
  482. {
  483. int r;
  484. gfn_t base_gfn;
  485. unsigned long npages;
  486. unsigned long i;
  487. struct kvm_memory_slot *memslot;
  488. struct kvm_memory_slot old, new;
  489. int memory_config_version;
  490. r = -EINVAL;
  491. /* General sanity checks */
  492. if (mem->memory_size & (PAGE_SIZE - 1))
  493. goto out;
  494. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  495. goto out;
  496. if (mem->slot >= KVM_MEMORY_SLOTS)
  497. goto out;
  498. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  499. goto out;
  500. memslot = &kvm->memslots[mem->slot];
  501. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  502. npages = mem->memory_size >> PAGE_SHIFT;
  503. if (!npages)
  504. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  505. raced:
  506. spin_lock(&kvm->lock);
  507. memory_config_version = kvm->memory_config_version;
  508. new = old = *memslot;
  509. new.base_gfn = base_gfn;
  510. new.npages = npages;
  511. new.flags = mem->flags;
  512. /* Disallow changing a memory slot's size. */
  513. r = -EINVAL;
  514. if (npages && old.npages && npages != old.npages)
  515. goto out_unlock;
  516. /* Check for overlaps */
  517. r = -EEXIST;
  518. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  519. struct kvm_memory_slot *s = &kvm->memslots[i];
  520. if (s == memslot)
  521. continue;
  522. if (!((base_gfn + npages <= s->base_gfn) ||
  523. (base_gfn >= s->base_gfn + s->npages)))
  524. goto out_unlock;
  525. }
  526. /*
  527. * Do memory allocations outside lock. memory_config_version will
  528. * detect any races.
  529. */
  530. spin_unlock(&kvm->lock);
  531. /* Deallocate if slot is being removed */
  532. if (!npages)
  533. new.phys_mem = 0;
  534. /* Free page dirty bitmap if unneeded */
  535. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  536. new.dirty_bitmap = 0;
  537. r = -ENOMEM;
  538. /* Allocate if a slot is being created */
  539. if (npages && !new.phys_mem) {
  540. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  541. if (!new.phys_mem)
  542. goto out_free;
  543. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  544. for (i = 0; i < npages; ++i) {
  545. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  546. | __GFP_ZERO);
  547. if (!new.phys_mem[i])
  548. goto out_free;
  549. new.phys_mem[i]->private = 0;
  550. }
  551. }
  552. /* Allocate page dirty bitmap if needed */
  553. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  554. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  555. new.dirty_bitmap = vmalloc(dirty_bytes);
  556. if (!new.dirty_bitmap)
  557. goto out_free;
  558. memset(new.dirty_bitmap, 0, dirty_bytes);
  559. }
  560. spin_lock(&kvm->lock);
  561. if (memory_config_version != kvm->memory_config_version) {
  562. spin_unlock(&kvm->lock);
  563. kvm_free_physmem_slot(&new, &old);
  564. goto raced;
  565. }
  566. r = -EAGAIN;
  567. if (kvm->busy)
  568. goto out_unlock;
  569. if (mem->slot >= kvm->nmemslots)
  570. kvm->nmemslots = mem->slot + 1;
  571. *memslot = new;
  572. ++kvm->memory_config_version;
  573. spin_unlock(&kvm->lock);
  574. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  575. struct kvm_vcpu *vcpu;
  576. vcpu = vcpu_load(kvm, i);
  577. if (!vcpu)
  578. continue;
  579. kvm_mmu_reset_context(vcpu);
  580. vcpu_put(vcpu);
  581. }
  582. kvm_free_physmem_slot(&old, &new);
  583. return 0;
  584. out_unlock:
  585. spin_unlock(&kvm->lock);
  586. out_free:
  587. kvm_free_physmem_slot(&new, &old);
  588. out:
  589. return r;
  590. }
  591. /*
  592. * Get (and clear) the dirty memory log for a memory slot.
  593. */
  594. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  595. struct kvm_dirty_log *log)
  596. {
  597. struct kvm_memory_slot *memslot;
  598. int r, i;
  599. int n;
  600. unsigned long any = 0;
  601. spin_lock(&kvm->lock);
  602. /*
  603. * Prevent changes to guest memory configuration even while the lock
  604. * is not taken.
