i915_gem.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
  38. static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
  39. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  40. bool pipelined);
  41. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  42. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  44. int write);
  45. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  46. uint64_t offset,
  47. uint64_t size);
  48. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  49. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  50. bool interruptible);
  51. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  52. unsigned alignment,
  53. bool mappable,
  54. bool need_fence);
  55. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  56. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  57. struct drm_i915_gem_pwrite *args,
  58. struct drm_file *file_priv);
  59. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  60. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  61. int nr_to_scan,
  62. gfp_t gfp_mask);
  63. /* some bookkeeping */
  64. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  65. size_t size)
  66. {
  67. dev_priv->mm.object_count++;
  68. dev_priv->mm.object_memory += size;
  69. }
  70. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  71. size_t size)
  72. {
  73. dev_priv->mm.object_count--;
  74. dev_priv->mm.object_memory -= size;
  75. }
  76. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  77. struct drm_i915_gem_object *obj)
  78. {
  79. dev_priv->mm.gtt_count++;
  80. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  81. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  82. dev_priv->mm.mappable_gtt_used +=
  83. min_t(size_t, obj->gtt_space->size,
  84. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  85. }
  86. }
  87. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  88. struct drm_i915_gem_object *obj)
  89. {
  90. dev_priv->mm.gtt_count--;
  91. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  92. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  93. dev_priv->mm.mappable_gtt_used -=
  94. min_t(size_t, obj->gtt_space->size,
  95. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  96. }
  97. }
  98. /**
  99. * Update the mappable working set counters. Call _only_ when there is a change
  100. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  101. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  102. */
  103. static void
  104. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  105. struct drm_i915_gem_object *obj,
  106. bool mappable)
  107. {
  108. if (mappable) {
  109. if (obj->pin_mappable && obj->fault_mappable)
  110. /* Combined state was already mappable. */
  111. return;
  112. dev_priv->mm.gtt_mappable_count++;
  113. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  114. } else {
  115. if (obj->pin_mappable || obj->fault_mappable)
  116. /* Combined state still mappable. */
  117. return;
  118. dev_priv->mm.gtt_mappable_count--;
  119. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  120. }
  121. }
  122. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  123. struct drm_i915_gem_object *obj,
  124. bool mappable)
  125. {
  126. dev_priv->mm.pin_count++;
  127. dev_priv->mm.pin_memory += obj->gtt_space->size;
  128. if (mappable) {
  129. obj->pin_mappable = true;
  130. i915_gem_info_update_mappable(dev_priv, obj, true);
  131. }
  132. }
  133. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  134. struct drm_i915_gem_object *obj)
  135. {
  136. dev_priv->mm.pin_count--;
  137. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  138. if (obj->pin_mappable) {
  139. obj->pin_mappable = false;
  140. i915_gem_info_update_mappable(dev_priv, obj, false);
  141. }
  142. }
  143. int
  144. i915_gem_check_is_wedged(struct drm_device *dev)
  145. {
  146. struct drm_i915_private *dev_priv = dev->dev_private;
  147. struct completion *x = &dev_priv->error_completion;
  148. unsigned long flags;
  149. int ret;
  150. if (!atomic_read(&dev_priv->mm.wedged))
  151. return 0;
  152. ret = wait_for_completion_interruptible(x);
  153. if (ret)
  154. return ret;
  155. /* Success, we reset the GPU! */
  156. if (!atomic_read(&dev_priv->mm.wedged))
  157. return 0;
  158. /* GPU is hung, bump the completion count to account for
  159. * the token we just consumed so that we never hit zero and
  160. * end up waiting upon a subsequent completion event that
  161. * will never happen.
  162. */
  163. spin_lock_irqsave(&x->wait.lock, flags);
  164. x->done++;
  165. spin_unlock_irqrestore(&x->wait.lock, flags);
  166. return -EIO;
  167. }
  168. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  169. {
  170. struct drm_i915_private *dev_priv = dev->dev_private;
  171. int ret;
  172. ret = i915_gem_check_is_wedged(dev);
  173. if (ret)
  174. return ret;
  175. ret = mutex_lock_interruptible(&dev->struct_mutex);
  176. if (ret)
  177. return ret;
  178. if (atomic_read(&dev_priv->mm.wedged)) {
  179. mutex_unlock(&dev->struct_mutex);
  180. return -EAGAIN;
  181. }
  182. WARN_ON(i915_verify_lists(dev));
  183. return 0;
  184. }
  185. static inline bool
  186. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  187. {
  188. return obj_priv->gtt_space &&
  189. !obj_priv->active &&
  190. obj_priv->pin_count == 0;
  191. }
  192. int i915_gem_do_init(struct drm_device *dev,
  193. unsigned long start,
  194. unsigned long mappable_end,
  195. unsigned long end)
  196. {
  197. drm_i915_private_t *dev_priv = dev->dev_private;
  198. if (start >= end ||
  199. (start & (PAGE_SIZE - 1)) != 0 ||
  200. (end & (PAGE_SIZE - 1)) != 0) {
  201. return -EINVAL;
  202. }
  203. drm_mm_init(&dev_priv->mm.gtt_space, start,
  204. end - start);
  205. dev_priv->mm.gtt_total = end - start;
  206. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  207. dev_priv->mm.gtt_mappable_end = mappable_end;
  208. return 0;
  209. }
  210. int
  211. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  212. struct drm_file *file_priv)
  213. {
  214. struct drm_i915_gem_init *args = data;
  215. int ret;
  216. mutex_lock(&dev->struct_mutex);
  217. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  218. mutex_unlock(&dev->struct_mutex);
  219. return ret;
  220. }
  221. int
  222. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  223. struct drm_file *file_priv)
  224. {
  225. struct drm_i915_private *dev_priv = dev->dev_private;
  226. struct drm_i915_gem_get_aperture *args = data;
  227. if (!(dev->driver->driver_features & DRIVER_GEM))
  228. return -ENODEV;
  229. mutex_lock(&dev->struct_mutex);
  230. args->aper_size = dev_priv->mm.gtt_total;
  231. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  232. mutex_unlock(&dev->struct_mutex);
  233. return 0;
  234. }
  235. /**
  236. * Creates a new mm object and returns a handle to it.
  237. */
  238. int
  239. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  240. struct drm_file *file_priv)
  241. {
  242. struct drm_i915_gem_create *args = data;
  243. struct drm_gem_object *obj;
  244. int ret;
  245. u32 handle;
  246. args->size = roundup(args->size, PAGE_SIZE);
  247. /* Allocate the new object */
  248. obj = i915_gem_alloc_object(dev, args->size);
  249. if (obj == NULL)
  250. return -ENOMEM;
  251. ret = drm_gem_handle_create(file_priv, obj, &handle);
  252. if (ret) {
  253. drm_gem_object_release(obj);
  254. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  255. kfree(obj);
  256. return ret;
  257. }
  258. /* drop reference from allocate - handle holds it now */
  259. drm_gem_object_unreference(obj);
  260. trace_i915_gem_object_create(obj);
  261. args->handle = handle;
  262. return 0;
  263. }
  264. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  265. {
  266. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  267. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  268. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  269. obj_priv->tiling_mode != I915_TILING_NONE;
  270. }
  271. static inline void
  272. slow_shmem_copy(struct page *dst_page,
  273. int dst_offset,
  274. struct page *src_page,
  275. int src_offset,
  276. int length)
  277. {
  278. char *dst_vaddr, *src_vaddr;
  279. dst_vaddr = kmap(dst_page);
  280. src_vaddr = kmap(src_page);
  281. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  282. kunmap(src_page);
  283. kunmap(dst_page);
  284. }
  285. static inline void
  286. slow_shmem_bit17_copy(struct page *gpu_page,
  287. int gpu_offset,
  288. struct page *cpu_page,
  289. int cpu_offset,
  290. int length,
  291. int is_read)
  292. {
  293. char *gpu_vaddr, *cpu_vaddr;
  294. /* Use the unswizzled path if this page isn't affected. */
  295. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  296. if (is_read)
  297. return slow_shmem_copy(cpu_page, cpu_offset,
  298. gpu_page, gpu_offset, length);
  299. else
  300. return slow_shmem_copy(gpu_page, gpu_offset,
  301. cpu_page, cpu_offset, length);
  302. }
  303. gpu_vaddr = kmap(gpu_page);
  304. cpu_vaddr = kmap(cpu_page);
  305. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  306. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  307. */
  308. while (length > 0) {
  309. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  310. int this_length = min(cacheline_end - gpu_offset, length);
  311. int swizzled_gpu_offset = gpu_offset ^ 64;
  312. if (is_read) {
  313. memcpy(cpu_vaddr + cpu_offset,
  314. gpu_vaddr + swizzled_gpu_offset,
  315. this_length);
  316. } else {
  317. memcpy(gpu_vaddr + swizzled_gpu_offset,
  318. cpu_vaddr + cpu_offset,
  319. this_length);
  320. }
  321. cpu_offset += this_length;
  322. gpu_offset += this_length;
  323. length -= this_length;
  324. }
  325. kunmap(cpu_page);
  326. kunmap(gpu_page);
  327. }
  328. /**
  329. * This is the fast shmem pread path, which attempts to copy_from_user directly
  330. * from the backing pages of the object to the user's address space. On a
  331. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  332. */
  333. static int
  334. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  335. struct drm_i915_gem_pread *args,
  336. struct drm_file *file_priv)
  337. {
  338. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  339. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  340. ssize_t remain;
  341. loff_t offset;
  342. char __user *user_data;
  343. int page_offset, page_length;
  344. user_data = (char __user *) (uintptr_t) args->data_ptr;
  345. remain = args->size;
  346. obj_priv = to_intel_bo(obj);
  347. offset = args->offset;
  348. while (remain > 0) {
  349. struct page *page;
  350. char *vaddr;
  351. int ret;
  352. /* Operation in this page
  353. *
  354. * page_offset = offset within page
  355. * page_length = bytes to copy for this page
  356. */
  357. page_offset = offset & (PAGE_SIZE-1);
  358. page_length = remain;
  359. if ((page_offset + remain) > PAGE_SIZE)
  360. page_length = PAGE_SIZE - page_offset;
  361. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  362. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  363. if (IS_ERR(page))
  364. return PTR_ERR(page);
  365. vaddr = kmap_atomic(page);
  366. ret = __copy_to_user_inatomic(user_data,
  367. vaddr + page_offset,
  368. page_length);
  369. kunmap_atomic(vaddr);
  370. mark_page_accessed(page);
  371. page_cache_release(page);
  372. if (ret)
  373. return -EFAULT;
  374. remain -= page_length;
  375. user_data += page_length;
  376. offset += page_length;
  377. }
  378. return 0;
  379. }
  380. /**
  381. * This is the fallback shmem pread path, which allocates temporary storage
  382. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  383. * can copy out of the object's backing pages while holding the struct mutex
  384. * and not take page faults.
  385. */
  386. static int
  387. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  388. struct drm_i915_gem_pread *args,
  389. struct drm_file *file_priv)
  390. {
  391. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  392. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  393. struct mm_struct *mm = current->mm;
  394. struct page **user_pages;
  395. ssize_t remain;
  396. loff_t offset, pinned_pages, i;
  397. loff_t first_data_page, last_data_page, num_pages;
  398. int shmem_page_offset;
  399. int data_page_index, data_page_offset;
  400. int page_length;
  401. int ret;
  402. uint64_t data_ptr = args->data_ptr;
  403. int do_bit17_swizzling;
  404. remain = args->size;
  405. /* Pin the user pages containing the data. We can't fault while
  406. * holding the struct mutex, yet we want to hold it while
  407. * dereferencing the user data.
  408. */
  409. first_data_page = data_ptr / PAGE_SIZE;
  410. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  411. num_pages = last_data_page - first_data_page + 1;
  412. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  413. if (user_pages == NULL)
  414. return -ENOMEM;
  415. mutex_unlock(&dev->struct_mutex);
  416. down_read(&mm->mmap_sem);
  417. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  418. num_pages, 1, 0, user_pages, NULL);
  419. up_read(&mm->mmap_sem);
  420. mutex_lock(&dev->struct_mutex);
  421. if (pinned_pages < num_pages) {
  422. ret = -EFAULT;
  423. goto out;
  424. }
  425. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  426. args->offset,
  427. args->size);
  428. if (ret)
  429. goto out;
  430. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  431. obj_priv = to_intel_bo(obj);
  432. offset = args->offset;
  433. while (remain > 0) {
  434. struct page *page;
  435. /* Operation in this page
  436. *
  437. * shmem_page_offset = offset within page in shmem file
  438. * data_page_index = page number in get_user_pages return
  439. * data_page_offset = offset with data_page_index page.
  440. * page_length = bytes to copy for this page
  441. */
  442. shmem_page_offset = offset & ~PAGE_MASK;
  443. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  444. data_page_offset = data_ptr & ~PAGE_MASK;
  445. page_length = remain;
  446. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  447. page_length = PAGE_SIZE - shmem_page_offset;
  448. if ((data_page_offset + page_length) > PAGE_SIZE)
  449. page_length = PAGE_SIZE - data_page_offset;
  450. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  451. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  452. if (IS_ERR(page))
  453. return PTR_ERR(page);
  454. if (do_bit17_swizzling) {
  455. slow_shmem_bit17_copy(page,
  456. shmem_page_offset,
  457. user_pages[data_page_index],
  458. data_page_offset,
  459. page_length,
  460. 1);
  461. } else {
  462. slow_shmem_copy(user_pages[data_page_index],
  463. data_page_offset,
  464. page,
  465. shmem_page_offset,
  466. page_length);
  467. }
  468. mark_page_accessed(page);
  469. page_cache_release(page);
  470. remain -= page_length;
  471. data_ptr += page_length;
  472. offset += page_length;
  473. }
  474. out:
  475. for (i = 0; i < pinned_pages; i++) {
  476. SetPageDirty(user_pages[i]);
  477. mark_page_accessed(user_pages[i]);
  478. page_cache_release(user_pages[i]);
  479. }
  480. drm_free_large(user_pages);
  481. return ret;
  482. }
  483. /**
  484. * Reads data from the object referenced by handle.
  485. *
  486. * On error, the contents of *data are undefined.
  487. */
  488. int
  489. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  490. struct drm_file *file_priv)
  491. {
  492. struct drm_i915_gem_pread *args = data;
  493. struct drm_gem_object *obj;
  494. struct drm_i915_gem_object *obj_priv;
  495. int ret = 0;
  496. ret = i915_mutex_lock_interruptible(dev);
  497. if (ret)
  498. return ret;
  499. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  500. if (obj == NULL) {
  501. ret = -ENOENT;
  502. goto unlock;
  503. }
  504. obj_priv = to_intel_bo(obj);
  505. /* Bounds check source. */
  506. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  507. ret = -EINVAL;
  508. goto out;
  509. }
  510. if (args->size == 0)
  511. goto out;
  512. if (!access_ok(VERIFY_WRITE,
  513. (char __user *)(uintptr_t)args->data_ptr,
  514. args->size)) {
  515. ret = -EFAULT;
  516. goto out;
  517. }
  518. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  519. args->size);
  520. if (ret) {
  521. ret = -EFAULT;
  522. goto out;
  523. }
  524. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  525. args->offset,
  526. args->size);
  527. if (ret)
  528. goto out;
  529. ret = -EFAULT;
  530. if (!i915_gem_object_needs_bit17_swizzle(obj))
  531. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  532. if (ret == -EFAULT)
  533. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  534. out:
  535. drm_gem_object_unreference(obj);
  536. unlock:
  537. mutex_unlock(&dev->struct_mutex);
  538. return ret;
  539. }
  540. /* This is the fast write path which cannot handle
  541. * page faults in the source data
  542. */
  543. static inline int
  544. fast_user_write(struct io_mapping *mapping,
  545. loff_t page_base, int page_offset,
  546. char __user *user_data,
  547. int length)
  548. {
  549. char *vaddr_atomic;
  550. unsigned long unwritten;
  551. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  552. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  553. user_data, length);
  554. io_mapping_unmap_atomic(vaddr_atomic);
  555. return unwritten;
  556. }
  557. /* Here's the write path which can sleep for
  558. * page faults
  559. */
  560. static inline void
  561. slow_kernel_write(struct io_mapping *mapping,
  562. loff_t gtt_base, int gtt_offset,
  563. struct page *user_page, int user_offset,
  564. int length)
  565. {
  566. char __iomem *dst_vaddr;
  567. char *src_vaddr;
  568. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  569. src_vaddr = kmap(user_page);
  570. memcpy_toio(dst_vaddr + gtt_offset,
  571. src_vaddr + user_offset,
  572. length);
  573. kunmap(user_page);
  574. io_mapping_unmap(dst_vaddr);
  575. }
  576. /**
  577. * This is the fast pwrite path, where we copy the data directly from the
  578. * user into the GTT, uncached.
