blk.h 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. #ifndef BLK_INTERNAL_H
  2. #define BLK_INTERNAL_H
  3. #include <linux/idr.h>
  4. /* Amount of time in which a process may batch requests */
  5. #define BLK_BATCH_TIME (HZ/50UL)
  6. /* Number of requests a "batching" process may submit */
  7. #define BLK_BATCH_REQ 32
  8. extern struct kmem_cache *blk_requestq_cachep;
  9. extern struct kobj_type blk_queue_ktype;
  10. extern struct ida blk_queue_ida;
  11. static inline void __blk_get_queue(struct request_queue *q)
  12. {
  13. kobject_get(&q->kobj);
  14. }
  15. void init_request_from_bio(struct request *req, struct bio *bio);
  16. void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  17. struct bio *bio);
  18. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  19. struct bio *bio);
  20. void blk_queue_bypass_start(struct request_queue *q);
  21. void blk_queue_bypass_end(struct request_queue *q);
  22. void blk_dequeue_request(struct request *rq);
  23. void __blk_queue_free_tags(struct request_queue *q);
  24. bool __blk_end_bidi_request(struct request *rq, int error,
  25. unsigned int nr_bytes, unsigned int bidi_bytes);
  26. void blk_rq_timed_out_timer(unsigned long data);
  27. void blk_delete_timer(struct request *);
  28. void blk_add_timer(struct request *);
  29. void __generic_unplug_device(struct request_queue *);
  30. /*
  31. * Internal atomic flags for request handling
  32. */
  33. enum rq_atomic_flags {
  34. REQ_ATOM_COMPLETE = 0,
  35. };
  36. /*
  37. * EH timer and IO completion will both attempt to 'grab' the request, make
  38. * sure that only one of them succeeds
  39. */
  40. static inline int blk_mark_rq_complete(struct request *rq)
  41. {
  42. return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
  43. }
  44. static inline void blk_clear_rq_complete(struct request *rq)
  45. {
  46. clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
  47. }
  48. /*
  49. * Internal elevator interface
  50. */
  51. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  52. void blk_insert_flush(struct request *rq);
  53. void blk_abort_flushes(struct request_queue *q);
  54. static inline struct request *__elv_next_request(struct request_queue *q)
  55. {
  56. struct request *rq;
  57. while (1) {
  58. if (!list_empty(&q->queue_head)) {
  59. rq = list_entry_rq(q->queue_head.next);
  60. return rq;
  61. }
  62. /*
  63. * Flush request is running and flush request isn't queueable
  64. * in the drive, we can hold the queue till flush request is
  65. * finished. Even we don't do this, driver can't dispatch next
  66. * requests and will requeue them. And this can improve
  67. * throughput too. For example, we have request flush1, write1,
  68. * flush 2. flush1 is dispatched, then queue is hold, write1
  69. * isn't inserted to queue. After flush1 is finished, flush2
  70. * will be dispatched. Since disk cache is already clean,
  71. * flush2 will be finished very soon, so looks like flush2 is
  72. * folded to flush1.
  73. * Since the queue is hold, a flag is set to indicate the queue
  74. * should be restarted later. Please see flush_end_io() for
  75. * details.
  76. */
  77. if (q->flush_pending_idx != q->flush_running_idx &&
  78. !queue_flush_queueable(q)) {
  79. q->flush_queue_delayed = 1;
  80. return NULL;
  81. }
  82. if (unlikely(blk_queue_dead(q)) ||
  83. !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
  84. return NULL;
  85. }
  86. }
  87. static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
  88. {
  89. struct elevator_queue *e = q->elevator;
  90. if (e->type->ops.elevator_activate_req_fn)
  91. e->type->ops.elevator_activate_req_fn(q, rq);
  92. }
  93. static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  94. {
  95. struct elevator_queue *e = q->elevator;
  96. if (e->type->ops.elevator_deactivate_req_fn)
  97. e->type->ops.elevator_deactivate_req_fn(q, rq);
  98. }
  99. #ifdef CONFIG_FAIL_IO_TIMEOUT
  100. int blk_should_fake_timeout(struct request_queue *);
  101. ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
  102. ssize_t part_timeout_store(struct device *, struct device_attribute *,
  103. const char *, size_t);
  104. #else
  105. static inline int blk_should_fake_timeout(struct request_queue *q)
  106. {
  107. return 0;
  108. }
  109. #endif
  110. int ll_back_merge_fn(struct request_queue *q, struct request *req,
  111. struct bio *bio);
  112. int ll_front_merge_fn(struct request_queue *q, struct request *req,
  113. struct bio *bio);
  114. int attempt_back_merge(struct request_queue *q, struct request *rq);
  115. int attempt_front_merge(struct request_queue *q, struct request *rq);
  116. int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
  117. struct request *next);
  118. void blk_recalc_rq_segments(struct request *rq);
  119. void blk_rq_set_mixed_merge(struct request *rq);
  120. bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
  121. int blk_try_merge(struct request *rq, struct bio *bio);
  122. void blk_queue_congestion_threshold(struct request_queue *q);
  123. int blk_dev_init(void);
  124. /*
  125. * Return the threshold (number of used requests) at which the queue is
  126. * considered to be congested. It include a little hysteresis to keep the
  127. * context switch rate down.