  605. */
  606. ++kvm->busy;
  607. spin_unlock(&kvm->lock);
  608. r = -EINVAL;
  609. if (log->slot >= KVM_MEMORY_SLOTS)
  610. goto out;
  611. memslot = &kvm->memslots[log->slot];
  612. r = -ENOENT;
  613. if (!memslot->dirty_bitmap)
  614. goto out;
  615. n = ALIGN(memslot->npages, 8) / 8;
  616. for (i = 0; !any && i < n; ++i)
  617. any = memslot->dirty_bitmap[i];
  618. r = -EFAULT;
  619. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  620. goto out;
  621. if (any) {
  622. spin_lock(&kvm->lock);
  623. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  624. spin_unlock(&kvm->lock);
  625. memset(memslot->dirty_bitmap, 0, n);
  626. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  627. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  628. if (!vcpu)
  629. continue;
  630. kvm_arch_ops->tlb_flush(vcpu);
  631. vcpu_put(vcpu);
  632. }
  633. }
  634. r = 0;
  635. out:
  636. spin_lock(&kvm->lock);
  637. --kvm->busy;
  638. spin_unlock(&kvm->lock);
  639. return r;
  640. }
  641. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  642. {
  643. int i;
  644. for (i = 0; i < kvm->nmemslots; ++i) {
  645. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  646. if (gfn >= memslot->base_gfn
  647. && gfn < memslot->base_gfn + memslot->npages)
  648. return memslot;
  649. }
  650. return 0;
  651. }
  652. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  653. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  654. {
  655. int i;
  656. struct kvm_memory_slot *memslot = 0;
  657. unsigned long rel_gfn;
  658. for (i = 0; i < kvm->nmemslots; ++i) {
  659. memslot = &kvm->memslots[i];
  660. if (gfn >= memslot->base_gfn
  661. && gfn < memslot->base_gfn + memslot->npages) {
  662. if (!memslot || !memslot->dirty_bitmap)
  663. return;
  664. rel_gfn = gfn - memslot->base_gfn;
  665. /* avoid RMW */
  666. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  667. set_bit(rel_gfn, memslot->dirty_bitmap);
  668. return;
  669. }
  670. }
  671. }
  672. static int emulator_read_std(unsigned long addr,
  673. unsigned long *val,
  674. unsigned int bytes,
  675. struct x86_emulate_ctxt *ctxt)
  676. {
  677. struct kvm_vcpu *vcpu = ctxt->vcpu;
  678. void *data = val;
  679. while (bytes) {
  680. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  681. unsigned offset = addr & (PAGE_SIZE-1);
  682. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  683. unsigned long pfn;
  684. struct kvm_memory_slot *memslot;
  685. void *page;
  686. if (gpa == UNMAPPED_GVA)
  687. return X86EMUL_PROPAGATE_FAULT;
  688. pfn = gpa >> PAGE_SHIFT;
  689. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  690. if (!memslot)
  691. return X86EMUL_UNHANDLEABLE;
  692. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  693. memcpy(data, page + offset, tocopy);
  694. kunmap_atomic(page, KM_USER0);
  695. bytes -= tocopy;
  696. data += tocopy;
  697. addr += tocopy;
  698. }
  699. return X86EMUL_CONTINUE;
  700. }
  701. static int emulator_write_std(unsigned long addr,
  702. unsigned long val,
  703. unsigned int bytes,
  704. struct x86_emulate_ctxt *ctxt)
  705. {
  706. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  707. addr, bytes);
  708. return X86EMUL_UNHANDLEABLE;
  709. }
  710. static int emulator_read_emulated(unsigned long addr,
  711. unsigned long *val,
  712. unsigned int bytes,
  713. struct x86_emulate_ctxt *ctxt)
  714. {
  715. struct kvm_vcpu *vcpu = ctxt->vcpu;
  716. if (vcpu->mmio_read_completed) {
  717. memcpy(val, vcpu->mmio_data, bytes);
  718. vcpu->mmio_read_completed = 0;
  719. return X86EMUL_CONTINUE;
  720. } else if (emulator_read_std(addr, val, bytes, ctxt)
  721. == X86EMUL_CONTINUE)
  722. return X86EMUL_CONTINUE;
  723. else {
  724. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  725. if (gpa == UNMAPPED_GVA)
  726. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  727. vcpu->mmio_needed = 1;
  728. vcpu->mmio_phys_addr = gpa;
  729. vcpu->mmio_size = bytes;
  730. vcpu->mmio_is_write = 0;
  731. return X86EMUL_UNHANDLEABLE;
  732. }
  733. }
  734. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  735. unsigned long val, int bytes)
  736. {
  737. struct kvm_memory_slot *m;
  738. struct page *page;
  739. void *virt;
  740. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  741. return 0;
  742. m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  743. if (!m)
  744. return 0;
  745. page = gfn_to_page(m, gpa >> PAGE_SHIFT);
  746. kvm_mmu_pre_write(vcpu, gpa, bytes);
  747. virt = kmap_atomic(page, KM_USER0);
  748. memcpy(virt + offset_in_page(gpa), &val, bytes);
  749. kunmap_atomic(virt, KM_USER0);
  750. kvm_mmu_post_write(vcpu, gpa, bytes);
  751. return 1;
  752. }
  753. static int emulator_write_emulated(unsigned long addr,
  754. unsigned long val,
  755. unsigned int bytes,
