segment.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
  1. /*
  2. * fs/f2fs/segment.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. /* constant macro */
  12. #define NULL_SEGNO ((unsigned int)(~0))
  13. #define NULL_SECNO ((unsigned int)(~0))
  14. /* V: Logical segment # in volume, R: Relative segment # in main area */
  15. #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
  16. #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
  17. #define IS_DATASEG(t) \
  18. ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
  19. (t == CURSEG_WARM_DATA))
  20. #define IS_NODESEG(t) \
  21. ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
  22. (t == CURSEG_WARM_NODE))
  23. #define IS_CURSEG(sbi, seg) \
  24. ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
  25. (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
  26. (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
  27. (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
  28. (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
  29. (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
  30. #define IS_CURSEC(sbi, secno) \
  31. ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
  32. sbi->segs_per_sec) || \
  33. (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
  34. sbi->segs_per_sec) || \
  35. (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
  36. sbi->segs_per_sec) || \
  37. (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
  38. sbi->segs_per_sec) || \
  39. (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
  40. sbi->segs_per_sec) || \
  41. (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
  42. sbi->segs_per_sec)) \
  43. #define START_BLOCK(sbi, segno) \
  44. (SM_I(sbi)->seg0_blkaddr + \
  45. (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
  46. #define NEXT_FREE_BLKADDR(sbi, curseg) \
  47. (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
  48. #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
  49. #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
  50. ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
  51. #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
  52. (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
  53. #define GET_SEGNO(sbi, blk_addr) \
  54. (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
  55. NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
  56. GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
  57. #define GET_SECNO(sbi, segno) \
  58. ((segno) / sbi->segs_per_sec)
  59. #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
  60. ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
  61. #define GET_SUM_BLOCK(sbi, segno) \
  62. ((sbi->sm_info->ssa_blkaddr) + segno)
  63. #define GET_SUM_TYPE(footer) ((footer)->entry_type)
  64. #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
  65. #define SIT_ENTRY_OFFSET(sit_i, segno) \
  66. (segno % sit_i->sents_per_block)
  67. #define SIT_BLOCK_OFFSET(sit_i, segno) \
  68. (segno / SIT_ENTRY_PER_BLOCK)
  69. #define START_SEGNO(sit_i, segno) \
  70. (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
  71. #define f2fs_bitmap_size(nr) \
  72. (BITS_TO_LONGS(nr) * sizeof(unsigned long))
  73. #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
  74. #define TOTAL_SECS(sbi) (sbi->total_sections)
  75. #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
  76. (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
  77. /* during checkpoint, bio_private is used to synchronize the last bio */
  78. struct bio_private {
  79. struct f2fs_sb_info *sbi;
  80. bool is_sync;
  81. void *wait;
  82. };
  83. /*
  84. * indicate a block allocation direction: RIGHT and LEFT.
  85. * RIGHT means allocating new sections towards the end of volume.
  86. * LEFT means the opposite direction.
  87. */
  88. enum {
  89. ALLOC_RIGHT = 0,
  90. ALLOC_LEFT
  91. };
  92. /*
  93. * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
  94. * LFS writes data sequentially with cleaning operations.
  95. * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
  96. */
  97. enum {
  98. LFS = 0,
  99. SSR
  100. };
  101. /*
  102. * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
  103. * GC_CB is based on cost-benefit algorithm.
  104. * GC_GREEDY is based on greedy algorithm.
  105. */
  106. enum {
  107. GC_CB = 0,
  108. GC_GREEDY
  109. };
  110. /*
  111. * BG_GC means the background cleaning job.
  112. * FG_GC means the on-demand cleaning job.
  113. */
  114. enum {
  115. BG_GC = 0,
  116. FG_GC
  117. };
  118. /* for a function parameter to select a victim segment */
  119. struct victim_sel_policy {
  120. int alloc_mode; /* LFS or SSR */
  121. int gc_mode; /* GC_CB or GC_GREEDY */
  122. unsigned long *dirty_segmap; /* dirty segment bitmap */
  123. unsigned int offset; /* last scanned bitmap offset */
  124. unsigned int ofs_unit; /* bitmap search unit */
  125. unsigned int min_cost; /* minimum cost */
  126. unsigned int min_segno; /* segment # having min. cost */
  127. };
  128. struct seg_entry {
  129. unsigned short valid_blocks; /* # of valid blocks */
  130. unsigned char *cur_valid_map; /* validity bitmap of blocks */
  131. /*
  132. * # of valid blocks and the validity bitmap stored in the the last
  133. * checkpoint pack. This information is used by the SSR mode.