  579. */
  580. static int
  581. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  582. struct drm_i915_gem_pwrite *args,
  583. struct drm_file *file_priv)
  584. {
  585. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  586. drm_i915_private_t *dev_priv = dev->dev_private;
  587. ssize_t remain;
  588. loff_t offset, page_base;
  589. char __user *user_data;
  590. int page_offset, page_length;
  591. user_data = (char __user *) (uintptr_t) args->data_ptr;
  592. remain = args->size;
  593. obj_priv = to_intel_bo(obj);
  594. offset = obj_priv->gtt_offset + args->offset;
  595. while (remain > 0) {
  596. /* Operation in this page
  597. *
  598. * page_base = page offset within aperture
  599. * page_offset = offset within page
  600. * page_length = bytes to copy for this page
  601. */
  602. page_base = (offset & ~(PAGE_SIZE-1));
  603. page_offset = offset & (PAGE_SIZE-1);
  604. page_length = remain;
  605. if ((page_offset + remain) > PAGE_SIZE)
  606. page_length = PAGE_SIZE - page_offset;
  607. /* If we get a fault while copying data, then (presumably) our
  608. * source page isn't available. Return the error and we'll
  609. * retry in the slow path.
  610. */
  611. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  612. page_offset, user_data, page_length))
  613. return -EFAULT;
  614. remain -= page_length;
  615. user_data += page_length;
  616. offset += page_length;
  617. }
  618. return 0;
  619. }
  620. /**
  621. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  622. * the memory and maps it using kmap_atomic for copying.
  623. *
  624. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  625. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  626. */
  627. static int
  628. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  629. struct drm_i915_gem_pwrite *args,
  630. struct drm_file *file_priv)
  631. {
  632. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  633. drm_i915_private_t *dev_priv = dev->dev_private;
  634. ssize_t remain;
  635. loff_t gtt_page_base, offset;
  636. loff_t first_data_page, last_data_page, num_pages;
  637. loff_t pinned_pages, i;
  638. struct page **user_pages;
  639. struct mm_struct *mm = current->mm;
  640. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  641. int ret;
  642. uint64_t data_ptr = args->data_ptr;
  643. remain = args->size;
  644. /* Pin the user pages containing the data. We can't fault while
  645. * holding the struct mutex, and all of the pwrite implementations
  646. * want to hold it while dereferencing the user data.
  647. */
  648. first_data_page = data_ptr / PAGE_SIZE;
  649. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  650. num_pages = last_data_page - first_data_page + 1;
  651. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  652. if (user_pages == NULL)
  653. return -ENOMEM;
  654. mutex_unlock(&dev->struct_mutex);
  655. down_read(&mm->mmap_sem);
  656. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  657. num_pages, 0, 0, user_pages, NULL);
  658. up_read(&mm->mmap_sem);
  659. mutex_lock(&dev->struct_mutex);
  660. if (pinned_pages < num_pages) {
  661. ret = -EFAULT;
  662. goto out_unpin_pages;
  663. }
  664. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  665. if (ret)
  666. goto out_unpin_pages;
  667. obj_priv = to_intel_bo(obj);
  668. offset = obj_priv->gtt_offset + args->offset;
  669. while (remain > 0) {
  670. /* Operation in this page
  671. *
  672. * gtt_page_base = page offset within aperture
  673. * gtt_page_offset = offset within page in aperture
  674. * data_page_index = page number in get_user_pages return
  675. * data_page_offset = offset with data_page_index page.
  676. * page_length = bytes to copy for this page
  677. */
  678. gtt_page_base = offset & PAGE_MASK;
  679. gtt_page_offset = offset & ~PAGE_MASK;
  680. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  681. data_page_offset = data_ptr & ~PAGE_MASK;
  682. page_length = remain;
  683. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  684. page_length = PAGE_SIZE - gtt_page_offset;
  685. if ((data_page_offset + page_length) > PAGE_SIZE)
  686. page_length = PAGE_SIZE - data_page_offset;
  687. slow_kernel_write(dev_priv->mm.gtt_mapping,
  688. gtt_page_base, gtt_page_offset,
  689. user_pages[data_page_index],
  690. data_page_offset,
  691. page_length);
  692. remain -= page_length;
  693. offset += page_length;
  694. data_ptr += page_length;
  695. }
  696. out_unpin_pages:
  697. for (i = 0; i < pinned_pages; i++)
  698. page_cache_release(user_pages[i]);
  699. drm_free_large(user_pages);
  700. return ret;
  701. }
  702. /**
  703. * This is the fast shmem pwrite path, which attempts to directly
  704. * copy_from_user into the kmapped pages backing the object.
  705. */
  706. static int
  707. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  708. struct drm_i915_gem_pwrite *args,
  709. struct drm_file *file_priv)
  710. {
  711. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  712. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  713. ssize_t remain;
  714. loff_t offset;
  715. char __user *user_data;
  716. int page_offset, page_length;
  717. user_data = (char __user *) (uintptr_t) args->data_ptr;
  718. remain = args->size;
  719. obj_priv = to_intel_bo(obj);
  720. offset = args->offset;
  721. obj_priv->dirty = 1;
  722. while (remain > 0) {
  723. struct page *page;
  724. char *vaddr;
  725. int ret;
  726. /* Operation in this page
  727. *
  728. * page_offset = offset within page
  729. * page_length = bytes to copy for this page
  730. */
  731. page_offset = offset & (PAGE_SIZE-1);
  732. page_length = remain;
  733. if ((page_offset + remain) > PAGE_SIZE)
  734. page_length = PAGE_SIZE - page_offset;
  735. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  736. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  737. if (IS_ERR(page))
  738. return PTR_ERR(page);
  739. vaddr = kmap_atomic(page, KM_USER0);
  740. ret = __copy_from_user_inatomic(vaddr + page_offset,
  741. user_data,
  742. page_length);
  743. kunmap_atomic(vaddr, KM_USER0);
  744. set_page_dirty(page);
  745. mark_page_accessed(page);
  746. page_cache_release(page);
  747. /* If we get a fault while copying data, then (presumably) our
  748. * source page isn't available. Return the error and we'll
  749. * retry in the slow path.
  750. */
  751. if (ret)
  752. return -EFAULT;
  753. remain -= page_length;
  754. user_data += page_length;
  755. offset += page_length;
  756. }
  757. return 0;
  758. }
  759. /**
  760. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  761. * the memory and maps it using kmap_atomic for copying.
  762. *
  763. * This avoids taking mmap_sem for faulting on the user's address while the
  764. * struct_mutex is held.
  765. */
  766. static int
  767. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  768. struct drm_i915_gem_pwrite *args,
  769. struct drm_file *file_priv)
  770. {
  771. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  772. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  773. struct mm_struct *mm = current->mm;
  774. struct page **user_pages;
  775. ssize_t remain;
  776. loff_t offset, pinned_pages, i;
  777. loff_t first_data_page, last_data_page, num_pages;
  778. int shmem_page_offset;
  779. int data_page_index, data_page_offset;
  780. int page_length;
  781. int ret;
  782. uint64_t data_ptr = args->data_ptr;
  783. int do_bit17_swizzling;
  784. remain = args->size;
  785. /* Pin the user pages containing the data. We can't fault while
  786. * holding the struct mutex, and all of the pwrite implementations
  787. * want to hold it while dereferencing the user data.
  788. */
  789. first_data_page = data_ptr / PAGE_SIZE;
  790. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  791. num_pages = last_data_page - first_data_page + 1;
  792. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  793. if (user_pages == NULL)
  794. return -ENOMEM;
  795. mutex_unlock(&dev->struct_mutex);
  796. down_read(&mm->mmap_sem);
  797. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  798. num_pages, 0, 0, user_pages, NULL);
  799. up_read(&mm->mmap_sem);
  800. mutex_lock(&dev->struct_mutex);
  801. if (pinned_pages < num_pages) {
  802. ret = -EFAULT;
  803. goto out;
  804. }
  805. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  806. if (ret)
  807. goto out;
  808. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  809. obj_priv = to_intel_bo(obj);
  810. offset = args->offset;
  811. obj_priv->dirty = 1;
  812. while (remain > 0) {
  813. struct page *page;
  814. /* Operation in this page
  815. *
  816. * shmem_page_offset = offset within page in shmem file
  817. * data_page_index = page number in get_user_pages return
  818. * data_page_offset = offset with data_page_index page.
  819. * page_length = bytes to copy for this page
  820. */
  821. shmem_page_offset = offset & ~PAGE_MASK;
  822. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  823. data_page_offset = data_ptr & ~PAGE_MASK;
  824. page_length = remain;
  825. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  826. page_length = PAGE_SIZE - shmem_page_offset;
  827. if ((data_page_offset + page_length) > PAGE_SIZE)
  828. page_length = PAGE_SIZE - data_page_offset;
  829. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  830. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  831. if (IS_ERR(page)) {
  832. ret = PTR_ERR(page);
  833. goto out;
  834. }
  835. if (do_bit17_swizzling) {
  836. slow_shmem_bit17_copy(page,
  837. shmem_page_offset,
  838. user_pages[data_page_index],
  839. data_page_offset,
  840. page_length,
  841. 0);
  842. } else {
  843. slow_shmem_copy(page,
  844. shmem_page_offset,
  845. user_pages[data_page_index],
  846. data_page_offset,
  847. page_length);
  848. }
  849. set_page_dirty(page);
  850. mark_page_accessed(page);
  851. page_cache_release(page);
  852. remain -= page_length;
  853. data_ptr += page_length;
  854. offset += page_length;
  855. }
  856. out:
  857. for (i = 0; i < pinned_pages; i++)
  858. page_cache_release(user_pages[i]);
  859. drm_free_large(user_pages);
  860. return ret;
  861. }
  862. /**
  863. * Writes data to the object referenced by handle.
  864. *
  865. * On error, the contents of the buffer that were to be modified are undefined.
  866. */
  867. int
  868. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  869. struct drm_file *file)
  870. {
  871. struct drm_i915_gem_pwrite *args = data;
  872. struct drm_gem_object *obj;
  873. struct drm_i915_gem_object *obj_priv;
  874. int ret = 0;
  875. ret = i915_mutex_lock_interruptible(dev);
  876. if (ret)
  877. return ret;
  878. obj = drm_gem_object_lookup(dev, file, args->handle);
  879. if (obj == NULL) {
  880. ret = -ENOENT;
  881. goto unlock;
  882. }
  883. obj_priv = to_intel_bo(obj);
  884. /* Bounds check destination. */
  885. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  886. ret = -EINVAL;
  887. goto out;
  888. }
  889. if (args->size == 0)
  890. goto out;
  891. if (!access_ok(VERIFY_READ,
  892. (char __user *)(uintptr_t)args->data_ptr,
  893. args->size)) {
  894. ret = -EFAULT;
  895. goto out;
  896. }
  897. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  898. args->size);
  899. if (ret) {
  900. ret = -EFAULT;
  901. goto out;
  902. }
  903. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  904. * it would end up going through the fenced access, and we'll get
  905. * different detiling behavior between reading and writing.
  906. * pread/pwrite currently are reading and writing from the CPU
  907. * perspective, requiring manual detiling by the client.
  908. */
  909. if (obj_priv->phys_obj)
  910. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  911. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  912. obj_priv->gtt_space &&
  913. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  914. ret = i915_gem_object_pin(obj, 0, true, false);
  915. if (ret)
  916. goto out;
  917. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  918. if (ret)
  919. goto out_unpin;
  920. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  921. if (ret == -EFAULT)
  922. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  923. out_unpin:
  924. i915_gem_object_unpin(obj);
  925. } else {
  926. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  927. if (ret)
  928. goto out;
  929. ret = -EFAULT;
  930. if (!i915_gem_object_needs_bit17_swizzle(obj))
  931. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  932. if (ret == -EFAULT)
  933. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  934. }
  935. out:
  936. drm_gem_object_unreference(obj);
  937. unlock:
  938. mutex_unlock(&dev->struct_mutex);
  939. return ret;
  940. }
  941. /**
  942. * Called when user space prepares to use an object with the CPU, either
  943. * through the mmap ioctl's mapping or a GTT mapping.
  944. */
  945. int
  946. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  947. struct drm_file *file_priv)
  948. {
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. struct drm_i915_gem_set_domain *args = data;
  951. struct drm_gem_object *obj;
  952. struct drm_i915_gem_object *obj_priv;
  953. uint32_t read_domains = args->read_domains;
  954. uint32_t write_domain = args->write_domain;
  955. int ret;
  956. if (!(dev->driver->driver_features & DRIVER_GEM))
  957. return -ENODEV;
  958. /* Only handle setting domains to types used by the CPU. */
  959. if (write_domain & I915_GEM_GPU_DOMAINS)
  960. return -EINVAL;
  961. if (read_domains & I915_GEM_GPU_DOMAINS)
  962. return -EINVAL;
  963. /* Having something in the write domain implies it's in the read
  964. * domain, and only that read domain. Enforce that in the request.
  965. */
  966. if (write_domain != 0 && read_domains != write_domain)
  967. return -EINVAL;
  968. ret = i915_mutex_lock_interruptible(dev);
  969. if (ret)
  970. return ret;
  971. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  972. if (obj == NULL) {
  973. ret = -ENOENT;
  974. goto unlock;
  975. }
  976. obj_priv = to_intel_bo(obj);
  977. intel_mark_busy(dev, obj);
  978. if (read_domains & I915_GEM_DOMAIN_GTT) {
  979. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  980. /* Update the LRU on the fence for the CPU access that's
  981. * about to occur.
  982. */
  983. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  984. struct drm_i915_fence_reg *reg =
  985. &dev_priv->fence_regs[obj_priv->fence_reg];
  986. list_move_tail(&reg->lru_list,
  987. &dev_priv->mm.fence_list);
  988. }
  989. /* Silently promote "you're not bound, there was nothing to do"
  990. * to success, since the client was just asking us to
  991. * make sure everything was done.
  992. */
  993. if (ret == -EINVAL)
  994. ret = 0;
  995. } else {
  996. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  997. }
  998. /* Maintain LRU order of "inactive" objects */
  999. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1000. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1001. drm_gem_object_unreference(obj);
  1002. unlock:
  1003. mutex_unlock(&dev->struct_mutex);
  1004. return ret;
  1005. }
  1006. /**
  1007. * Called when user space has done writes to this buffer
  1008. */
  1009. int
  1010. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1011. struct drm_file *file_priv)
  1012. {
  1013. struct drm_i915_gem_sw_finish *args = data;
  1014. struct drm_gem_object *obj;
  1015. int ret = 0;
  1016. if (!(dev->driver->driver_features & DRIVER_GEM))
  1017. return -ENODEV;
  1018. ret = i915_mutex_lock_interruptible(dev);
  1019. if (ret)
  1020. return ret;
  1021. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1022. if (obj == NULL) {
  1023. ret = -ENOENT;
  1024. goto unlock;
  1025. }
  1026. /* Pinned buffers may be scanout, so flush the cache */
  1027. if (to_intel_bo(obj)->pin_count)
  1028. i915_gem_object_flush_cpu_write_domain(obj);
  1029. drm_gem_object_unreference(obj);
  1030. unlock:
  1031. mutex_unlock(&dev->struct_mutex);
  1032. return ret;
  1033. }
  1034. /**
  1035. * Maps the contents of an object, returning the address it is mapped
  1036. * into.
  1037. *
  1038. * While the mapping holds a reference on the contents of the object, it doesn't
  1039. * imply a ref on the object itself.