  756. struct x86_emulate_ctxt *ctxt)
  757. {
  758. struct kvm_vcpu *vcpu = ctxt->vcpu;
  759. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  760. if (gpa == UNMAPPED_GVA)
  761. return X86EMUL_PROPAGATE_FAULT;
  762. if (emulator_write_phys(vcpu, gpa, val, bytes))
  763. return X86EMUL_CONTINUE;
  764. vcpu->mmio_needed = 1;
  765. vcpu->mmio_phys_addr = gpa;
  766. vcpu->mmio_size = bytes;
  767. vcpu->mmio_is_write = 1;
  768. memcpy(vcpu->mmio_data, &val, bytes);
  769. return X86EMUL_CONTINUE;
  770. }
  771. static int emulator_cmpxchg_emulated(unsigned long addr,
  772. unsigned long old,
  773. unsigned long new,
  774. unsigned int bytes,
  775. struct x86_emulate_ctxt *ctxt)
  776. {
  777. static int reported;
  778. if (!reported) {
  779. reported = 1;
  780. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  781. }
  782. return emulator_write_emulated(addr, new, bytes, ctxt);
  783. }
  784. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  785. {
  786. return kvm_arch_ops->get_segment_base(vcpu, seg);
  787. }
  788. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  789. {
  790. return X86EMUL_CONTINUE;
  791. }
  792. int emulate_clts(struct kvm_vcpu *vcpu)
  793. {
  794. unsigned long cr0;
  795. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  796. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  797. kvm_arch_ops->set_cr0(vcpu, cr0);
  798. return X86EMUL_CONTINUE;
  799. }
  800. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  801. {
  802. struct kvm_vcpu *vcpu = ctxt->vcpu;
  803. switch (dr) {
  804. case 0 ... 3:
  805. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  806. return X86EMUL_CONTINUE;
  807. default:
  808. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  809. __FUNCTION__, dr);
  810. return X86EMUL_UNHANDLEABLE;
  811. }
  812. }
  813. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  814. {
  815. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  816. int exception;
  817. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  818. if (exception) {
  819. /* FIXME: better handling */
  820. return X86EMUL_UNHANDLEABLE;
  821. }
  822. return X86EMUL_CONTINUE;
  823. }
  824. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  825. {
  826. static int reported;
  827. u8 opcodes[4];
  828. unsigned long rip = ctxt->vcpu->rip;
  829. unsigned long rip_linear;
  830. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  831. if (reported)
  832. return;
  833. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  834. printk(KERN_ERR "emulation failed but !mmio_needed?"
  835. " rip %lx %02x %02x %02x %02x\n",
  836. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  837. reported = 1;
  838. }
  839. struct x86_emulate_ops emulate_ops = {
  840. .read_std = emulator_read_std,
  841. .write_std = emulator_write_std,
  842. .read_emulated = emulator_read_emulated,
  843. .write_emulated = emulator_write_emulated,
  844. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  845. };
  846. int emulate_instruction(struct kvm_vcpu *vcpu,
  847. struct kvm_run *run,
  848. unsigned long cr2,
  849. u16 error_code)
  850. {
  851. struct x86_emulate_ctxt emulate_ctxt;
  852. int r;
  853. int cs_db, cs_l;
  854. kvm_arch_ops->cache_regs(vcpu);
  855. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  856. emulate_ctxt.vcpu = vcpu;
  857. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  858. emulate_ctxt.cr2 = cr2;
  859. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  860. ? X86EMUL_MODE_REAL : cs_l
  861. ? X86EMUL_MODE_PROT64 : cs_db
  862. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  863. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  864. emulate_ctxt.cs_base = 0;
  865. emulate_ctxt.ds_base = 0;
  866. emulate_ctxt.es_base = 0;
  867. emulate_ctxt.ss_base = 0;
  868. } else {
  869. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  870. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  871. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  872. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  873. }
  874. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  875. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  876. vcpu->mmio_is_write = 0;
  877. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  878. if ((r || vcpu->mmio_is_write) && run) {
  879. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  880. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  881. run->mmio.len = vcpu->mmio_size;
  882. run->mmio.is_write = vcpu->mmio_is_write;
  883. }
  884. if (r) {
  885. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  886. return EMULATE_DONE;
  887. if (!vcpu->mmio_needed) {
  888. report_emulation_failure(&emulate_ctxt);
  889. return EMULATE_FAIL;
  890. }
  891. return EMULATE_DO_MMIO;
  892. }
  893. kvm_arch_ops->decache_regs(vcpu);