  134. */
  135. unsigned short ckpt_valid_blocks;
  136. unsigned char *ckpt_valid_map;
  137. unsigned char type; /* segment type like CURSEG_XXX_TYPE */
  138. unsigned long long mtime; /* modification time of the segment */
  139. };
  140. struct sec_entry {
  141. unsigned int valid_blocks; /* # of valid blocks in a section */
  142. };
  143. struct segment_allocation {
  144. void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
  145. };
  146. struct sit_info {
  147. const struct segment_allocation *s_ops;
  148. block_t sit_base_addr; /* start block address of SIT area */
  149. block_t sit_blocks; /* # of blocks used by SIT area */
  150. block_t written_valid_blocks; /* # of valid blocks in main area */
  151. char *sit_bitmap; /* SIT bitmap pointer */
  152. unsigned int bitmap_size; /* SIT bitmap size */
  153. unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
  154. unsigned int dirty_sentries; /* # of dirty sentries */
  155. unsigned int sents_per_block; /* # of SIT entries per block */
  156. struct mutex sentry_lock; /* to protect SIT cache */
  157. struct seg_entry *sentries; /* SIT segment-level cache */
  158. struct sec_entry *sec_entries; /* SIT section-level cache */
  159. /* for cost-benefit algorithm in cleaning procedure */
  160. unsigned long long elapsed_time; /* elapsed time after mount */
  161. unsigned long long mounted_time; /* mount time */
  162. unsigned long long min_mtime; /* min. modification time */
  163. unsigned long long max_mtime; /* max. modification time */
  164. };
  165. struct free_segmap_info {
  166. unsigned int start_segno; /* start segment number logically */
  167. unsigned int free_segments; /* # of free segments */
  168. unsigned int free_sections; /* # of free sections */
  169. rwlock_t segmap_lock; /* free segmap lock */
  170. unsigned long *free_segmap; /* free segment bitmap */
  171. unsigned long *free_secmap; /* free section bitmap */
  172. };
  173. /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
  174. enum dirty_type {
  175. DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
  176. DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
  177. DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
  178. DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
  179. DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
  180. DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
  181. DIRTY, /* to count # of dirty segments */
  182. PRE, /* to count # of entirely obsolete segments */
  183. NR_DIRTY_TYPE
  184. };
  185. struct dirty_seglist_info {
  186. const struct victim_selection *v_ops; /* victim selction operation */
  187. unsigned long *dirty_segmap[NR_DIRTY_TYPE];
  188. struct mutex seglist_lock; /* lock for segment bitmaps */
  189. int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
  190. unsigned long *victim_secmap; /* background GC victims */
  191. };
  192. /* victim selection function for cleaning and SSR */
  193. struct victim_selection {
  194. int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
  195. int, int, char);
  196. };
  197. /* for active log information */
  198. struct curseg_info {
  199. struct mutex curseg_mutex; /* lock for consistency */
  200. struct f2fs_summary_block *sum_blk; /* cached summary block */
  201. unsigned char alloc_type; /* current allocation type */
  202. unsigned int segno; /* current segment number */
  203. unsigned short next_blkoff; /* next block offset to write */
  204. unsigned int zone; /* current zone number */
  205. unsigned int next_segno; /* preallocated segment */
  206. };
  207. /*
  208. * inline functions
  209. */
  210. static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
  211. {
  212. return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
  213. }
  214. static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
  215. unsigned int segno)
  216. {
  217. struct sit_info *sit_i = SIT_I(sbi);
  218. return &sit_i->sentries[segno];
  219. }
  220. static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
  221. unsigned int segno)
  222. {
  223. struct sit_info *sit_i = SIT_I(sbi);
  224. return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
  225. }
  226. static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
  227. unsigned int segno, int section)
  228. {
  229. /*
  230. * In order to get # of valid blocks in a section instantly from many
  231. * segments, f2fs manages two counting structures separately.