  1040. */
  1041. int
  1042. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1043. struct drm_file *file_priv)
  1044. {
  1045. struct drm_i915_private *dev_priv = dev->dev_private;
  1046. struct drm_i915_gem_mmap *args = data;
  1047. struct drm_gem_object *obj;
  1048. loff_t offset;
  1049. unsigned long addr;
  1050. if (!(dev->driver->driver_features & DRIVER_GEM))
  1051. return -ENODEV;
  1052. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1053. if (obj == NULL)
  1054. return -ENOENT;
  1055. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1056. drm_gem_object_unreference_unlocked(obj);
  1057. return -E2BIG;
  1058. }
  1059. offset = args->offset;
  1060. down_write(&current->mm->mmap_sem);
  1061. addr = do_mmap(obj->filp, 0, args->size,
  1062. PROT_READ | PROT_WRITE, MAP_SHARED,
  1063. args->offset);
  1064. up_write(&current->mm->mmap_sem);
  1065. drm_gem_object_unreference_unlocked(obj);
  1066. if (IS_ERR((void *)addr))
  1067. return addr;
  1068. args->addr_ptr = (uint64_t) addr;
  1069. return 0;
  1070. }
  1071. /**
  1072. * i915_gem_fault - fault a page into the GTT
  1073. * vma: VMA in question
  1074. * vmf: fault info
  1075. *
  1076. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1077. * from userspace. The fault handler takes care of binding the object to
  1078. * the GTT (if needed), allocating and programming a fence register (again,
  1079. * only if needed based on whether the old reg is still valid or the object
  1080. * is tiled) and inserting a new PTE into the faulting process.
  1081. *
  1082. * Note that the faulting process may involve evicting existing objects
  1083. * from the GTT and/or fence registers to make room. So performance may
  1084. * suffer if the GTT working set is large or there are few fence registers
  1085. * left.
  1086. */
  1087. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1088. {
  1089. struct drm_gem_object *obj = vma->vm_private_data;
  1090. struct drm_device *dev = obj->dev;
  1091. drm_i915_private_t *dev_priv = dev->dev_private;
  1092. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1093. pgoff_t page_offset;
  1094. unsigned long pfn;
  1095. int ret = 0;
  1096. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1097. /* We don't use vmf->pgoff since that has the fake offset */
  1098. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1099. PAGE_SHIFT;
  1100. /* Now bind it into the GTT if needed */
  1101. mutex_lock(&dev->struct_mutex);
  1102. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1103. if (obj_priv->gtt_space) {
  1104. if (!obj_priv->mappable ||
  1105. (obj_priv->tiling_mode && !obj_priv->fenceable)) {
  1106. ret = i915_gem_object_unbind(obj);
  1107. if (ret)
  1108. goto unlock;
  1109. }
  1110. }
  1111. if (!obj_priv->gtt_space) {
  1112. ret = i915_gem_object_bind_to_gtt(obj, 0,
  1113. true, obj_priv->tiling_mode);
  1114. if (ret)
  1115. goto unlock;
  1116. }
  1117. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1118. if (ret)
  1119. goto unlock;
  1120. if (!obj_priv->fault_mappable) {
  1121. obj_priv->fault_mappable = true;
  1122. i915_gem_info_update_mappable(dev_priv, obj_priv, true);
  1123. }
  1124. /* Need a new fence register? */
  1125. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1126. ret = i915_gem_object_get_fence_reg(obj, true);
  1127. if (ret)
  1128. goto unlock;
  1129. }
  1130. if (i915_gem_object_is_inactive(obj_priv))
  1131. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1132. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1133. page_offset;
  1134. /* Finally, remap it using the new GTT offset */
  1135. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1136. unlock:
  1137. mutex_unlock(&dev->struct_mutex);
  1138. switch (ret) {
  1139. case 0:
  1140. case -ERESTARTSYS:
  1141. return VM_FAULT_NOPAGE;
  1142. case -ENOMEM:
  1143. case -EAGAIN:
  1144. return VM_FAULT_OOM;
  1145. default:
  1146. return VM_FAULT_SIGBUS;
  1147. }
  1148. }
  1149. /**
  1150. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1151. * @obj: obj in question
  1152. *
  1153. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1154. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1155. * up the object based on the offset and sets up the various memory mapping
  1156. * structures.
  1157. *
  1158. * This routine allocates and attaches a fake offset for @obj.
  1159. */
  1160. static int
  1161. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1162. {
  1163. struct drm_device *dev = obj->dev;
  1164. struct drm_gem_mm *mm = dev->mm_private;
  1165. struct drm_map_list *list;
  1166. struct drm_local_map *map;
  1167. int ret = 0;
  1168. /* Set the object up for mmap'ing */
  1169. list = &obj->map_list;
  1170. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1171. if (!list->map)
  1172. return -ENOMEM;
  1173. map = list->map;
  1174. map->type = _DRM_GEM;
  1175. map->size = obj->size;
  1176. map->handle = obj;
  1177. /* Get a DRM GEM mmap offset allocated... */
  1178. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1179. obj->size / PAGE_SIZE, 0, 0);
  1180. if (!list->file_offset_node) {
  1181. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1182. ret = -ENOSPC;
  1183. goto out_free_list;
  1184. }
  1185. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1186. obj->size / PAGE_SIZE, 0);
  1187. if (!list->file_offset_node) {
  1188. ret = -ENOMEM;
  1189. goto out_free_list;
  1190. }
  1191. list->hash.key = list->file_offset_node->start;
  1192. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1193. if (ret) {
  1194. DRM_ERROR("failed to add to map hash\n");
  1195. goto out_free_mm;
  1196. }
  1197. return 0;
  1198. out_free_mm:
  1199. drm_mm_put_block(list->file_offset_node);
  1200. out_free_list:
  1201. kfree(list->map);
  1202. list->map = NULL;
  1203. return ret;
  1204. }
  1205. /**
  1206. * i915_gem_release_mmap - remove physical page mappings
  1207. * @obj: obj in question
  1208. *
  1209. * Preserve the reservation of the mmapping with the DRM core code, but
  1210. * relinquish ownership of the pages back to the system.
  1211. *
  1212. * It is vital that we remove the page mapping if we have mapped a tiled
  1213. * object through the GTT and then lose the fence register due to
  1214. * resource pressure. Similarly if the object has been moved out of the
  1215. * aperture, than pages mapped into userspace must be revoked. Removing the
  1216. * mapping will then trigger a page fault on the next user access, allowing
  1217. * fixup by i915_gem_fault().
  1218. */
  1219. void
  1220. i915_gem_release_mmap(struct drm_gem_object *obj)
  1221. {
  1222. struct drm_device *dev = obj->dev;
  1223. struct drm_i915_private *dev_priv = dev->dev_private;
  1224. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1225. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1226. unmap_mapping_range(dev->dev_mapping,
  1227. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1228. obj->size, 1);
  1229. if (obj_priv->fault_mappable) {
  1230. obj_priv->fault_mappable = false;
  1231. i915_gem_info_update_mappable(dev_priv, obj_priv, false);
  1232. }
  1233. }
  1234. static void
  1235. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1236. {
  1237. struct drm_device *dev = obj->dev;
  1238. struct drm_gem_mm *mm = dev->mm_private;
  1239. struct drm_map_list *list = &obj->map_list;
  1240. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1241. drm_mm_put_block(list->file_offset_node);
  1242. kfree(list->map);
  1243. list->map = NULL;
  1244. }
  1245. /**
  1246. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1247. * @obj: object to check
  1248. *
  1249. * Return the required GTT alignment for an object, taking into account
  1250. * potential fence register mapping if needed.
  1251. */
  1252. static uint32_t
  1253. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1254. {
  1255. struct drm_device *dev = obj_priv->base.dev;
  1256. /*
  1257. * Minimum alignment is 4k (GTT page size), but might be greater
  1258. * if a fence register is needed for the object.
  1259. */
  1260. if (INTEL_INFO(dev)->gen >= 4 ||
  1261. obj_priv->tiling_mode == I915_TILING_NONE)
  1262. return 4096;
  1263. /*
  1264. * Previous chips need to be aligned to the size of the smallest
  1265. * fence register that can contain the object.
  1266. */
  1267. return i915_gem_get_gtt_size(obj_priv);
  1268. }
  1269. static uint32_t
  1270. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
  1271. {
  1272. struct drm_device *dev = obj_priv->base.dev;
  1273. uint32_t size;
  1274. /*
  1275. * Minimum alignment is 4k (GTT page size), but might be greater
  1276. * if a fence register is needed for the object.
  1277. */
  1278. if (INTEL_INFO(dev)->gen >= 4)
  1279. return obj_priv->base.size;
  1280. /*
  1281. * Previous chips need to be aligned to the size of the smallest
  1282. * fence register that can contain the object.
  1283. */
  1284. if (INTEL_INFO(dev)->gen == 3)
  1285. size = 1024*1024;
  1286. else
  1287. size = 512*1024;
  1288. while (size < obj_priv->base.size)
  1289. size <<= 1;
  1290. return size;
  1291. }
  1292. /**
  1293. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1294. * @dev: DRM device
  1295. * @data: GTT mapping ioctl data
  1296. * @file_priv: GEM object info
  1297. *
  1298. * Simply returns the fake offset to userspace so it can mmap it.
  1299. * The mmap call will end up in drm_gem_mmap(), which will set things
  1300. * up so we can get faults in the handler above.
  1301. *
  1302. * The fault handler will take care of binding the object into the GTT
  1303. * (since it may have been evicted to make room for something), allocating
  1304. * a fence register, and mapping the appropriate aperture address into
  1305. * userspace.
  1306. */
  1307. int
  1308. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1309. struct drm_file *file_priv)
  1310. {
  1311. struct drm_i915_private *dev_priv = dev->dev_private;
  1312. struct drm_i915_gem_mmap_gtt *args = data;
  1313. struct drm_gem_object *obj;
  1314. struct drm_i915_gem_object *obj_priv;
  1315. int ret;
  1316. if (!(dev->driver->driver_features & DRIVER_GEM))
  1317. return -ENODEV;
  1318. ret = i915_mutex_lock_interruptible(dev);
  1319. if (ret)
  1320. return ret;
  1321. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1322. if (obj == NULL) {
  1323. ret = -ENOENT;
  1324. goto unlock;
  1325. }
  1326. obj_priv = to_intel_bo(obj);
  1327. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1328. ret = -E2BIG;
  1329. goto unlock;
  1330. }
  1331. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1332. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1333. ret = -EINVAL;
  1334. goto out;
  1335. }
  1336. if (!obj->map_list.map) {
  1337. ret = i915_gem_create_mmap_offset(obj);
  1338. if (ret)
  1339. goto out;
  1340. }
  1341. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1342. out:
  1343. drm_gem_object_unreference(obj);
  1344. unlock:
  1345. mutex_unlock(&dev->struct_mutex);
  1346. return ret;
  1347. }
  1348. static int
  1349. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1350. gfp_t gfpmask)
  1351. {
  1352. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1353. int page_count, i;
  1354. struct address_space *mapping;
  1355. struct inode *inode;
  1356. struct page *page;
  1357. /* Get the list of pages out of our struct file. They'll be pinned
  1358. * at this point until we release them.
  1359. */
  1360. page_count = obj->size / PAGE_SIZE;
  1361. BUG_ON(obj_priv->pages != NULL);
  1362. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1363. if (obj_priv->pages == NULL)
  1364. return -ENOMEM;
  1365. inode = obj->filp->f_path.dentry->d_inode;
  1366. mapping = inode->i_mapping;
  1367. for (i = 0; i < page_count; i++) {
  1368. page = read_cache_page_gfp(mapping, i,
  1369. GFP_HIGHUSER |
  1370. __GFP_COLD |
  1371. __GFP_RECLAIMABLE |
  1372. gfpmask);
  1373. if (IS_ERR(page))
  1374. goto err_pages;
  1375. obj_priv->pages[i] = page;
  1376. }
  1377. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1378. i915_gem_object_do_bit_17_swizzle(obj);
  1379. return 0;
  1380. err_pages:
  1381. while (i--)
  1382. page_cache_release(obj_priv->pages[i]);
  1383. drm_free_large(obj_priv->pages);
  1384. obj_priv->pages = NULL;
  1385. return PTR_ERR(page);
  1386. }
  1387. static void
  1388. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1389. {
  1390. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1391. int page_count = obj->size / PAGE_SIZE;
  1392. int i;
  1393. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1394. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1395. i915_gem_object_save_bit_17_swizzle(obj);
  1396. if (obj_priv->madv == I915_MADV_DONTNEED)
  1397. obj_priv->dirty = 0;
  1398. for (i = 0; i < page_count; i++) {
  1399. if (obj_priv->dirty)
  1400. set_page_dirty(obj_priv->pages[i]);
  1401. if (obj_priv->madv == I915_MADV_WILLNEED)
  1402. mark_page_accessed(obj_priv->pages[i]);
  1403. page_cache_release(obj_priv->pages[i]);
  1404. }
  1405. obj_priv->dirty = 0;
  1406. drm_free_large(obj_priv->pages);
  1407. obj_priv->pages = NULL;
  1408. }
  1409. static uint32_t
  1410. i915_gem_next_request_seqno(struct drm_device *dev,
  1411. struct intel_ring_buffer *ring)
  1412. {
  1413. drm_i915_private_t *dev_priv = dev->dev_private;
  1414. ring->outstanding_lazy_request = true;
  1415. return dev_priv->next_seqno;
  1416. }
  1417. static void
  1418. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1419. struct intel_ring_buffer *ring)
  1420. {
  1421. struct drm_device *dev = obj->dev;
  1422. struct drm_i915_private *dev_priv = dev->dev_private;
  1423. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1424. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1425. BUG_ON(ring == NULL);
  1426. obj_priv->ring = ring;
  1427. /* Add a reference if we're newly entering the active list. */
  1428. if (!obj_priv->active) {
  1429. drm_gem_object_reference(obj);
  1430. obj_priv->active = 1;
  1431. }
  1432. /* Move from whatever list we were on to the tail of execution. */
  1433. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1434. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1435. obj_priv->last_rendering_seqno = seqno;
  1436. }
  1437. static void
  1438. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1439. {
  1440. struct drm_device *dev = obj->dev;
  1441. drm_i915_private_t *dev_priv = dev->dev_private;
  1442. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1443. BUG_ON(!obj_priv->active);
  1444. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1445. list_del_init(&obj_priv->ring_list);
  1446. obj_priv->last_rendering_seqno = 0;
  1447. }
  1448. /* Immediately discard the backing storage */
  1449. static void
  1450. i915_gem_object_truncate(struct drm_gem_object *obj)
  1451. {
  1452. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1453. struct inode *inode;
  1454. /* Our goal here is to return as much of the memory as
  1455. * is possible back to the system as we are called from OOM.
  1456. * To do this we must instruct the shmfs to drop all of its
  1457. * backing pages, *now*. Here we mirror the actions taken
  1458. * when by shmem_delete_inode() to release the backing store.