  894. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  895. if (vcpu->mmio_is_write)
  896. return EMULATE_DO_MMIO;
  897. return EMULATE_DONE;
  898. }
  899. EXPORT_SYMBOL_GPL(emulate_instruction);
  900. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  901. {
  902. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  903. }
  904. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  905. {
  906. struct descriptor_table dt = { limit, base };
  907. kvm_arch_ops->set_gdt(vcpu, &dt);
  908. }
  909. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  910. {
  911. struct descriptor_table dt = { limit, base };
  912. kvm_arch_ops->set_idt(vcpu, &dt);
  913. }
  914. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  915. unsigned long *rflags)
  916. {
  917. lmsw(vcpu, msw);
  918. *rflags = kvm_arch_ops->get_rflags(vcpu);
  919. }
  920. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  921. {
  922. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  923. switch (cr) {
  924. case 0:
  925. return vcpu->cr0;
  926. case 2:
  927. return vcpu->cr2;
  928. case 3:
  929. return vcpu->cr3;
  930. case 4:
  931. return vcpu->cr4;
  932. default:
  933. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  934. return 0;
  935. }
  936. }
  937. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  938. unsigned long *rflags)
  939. {
  940. switch (cr) {
  941. case 0:
  942. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  943. *rflags = kvm_arch_ops->get_rflags(vcpu);
  944. break;
  945. case 2:
  946. vcpu->cr2 = val;
  947. break;
  948. case 3:
  949. set_cr3(vcpu, val);
  950. break;
  951. case 4:
  952. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  953. break;
  954. default:
  955. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  956. }
  957. }
  958. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  959. {
  960. u64 data;
  961. switch (msr) {
  962. case 0xc0010010: /* SYSCFG */
  963. case 0xc0010015: /* HWCR */
  964. case MSR_IA32_PLATFORM_ID:
  965. case MSR_IA32_P5_MC_ADDR:
  966. case MSR_IA32_P5_MC_TYPE:
  967. case MSR_IA32_MC0_CTL:
  968. case MSR_IA32_MCG_STATUS:
  969. case MSR_IA32_MCG_CAP:
  970. case MSR_IA32_MC0_MISC:
  971. case MSR_IA32_MC0_MISC+4:
  972. case MSR_IA32_MC0_MISC+8:
  973. case MSR_IA32_MC0_MISC+12:
  974. case MSR_IA32_MC0_MISC+16:
  975. case MSR_IA32_UCODE_REV:
  976. case MSR_IA32_PERF_STATUS:
  977. /* MTRR registers */
  978. case 0xfe:
  979. case 0x200 ... 0x2ff:
  980. data = 0;
  981. break;
  982. case 0xcd: /* fsb frequency */
  983. data = 3;
  984. break;
  985. case MSR_IA32_APICBASE:
  986. data = vcpu->apic_base;
  987. break;
  988. #ifdef CONFIG_X86_64
  989. case MSR_EFER:
  990. data = vcpu->shadow_efer;
  991. break;
  992. #endif
  993. default:
  994. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  995. return 1;
  996. }
  997. *pdata = data;
  998. return 0;
  999. }
  1000. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1001. /*
  1002. * Reads an msr value (of 'msr_index') into 'pdata'.
  1003. * Returns 0 on success, non-0 otherwise.
  1004. * Assumes vcpu_load() was already called.
  1005. */
  1006. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1007. {
  1008. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1009. }
  1010. #ifdef CONFIG_X86_64
  1011. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1012. {
  1013. if (efer & EFER_RESERVED_BITS) {
  1014. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1015. efer);
  1016. inject_gp(vcpu);
  1017. return;
  1018. }
  1019. if (is_paging(vcpu)
  1020. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1021. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1022. inject_gp(vcpu);
  1023. return;
  1024. }
  1025. kvm_arch_ops->set_efer(vcpu, efer);
  1026. efer &= ~EFER_LMA;
  1027. efer |= vcpu->shadow_efer & EFER_LMA;
  1028. vcpu->shadow_efer = efer;
  1029. }
  1030. #endif
  1031. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1032. {
  1033. switch (msr) {
  1034. #ifdef CONFIG_X86_64
  1035. case MSR_EFER:
  1036. set_efer(vcpu, data);
  1037. break;
  1038. #endif
  1039. case MSR_IA32_MC0_STATUS:
  1040. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1041. __FUNCTION__, data);
  1042. break;
  1043. case MSR_IA32_UCODE_REV:
  1044. case MSR_IA32_UCODE_WRITE:
  1045. case 0x200 ... 0x2ff: /* MTRRs */
  1046. break;
  1047. case MSR_IA32_APICBASE:
  1048. vcpu->apic_base = data;
  1049. break;
  1050. default:
  1051. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1052. return 1;
  1053. }
  1054. return 0;
  1055. }
  1056. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1057. /*
  1058. * Writes msr value into into the appropriate "register".
  1059. * Returns 0 on success, non-0 otherwise.
  1060. * Assumes vcpu_load() was already called.