  128. */
  129. static inline int queue_congestion_on_threshold(struct request_queue *q)
  130. {
  131. return q->nr_congestion_on;
  132. }
  133. /*
  134. * The threshold at which a queue is considered to be uncongested
  135. */
  136. static inline int queue_congestion_off_threshold(struct request_queue *q)
  137. {
  138. return q->nr_congestion_off;
  139. }
  140. static inline int blk_cpu_to_group(int cpu)
  141. {
  142. int group = NR_CPUS;
  143. #ifdef CONFIG_SCHED_MC
  144. const struct cpumask *mask = cpu_coregroup_mask(cpu);
  145. group = cpumask_first(mask);
  146. #elif defined(CONFIG_SCHED_SMT)
  147. group = cpumask_first(topology_thread_cpumask(cpu));
  148. #else
  149. return cpu;
  150. #endif
  151. if (likely(group < NR_CPUS))
  152. return group;
  153. return cpu;
  154. }
  155. /*
  156. * Contribute to IO statistics IFF:
  157. *
  158. * a) it's attached to a gendisk, and
  159. * b) the queue had IO stats enabled when this request was started, and
  160. * c) it's a file system request or a discard request
  161. */
  162. static inline int blk_do_io_stat(struct request *rq)
  163. {
  164. return rq->rq_disk &&
  165. (rq->cmd_flags & REQ_IO_STAT) &&
  166. (rq->cmd_type == REQ_TYPE_FS ||
  167. (rq->cmd_flags & REQ_DISCARD));
  168. }
  169. /*
  170. * Internal io_context interface
  171. */
  172. void get_io_context(struct io_context *ioc);
  173. struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
  174. struct io_cq *ioc_create_icq(struct request_queue *q, gfp_t gfp_mask);
  175. void ioc_clear_queue(struct request_queue *q);
  176. void create_io_context_slowpath(struct task_struct *task, gfp_t gfp_mask,
  177. int node);
  178. /**
  179. * create_io_context - try to create task->io_context
  180. * @task: target task
  181. * @gfp_mask: allocation mask
  182. * @node: allocation node
  183. *
  184. * If @task->io_context is %NULL, allocate a new io_context and install it.
  185. * Returns the current @task->io_context which may be %NULL if allocation
  186. * failed.
  187. *
  188. * Note that this function can't be called with IRQ disabled because
  189. * task_lock which protects @task->io_context is IRQ-unsafe.
  190. */
  191. static inline struct io_context *create_io_context(struct task_struct *task,
  192. gfp_t gfp_mask, int node)
  193. {
  194. WARN_ON_ONCE(irqs_disabled());
  195. if (unlikely(!task->io_context))
  196. create_io_context_slowpath(task, gfp_mask, node);
  197. return task->io_context;
  198. }
  199. /*
  200. * Internal throttling interface
  201. */
  202. #ifdef CONFIG_BLK_DEV_THROTTLING
  203. extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
  204. extern void blk_throtl_drain(struct request_queue *q);
  205. extern int blk_throtl_init(struct request_queue *q);
  206. extern void blk_throtl_exit(struct request_queue *q);
  207. #else /* CONFIG_BLK_DEV_THROTTLING */
  208. static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
  209. {
  210. return false;
  211. }
  212. static inline void blk_throtl_drain(struct request_queue *q) { }
  213. static inline int blk_throtl_init(struct request_queue *q) { return 0; }
  214. static inline void blk_throtl_exit(struct request_queue *q) { }
  215. #endif /* CONFIG_BLK_DEV_THROTTLING */
  216. #endif /* BLK_INTERNAL_H */