  1459. */
  1460. inode = obj->filp->f_path.dentry->d_inode;
  1461. truncate_inode_pages(inode->i_mapping, 0);
  1462. if (inode->i_op->truncate_range)
  1463. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1464. obj_priv->madv = __I915_MADV_PURGED;
  1465. }
  1466. static inline int
  1467. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1468. {
  1469. return obj_priv->madv == I915_MADV_DONTNEED;
  1470. }
  1471. static void
  1472. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1473. {
  1474. struct drm_device *dev = obj->dev;
  1475. drm_i915_private_t *dev_priv = dev->dev_private;
  1476. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1477. if (obj_priv->pin_count != 0)
  1478. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1479. else
  1480. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1481. list_del_init(&obj_priv->ring_list);
  1482. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1483. obj_priv->last_rendering_seqno = 0;
  1484. obj_priv->ring = NULL;
  1485. if (obj_priv->active) {
  1486. obj_priv->active = 0;
  1487. drm_gem_object_unreference(obj);
  1488. }
  1489. WARN_ON(i915_verify_lists(dev));
  1490. }
  1491. static void
  1492. i915_gem_process_flushing_list(struct drm_device *dev,
  1493. uint32_t flush_domains,
  1494. struct intel_ring_buffer *ring)
  1495. {
  1496. drm_i915_private_t *dev_priv = dev->dev_private;
  1497. struct drm_i915_gem_object *obj_priv, *next;
  1498. list_for_each_entry_safe(obj_priv, next,
  1499. &ring->gpu_write_list,
  1500. gpu_write_list) {
  1501. struct drm_gem_object *obj = &obj_priv->base;
  1502. if (obj->write_domain & flush_domains) {
  1503. uint32_t old_write_domain = obj->write_domain;
  1504. obj->write_domain = 0;
  1505. list_del_init(&obj_priv->gpu_write_list);
  1506. i915_gem_object_move_to_active(obj, ring);
  1507. /* update the fence lru list */
  1508. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1509. struct drm_i915_fence_reg *reg =
  1510. &dev_priv->fence_regs[obj_priv->fence_reg];
  1511. list_move_tail(&reg->lru_list,
  1512. &dev_priv->mm.fence_list);
  1513. }
  1514. trace_i915_gem_object_change_domain(obj,
  1515. obj->read_domains,
  1516. old_write_domain);
  1517. }
  1518. }
  1519. }
  1520. int
  1521. i915_add_request(struct drm_device *dev,
  1522. struct drm_file *file,
  1523. struct drm_i915_gem_request *request,
  1524. struct intel_ring_buffer *ring)
  1525. {
  1526. drm_i915_private_t *dev_priv = dev->dev_private;
  1527. struct drm_i915_file_private *file_priv = NULL;
  1528. uint32_t seqno;
  1529. int was_empty;
  1530. int ret;
  1531. BUG_ON(request == NULL);
  1532. if (file != NULL)
  1533. file_priv = file->driver_priv;
  1534. ret = ring->add_request(ring, &seqno);
  1535. if (ret)
  1536. return ret;
  1537. ring->outstanding_lazy_request = false;
  1538. request->seqno = seqno;
  1539. request->ring = ring;
  1540. request->emitted_jiffies = jiffies;
  1541. was_empty = list_empty(&ring->request_list);
  1542. list_add_tail(&request->list, &ring->request_list);
  1543. if (file_priv) {
  1544. spin_lock(&file_priv->mm.lock);
  1545. request->file_priv = file_priv;
  1546. list_add_tail(&request->client_list,
  1547. &file_priv->mm.request_list);
  1548. spin_unlock(&file_priv->mm.lock);
  1549. }
  1550. if (!dev_priv->mm.suspended) {
  1551. mod_timer(&dev_priv->hangcheck_timer,
  1552. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1553. if (was_empty)
  1554. queue_delayed_work(dev_priv->wq,
  1555. &dev_priv->mm.retire_work, HZ);
  1556. }
  1557. return 0;
  1558. }
  1559. /**
  1560. * Command execution barrier
  1561. *
  1562. * Ensures that all commands in the ring are finished
  1563. * before signalling the CPU
  1564. */
  1565. static void
  1566. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1567. {
  1568. uint32_t flush_domains = 0;
  1569. /* The sampler always gets flushed on i965 (sigh) */
  1570. if (INTEL_INFO(dev)->gen >= 4)
  1571. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1572. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1573. }
  1574. static inline void
  1575. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1576. {
  1577. struct drm_i915_file_private *file_priv = request->file_priv;
  1578. if (!file_priv)
  1579. return;
  1580. spin_lock(&file_priv->mm.lock);
  1581. list_del(&request->client_list);
  1582. request->file_priv = NULL;
  1583. spin_unlock(&file_priv->mm.lock);
  1584. }
  1585. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1586. struct intel_ring_buffer *ring)
  1587. {
  1588. while (!list_empty(&ring->request_list)) {
  1589. struct drm_i915_gem_request *request;
  1590. request = list_first_entry(&ring->request_list,
  1591. struct drm_i915_gem_request,
  1592. list);
  1593. list_del(&request->list);
  1594. i915_gem_request_remove_from_client(request);
  1595. kfree(request);
  1596. }
  1597. while (!list_empty(&ring->active_list)) {
  1598. struct drm_i915_gem_object *obj_priv;
  1599. obj_priv = list_first_entry(&ring->active_list,
  1600. struct drm_i915_gem_object,
  1601. ring_list);
  1602. obj_priv->base.write_domain = 0;
  1603. list_del_init(&obj_priv->gpu_write_list);
  1604. i915_gem_object_move_to_inactive(&obj_priv->base);
  1605. }
  1606. }
  1607. void i915_gem_reset(struct drm_device *dev)
  1608. {
  1609. struct drm_i915_private *dev_priv = dev->dev_private;
  1610. struct drm_i915_gem_object *obj_priv;
  1611. int i;
  1612. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1613. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1614. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1615. /* Remove anything from the flushing lists. The GPU cache is likely
  1616. * to be lost on reset along with the data, so simply move the
  1617. * lost bo to the inactive list.
  1618. */
  1619. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1620. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1621. struct drm_i915_gem_object,
  1622. mm_list);
  1623. obj_priv->base.write_domain = 0;
  1624. list_del_init(&obj_priv->gpu_write_list);
  1625. i915_gem_object_move_to_inactive(&obj_priv->base);
  1626. }
  1627. /* Move everything out of the GPU domains to ensure we do any
  1628. * necessary invalidation upon reuse.
  1629. */
  1630. list_for_each_entry(obj_priv,
  1631. &dev_priv->mm.inactive_list,
  1632. mm_list)
  1633. {
  1634. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1635. }
  1636. /* The fence registers are invalidated so clear them out */
  1637. for (i = 0; i < 16; i++) {
  1638. struct drm_i915_fence_reg *reg;
  1639. reg = &dev_priv->fence_regs[i];
  1640. if (!reg->obj)
  1641. continue;
  1642. i915_gem_clear_fence_reg(reg->obj);
  1643. }
  1644. }
  1645. /**
  1646. * This function clears the request list as sequence numbers are passed.
  1647. */
  1648. static void
  1649. i915_gem_retire_requests_ring(struct drm_device *dev,
  1650. struct intel_ring_buffer *ring)
  1651. {
  1652. drm_i915_private_t *dev_priv = dev->dev_private;
  1653. uint32_t seqno;
  1654. if (!ring->status_page.page_addr ||
  1655. list_empty(&ring->request_list))
  1656. return;
  1657. WARN_ON(i915_verify_lists(dev));
  1658. seqno = ring->get_seqno(ring);
  1659. while (!list_empty(&ring->request_list)) {
  1660. struct drm_i915_gem_request *request;
  1661. request = list_first_entry(&ring->request_list,
  1662. struct drm_i915_gem_request,
  1663. list);
  1664. if (!i915_seqno_passed(seqno, request->seqno))
  1665. break;
  1666. trace_i915_gem_request_retire(dev, request->seqno);
  1667. list_del(&request->list);
  1668. i915_gem_request_remove_from_client(request);
  1669. kfree(request);
  1670. }
  1671. /* Move any buffers on the active list that are no longer referenced
  1672. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1673. */
  1674. while (!list_empty(&ring->active_list)) {
  1675. struct drm_gem_object *obj;
  1676. struct drm_i915_gem_object *obj_priv;
  1677. obj_priv = list_first_entry(&ring->active_list,
  1678. struct drm_i915_gem_object,
  1679. ring_list);
  1680. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1681. break;
  1682. obj = &obj_priv->base;
  1683. if (obj->write_domain != 0)
  1684. i915_gem_object_move_to_flushing(obj);
  1685. else
  1686. i915_gem_object_move_to_inactive(obj);
  1687. }
  1688. if (unlikely (dev_priv->trace_irq_seqno &&
  1689. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1690. ring->user_irq_put(ring);
  1691. dev_priv->trace_irq_seqno = 0;
  1692. }
  1693. WARN_ON(i915_verify_lists(dev));
  1694. }
  1695. void
  1696. i915_gem_retire_requests(struct drm_device *dev)
  1697. {
  1698. drm_i915_private_t *dev_priv = dev->dev_private;
  1699. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1700. struct drm_i915_gem_object *obj_priv, *tmp;
  1701. /* We must be careful that during unbind() we do not
  1702. * accidentally infinitely recurse into retire requests.
  1703. * Currently:
  1704. * retire -> free -> unbind -> wait -> retire_ring
  1705. */
  1706. list_for_each_entry_safe(obj_priv, tmp,
  1707. &dev_priv->mm.deferred_free_list,
  1708. mm_list)
  1709. i915_gem_free_object_tail(&obj_priv->base);
  1710. }
  1711. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1712. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1713. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1714. }
  1715. static void
  1716. i915_gem_retire_work_handler(struct work_struct *work)
  1717. {
  1718. drm_i915_private_t *dev_priv;
  1719. struct drm_device *dev;
  1720. dev_priv = container_of(work, drm_i915_private_t,
  1721. mm.retire_work.work);
  1722. dev = dev_priv->dev;
  1723. /* Come back later if the device is busy... */
  1724. if (!mutex_trylock(&dev->struct_mutex)) {
  1725. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1726. return;
  1727. }
  1728. i915_gem_retire_requests(dev);
  1729. if (!dev_priv->mm.suspended &&
  1730. (!list_empty(&dev_priv->render_ring.request_list) ||
  1731. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1732. !list_empty(&dev_priv->blt_ring.request_list)))
  1733. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1734. mutex_unlock(&dev->struct_mutex);
  1735. }
  1736. int
  1737. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1738. bool interruptible, struct intel_ring_buffer *ring)
  1739. {
  1740. drm_i915_private_t *dev_priv = dev->dev_private;
  1741. u32 ier;
  1742. int ret = 0;
  1743. BUG_ON(seqno == 0);
  1744. if (atomic_read(&dev_priv->mm.wedged))
  1745. return -EAGAIN;
  1746. if (ring->outstanding_lazy_request) {
  1747. struct drm_i915_gem_request *request;
  1748. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1749. if (request == NULL)
  1750. return -ENOMEM;
  1751. ret = i915_add_request(dev, NULL, request, ring);
  1752. if (ret) {
  1753. kfree(request);
  1754. return ret;
  1755. }
  1756. seqno = request->seqno;
  1757. }
  1758. BUG_ON(seqno == dev_priv->next_seqno);
  1759. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1760. if (HAS_PCH_SPLIT(dev))
  1761. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1762. else
  1763. ier = I915_READ(IER);
  1764. if (!ier) {
  1765. DRM_ERROR("something (likely vbetool) disabled "
  1766. "interrupts, re-enabling\n");
  1767. i915_driver_irq_preinstall(dev);
  1768. i915_driver_irq_postinstall(dev);
  1769. }
  1770. trace_i915_gem_request_wait_begin(dev, seqno);
  1771. ring->waiting_seqno = seqno;
  1772. ring->user_irq_get(ring);
  1773. if (interruptible)
  1774. ret = wait_event_interruptible(ring->irq_queue,
  1775. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1776. || atomic_read(&dev_priv->mm.wedged));
  1777. else
  1778. wait_event(ring->irq_queue,
  1779. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1780. || atomic_read(&dev_priv->mm.wedged));
  1781. ring->user_irq_put(ring);
  1782. ring->waiting_seqno = 0;
  1783. trace_i915_gem_request_wait_end(dev, seqno);
  1784. }
  1785. if (atomic_read(&dev_priv->mm.wedged))
  1786. ret = -EAGAIN;
  1787. if (ret && ret != -ERESTARTSYS)
  1788. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1789. __func__, ret, seqno, ring->get_seqno(ring),
  1790. dev_priv->next_seqno);
  1791. /* Directly dispatch request retiring. While we have the work queue
  1792. * to handle this, the waiter on a request often wants an associated
  1793. * buffer to have made it to the inactive list, and we would need
  1794. * a separate wait queue to handle that.
  1795. */
  1796. if (ret == 0)
  1797. i915_gem_retire_requests_ring(dev, ring);
  1798. return ret;
  1799. }
  1800. /**
  1801. * Waits for a sequence number to be signaled, and cleans up the
  1802. * request and object lists appropriately for that event.
  1803. */
  1804. static int
  1805. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1806. struct intel_ring_buffer *ring)
  1807. {
  1808. return i915_do_wait_request(dev, seqno, 1, ring);
  1809. }
  1810. static void
  1811. i915_gem_flush_ring(struct drm_device *dev,
  1812. struct drm_file *file_priv,
  1813. struct intel_ring_buffer *ring,
  1814. uint32_t invalidate_domains,
  1815. uint32_t flush_domains)
  1816. {
  1817. ring->flush(ring, invalidate_domains, flush_domains);
  1818. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1819. }
  1820. static void
  1821. i915_gem_flush(struct drm_device *dev,
  1822. struct drm_file *file_priv,
  1823. uint32_t invalidate_domains,
  1824. uint32_t flush_domains,
  1825. uint32_t flush_rings)
  1826. {
  1827. drm_i915_private_t *dev_priv = dev->dev_private;
  1828. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1829. drm_agp_chipset_flush(dev);
  1830. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1831. if (flush_rings & RING_RENDER)
  1832. i915_gem_flush_ring(dev, file_priv,
  1833. &dev_priv->render_ring,
  1834. invalidate_domains, flush_domains);
  1835. if (flush_rings & RING_BSD)
  1836. i915_gem_flush_ring(dev, file_priv,
  1837. &dev_priv->bsd_ring,
  1838. invalidate_domains, flush_domains);
  1839. if (flush_rings & RING_BLT)
  1840. i915_gem_flush_ring(dev, file_priv,
  1841. &dev_priv->blt_ring,
  1842. invalidate_domains, flush_domains);
  1843. }
  1844. }
  1845. /**
  1846. * Ensures that all rendering to the object has completed and the object is
  1847. * safe to unbind from the GTT or access from the CPU.
  1848. */
  1849. static int
  1850. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1851. bool interruptible)
  1852. {
  1853. struct drm_device *dev = obj->dev;
  1854. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1855. int ret;
  1856. /* This function only exists to support waiting for existing rendering,
  1857. * not for emitting required flushes.
  1858. */
  1859. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1860. /* If there is rendering queued on the buffer being evicted, wait for
  1861. * it.
  1862. */
  1863. if (obj_priv->active) {
  1864. ret = i915_do_wait_request(dev,
  1865. obj_priv->last_rendering_seqno,
  1866. interruptible,
  1867. obj_priv->ring);
  1868. if (ret)
  1869. return ret;
  1870. }
  1871. return 0;
  1872. }
  1873. /**
  1874. * Unbinds an object from the GTT aperture.
  1875. */
  1876. int
  1877. i915_gem_object_unbind(struct drm_gem_object *obj)
  1878. {
  1879. struct drm_device *dev = obj->dev;
  1880. struct drm_i915_private *dev_priv = dev->dev_private;
  1881. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1882. int ret = 0;
  1883. if (obj_priv->gtt_space == NULL)
  1884. return 0;
  1885. if (obj_priv->pin_count != 0) {
  1886. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1887. return -EINVAL;
  1888. }
  1889. /* blow away mappings if mapped through GTT */
  1890. i915_gem_release_mmap(obj);
  1891. /* Move the object to the CPU domain to ensure that
  1892. * any possible CPU writes while it's not in the GTT
  1893. * are flushed when we go to remap it. This will
  1894. * also ensure that all pending GPU writes are finished
  1895. * before we unbind.
  1896. */
  1897. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1898. if (ret == -ERESTARTSYS)
  1899. return ret;
  1900. /* Continue on if we fail due to EIO, the GPU is hung so we
  1901. * should be safe and we need to cleanup or else we might
  1902. * cause memory corruption through use-after-free.