  1061. */
  1062. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1063. {
  1064. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1065. }
  1066. void kvm_resched(struct kvm_vcpu *vcpu)
  1067. {
  1068. vcpu_put(vcpu);
  1069. cond_resched();
  1070. /* Cannot fail - no vcpu unplug yet. */
  1071. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1072. }
  1073. EXPORT_SYMBOL_GPL(kvm_resched);
  1074. void load_msrs(struct vmx_msr_entry *e, int n)
  1075. {
  1076. int i;
  1077. for (i = 0; i < n; ++i)
  1078. wrmsrl(e[i].index, e[i].data);
  1079. }
  1080. EXPORT_SYMBOL_GPL(load_msrs);
  1081. void save_msrs(struct vmx_msr_entry *e, int n)
  1082. {
  1083. int i;
  1084. for (i = 0; i < n; ++i)
  1085. rdmsrl(e[i].index, e[i].data);
  1086. }
  1087. EXPORT_SYMBOL_GPL(save_msrs);
  1088. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1089. {
  1090. struct kvm_vcpu *vcpu;
  1091. int r;
  1092. if (!valid_vcpu(kvm_run->vcpu))
  1093. return -EINVAL;
  1094. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1095. if (!vcpu)
  1096. return -ENOENT;
  1097. if (kvm_run->emulated) {
  1098. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1099. kvm_run->emulated = 0;
  1100. }
  1101. if (kvm_run->mmio_completed) {
  1102. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1103. vcpu->mmio_read_completed = 1;
  1104. }
  1105. vcpu->mmio_needed = 0;
  1106. r = kvm_arch_ops->run(vcpu, kvm_run);
  1107. vcpu_put(vcpu);
  1108. return r;
  1109. }
  1110. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1111. {
  1112. struct kvm_vcpu *vcpu;
  1113. if (!valid_vcpu(regs->vcpu))
  1114. return -EINVAL;
  1115. vcpu = vcpu_load(kvm, regs->vcpu);
  1116. if (!vcpu)
  1117. return -ENOENT;
  1118. kvm_arch_ops->cache_regs(vcpu);
  1119. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1120. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1121. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1122. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1123. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1124. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1125. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1126. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1127. #ifdef CONFIG_X86_64
  1128. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1129. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1130. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1131. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1132. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1133. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1134. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1135. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1136. #endif
  1137. regs->rip = vcpu->rip;
  1138. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1139. /*
  1140. * Don't leak debug flags in case they were set for guest debugging
  1141. */
  1142. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1143. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1144. vcpu_put(vcpu);
  1145. return 0;
  1146. }
  1147. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1148. {
  1149. struct kvm_vcpu *vcpu;
  1150. if (!valid_vcpu(regs->vcpu))
  1151. return -EINVAL;
  1152. vcpu = vcpu_load(kvm, regs->vcpu);
  1153. if (!vcpu)
  1154. return -ENOENT;
  1155. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1156. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1157. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1158. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1159. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1160. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1161. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1162. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1163. #ifdef CONFIG_X86_64
  1164. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1165. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1166. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1167. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1168. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1169. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1170. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1171. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1172. #endif
  1173. vcpu->rip = regs->rip;
  1174. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1175. kvm_arch_ops->decache_regs(vcpu);
  1176. vcpu_put(vcpu);
  1177. return 0;
  1178. }
  1179. static void get_segment(struct kvm_vcpu *vcpu,
  1180. struct kvm_segment *var, int seg)
  1181. {
  1182. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1183. }
  1184. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1185. {
  1186. struct kvm_vcpu *vcpu;
  1187. struct descriptor_table dt;
  1188. if (!valid_vcpu(sregs->vcpu))
  1189. return -EINVAL;
  1190. vcpu = vcpu_load(kvm, sregs->vcpu);
  1191. if (!vcpu)
  1192. return -ENOENT;
  1193. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1194. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1195. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1196. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1197. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1198. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1199. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1200. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1201. kvm_arch_ops->get_idt(vcpu, &dt);
  1202. sregs->idt.limit = dt.limit;
  1203. sregs->idt.base = dt.base;
  1204. kvm_arch_ops->get_gdt(vcpu, &dt);
  1205. sregs->gdt.limit = dt.limit;
  1206. sregs->gdt.base = dt.base;
  1207. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1208. sregs->cr0 = vcpu->cr0;
  1209. sregs->cr2 = vcpu->cr2;
  1210. sregs->cr3 = vcpu->cr3;
  1211. sregs->cr4 = vcpu->cr4;
  1212. sregs->cr8 = vcpu->cr8;
  1213. sregs->efer = vcpu->shadow_efer;
  1214. sregs->apic_base = vcpu->apic_base;
  1215. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1216. sizeof sregs->interrupt_bitmap);
  1217. vcpu_put(vcpu);
  1218. return 0;
  1219. }
  1220. static void set_segment(struct kvm_vcpu *vcpu,
  1221. struct kvm_segment *var, int seg)
  1222. {
  1223. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1224. }
  1225. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1226. {
  1227. struct kvm_vcpu *vcpu;
  1228. int mmu_reset_needed = 0;
  1229. int i;
  1230. struct descriptor_table dt;
  1231. if (!valid_vcpu(sregs->vcpu))
  1232. return -EINVAL;
  1233. vcpu = vcpu_load(kvm, sregs->vcpu);
  1234. if (!vcpu)
  1235. return -ENOENT;
  1236. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1237. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1238. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1239. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1240. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1241. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1242. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1243. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1244. dt.limit = sregs->idt.limit;
  1245. dt.base = sregs->idt.base;
  1246. kvm_arch_ops->set_idt(vcpu, &dt);
  1247. dt.limit = sregs->gdt.limit;
  1248. dt.base = sregs->gdt.base;
  1249. kvm_arch_ops->set_gdt(vcpu, &dt);
  1250. vcpu->cr2 = sregs->cr2;
  1251. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1252. vcpu->cr3 = sregs->cr3;
  1253. vcpu->cr8 = sregs->cr8;
  1254. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1255. #ifdef CONFIG_X86_64
  1256. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1257. #endif
  1258. vcpu->apic_base = sregs->apic_base;
  1259. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1260. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1261. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1262. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1263. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1264. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1265. load_pdptrs(vcpu, vcpu->cr3);
  1266. if (mmu_reset_needed)
  1267. kvm_mmu_reset_context(vcpu);
  1268. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1269. sizeof vcpu->irq_pending);
  1270. vcpu->irq_summary = 0;
  1271. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1272. if (vcpu->irq_pending[i])
  1273. __set_bit(i, &vcpu->irq_summary);
  1274. vcpu_put(vcpu);
  1275. return 0;
  1276. }
  1277. /*
  1278. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1279. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1280. *
  1281. * This list is modified at module load time to reflect the
  1282. * capabilities of the host cpu.