  232. */
  233. if (section > 1)
  234. return get_sec_entry(sbi, segno)->valid_blocks;
  235. else
  236. return get_seg_entry(sbi, segno)->valid_blocks;
  237. }
  238. static inline void seg_info_from_raw_sit(struct seg_entry *se,
  239. struct f2fs_sit_entry *rs)
  240. {
  241. se->valid_blocks = GET_SIT_VBLOCKS(rs);
  242. se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
  243. memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  244. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  245. se->type = GET_SIT_TYPE(rs);
  246. se->mtime = le64_to_cpu(rs->mtime);
  247. }
  248. static inline void seg_info_to_raw_sit(struct seg_entry *se,
  249. struct f2fs_sit_entry *rs)
  250. {
  251. unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
  252. se->valid_blocks;
  253. rs->vblocks = cpu_to_le16(raw_vblocks);
  254. memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
  255. memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
  256. se->ckpt_valid_blocks = se->valid_blocks;
  257. rs->mtime = cpu_to_le64(se->mtime);
  258. }
  259. static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
  260. unsigned int max, unsigned int segno)
  261. {
  262. unsigned int ret;
  263. read_lock(&free_i->segmap_lock);
  264. ret = find_next_bit(free_i->free_segmap, max, segno);
  265. read_unlock(&free_i->segmap_lock);
  266. return ret;
  267. }
  268. static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
  269. {
  270. struct free_segmap_info *free_i = FREE_I(sbi);
  271. unsigned int secno = segno / sbi->segs_per_sec;
  272. unsigned int start_segno = secno * sbi->segs_per_sec;
  273. unsigned int next;
  274. write_lock(&free_i->segmap_lock);
  275. clear_bit(segno, free_i->free_segmap);
  276. free_i->free_segments++;
  277. next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
  278. if (next >= start_segno + sbi->segs_per_sec) {
  279. clear_bit(secno, free_i->free_secmap);
  280. free_i->free_sections++;
  281. }
  282. write_unlock(&free_i->segmap_lock);
  283. }
  284. static inline void __set_inuse(struct f2fs_sb_info *sbi,
  285. unsigned int segno)
  286. {
  287. struct free_segmap_info *free_i = FREE_I(sbi);
  288. unsigned int secno = segno / sbi->segs_per_sec;
  289. set_bit(segno, free_i->free_segmap);
  290. free_i->free_segments--;
  291. if (!test_and_set_bit(secno, free_i->free_secmap))
  292. free_i->free_sections--;
  293. }
  294. static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
  295. unsigned int segno)
  296. {
  297. struct free_segmap_info *free_i = FREE_I(sbi);
  298. unsigned int secno = segno / sbi->segs_per_sec;
  299. unsigned int start_segno = secno * sbi->segs_per_sec;
  300. unsigned int next;
  301. write_lock(&free_i->segmap_lock);
  302. if (test_and_clear_bit(segno, free_i->free_segmap)) {
  303. free_i->free_segments++;
  304. next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
  305. start_segno);
  306. if (next >= start_segno + sbi->segs_per_sec) {
  307. if (test_and_clear_bit(secno, free_i->free_secmap))
  308. free_i->free_sections++;
  309. }
  310. }
  311. write_unlock(&free_i->segmap_lock);
  312. }
  313. static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
  314. unsigned int segno)
  315. {
  316. struct free_segmap_info *free_i = FREE_I(sbi);
  317. unsigned int secno = segno / sbi->segs_per_sec;
  318. write_lock(&free_i->segmap_lock);
  319. if (!test_and_set_bit(segno, free_i->free_segmap)) {
  320. free_i->free_segments--;
  321. if (!test_and_set_bit(secno, free_i->free_secmap))
  322. free_i->free_sections--;
  323. }
  324. write_unlock(&free_i->segmap_lock);
  325. }
  326. static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
  327. void *dst_addr)
  328. {
  329. struct sit_info *sit_i = SIT_I(sbi);
  330. memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
  331. }
  332. static inline block_t written_block_count(struct f2fs_sb_info *sbi)
  333. {
  334. struct sit_info *sit_i = SIT_I(sbi);
  335. block_t vblocks;
  336. mutex_lock(&sit_i->sentry_lock);
  337. vblocks = sit_i->written_valid_blocks;
  338. mutex_unlock(&sit_i->sentry_lock);
  339. return vblocks;
  340. }
  341. static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
  342. {
  343. struct free_segmap_info *free_i = FREE_I(sbi);
  344. unsigned int free_segs;
  345. read_lock(&free_i->segmap_lock);
  346. free_segs = free_i->free_segments;
  347. read_unlock(&free_i->segmap_lock);
  348. return free_segs;
  349. }
  350. static inline int reserved_segments(struct f2fs_sb_info *sbi)
  351. {
  352. return SM_I(sbi)->reserved_segments;
  353. }
  354. static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
  355. {
  356. struct free_segmap_info *free_i = FREE_I(sbi);
  357. unsigned int free_secs;
  358. read_lock(&free_i->segmap_lock);
  359. free_secs = free_i->free_sections;
  360. read_unlock(&free_i->segmap_lock);
  361. return free_secs;
  362. }
  363. static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
  364. {
  365. return DIRTY_I(sbi)->nr_dirty[PRE];
  366. }
  367. static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
  368. {
  369. return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
  370. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
  371. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
  372. DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
  373. DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
  374. DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
  375. }
  376. static inline int overprovision_segments(struct f2fs_sb_info *sbi)
  377. {
  378. return SM_I(sbi)->ovp_segments;
  379. }
  380. static inline int overprovision_sections(struct f2fs_sb_info *sbi)
  381. {
  382. return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
  383. }
  384. static inline int reserved_sections(struct f2fs_sb_info *sbi)
  385. {
  386. return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
  387. }
  388. static inline bool need_SSR(struct f2fs_sb_info *sbi)
  389. {
  390. return (free_sections(sbi) < overprovision_sections(sbi));
  391. }
  392. static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
  393. {
  394. int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
  395. int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
  396. if (sbi->por_doing)
  397. return false;
  398. return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
  399. reserved_sections(sbi)));
  400. }
  401. static inline int utilization(struct f2fs_sb_info *sbi)
  402. {
  403. return div_u64(valid_user_blocks(sbi) * 100, sbi->user_block_count);
  404. }
  405. /*
  406. * Sometimes f2fs may be better to drop out-of-place update policy.