  1903. */
  1904. if (ret) {
  1905. i915_gem_clflush_object(obj);
  1906. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1907. }
  1908. /* release the fence reg _after_ flushing */
  1909. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1910. i915_gem_clear_fence_reg(obj);
  1911. drm_unbind_agp(obj_priv->agp_mem);
  1912. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1913. i915_gem_object_put_pages_gtt(obj);
  1914. i915_gem_info_remove_gtt(dev_priv, obj_priv);
  1915. list_del_init(&obj_priv->mm_list);
  1916. obj_priv->fenceable = true;
  1917. obj_priv->mappable = true;
  1918. drm_mm_put_block(obj_priv->gtt_space);
  1919. obj_priv->gtt_space = NULL;
  1920. obj_priv->gtt_offset = 0;
  1921. if (i915_gem_object_is_purgeable(obj_priv))
  1922. i915_gem_object_truncate(obj);
  1923. trace_i915_gem_object_unbind(obj);
  1924. return ret;
  1925. }
  1926. static int i915_ring_idle(struct drm_device *dev,
  1927. struct intel_ring_buffer *ring)
  1928. {
  1929. if (list_empty(&ring->gpu_write_list))
  1930. return 0;
  1931. i915_gem_flush_ring(dev, NULL, ring,
  1932. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1933. return i915_wait_request(dev,
  1934. i915_gem_next_request_seqno(dev, ring),
  1935. ring);
  1936. }
  1937. int
  1938. i915_gpu_idle(struct drm_device *dev)
  1939. {
  1940. drm_i915_private_t *dev_priv = dev->dev_private;
  1941. bool lists_empty;
  1942. int ret;
  1943. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1944. list_empty(&dev_priv->render_ring.active_list) &&
  1945. list_empty(&dev_priv->bsd_ring.active_list) &&
  1946. list_empty(&dev_priv->blt_ring.active_list));
  1947. if (lists_empty)
  1948. return 0;
  1949. /* Flush everything onto the inactive list. */
  1950. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1951. if (ret)
  1952. return ret;
  1953. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1954. if (ret)
  1955. return ret;
  1956. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1957. if (ret)
  1958. return ret;
  1959. return 0;
  1960. }
  1961. static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
  1962. {
  1963. struct drm_device *dev = obj->dev;
  1964. drm_i915_private_t *dev_priv = dev->dev_private;
  1965. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1966. u32 size = i915_gem_get_gtt_size(obj_priv);
  1967. int regnum = obj_priv->fence_reg;
  1968. uint64_t val;
  1969. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1970. 0xfffff000) << 32;
  1971. val |= obj_priv->gtt_offset & 0xfffff000;
  1972. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1973. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1974. if (obj_priv->tiling_mode == I915_TILING_Y)
  1975. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1976. val |= I965_FENCE_REG_VALID;
  1977. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1978. }
  1979. static void i965_write_fence_reg(struct drm_gem_object *obj)
  1980. {
  1981. struct drm_device *dev = obj->dev;
  1982. drm_i915_private_t *dev_priv = dev->dev_private;
  1983. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1984. u32 size = i915_gem_get_gtt_size(obj_priv);
  1985. int regnum = obj_priv->fence_reg;
  1986. uint64_t val;
  1987. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1988. 0xfffff000) << 32;
  1989. val |= obj_priv->gtt_offset & 0xfffff000;
  1990. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1991. if (obj_priv->tiling_mode == I915_TILING_Y)
  1992. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1993. val |= I965_FENCE_REG_VALID;
  1994. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1995. }
  1996. static void i915_write_fence_reg(struct drm_gem_object *obj)
  1997. {
  1998. struct drm_device *dev = obj->dev;
  1999. drm_i915_private_t *dev_priv = dev->dev_private;
  2000. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2001. u32 size = i915_gem_get_gtt_size(obj_priv);
  2002. uint32_t fence_reg, val, pitch_val;
  2003. int tile_width;
  2004. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2005. (obj_priv->gtt_offset & (size - 1))) {
  2006. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  2007. __func__, obj_priv->gtt_offset, obj_priv->fenceable, size,
  2008. obj_priv->gtt_space->start, obj_priv->gtt_space->size);
  2009. return;
  2010. }
  2011. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2012. HAS_128_BYTE_Y_TILING(dev))
  2013. tile_width = 128;
  2014. else
  2015. tile_width = 512;
  2016. /* Note: pitch better be a power of two tile widths */
  2017. pitch_val = obj_priv->stride / tile_width;
  2018. pitch_val = ffs(pitch_val) - 1;
  2019. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2020. HAS_128_BYTE_Y_TILING(dev))
  2021. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2022. else
  2023. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2024. val = obj_priv->gtt_offset;
  2025. if (obj_priv->tiling_mode == I915_TILING_Y)
  2026. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2027. val |= I915_FENCE_SIZE_BITS(size);
  2028. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2029. val |= I830_FENCE_REG_VALID;
  2030. fence_reg = obj_priv->fence_reg;
  2031. if (fence_reg < 8)
  2032. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2033. else
  2034. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2035. I915_WRITE(fence_reg, val);
  2036. }
  2037. static void i830_write_fence_reg(struct drm_gem_object *obj)
  2038. {
  2039. struct drm_device *dev = obj->dev;
  2040. drm_i915_private_t *dev_priv = dev->dev_private;
  2041. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2042. u32 size = i915_gem_get_gtt_size(obj_priv);
  2043. int regnum = obj_priv->fence_reg;
  2044. uint32_t val;
  2045. uint32_t pitch_val;
  2046. uint32_t fence_size_bits;
  2047. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2048. (obj_priv->gtt_offset & (obj->size - 1))) {
  2049. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2050. __func__, obj_priv->gtt_offset);
  2051. return;
  2052. }
  2053. pitch_val = obj_priv->stride / 128;
  2054. pitch_val = ffs(pitch_val) - 1;
  2055. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2056. val = obj_priv->gtt_offset;
  2057. if (obj_priv->tiling_mode == I915_TILING_Y)
  2058. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2059. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2060. WARN_ON(fence_size_bits & ~0x00000f00);
  2061. val |= fence_size_bits;
  2062. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2063. val |= I830_FENCE_REG_VALID;
  2064. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2065. }
  2066. static int i915_find_fence_reg(struct drm_device *dev,
  2067. bool interruptible)
  2068. {
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. struct drm_i915_fence_reg *reg;
  2071. struct drm_i915_gem_object *obj_priv = NULL;
  2072. int i, avail, ret;
  2073. /* First try to find a free reg */
  2074. avail = 0;
  2075. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2076. reg = &dev_priv->fence_regs[i];
  2077. if (!reg->obj)
  2078. return i;
  2079. obj_priv = to_intel_bo(reg->obj);
  2080. if (!obj_priv->pin_count)
  2081. avail++;
  2082. }
  2083. if (avail == 0)
  2084. return -ENOSPC;
  2085. /* None available, try to steal one or wait for a user to finish */
  2086. avail = I915_FENCE_REG_NONE;
  2087. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2088. lru_list) {
  2089. obj_priv = to_intel_bo(reg->obj);
  2090. if (obj_priv->pin_count)
  2091. continue;
  2092. /* found one! */
  2093. avail = obj_priv->fence_reg;
  2094. break;
  2095. }
  2096. BUG_ON(avail == I915_FENCE_REG_NONE);
  2097. /* We only have a reference on obj from the active list. put_fence_reg
  2098. * might drop that one, causing a use-after-free in it. So hold a
  2099. * private reference to obj like the other callers of put_fence_reg
  2100. * (set_tiling ioctl) do. */
  2101. drm_gem_object_reference(&obj_priv->base);
  2102. ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
  2103. drm_gem_object_unreference(&obj_priv->base);
  2104. if (ret != 0)
  2105. return ret;
  2106. return avail;
  2107. }
  2108. /**
  2109. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2110. * @obj: object to map through a fence reg
  2111. *
  2112. * When mapping objects through the GTT, userspace wants to be able to write
  2113. * to them without having to worry about swizzling if the object is tiled.
  2114. *
  2115. * This function walks the fence regs looking for a free one for @obj,
  2116. * stealing one if it can't find any.
  2117. *
  2118. * It then sets up the reg based on the object's properties: address, pitch
  2119. * and tiling format.
  2120. */
  2121. int
  2122. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2123. bool interruptible)
  2124. {
  2125. struct drm_device *dev = obj->dev;
  2126. struct drm_i915_private *dev_priv = dev->dev_private;
  2127. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2128. struct drm_i915_fence_reg *reg = NULL;
  2129. int ret;
  2130. /* Just update our place in the LRU if our fence is getting used. */
  2131. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2132. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2133. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2134. return 0;
  2135. }
  2136. switch (obj_priv->tiling_mode) {
  2137. case I915_TILING_NONE:
  2138. WARN(1, "allocating a fence for non-tiled object?\n");
  2139. break;
  2140. case I915_TILING_X:
  2141. if (!obj_priv->stride)
  2142. return -EINVAL;
  2143. WARN((obj_priv->stride & (512 - 1)),
  2144. "object 0x%08x is X tiled but has non-512B pitch\n",
  2145. obj_priv->gtt_offset);
  2146. break;
  2147. case I915_TILING_Y:
  2148. if (!obj_priv->stride)
  2149. return -EINVAL;
  2150. WARN((obj_priv->stride & (128 - 1)),
  2151. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2152. obj_priv->gtt_offset);
  2153. break;
  2154. }
  2155. ret = i915_find_fence_reg(dev, interruptible);
  2156. if (ret < 0)
  2157. return ret;
  2158. obj_priv->fence_reg = ret;
  2159. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2160. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2161. reg->obj = obj;
  2162. switch (INTEL_INFO(dev)->gen) {
  2163. case 6:
  2164. sandybridge_write_fence_reg(obj);
  2165. break;
  2166. case 5:
  2167. case 4:
  2168. i965_write_fence_reg(obj);
  2169. break;
  2170. case 3:
  2171. i915_write_fence_reg(obj);
  2172. break;
  2173. case 2:
  2174. i830_write_fence_reg(obj);
  2175. break;
  2176. }
  2177. trace_i915_gem_object_get_fence(obj,
  2178. obj_priv->fence_reg,
  2179. obj_priv->tiling_mode);
  2180. return 0;
  2181. }
  2182. /**
  2183. * i915_gem_clear_fence_reg - clear out fence register info
  2184. * @obj: object to clear
  2185. *
  2186. * Zeroes out the fence register itself and clears out the associated
  2187. * data structures in dev_priv and obj_priv.
  2188. */
  2189. static void
  2190. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2191. {
  2192. struct drm_device *dev = obj->dev;
  2193. drm_i915_private_t *dev_priv = dev->dev_private;
  2194. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2195. struct drm_i915_fence_reg *reg =
  2196. &dev_priv->fence_regs[obj_priv->fence_reg];
  2197. uint32_t fence_reg;
  2198. switch (INTEL_INFO(dev)->gen) {
  2199. case 6:
  2200. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2201. (obj_priv->fence_reg * 8), 0);
  2202. break;
  2203. case 5:
  2204. case 4:
  2205. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2206. break;
  2207. case 3:
  2208. if (obj_priv->fence_reg >= 8)
  2209. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2210. else
  2211. case 2:
  2212. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2213. I915_WRITE(fence_reg, 0);
  2214. break;
  2215. }
  2216. reg->obj = NULL;
  2217. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2218. list_del_init(&reg->lru_list);
  2219. }
  2220. /**
  2221. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2222. * to the buffer to finish, and then resets the fence register.
  2223. * @obj: tiled object holding a fence register.
  2224. * @bool: whether the wait upon the fence is interruptible
  2225. *
  2226. * Zeroes out the fence register itself and clears out the associated
  2227. * data structures in dev_priv and obj_priv.
  2228. */
  2229. int
  2230. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2231. bool interruptible)
  2232. {
  2233. struct drm_device *dev = obj->dev;
  2234. struct drm_i915_private *dev_priv = dev->dev_private;
  2235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2236. struct drm_i915_fence_reg *reg;
  2237. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2238. return 0;
  2239. /* If we've changed tiling, GTT-mappings of the object
  2240. * need to re-fault to ensure that the correct fence register
  2241. * setup is in place.
  2242. */
  2243. i915_gem_release_mmap(obj);
  2244. /* On the i915, GPU access to tiled buffers is via a fence,
  2245. * therefore we must wait for any outstanding access to complete
  2246. * before clearing the fence.
  2247. */
  2248. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2249. if (reg->gpu) {
  2250. int ret;
  2251. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2252. if (ret)
  2253. return ret;
  2254. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2255. if (ret)
  2256. return ret;
  2257. reg->gpu = false;
  2258. }
  2259. i915_gem_object_flush_gtt_write_domain(obj);
  2260. i915_gem_clear_fence_reg(obj);
  2261. return 0;
  2262. }
  2263. /**
  2264. * Finds free space in the GTT aperture and binds the object there.
  2265. */
  2266. static int
  2267. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2268. unsigned alignment,
  2269. bool mappable,
  2270. bool need_fence)
  2271. {
  2272. struct drm_device *dev = obj->dev;
  2273. drm_i915_private_t *dev_priv = dev->dev_private;
  2274. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2275. struct drm_mm_node *free_space;
  2276. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2277. u32 size, fence_size, fence_alignment;
  2278. int ret;
  2279. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2280. DRM_ERROR("Attempting to bind a purgeable object\n");
  2281. return -EINVAL;
  2282. }
  2283. fence_size = i915_gem_get_gtt_size(obj_priv);
  2284. fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
  2285. if (alignment == 0)
  2286. alignment = need_fence ? fence_alignment : 4096;
  2287. if (need_fence && alignment & (fence_alignment - 1)) {
  2288. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2289. return -EINVAL;
  2290. }
  2291. size = need_fence ? fence_size : obj->size;
  2292. /* If the object is bigger than the entire aperture, reject it early
  2293. * before evicting everything in a vain attempt to find space.
  2294. */
  2295. if (obj->size >
  2296. (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2297. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2298. return -E2BIG;
  2299. }
  2300. search_free:
  2301. if (mappable)
  2302. free_space =
  2303. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2304. size, alignment, 0,
  2305. dev_priv->mm.gtt_mappable_end,
  2306. 0);
  2307. else
  2308. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2309. size, alignment, 0);
  2310. if (free_space != NULL) {
  2311. if (mappable)
  2312. obj_priv->gtt_space =
  2313. drm_mm_get_block_range_generic(free_space,
  2314. size, alignment, 0,
  2315. dev_priv->mm.gtt_mappable_end,
  2316. 0);
  2317. else
  2318. obj_priv->gtt_space =
  2319. drm_mm_get_block(free_space, size, alignment);
  2320. }
  2321. if (obj_priv->gtt_space == NULL) {
  2322. /* If the gtt is empty and we're still having trouble
  2323. * fitting our object in, we're out of memory.
  2324. */
  2325. ret = i915_gem_evict_something(dev, size, alignment, mappable);
  2326. if (ret)
  2327. return ret;
  2328. goto search_free;
  2329. }
  2330. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2331. if (ret) {
  2332. drm_mm_put_block(obj_priv->gtt_space);
  2333. obj_priv->gtt_space = NULL;
  2334. if (ret == -ENOMEM) {
  2335. /* first try to clear up some space from the GTT */
  2336. ret = i915_gem_evict_something(dev, size,
  2337. alignment, mappable);
  2338. if (ret) {
  2339. /* now try to shrink everyone else */
  2340. if (gfpmask) {
  2341. gfpmask = 0;
  2342. goto search_free;
  2343. }
  2344. return ret;
  2345. }
  2346. goto search_free;
  2347. }
  2348. return ret;
  2349. }
  2350. /* Create an AGP memory structure pointing at our pages, and bind it
  2351. * into the GTT.
  2352. */
  2353. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2354. obj_priv->pages,
  2355. obj->size >> PAGE_SHIFT,
  2356. obj_priv->gtt_space->start,
  2357. obj_priv->agp_type);
  2358. if (obj_priv->agp_mem == NULL) {
  2359. i915_gem_object_put_pages_gtt(obj);
  2360. drm_mm_put_block(obj_priv->gtt_space);
  2361. obj_priv->gtt_space = NULL;
  2362. ret = i915_gem_evict_something(dev, size,
  2363. alignment, mappable);
  2364. if (ret)
  2365. return ret;
  2366. goto search_free;
  2367. }
  2368. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2369. /* keep track of bounds object by adding it to the inactive list */
  2370. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2371. i915_gem_info_add_gtt(dev_priv, obj_priv);
  2372. /* Assert that the object is not currently in any GPU domain. As it
  2373. * wasn't in the GTT, there shouldn't be any way it could have been in
  2374. * a GPU cache
  2375. */
  2376. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2377. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2378. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
  2379. obj_priv->fenceable =
  2380. obj_priv->gtt_space->size == fence_size &&
  2381. (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
  2382. obj_priv->mappable =
  2383. obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
  2384. return 0;
  2385. }
  2386. void
  2387. i915_gem_clflush_object(struct drm_gem_object *obj)
  2388. {
  2389. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2390. /* If we don't have a page list set up, then we're not pinned
  2391. * to GPU, and we can ignore the cache flush because it'll happen
  2392. * again at bind time.
  2393. */
  2394. if (obj_priv->pages == NULL)
  2395. return;
  2396. trace_i915_gem_object_clflush(obj);
  2397. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2398. }
  2399. /** Flushes any GPU write domain for the object if it's dirty. */
  2400. static int
  2401. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2402. bool pipelined)
  2403. {
  2404. struct drm_device *dev = obj->dev;
  2405. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2406. return 0;
  2407. /* Queue the GPU write cache flushing we need. */
  2408. i915_gem_flush_ring(dev, NULL,
  2409. to_intel_bo(obj)->ring,
  2410. 0, obj->write_domain);
  2411. BUG_ON(obj->write_domain);
  2412. if (pipelined)
  2413. return 0;
  2414. return i915_gem_object_wait_rendering(obj, true);
  2415. }
  2416. /** Flushes the GTT write domain for the object if it's dirty. */
  2417. static void
  2418. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2419. {
  2420. uint32_t old_write_domain;
  2421. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2422. return;
  2423. /* No actual flushing is required for the GTT write domain. Writes
  2424. * to it immediately go to main memory as far as we know, so there's
  2425. * no chipset flush. It also doesn't land in render cache.