  1283. */
  1284. static u32 msrs_to_save[] = {
  1285. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1286. MSR_K6_STAR,
  1287. #ifdef CONFIG_X86_64
  1288. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1289. #endif
  1290. MSR_IA32_TIME_STAMP_COUNTER,
  1291. };
  1292. static unsigned num_msrs_to_save;
  1293. static __init void kvm_init_msr_list(void)
  1294. {
  1295. u32 dummy[2];
  1296. unsigned i, j;
  1297. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1298. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1299. continue;
  1300. if (j < i)
  1301. msrs_to_save[j] = msrs_to_save[i];
  1302. j++;
  1303. }
  1304. num_msrs_to_save = j;
  1305. }
  1306. /*
  1307. * Adapt set_msr() to msr_io()'s calling convention
  1308. */
  1309. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1310. {
  1311. return set_msr(vcpu, index, *data);
  1312. }
  1313. /*
  1314. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1315. *
  1316. * @return number of msrs set successfully.
  1317. */
  1318. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1319. struct kvm_msr_entry *entries,
  1320. int (*do_msr)(struct kvm_vcpu *vcpu,
  1321. unsigned index, u64 *data))
  1322. {
  1323. struct kvm_vcpu *vcpu;
  1324. int i;
  1325. if (!valid_vcpu(msrs->vcpu))
  1326. return -EINVAL;
  1327. vcpu = vcpu_load(kvm, msrs->vcpu);
  1328. if (!vcpu)
  1329. return -ENOENT;
  1330. for (i = 0; i < msrs->nmsrs; ++i)
  1331. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1332. break;
  1333. vcpu_put(vcpu);
  1334. return i;
  1335. }
  1336. /*
  1337. * Read or write a bunch of msrs. Parameters are user addresses.
  1338. *
  1339. * @return number of msrs set successfully.
  1340. */
  1341. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1342. int (*do_msr)(struct kvm_vcpu *vcpu,
  1343. unsigned index, u64 *data),
  1344. int writeback)
  1345. {
  1346. struct kvm_msrs msrs;
  1347. struct kvm_msr_entry *entries;
  1348. int r, n;
  1349. unsigned size;
  1350. r = -EFAULT;
  1351. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1352. goto out;
  1353. r = -E2BIG;
  1354. if (msrs.nmsrs >= MAX_IO_MSRS)
  1355. goto out;
  1356. r = -ENOMEM;
  1357. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1358. entries = vmalloc(size);
  1359. if (!entries)
  1360. goto out;
  1361. r = -EFAULT;
  1362. if (copy_from_user(entries, user_msrs->entries, size))
  1363. goto out_free;
  1364. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1365. if (r < 0)
  1366. goto out_free;
  1367. r = -EFAULT;
  1368. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1369. goto out_free;
  1370. r = n;
  1371. out_free:
  1372. vfree(entries);
  1373. out:
  1374. return r;
  1375. }
  1376. /*
  1377. * Translate a guest virtual address to a guest physical address.