  407. * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
  408. * data in the original place likewise other traditional file systems.
  409. * But, currently set 100 in percentage, which means it is disabled.
  410. * See below need_inplace_update().
  411. */
  412. #define MIN_IPU_UTIL 100
  413. static inline bool need_inplace_update(struct inode *inode)
  414. {
  415. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  416. if (S_ISDIR(inode->i_mode))
  417. return false;
  418. if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
  419. return true;
  420. return false;
  421. }
  422. static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
  423. int type)
  424. {
  425. struct curseg_info *curseg = CURSEG_I(sbi, type);
  426. return curseg->segno;
  427. }
  428. static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
  429. int type)
  430. {
  431. struct curseg_info *curseg = CURSEG_I(sbi, type);
  432. return curseg->alloc_type;
  433. }
  434. static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
  435. {
  436. struct curseg_info *curseg = CURSEG_I(sbi, type);
  437. return curseg->next_blkoff;
  438. }
  439. static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
  440. {
  441. unsigned int end_segno = SM_I(sbi)->segment_count - 1;
  442. BUG_ON(segno > end_segno);
  443. }
  444. /*
  445. * This function is used for only debugging.
  446. * NOTE: In future, we have to remove this function.
  447. */
  448. static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
  449. {
  450. struct f2fs_sm_info *sm_info = SM_I(sbi);
  451. block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
  452. block_t start_addr = sm_info->seg0_blkaddr;
  453. block_t end_addr = start_addr + total_blks - 1;
  454. BUG_ON(blk_addr < start_addr);
  455. BUG_ON(blk_addr > end_addr);
  456. }
  457. /*
  458. * Summary block is always treated as invalid block
  459. */
  460. static inline void check_block_count(struct f2fs_sb_info *sbi,
  461. int segno, struct f2fs_sit_entry *raw_sit)
  462. {
  463. struct f2fs_sm_info *sm_info = SM_I(sbi);
  464. unsigned int end_segno = sm_info->segment_count - 1;
  465. int valid_blocks = 0;
  466. int i;
  467. /* check segment usage */
  468. BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
  469. /* check boundary of a given segment number */
  470. BUG_ON(segno > end_segno);
  471. /* check bitmap with valid block count */
  472. for (i = 0; i < sbi->blocks_per_seg; i++)
  473. if (f2fs_test_bit(i, raw_sit->valid_map))
  474. valid_blocks++;
  475. BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
  476. }
  477. static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
  478. unsigned int start)
  479. {
  480. struct sit_info *sit_i = SIT_I(sbi);
  481. unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
  482. block_t blk_addr = sit_i->sit_base_addr + offset;
  483. check_seg_range(sbi, start);
  484. /* calculate sit block address */
  485. if (f2fs_test_bit(offset, sit_i->sit_bitmap))
  486. blk_addr += sit_i->sit_blocks;
  487. return blk_addr;
  488. }
  489. static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
  490. pgoff_t block_addr)
  491. {
  492. struct sit_info *sit_i = SIT_I(sbi);
  493. block_addr -= sit_i->sit_base_addr;
  494. if (block_addr < sit_i->sit_blocks)
  495. block_addr += sit_i->sit_blocks;
  496. else
  497. block_addr -= sit_i->sit_blocks;
  498. return block_addr + sit_i->sit_base_addr;
  499. }
  500. static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
  501. {
  502. unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
  503. if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
  504. f2fs_clear_bit(block_off, sit_i->sit_bitmap);
  505. else
  506. f2fs_set_bit(block_off, sit_i->sit_bitmap);
  507. }
  508. static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
  509. {
  510. struct sit_info *sit_i = SIT_I(sbi);
  511. return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
  512. sit_i->mounted_time;
  513. }
  514. static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
  515. unsigned int ofs_in_node, unsigned char version)
  516. {
  517. sum->nid = cpu_to_le32(nid);
  518. sum->ofs_in_node = cpu_to_le16(ofs_in_node);
  519. sum->version = version;
  520. }
  521. static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
  522. {
  523. return __start_cp_addr(sbi) +
  524. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
  525. }
  526. static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
  527. {
  528. return __start_cp_addr(sbi) +
  529. le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
  530. - (base + 1) + type;
  531. }
  532. static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
  533. {
  534. if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
  535. return true;
  536. return false;
  537. }