  2426. */
  2427. i915_gem_release_mmap(obj);
  2428. old_write_domain = obj->write_domain;
  2429. obj->write_domain = 0;
  2430. trace_i915_gem_object_change_domain(obj,
  2431. obj->read_domains,
  2432. old_write_domain);
  2433. }
  2434. /** Flushes the CPU write domain for the object if it's dirty. */
  2435. static void
  2436. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2437. {
  2438. struct drm_device *dev = obj->dev;
  2439. uint32_t old_write_domain;
  2440. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2441. return;
  2442. i915_gem_clflush_object(obj);
  2443. drm_agp_chipset_flush(dev);
  2444. old_write_domain = obj->write_domain;
  2445. obj->write_domain = 0;
  2446. trace_i915_gem_object_change_domain(obj,
  2447. obj->read_domains,
  2448. old_write_domain);
  2449. }
  2450. /**
  2451. * Moves a single object to the GTT read, and possibly write domain.
  2452. *
  2453. * This function returns when the move is complete, including waiting on
  2454. * flushes to occur.
  2455. */
  2456. int
  2457. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2458. {
  2459. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2460. uint32_t old_write_domain, old_read_domains;
  2461. int ret;
  2462. /* Not valid to be called on unbound objects. */
  2463. if (obj_priv->gtt_space == NULL)
  2464. return -EINVAL;
  2465. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2466. if (ret != 0)
  2467. return ret;
  2468. i915_gem_object_flush_cpu_write_domain(obj);
  2469. if (write) {
  2470. ret = i915_gem_object_wait_rendering(obj, true);
  2471. if (ret)
  2472. return ret;
  2473. }
  2474. old_write_domain = obj->write_domain;
  2475. old_read_domains = obj->read_domains;
  2476. /* It should now be out of any other write domains, and we can update
  2477. * the domain values for our changes.
  2478. */
  2479. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2480. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2481. if (write) {
  2482. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2483. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2484. obj_priv->dirty = 1;
  2485. }
  2486. trace_i915_gem_object_change_domain(obj,
  2487. old_read_domains,
  2488. old_write_domain);
  2489. return 0;
  2490. }
  2491. /*
  2492. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2493. * wait, as in modesetting process we're not supposed to be interrupted.
  2494. */
  2495. int
  2496. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2497. bool pipelined)
  2498. {
  2499. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2500. uint32_t old_read_domains;
  2501. int ret;
  2502. /* Not valid to be called on unbound objects. */
  2503. if (obj_priv->gtt_space == NULL)
  2504. return -EINVAL;
  2505. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2506. if (ret)
  2507. return ret;
  2508. /* Currently, we are always called from an non-interruptible context. */
  2509. if (!pipelined) {
  2510. ret = i915_gem_object_wait_rendering(obj, false);
  2511. if (ret)
  2512. return ret;
  2513. }
  2514. i915_gem_object_flush_cpu_write_domain(obj);
  2515. old_read_domains = obj->read_domains;
  2516. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2517. trace_i915_gem_object_change_domain(obj,
  2518. old_read_domains,
  2519. obj->write_domain);
  2520. return 0;
  2521. }
  2522. /**
  2523. * Moves a single object to the CPU read, and possibly write domain.
  2524. *
  2525. * This function returns when the move is complete, including waiting on
  2526. * flushes to occur.
  2527. */
  2528. static int
  2529. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2530. {
  2531. uint32_t old_write_domain, old_read_domains;
  2532. int ret;
  2533. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2534. if (ret != 0)
  2535. return ret;
  2536. i915_gem_object_flush_gtt_write_domain(obj);
  2537. /* If we have a partially-valid cache of the object in the CPU,
  2538. * finish invalidating it and free the per-page flags.
  2539. */
  2540. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2541. if (write) {
  2542. ret = i915_gem_object_wait_rendering(obj, true);
  2543. if (ret)
  2544. return ret;
  2545. }
  2546. old_write_domain = obj->write_domain;
  2547. old_read_domains = obj->read_domains;
  2548. /* Flush the CPU cache if it's still invalid. */
  2549. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2550. i915_gem_clflush_object(obj);
  2551. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2552. }
  2553. /* It should now be out of any other write domains, and we can update
  2554. * the domain values for our changes.
  2555. */
  2556. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2557. /* If we're writing through the CPU, then the GPU read domains will
  2558. * need to be invalidated at next use.
  2559. */
  2560. if (write) {
  2561. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2562. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2563. }
  2564. trace_i915_gem_object_change_domain(obj,
  2565. old_read_domains,
  2566. old_write_domain);
  2567. return 0;
  2568. }
  2569. /*
  2570. * Set the next domain for the specified object. This
  2571. * may not actually perform the necessary flushing/invaliding though,
  2572. * as that may want to be batched with other set_domain operations
  2573. *
  2574. * This is (we hope) the only really tricky part of gem. The goal
  2575. * is fairly simple -- track which caches hold bits of the object
  2576. * and make sure they remain coherent. A few concrete examples may
  2577. * help to explain how it works. For shorthand, we use the notation
  2578. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2579. * a pair of read and write domain masks.
  2580. *
  2581. * Case 1: the batch buffer
  2582. *
  2583. * 1. Allocated
  2584. * 2. Written by CPU
  2585. * 3. Mapped to GTT
  2586. * 4. Read by GPU
  2587. * 5. Unmapped from GTT
  2588. * 6. Freed
  2589. *
  2590. * Let's take these a step at a time
  2591. *
  2592. * 1. Allocated
  2593. * Pages allocated from the kernel may still have
  2594. * cache contents, so we set them to (CPU, CPU) always.
  2595. * 2. Written by CPU (using pwrite)
  2596. * The pwrite function calls set_domain (CPU, CPU) and
  2597. * this function does nothing (as nothing changes)
  2598. * 3. Mapped by GTT
  2599. * This function asserts that the object is not
  2600. * currently in any GPU-based read or write domains
  2601. * 4. Read by GPU
  2602. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2603. * As write_domain is zero, this function adds in the
  2604. * current read domains (CPU+COMMAND, 0).
  2605. * flush_domains is set to CPU.
  2606. * invalidate_domains is set to COMMAND
  2607. * clflush is run to get data out of the CPU caches
  2608. * then i915_dev_set_domain calls i915_gem_flush to
  2609. * emit an MI_FLUSH and drm_agp_chipset_flush
  2610. * 5. Unmapped from GTT
  2611. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2612. * flush_domains and invalidate_domains end up both zero
  2613. * so no flushing/invalidating happens
  2614. * 6. Freed
  2615. * yay, done
  2616. *
  2617. * Case 2: The shared render buffer
  2618. *
  2619. * 1. Allocated
  2620. * 2. Mapped to GTT
  2621. * 3. Read/written by GPU
  2622. * 4. set_domain to (CPU,CPU)
  2623. * 5. Read/written by CPU
  2624. * 6. Read/written by GPU
  2625. *
  2626. * 1. Allocated
  2627. * Same as last example, (CPU, CPU)
  2628. * 2. Mapped to GTT
  2629. * Nothing changes (assertions find that it is not in the GPU)
  2630. * 3. Read/written by GPU
  2631. * execbuffer calls set_domain (RENDER, RENDER)
  2632. * flush_domains gets CPU
  2633. * invalidate_domains gets GPU
  2634. * clflush (obj)
  2635. * MI_FLUSH and drm_agp_chipset_flush
  2636. * 4. set_domain (CPU, CPU)
  2637. * flush_domains gets GPU
  2638. * invalidate_domains gets CPU
  2639. * wait_rendering (obj) to make sure all drawing is complete.
  2640. * This will include an MI_FLUSH to get the data from GPU
  2641. * to memory
  2642. * clflush (obj) to invalidate the CPU cache
  2643. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2644. * 5. Read/written by CPU
  2645. * cache lines are loaded and dirtied
  2646. * 6. Read written by GPU
  2647. * Same as last GPU access
  2648. *
  2649. * Case 3: The constant buffer
  2650. *
  2651. * 1. Allocated
  2652. * 2. Written by CPU
  2653. * 3. Read by GPU
  2654. * 4. Updated (written) by CPU again
  2655. * 5. Read by GPU
  2656. *
  2657. * 1. Allocated
  2658. * (CPU, CPU)
  2659. * 2. Written by CPU
  2660. * (CPU, CPU)
  2661. * 3. Read by GPU
  2662. * (CPU+RENDER, 0)
  2663. * flush_domains = CPU
  2664. * invalidate_domains = RENDER
  2665. * clflush (obj)
  2666. * MI_FLUSH
  2667. * drm_agp_chipset_flush
  2668. * 4. Updated (written) by CPU again
  2669. * (CPU, CPU)
  2670. * flush_domains = 0 (no previous write domain)
  2671. * invalidate_domains = 0 (no new read domains)
  2672. * 5. Read by GPU
  2673. * (CPU+RENDER, 0)
  2674. * flush_domains = CPU
  2675. * invalidate_domains = RENDER
  2676. * clflush (obj)
  2677. * MI_FLUSH
  2678. * drm_agp_chipset_flush
  2679. */
  2680. static void
  2681. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2682. struct intel_ring_buffer *ring)
  2683. {
  2684. struct drm_device *dev = obj->dev;
  2685. struct drm_i915_private *dev_priv = dev->dev_private;
  2686. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2687. uint32_t invalidate_domains = 0;
  2688. uint32_t flush_domains = 0;
  2689. /*
  2690. * If the object isn't moving to a new write domain,
  2691. * let the object stay in multiple read domains
  2692. */
  2693. if (obj->pending_write_domain == 0)
  2694. obj->pending_read_domains |= obj->read_domains;
  2695. /*
  2696. * Flush the current write domain if
  2697. * the new read domains don't match. Invalidate
  2698. * any read domains which differ from the old
  2699. * write domain
  2700. */
  2701. if (obj->write_domain &&
  2702. obj->write_domain != obj->pending_read_domains) {
  2703. flush_domains |= obj->write_domain;
  2704. invalidate_domains |=
  2705. obj->pending_read_domains & ~obj->write_domain;
  2706. }
  2707. /*
  2708. * Invalidate any read caches which may have
  2709. * stale data. That is, any new read domains.
  2710. */
  2711. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2712. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2713. i915_gem_clflush_object(obj);
  2714. /* blow away mappings if mapped through GTT */
  2715. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2716. i915_gem_release_mmap(obj);
  2717. /* The actual obj->write_domain will be updated with
  2718. * pending_write_domain after we emit the accumulated flush for all
  2719. * of our domain changes in execbuffers (which clears objects'
  2720. * write_domains). So if we have a current write domain that we
  2721. * aren't changing, set pending_write_domain to that.
  2722. */
  2723. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2724. obj->pending_write_domain = obj->write_domain;
  2725. dev->invalidate_domains |= invalidate_domains;
  2726. dev->flush_domains |= flush_domains;
  2727. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2728. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2729. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2730. dev_priv->mm.flush_rings |= ring->id;
  2731. }
  2732. /**
  2733. * Moves the object from a partially CPU read to a full one.
  2734. *
  2735. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2736. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2737. */
  2738. static void
  2739. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2740. {
  2741. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2742. if (!obj_priv->page_cpu_valid)
  2743. return;
  2744. /* If we're partially in the CPU read domain, finish moving it in.
  2745. */
  2746. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2747. int i;
  2748. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2749. if (obj_priv->page_cpu_valid[i])
  2750. continue;
  2751. drm_clflush_pages(obj_priv->pages + i, 1);
  2752. }
  2753. }
  2754. /* Free the page_cpu_valid mappings which are now stale, whether
  2755. * or not we've got I915_GEM_DOMAIN_CPU.
  2756. */
  2757. kfree(obj_priv->page_cpu_valid);
  2758. obj_priv->page_cpu_valid = NULL;
  2759. }
  2760. /**
  2761. * Set the CPU read domain on a range of the object.
  2762. *
  2763. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2764. * not entirely valid. The page_cpu_valid member of the object flags which
  2765. * pages have been flushed, and will be respected by
  2766. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2767. * of the whole object.
  2768. *
  2769. * This function returns when the move is complete, including waiting on
  2770. * flushes to occur.
  2771. */
  2772. static int
  2773. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2774. uint64_t offset, uint64_t size)
  2775. {
  2776. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2777. uint32_t old_read_domains;
  2778. int i, ret;
  2779. if (offset == 0 && size == obj->size)
  2780. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2781. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2782. if (ret != 0)
  2783. return ret;
  2784. i915_gem_object_flush_gtt_write_domain(obj);
  2785. /* If we're already fully in the CPU read domain, we're done. */
  2786. if (obj_priv->page_cpu_valid == NULL &&
  2787. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2788. return 0;
  2789. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2790. * newly adding I915_GEM_DOMAIN_CPU
  2791. */
  2792. if (obj_priv->page_cpu_valid == NULL) {
  2793. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2794. GFP_KERNEL);
  2795. if (obj_priv->page_cpu_valid == NULL)
  2796. return -ENOMEM;
  2797. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2798. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2799. /* Flush the cache on any pages that are still invalid from the CPU's
  2800. * perspective.
  2801. */
  2802. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2803. i++) {
  2804. if (obj_priv->page_cpu_valid[i])
  2805. continue;
  2806. drm_clflush_pages(obj_priv->pages + i, 1);
  2807. obj_priv->page_cpu_valid[i] = 1;
  2808. }
  2809. /* It should now be out of any other write domains, and we can update
  2810. * the domain values for our changes.
  2811. */
  2812. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2813. old_read_domains = obj->read_domains;
  2814. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2815. trace_i915_gem_object_change_domain(obj,
  2816. old_read_domains,
  2817. obj->write_domain);
  2818. return 0;
  2819. }
  2820. /**
  2821. * Pin an object to the GTT and evaluate the relocations landing in it.
  2822. */
  2823. static int
  2824. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2825. struct drm_file *file_priv,
  2826. struct drm_i915_gem_exec_object2 *entry)
  2827. {
  2828. struct drm_device *dev = obj->base.dev;
  2829. drm_i915_private_t *dev_priv = dev->dev_private;
  2830. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2831. struct drm_gem_object *target_obj = NULL;
  2832. uint32_t target_handle = 0;
  2833. int i, ret = 0;
  2834. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2835. for (i = 0; i < entry->relocation_count; i++) {
  2836. struct drm_i915_gem_relocation_entry reloc;
  2837. uint32_t target_offset;
  2838. if (__copy_from_user_inatomic(&reloc,
  2839. user_relocs+i,
  2840. sizeof(reloc))) {
  2841. ret = -EFAULT;
  2842. break;
  2843. }
  2844. if (reloc.target_handle != target_handle) {
  2845. drm_gem_object_unreference(target_obj);
  2846. target_obj = drm_gem_object_lookup(dev, file_priv,
  2847. reloc.target_handle);
  2848. if (target_obj == NULL) {
  2849. ret = -ENOENT;
  2850. break;
  2851. }
  2852. target_handle = reloc.target_handle;
  2853. }
  2854. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2855. #if WATCH_RELOC
  2856. DRM_INFO("%s: obj %p offset %08x target %d "
  2857. "read %08x write %08x gtt %08x "
  2858. "presumed %08x delta %08x\n",
  2859. __func__,
  2860. obj,
  2861. (int) reloc.offset,
  2862. (int) reloc.target_handle,
  2863. (int) reloc.read_domains,
  2864. (int) reloc.write_domain,
  2865. (int) target_offset,
  2866. (int) reloc.presumed_offset,
  2867. reloc.delta);
  2868. #endif
  2869. /* The target buffer should have appeared before us in the
  2870. * exec_object list, so it should have a GTT space bound by now.