  1378. */
  1379. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1380. {
  1381. unsigned long vaddr = tr->linear_address;
  1382. struct kvm_vcpu *vcpu;
  1383. gpa_t gpa;
  1384. vcpu = vcpu_load(kvm, tr->vcpu);
  1385. if (!vcpu)
  1386. return -ENOENT;
  1387. spin_lock(&kvm->lock);
  1388. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1389. tr->physical_address = gpa;
  1390. tr->valid = gpa != UNMAPPED_GVA;
  1391. tr->writeable = 1;
  1392. tr->usermode = 0;
  1393. spin_unlock(&kvm->lock);
  1394. vcpu_put(vcpu);
  1395. return 0;
  1396. }
  1397. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1398. {
  1399. struct kvm_vcpu *vcpu;
  1400. if (!valid_vcpu(irq->vcpu))
  1401. return -EINVAL;
  1402. if (irq->irq < 0 || irq->irq >= 256)
  1403. return -EINVAL;
  1404. vcpu = vcpu_load(kvm, irq->vcpu);
  1405. if (!vcpu)
  1406. return -ENOENT;
  1407. set_bit(irq->irq, vcpu->irq_pending);
  1408. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1409. vcpu_put(vcpu);
  1410. return 0;
  1411. }
  1412. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1413. struct kvm_debug_guest *dbg)
  1414. {
  1415. struct kvm_vcpu *vcpu;
  1416. int r;
  1417. if (!valid_vcpu(dbg->vcpu))
  1418. return -EINVAL;
  1419. vcpu = vcpu_load(kvm, dbg->vcpu);
  1420. if (!vcpu)
  1421. return -ENOENT;
  1422. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1423. vcpu_put(vcpu);
  1424. return r;
  1425. }
  1426. static long kvm_dev_ioctl(struct file *filp,
  1427. unsigned int ioctl, unsigned long arg)
  1428. {
  1429. struct kvm *kvm = filp->private_data;
  1430. int r = -EINVAL;
  1431. switch (ioctl) {
  1432. case KVM_GET_API_VERSION:
  1433. r = KVM_API_VERSION;
  1434. break;
  1435. case KVM_CREATE_VCPU: {
  1436. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1437. if (r)
  1438. goto out;
  1439. break;
  1440. }
  1441. case KVM_RUN: {
  1442. struct kvm_run kvm_run;
  1443. r = -EFAULT;
  1444. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1445. goto out;
  1446. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1447. if (r < 0 && r != -EINTR)
  1448. goto out;
  1449. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
  1450. r = -EFAULT;
  1451. goto out;
  1452. }
  1453. break;
  1454. }
  1455. case KVM_GET_REGS: {
  1456. struct kvm_regs kvm_regs;
  1457. r = -EFAULT;
  1458. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1459. goto out;
  1460. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1461. if (r)
  1462. goto out;
  1463. r = -EFAULT;
  1464. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1465. goto out;
  1466. r = 0;
  1467. break;
  1468. }
  1469. case KVM_SET_REGS: {
  1470. struct kvm_regs kvm_regs;
  1471. r = -EFAULT;
  1472. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1473. goto out;
  1474. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1475. if (r)
  1476. goto out;
  1477. r = 0;
  1478. break;
  1479. }
  1480. case KVM_GET_SREGS: {
  1481. struct kvm_sregs kvm_sregs;
  1482. r = -EFAULT;
  1483. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1484. goto out;
  1485. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1486. if (r)
  1487. goto out;
  1488. r = -EFAULT;
  1489. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1490. goto out;
  1491. r = 0;
  1492. break;
  1493. }
  1494. case KVM_SET_SREGS: {
  1495. struct kvm_sregs kvm_sregs;
  1496. r = -EFAULT;
  1497. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1498. goto out;
  1499. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1500. if (r)
  1501. goto out;
  1502. r = 0;
  1503. break;
  1504. }
  1505. case KVM_TRANSLATE: {
  1506. struct kvm_translation tr;
  1507. r = -EFAULT;
  1508. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1509. goto out;
  1510. r = kvm_dev_ioctl_translate(kvm, &tr);
  1511. if (r)
  1512. goto out;
  1513. r = -EFAULT;
  1514. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1515. goto out;
  1516. r = 0;
  1517. break;
  1518. }
  1519. case KVM_INTERRUPT: {
  1520. struct kvm_interrupt irq;
  1521. r = -EFAULT;
  1522. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1523. goto out;
  1524. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1525. if (r)
  1526. goto out;
  1527. r = 0;
  1528. break;
  1529. }
  1530. case KVM_DEBUG_GUEST: {
  1531. struct kvm_debug_guest dbg;
  1532. r = -EFAULT;
  1533. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1534. goto out;
  1535. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1536. if (r)
  1537. goto out;
  1538. r = 0;
  1539. break;
  1540. }
  1541. case KVM_SET_MEMORY_REGION: {
  1542. struct kvm_memory_region kvm_mem;
  1543. r = -EFAULT;
  1544. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1545. goto out;
  1546. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1547. if (r)
  1548. goto out;
  1549. break;
  1550. }
  1551. case KVM_GET_DIRTY_LOG: {
  1552. struct kvm_dirty_log log;
  1553. r = -EFAULT;
  1554. if (copy_from_user(&log, (void *)arg, sizeof log))
  1555. goto out;
  1556. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1557. if (r)
  1558. goto out;
  1559. break;
  1560. }
  1561. case KVM_GET_MSRS:
  1562. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1563. break;