  2871. */
  2872. if (target_offset == 0) {
  2873. DRM_ERROR("No GTT space found for object %d\n",
  2874. reloc.target_handle);
  2875. ret = -EINVAL;
  2876. break;
  2877. }
  2878. /* Validate that the target is in a valid r/w GPU domain */
  2879. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2880. DRM_ERROR("reloc with multiple write domains: "
  2881. "obj %p target %d offset %d "
  2882. "read %08x write %08x",
  2883. obj, reloc.target_handle,
  2884. (int) reloc.offset,
  2885. reloc.read_domains,
  2886. reloc.write_domain);
  2887. ret = -EINVAL;
  2888. break;
  2889. }
  2890. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2891. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2892. DRM_ERROR("reloc with read/write CPU domains: "
  2893. "obj %p target %d offset %d "
  2894. "read %08x write %08x",
  2895. obj, reloc.target_handle,
  2896. (int) reloc.offset,
  2897. reloc.read_domains,
  2898. reloc.write_domain);
  2899. ret = -EINVAL;
  2900. break;
  2901. }
  2902. if (reloc.write_domain && target_obj->pending_write_domain &&
  2903. reloc.write_domain != target_obj->pending_write_domain) {
  2904. DRM_ERROR("Write domain conflict: "
  2905. "obj %p target %d offset %d "
  2906. "new %08x old %08x\n",
  2907. obj, reloc.target_handle,
  2908. (int) reloc.offset,
  2909. reloc.write_domain,
  2910. target_obj->pending_write_domain);
  2911. ret = -EINVAL;
  2912. break;
  2913. }
  2914. target_obj->pending_read_domains |= reloc.read_domains;
  2915. target_obj->pending_write_domain |= reloc.write_domain;
  2916. /* If the relocation already has the right value in it, no
  2917. * more work needs to be done.
  2918. */
  2919. if (target_offset == reloc.presumed_offset)
  2920. continue;
  2921. /* Check that the relocation address is valid... */
  2922. if (reloc.offset > obj->base.size - 4) {
  2923. DRM_ERROR("Relocation beyond object bounds: "
  2924. "obj %p target %d offset %d size %d.\n",
  2925. obj, reloc.target_handle,
  2926. (int) reloc.offset, (int) obj->base.size);
  2927. ret = -EINVAL;
  2928. break;
  2929. }
  2930. if (reloc.offset & 3) {
  2931. DRM_ERROR("Relocation not 4-byte aligned: "
  2932. "obj %p target %d offset %d.\n",
  2933. obj, reloc.target_handle,
  2934. (int) reloc.offset);
  2935. ret = -EINVAL;
  2936. break;
  2937. }
  2938. /* and points to somewhere within the target object. */
  2939. if (reloc.delta >= target_obj->size) {
  2940. DRM_ERROR("Relocation beyond target object bounds: "
  2941. "obj %p target %d delta %d size %d.\n",
  2942. obj, reloc.target_handle,
  2943. (int) reloc.delta, (int) target_obj->size);
  2944. ret = -EINVAL;
  2945. break;
  2946. }
  2947. reloc.delta += target_offset;
  2948. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2949. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2950. char *vaddr;
  2951. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2952. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2953. kunmap_atomic(vaddr);
  2954. } else {
  2955. uint32_t __iomem *reloc_entry;
  2956. void __iomem *reloc_page;
  2957. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2958. if (ret)
  2959. break;
  2960. /* Map the page containing the relocation we're going to perform. */
  2961. reloc.offset += obj->gtt_offset;
  2962. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2963. reloc.offset & PAGE_MASK);
  2964. reloc_entry = (uint32_t __iomem *)
  2965. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2966. iowrite32(reloc.delta, reloc_entry);
  2967. io_mapping_unmap_atomic(reloc_page);
  2968. }
  2969. /* and update the user's relocation entry */
  2970. reloc.presumed_offset = target_offset;
  2971. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2972. &reloc.presumed_offset,
  2973. sizeof(reloc.presumed_offset))) {
  2974. ret = -EFAULT;
  2975. break;
  2976. }
  2977. }
  2978. drm_gem_object_unreference(target_obj);
  2979. return ret;
  2980. }
  2981. static int
  2982. i915_gem_execbuffer_pin(struct drm_device *dev,
  2983. struct drm_file *file,
  2984. struct drm_gem_object **object_list,
  2985. struct drm_i915_gem_exec_object2 *exec_list,
  2986. int count)
  2987. {
  2988. struct drm_i915_private *dev_priv = dev->dev_private;
  2989. int ret, i, retry;
  2990. /* attempt to pin all of the buffers into the GTT */
  2991. retry = 0;
  2992. do {
  2993. ret = 0;
  2994. for (i = 0; i < count; i++) {
  2995. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2996. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  2997. bool need_fence =
  2998. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2999. obj->tiling_mode != I915_TILING_NONE;
  3000. /* g33/pnv can't fence buffers in the unmappable part */
  3001. bool need_mappable =
  3002. entry->relocation_count ? true : need_fence;
  3003. /* Check fence reg constraints and rebind if necessary */
  3004. if ((need_fence && !obj->fenceable) ||
  3005. (need_mappable && !obj->mappable)) {
  3006. ret = i915_gem_object_unbind(&obj->base);
  3007. if (ret)
  3008. break;
  3009. }
  3010. ret = i915_gem_object_pin(&obj->base,
  3011. entry->alignment,
  3012. need_mappable,
  3013. need_fence);
  3014. if (ret)
  3015. break;
  3016. /*
  3017. * Pre-965 chips need a fence register set up in order
  3018. * to properly handle blits to/from tiled surfaces.
  3019. */
  3020. if (need_fence) {
  3021. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3022. if (ret) {
  3023. i915_gem_object_unpin(&obj->base);
  3024. break;
  3025. }
  3026. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3027. }
  3028. entry->offset = obj->gtt_offset;
  3029. }
  3030. while (i--)
  3031. i915_gem_object_unpin(object_list[i]);
  3032. if (ret != -ENOSPC || retry > 1)
  3033. return ret;
  3034. /* First attempt, just clear anything that is purgeable.
  3035. * Second attempt, clear the entire GTT.
  3036. */
  3037. ret = i915_gem_evict_everything(dev, retry == 0);
  3038. if (ret)
  3039. return ret;
  3040. retry++;
  3041. } while (1);
  3042. }
  3043. /* Throttle our rendering by waiting until the ring has completed our requests
  3044. * emitted over 20 msec ago.
  3045. *
  3046. * Note that if we were to use the current jiffies each time around the loop,
  3047. * we wouldn't escape the function with any frames outstanding if the time to
  3048. * render a frame was over 20ms.
  3049. *
  3050. * This should get us reasonable parallelism between CPU and GPU but also
  3051. * relatively low latency when blocking on a particular request to finish.
  3052. */
  3053. static int
  3054. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3055. {
  3056. struct drm_i915_private *dev_priv = dev->dev_private;
  3057. struct drm_i915_file_private *file_priv = file->driver_priv;
  3058. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3059. struct drm_i915_gem_request *request;
  3060. struct intel_ring_buffer *ring = NULL;
  3061. u32 seqno = 0;
  3062. int ret;
  3063. spin_lock(&file_priv->mm.lock);
  3064. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3065. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3066. break;
  3067. ring = request->ring;
  3068. seqno = request->seqno;
  3069. }
  3070. spin_unlock(&file_priv->mm.lock);
  3071. if (seqno == 0)
  3072. return 0;
  3073. ret = 0;
  3074. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3075. /* And wait for the seqno passing without holding any locks and
  3076. * causing extra latency for others. This is safe as the irq
  3077. * generation is designed to be run atomically and so is
  3078. * lockless.
  3079. */
  3080. ring->user_irq_get(ring);
  3081. ret = wait_event_interruptible(ring->irq_queue,
  3082. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3083. || atomic_read(&dev_priv->mm.wedged));
  3084. ring->user_irq_put(ring);
  3085. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3086. ret = -EIO;
  3087. }
  3088. if (ret == 0)
  3089. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3090. return ret;
  3091. }
  3092. static int
  3093. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3094. uint64_t exec_offset)
  3095. {
  3096. uint32_t exec_start, exec_len;
  3097. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3098. exec_len = (uint32_t) exec->batch_len;
  3099. if ((exec_start | exec_len) & 0x7)
  3100. return -EINVAL;
  3101. if (!exec_start)
  3102. return -EINVAL;
  3103. return 0;
  3104. }
  3105. static int
  3106. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3107. int count)
  3108. {
  3109. int i;
  3110. for (i = 0; i < count; i++) {
  3111. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3112. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3113. if (!access_ok(VERIFY_READ, ptr, length))
  3114. return -EFAULT;
  3115. /* we may also need to update the presumed offsets */
  3116. if (!access_ok(VERIFY_WRITE, ptr, length))
  3117. return -EFAULT;
  3118. if (fault_in_pages_readable(ptr, length))
  3119. return -EFAULT;
  3120. }
  3121. return 0;
  3122. }
  3123. static int
  3124. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3125. struct drm_file *file,
  3126. struct drm_i915_gem_execbuffer2 *args,
  3127. struct drm_i915_gem_exec_object2 *exec_list)
  3128. {
  3129. drm_i915_private_t *dev_priv = dev->dev_private;
  3130. struct drm_gem_object **object_list = NULL;
  3131. struct drm_gem_object *batch_obj;
  3132. struct drm_clip_rect *cliprects = NULL;
  3133. struct drm_i915_gem_request *request = NULL;
  3134. int ret, i, flips;
  3135. uint64_t exec_offset;
  3136. struct intel_ring_buffer *ring = NULL;
  3137. ret = i915_gem_check_is_wedged(dev);
  3138. if (ret)
  3139. return ret;
  3140. ret = validate_exec_list(exec_list, args->buffer_count);
  3141. if (ret)
  3142. return ret;
  3143. #if WATCH_EXEC
  3144. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3145. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3146. #endif
  3147. switch (args->flags & I915_EXEC_RING_MASK) {
  3148. case I915_EXEC_DEFAULT:
  3149. case I915_EXEC_RENDER:
  3150. ring = &dev_priv->render_ring;
  3151. break;
  3152. case I915_EXEC_BSD:
  3153. if (!HAS_BSD(dev)) {
  3154. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3155. return -EINVAL;
  3156. }
  3157. ring = &dev_priv->bsd_ring;
  3158. break;
  3159. case I915_EXEC_BLT:
  3160. if (!HAS_BLT(dev)) {
  3161. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3162. return -EINVAL;
  3163. }
  3164. ring = &dev_priv->blt_ring;
  3165. break;
  3166. default:
  3167. DRM_ERROR("execbuf with unknown ring: %d\n",
  3168. (int)(args->flags & I915_EXEC_RING_MASK));
  3169. return -EINVAL;
  3170. }
  3171. if (args->buffer_count < 1) {
  3172. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3173. return -EINVAL;
  3174. }
  3175. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3176. if (object_list == NULL) {
  3177. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3178. args->buffer_count);
  3179. ret = -ENOMEM;
  3180. goto pre_mutex_err;
  3181. }
  3182. if (args->num_cliprects != 0) {
  3183. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3184. GFP_KERNEL);
  3185. if (cliprects == NULL) {
  3186. ret = -ENOMEM;
  3187. goto pre_mutex_err;
  3188. }
  3189. ret = copy_from_user(cliprects,
  3190. (struct drm_clip_rect __user *)
  3191. (uintptr_t) args->cliprects_ptr,
  3192. sizeof(*cliprects) * args->num_cliprects);
  3193. if (ret != 0) {
  3194. DRM_ERROR("copy %d cliprects failed: %d\n",
  3195. args->num_cliprects, ret);
  3196. ret = -EFAULT;
  3197. goto pre_mutex_err;
  3198. }
  3199. }
  3200. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3201. if (request == NULL) {
  3202. ret = -ENOMEM;
  3203. goto pre_mutex_err;
  3204. }
  3205. ret = i915_mutex_lock_interruptible(dev);
  3206. if (ret)
  3207. goto pre_mutex_err;
  3208. if (dev_priv->mm.suspended) {
  3209. mutex_unlock(&dev->struct_mutex);
  3210. ret = -EBUSY;
  3211. goto pre_mutex_err;
  3212. }
  3213. /* Look up object handles */
  3214. for (i = 0; i < args->buffer_count; i++) {
  3215. struct drm_i915_gem_object *obj_priv;
  3216. object_list[i] = drm_gem_object_lookup(dev, file,
  3217. exec_list[i].handle);
  3218. if (object_list[i] == NULL) {
  3219. DRM_ERROR("Invalid object handle %d at index %d\n",
  3220. exec_list[i].handle, i);
  3221. /* prevent error path from reading uninitialized data */
  3222. args->buffer_count = i + 1;
  3223. ret = -ENOENT;
  3224. goto err;
  3225. }
  3226. obj_priv = to_intel_bo(object_list[i]);
  3227. if (obj_priv->in_execbuffer) {
  3228. DRM_ERROR("Object %p appears more than once in object list\n",
  3229. object_list[i]);
  3230. /* prevent error path from reading uninitialized data */
  3231. args->buffer_count = i + 1;
  3232. ret = -EINVAL;
  3233. goto err;
  3234. }
  3235. obj_priv->in_execbuffer = true;
  3236. }
  3237. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3238. ret = i915_gem_execbuffer_pin(dev, file,
  3239. object_list, exec_list,
  3240. args->buffer_count);
  3241. if (ret)
  3242. goto err;
  3243. /* The objects are in their final locations, apply the relocations. */
  3244. for (i = 0; i < args->buffer_count; i++) {
  3245. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3246. obj->base.pending_read_domains = 0;
  3247. obj->base.pending_write_domain = 0;
  3248. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3249. if (ret)
  3250. goto err;
  3251. }
  3252. /* Set the pending read domains for the batch buffer to COMMAND */
  3253. batch_obj = object_list[args->buffer_count-1];
  3254. if (batch_obj->pending_write_domain) {
  3255. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3256. ret = -EINVAL;
  3257. goto err;
  3258. }
  3259. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3260. /* Sanity check the batch buffer */
  3261. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3262. ret = i915_gem_check_execbuffer(args, exec_offset);
  3263. if (ret != 0) {
  3264. DRM_ERROR("execbuf with invalid offset/length\n");
  3265. goto err;
  3266. }
  3267. /* Zero the global flush/invalidate flags. These
  3268. * will be modified as new domains are computed
  3269. * for each object
  3270. */
  3271. dev->invalidate_domains = 0;
  3272. dev->flush_domains = 0;
  3273. dev_priv->mm.flush_rings = 0;
  3274. for (i = 0; i < args->buffer_count; i++)
  3275. i915_gem_object_set_to_gpu_domain(object_list[i], ring);
  3276. if (dev->invalidate_domains | dev->flush_domains) {
  3277. #if WATCH_EXEC
  3278. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3279. __func__,
  3280. dev->invalidate_domains,
  3281. dev->flush_domains);
  3282. #endif
  3283. i915_gem_flush(dev, file,
  3284. dev->invalidate_domains,
  3285. dev->flush_domains,
  3286. dev_priv->mm.flush_rings);
  3287. }
  3288. #if WATCH_COHERENCY
  3289. for (i = 0; i < args->buffer_count; i++) {
  3290. i915_gem_object_check_coherency(object_list[i],
  3291. exec_list[i].handle);
  3292. }
  3293. #endif
  3294. #if WATCH_EXEC
  3295. i915_gem_dump_object(batch_obj,
  3296. args->batch_len,
  3297. __func__,
  3298. ~0);
  3299. #endif
  3300. /* Check for any pending flips. As we only maintain a flip queue depth
  3301. * of 1, we can simply insert a WAIT for the next display flip prior
  3302. * to executing the batch and avoid stalling the CPU.