  1564. case KVM_SET_MSRS:
  1565. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1566. break;
  1567. case KVM_GET_MSR_INDEX_LIST: {
  1568. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1569. struct kvm_msr_list msr_list;
  1570. unsigned n;
  1571. r = -EFAULT;
  1572. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1573. goto out;
  1574. n = msr_list.nmsrs;
  1575. msr_list.nmsrs = num_msrs_to_save;
  1576. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1577. goto out;
  1578. r = -E2BIG;
  1579. if (n < num_msrs_to_save)
  1580. goto out;
  1581. r = -EFAULT;
  1582. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1583. num_msrs_to_save * sizeof(u32)))
  1584. goto out;
  1585. r = 0;
  1586. }
  1587. default:
  1588. ;
  1589. }
  1590. out:
  1591. return r;
  1592. }
  1593. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1594. unsigned long address,
  1595. int *type)
  1596. {
  1597. struct kvm *kvm = vma->vm_file->private_data;
  1598. unsigned long pgoff;
  1599. struct kvm_memory_slot *slot;
  1600. struct page *page;
  1601. *type = VM_FAULT_MINOR;
  1602. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1603. slot = gfn_to_memslot(kvm, pgoff);
  1604. if (!slot)
  1605. return NOPAGE_SIGBUS;
  1606. page = gfn_to_page(slot, pgoff);
  1607. if (!page)
  1608. return NOPAGE_SIGBUS;
  1609. get_page(page);
  1610. return page;
  1611. }
  1612. static struct vm_operations_struct kvm_dev_vm_ops = {
  1613. .nopage = kvm_dev_nopage,
  1614. };
  1615. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1616. {
  1617. vma->vm_ops = &kvm_dev_vm_ops;
  1618. return 0;
  1619. }
  1620. static struct file_operations kvm_chardev_ops = {
  1621. .open = kvm_dev_open,
  1622. .release = kvm_dev_release,
  1623. .unlocked_ioctl = kvm_dev_ioctl,
  1624. .compat_ioctl = kvm_dev_ioctl,
  1625. .mmap = kvm_dev_mmap,
  1626. };
  1627. static struct miscdevice kvm_dev = {
  1628. MISC_DYNAMIC_MINOR,
  1629. "kvm",
  1630. &kvm_chardev_ops,
  1631. };
  1632. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1633. void *v)
  1634. {
  1635. if (val == SYS_RESTART) {
  1636. /*
  1637. * Some (well, at least mine) BIOSes hang on reboot if
  1638. * in vmx root mode.
  1639. */
  1640. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1641. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1642. }
  1643. return NOTIFY_OK;
  1644. }
  1645. static struct notifier_block kvm_reboot_notifier = {
  1646. .notifier_call = kvm_reboot,
  1647. .priority = 0,
  1648. };
  1649. static __init void kvm_init_debug(void)
  1650. {
  1651. struct kvm_stats_debugfs_item *p;
  1652. debugfs_dir = debugfs_create_dir("kvm", 0);
  1653. for (p = debugfs_entries; p->name; ++p)
  1654. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1655. p->data);
  1656. }
  1657. static void kvm_exit_debug(void)
  1658. {
  1659. struct kvm_stats_debugfs_item *p;
  1660. for (p = debugfs_entries; p->name; ++p)
  1661. debugfs_remove(p->dentry);
  1662. debugfs_remove(debugfs_dir);
  1663. }
  1664. hpa_t bad_page_address;
  1665. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1666. {
  1667. int r;
  1668. if (kvm_arch_ops) {
  1669. printk(KERN_ERR "kvm: already loaded the other module\n");
  1670. return -EEXIST;
  1671. }
  1672. if (!ops->cpu_has_kvm_support()) {
  1673. printk(KERN_ERR "kvm: no hardware support\n");
  1674. return -EOPNOTSUPP;
  1675. }
  1676. if (ops->disabled_by_bios()) {
  1677. printk(KERN_ERR "kvm: disabled by bios\n");
  1678. return -EOPNOTSUPP;
  1679. }
  1680. kvm_arch_ops = ops;
  1681. r = kvm_arch_ops->hardware_setup();
  1682. if (r < 0)
  1683. return r;
  1684. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1685. register_reboot_notifier(&kvm_reboot_notifier);
  1686. kvm_chardev_ops.owner = module;
  1687. r = misc_register(&kvm_dev);
  1688. if (r) {
  1689. printk (KERN_ERR "kvm: misc device register failed\n");
  1690. goto out_free;
  1691. }
  1692. return r;
  1693. out_free:
  1694. unregister_reboot_notifier(&kvm_reboot_notifier);
  1695. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1696. kvm_arch_ops->hardware_unsetup();
  1697. return r;
  1698. }
  1699. void kvm_exit_arch(void)
  1700. {
  1701. misc_deregister(&kvm_dev);
  1702. unregister_reboot_notifier(&kvm_reboot_notifier);
  1703. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1704. kvm_arch_ops->hardware_unsetup();
  1705. kvm_arch_ops = NULL;
  1706. }
  1707. static __init int kvm_init(void)
  1708. {
  1709. static struct page *bad_page;
  1710. int r = 0;
  1711. kvm_init_debug();
  1712. kvm_init_msr_list();
  1713. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1714. r = -ENOMEM;
  1715. goto out;
  1716. }
  1717. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1718. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1719. return r;
  1720. out:
  1721. kvm_exit_debug();
  1722. return r;
  1723. }
  1724. static __exit void kvm_exit(void)
  1725. {
  1726. kvm_exit_debug();
  1727. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1728. }
  1729. module_init(kvm_init)
  1730. module_exit(kvm_exit)
  1731. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1732. EXPORT_SYMBOL_GPL(kvm_exit_arch);