  3303. */
  3304. flips = 0;
  3305. for (i = 0; i < args->buffer_count; i++) {
  3306. if (object_list[i]->write_domain)
  3307. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3308. }
  3309. if (flips) {
  3310. int plane, flip_mask;
  3311. for (plane = 0; flips >> plane; plane++) {
  3312. if (((flips >> plane) & 1) == 0)
  3313. continue;
  3314. if (plane)
  3315. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3316. else
  3317. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3318. ret = intel_ring_begin(ring, 2);
  3319. if (ret)
  3320. goto err;
  3321. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3322. intel_ring_emit(ring, MI_NOOP);
  3323. intel_ring_advance(ring);
  3324. }
  3325. }
  3326. /* Exec the batchbuffer */
  3327. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3328. if (ret) {
  3329. DRM_ERROR("dispatch failed %d\n", ret);
  3330. goto err;
  3331. }
  3332. for (i = 0; i < args->buffer_count; i++) {
  3333. struct drm_gem_object *obj = object_list[i];
  3334. obj->read_domains = obj->pending_read_domains;
  3335. obj->write_domain = obj->pending_write_domain;
  3336. i915_gem_object_move_to_active(obj, ring);
  3337. if (obj->write_domain) {
  3338. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3339. obj_priv->dirty = 1;
  3340. list_move_tail(&obj_priv->gpu_write_list,
  3341. &ring->gpu_write_list);
  3342. intel_mark_busy(dev, obj);
  3343. }
  3344. trace_i915_gem_object_change_domain(obj,
  3345. obj->read_domains,
  3346. obj->write_domain);
  3347. }
  3348. /*
  3349. * Ensure that the commands in the batch buffer are
  3350. * finished before the interrupt fires
  3351. */
  3352. i915_retire_commands(dev, ring);
  3353. if (i915_add_request(dev, file, request, ring))
  3354. ring->outstanding_lazy_request = true;
  3355. else
  3356. request = NULL;
  3357. err:
  3358. for (i = 0; i < args->buffer_count; i++) {
  3359. if (object_list[i] == NULL)
  3360. break;
  3361. to_intel_bo(object_list[i])->in_execbuffer = false;
  3362. drm_gem_object_unreference(object_list[i]);
  3363. }
  3364. mutex_unlock(&dev->struct_mutex);
  3365. pre_mutex_err:
  3366. drm_free_large(object_list);
  3367. kfree(cliprects);
  3368. kfree(request);
  3369. return ret;
  3370. }
  3371. /*
  3372. * Legacy execbuffer just creates an exec2 list from the original exec object
  3373. * list array and passes it to the real function.
  3374. */
  3375. int
  3376. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3377. struct drm_file *file_priv)
  3378. {
  3379. struct drm_i915_gem_execbuffer *args = data;
  3380. struct drm_i915_gem_execbuffer2 exec2;
  3381. struct drm_i915_gem_exec_object *exec_list = NULL;
  3382. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3383. int ret, i;
  3384. #if WATCH_EXEC
  3385. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3386. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3387. #endif
  3388. if (args->buffer_count < 1) {
  3389. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3390. return -EINVAL;
  3391. }
  3392. /* Copy in the exec list from userland */
  3393. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3394. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3395. if (exec_list == NULL || exec2_list == NULL) {
  3396. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3397. args->buffer_count);
  3398. drm_free_large(exec_list);
  3399. drm_free_large(exec2_list);
  3400. return -ENOMEM;
  3401. }
  3402. ret = copy_from_user(exec_list,
  3403. (struct drm_i915_relocation_entry __user *)
  3404. (uintptr_t) args->buffers_ptr,
  3405. sizeof(*exec_list) * args->buffer_count);
  3406. if (ret != 0) {
  3407. DRM_ERROR("copy %d exec entries failed %d\n",
  3408. args->buffer_count, ret);
  3409. drm_free_large(exec_list);
  3410. drm_free_large(exec2_list);
  3411. return -EFAULT;
  3412. }
  3413. for (i = 0; i < args->buffer_count; i++) {
  3414. exec2_list[i].handle = exec_list[i].handle;
  3415. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3416. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3417. exec2_list[i].alignment = exec_list[i].alignment;
  3418. exec2_list[i].offset = exec_list[i].offset;
  3419. if (INTEL_INFO(dev)->gen < 4)
  3420. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3421. else
  3422. exec2_list[i].flags = 0;
  3423. }
  3424. exec2.buffers_ptr = args->buffers_ptr;
  3425. exec2.buffer_count = args->buffer_count;
  3426. exec2.batch_start_offset = args->batch_start_offset;
  3427. exec2.batch_len = args->batch_len;
  3428. exec2.DR1 = args->DR1;
  3429. exec2.DR4 = args->DR4;
  3430. exec2.num_cliprects = args->num_cliprects;
  3431. exec2.cliprects_ptr = args->cliprects_ptr;
  3432. exec2.flags = I915_EXEC_RENDER;
  3433. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3434. if (!ret) {
  3435. /* Copy the new buffer offsets back to the user's exec list. */
  3436. for (i = 0; i < args->buffer_count; i++)
  3437. exec_list[i].offset = exec2_list[i].offset;
  3438. /* ... and back out to userspace */
  3439. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3440. (uintptr_t) args->buffers_ptr,
  3441. exec_list,
  3442. sizeof(*exec_list) * args->buffer_count);
  3443. if (ret) {
  3444. ret = -EFAULT;
  3445. DRM_ERROR("failed to copy %d exec entries "
  3446. "back to user (%d)\n",
  3447. args->buffer_count, ret);
  3448. }
  3449. }
  3450. drm_free_large(exec_list);
  3451. drm_free_large(exec2_list);
  3452. return ret;
  3453. }
  3454. int
  3455. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3456. struct drm_file *file_priv)
  3457. {
  3458. struct drm_i915_gem_execbuffer2 *args = data;
  3459. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3460. int ret;
  3461. #if WATCH_EXEC
  3462. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3463. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3464. #endif
  3465. if (args->buffer_count < 1) {
  3466. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3467. return -EINVAL;
  3468. }
  3469. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3470. if (exec2_list == NULL) {
  3471. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3472. args->buffer_count);
  3473. return -ENOMEM;
  3474. }
  3475. ret = copy_from_user(exec2_list,
  3476. (struct drm_i915_relocation_entry __user *)
  3477. (uintptr_t) args->buffers_ptr,
  3478. sizeof(*exec2_list) * args->buffer_count);
  3479. if (ret != 0) {
  3480. DRM_ERROR("copy %d exec entries failed %d\n",
  3481. args->buffer_count, ret);
  3482. drm_free_large(exec2_list);
  3483. return -EFAULT;
  3484. }
  3485. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3486. if (!ret) {
  3487. /* Copy the new buffer offsets back to the user's exec list. */
  3488. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3489. (uintptr_t) args->buffers_ptr,
  3490. exec2_list,
  3491. sizeof(*exec2_list) * args->buffer_count);
  3492. if (ret) {
  3493. ret = -EFAULT;
  3494. DRM_ERROR("failed to copy %d exec entries "
  3495. "back to user (%d)\n",
  3496. args->buffer_count, ret);
  3497. }
  3498. }
  3499. drm_free_large(exec2_list);
  3500. return ret;
  3501. }
  3502. int
  3503. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3504. bool mappable, bool need_fence)
  3505. {
  3506. struct drm_device *dev = obj->dev;
  3507. struct drm_i915_private *dev_priv = dev->dev_private;
  3508. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3509. int ret;
  3510. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3511. WARN_ON(i915_verify_lists(dev));
  3512. if (obj_priv->gtt_space != NULL) {
  3513. if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
  3514. (need_fence && !obj_priv->fenceable) ||
  3515. (mappable && !obj_priv->mappable)) {
  3516. WARN(obj_priv->pin_count,
  3517. "bo is already pinned with incorrect alignment:"
  3518. " offset=%x, req.alignment=%x, need_fence=%d, fenceable=%d, mappable=%d, cpu_accessible=%d\n",
  3519. obj_priv->gtt_offset, alignment,
  3520. need_fence, obj_priv->fenceable,
  3521. mappable, obj_priv->mappable);
  3522. ret = i915_gem_object_unbind(obj);
  3523. if (ret)
  3524. return ret;
  3525. }
  3526. }
  3527. if (obj_priv->gtt_space == NULL) {
  3528. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3529. mappable, need_fence);
  3530. if (ret)
  3531. return ret;
  3532. }
  3533. if (obj_priv->pin_count++ == 0) {
  3534. i915_gem_info_add_pin(dev_priv, obj_priv, mappable);
  3535. if (!obj_priv->active)
  3536. list_move_tail(&obj_priv->mm_list,
  3537. &dev_priv->mm.pinned_list);
  3538. }
  3539. BUG_ON(!obj_priv->pin_mappable && mappable);
  3540. WARN_ON(i915_verify_lists(dev));
  3541. return 0;
  3542. }
  3543. void
  3544. i915_gem_object_unpin(struct drm_gem_object *obj)
  3545. {
  3546. struct drm_device *dev = obj->dev;
  3547. drm_i915_private_t *dev_priv = dev->dev_private;
  3548. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3549. WARN_ON(i915_verify_lists(dev));
  3550. BUG_ON(obj_priv->pin_count == 0);
  3551. BUG_ON(obj_priv->gtt_space == NULL);
  3552. if (--obj_priv->pin_count == 0) {
  3553. if (!obj_priv->active)
  3554. list_move_tail(&obj_priv->mm_list,
  3555. &dev_priv->mm.inactive_list);
  3556. i915_gem_info_remove_pin(dev_priv, obj_priv);
  3557. }
  3558. WARN_ON(i915_verify_lists(dev));
  3559. }
  3560. int
  3561. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3562. struct drm_file *file_priv)
  3563. {
  3564. struct drm_i915_gem_pin *args = data;
  3565. struct drm_gem_object *obj;
  3566. struct drm_i915_gem_object *obj_priv;
  3567. int ret;
  3568. ret = i915_mutex_lock_interruptible(dev);
  3569. if (ret)
  3570. return ret;
  3571. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3572. if (obj == NULL) {
  3573. ret = -ENOENT;
  3574. goto unlock;
  3575. }
  3576. obj_priv = to_intel_bo(obj);
  3577. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3578. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3579. ret = -EINVAL;
  3580. goto out;
  3581. }
  3582. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3583. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3584. args->handle);
  3585. ret = -EINVAL;
  3586. goto out;
  3587. }
  3588. obj_priv->user_pin_count++;
  3589. obj_priv->pin_filp = file_priv;
  3590. if (obj_priv->user_pin_count == 1) {
  3591. ret = i915_gem_object_pin(obj, args->alignment,
  3592. true, obj_priv->tiling_mode);
  3593. if (ret)
  3594. goto out;
  3595. }
  3596. /* XXX - flush the CPU caches for pinned objects
  3597. * as the X server doesn't manage domains yet
  3598. */
  3599. i915_gem_object_flush_cpu_write_domain(obj);
  3600. args->offset = obj_priv->gtt_offset;
  3601. out:
  3602. drm_gem_object_unreference(obj);
  3603. unlock:
  3604. mutex_unlock(&dev->struct_mutex);
  3605. return ret;
  3606. }
  3607. int
  3608. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3609. struct drm_file *file_priv)
  3610. {
  3611. struct drm_i915_gem_pin *args = data;
  3612. struct drm_gem_object *obj;
  3613. struct drm_i915_gem_object *obj_priv;
  3614. int ret;
  3615. ret = i915_mutex_lock_interruptible(dev);
  3616. if (ret)
  3617. return ret;
  3618. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3619. if (obj == NULL) {
  3620. ret = -ENOENT;
  3621. goto unlock;
  3622. }
  3623. obj_priv = to_intel_bo(obj);
  3624. if (obj_priv->pin_filp != file_priv) {
  3625. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3626. args->handle);
  3627. ret = -EINVAL;
  3628. goto out;
  3629. }
  3630. obj_priv->user_pin_count--;
  3631. if (obj_priv->user_pin_count == 0) {
  3632. obj_priv->pin_filp = NULL;
  3633. i915_gem_object_unpin(obj);
  3634. }
  3635. out:
  3636. drm_gem_object_unreference(obj);
  3637. unlock:
  3638. mutex_unlock(&dev->struct_mutex);
  3639. return ret;
  3640. }
  3641. int
  3642. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3643. struct drm_file *file_priv)
  3644. {
  3645. struct drm_i915_gem_busy *args = data;
  3646. struct drm_gem_object *obj;
  3647. struct drm_i915_gem_object *obj_priv;
  3648. int ret;
  3649. ret = i915_mutex_lock_interruptible(dev);
  3650. if (ret)
  3651. return ret;
  3652. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3653. if (obj == NULL) {
  3654. ret = -ENOENT;
  3655. goto unlock;
  3656. }
  3657. obj_priv = to_intel_bo(obj);
  3658. /* Count all active objects as busy, even if they are currently not used
  3659. * by the gpu. Users of this interface expect objects to eventually
  3660. * become non-busy without any further actions, therefore emit any
  3661. * necessary flushes here.
  3662. */
  3663. args->busy = obj_priv->active;
  3664. if (args->busy) {
  3665. /* Unconditionally flush objects, even when the gpu still uses this
  3666. * object. Userspace calling this function indicates that it wants to
  3667. * use this buffer rather sooner than later, so issuing the required
  3668. * flush earlier is beneficial.
  3669. */
  3670. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3671. i915_gem_flush_ring(dev, file_priv,
  3672. obj_priv->ring,
  3673. 0, obj->write_domain);
  3674. /* Update the active list for the hardware's current position.
  3675. * Otherwise this only updates on a delayed timer or when irqs
  3676. * are actually unmasked, and our working set ends up being
  3677. * larger than required.
  3678. */
  3679. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3680. args->busy = obj_priv->active;
  3681. }
  3682. drm_gem_object_unreference(obj);
  3683. unlock:
  3684. mutex_unlock(&dev->struct_mutex);
  3685. return ret;
  3686. }
  3687. int
  3688. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3689. struct drm_file *file_priv)
  3690. {
  3691. return i915_gem_ring_throttle(dev, file_priv);
  3692. }
  3693. int
  3694. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3695. struct drm_file *file_priv)
  3696. {
  3697. struct drm_i915_gem_madvise *args = data;
  3698. struct drm_gem_object *obj;
  3699. struct drm_i915_gem_object *obj_priv;
  3700. int ret;
  3701. switch (args->madv) {
  3702. case I915_MADV_DONTNEED:
  3703. case I915_MADV_WILLNEED:
  3704. break;
  3705. default:
  3706. return -EINVAL;
  3707. }
  3708. ret = i915_mutex_lock_interruptible(dev);
  3709. if (ret)
  3710. return ret;
  3711. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3712. if (obj == NULL) {
  3713. ret = -ENOENT;
  3714. goto unlock;
  3715. }
  3716. obj_priv = to_intel_bo(obj);
  3717. if (obj_priv->pin_count) {
  3718. ret = -EINVAL;
  3719. goto out;
  3720. }
  3721. if (obj_priv->madv != __I915_MADV_PURGED)
  3722. obj_priv->madv = args->madv;
  3723. /* if the object is no longer bound, discard its backing storage */
  3724. if (i915_gem_object_is_purgeable(obj_priv) &&
  3725. obj_priv->gtt_space == NULL)
  3726. i915_gem_object_truncate(obj);
  3727. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3728. out:
  3729. drm_gem_object_unreference(obj);
  3730. unlock:
  3731. mutex_unlock(&dev->struct_mutex);
  3732. return ret;
  3733. }
  3734. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3735. size_t size)
  3736. {
  3737. struct drm_i915_private *dev_priv = dev->dev_private;
  3738. struct drm_i915_gem_object *obj;
  3739. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3740. if (obj == NULL)
  3741. return NULL;
  3742. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3743. kfree(obj);
  3744. return NULL;
  3745. }
  3746. i915_gem_info_add_obj(dev_priv, size);
  3747. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3748. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3749. obj->agp_type = AGP_USER_MEMORY;
  3750. obj->base.driver_private = NULL;
  3751. obj->fence_reg = I915_FENCE_REG_NONE;
  3752. INIT_LIST_HEAD(&obj->mm_list);
  3753. INIT_LIST_HEAD(&obj->ring_list);
  3754. INIT_LIST_HEAD(&obj->gpu_write_list);
  3755. obj->madv = I915_MADV_WILLNEED;
  3756. obj->fenceable = true;
  3757. obj->mappable = true;
  3758. return &obj->base;
  3759. }
  3760. int i915_gem_init_object(struct drm_gem_object *obj)
  3761. {
  3762. BUG();
  3763. return 0;
  3764. }
  3765. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3766. {
  3767. struct drm_device *dev = obj->dev;
  3768. drm_i915_private_t *dev_priv = dev->dev_private;
  3769. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3770. int ret;
  3771. ret = i915_gem_object_unbind(obj);
  3772. if (ret == -ERESTARTSYS) {
  3773. list_move(&obj_priv->mm_list,
  3774. &dev_priv->mm.deferred_free_list);
  3775. return;
  3776. }
  3777. if (obj->map_list.map)
  3778. i915_gem_free_mmap_offset(obj);
  3779. drm_gem_object_release(obj);
  3780. i915_gem_info_remove_obj(dev_priv, obj->size);
  3781. kfree(obj_priv->page_cpu_valid);
  3782. kfree(obj_priv->bit_17);
  3783. kfree(obj_priv);
  3784. }
  3785. void i915_gem_free_object(struct drm_gem_object *obj)
  3786. {
  3787. struct drm_device *dev = obj->dev;
  3788. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3789. trace_i915_gem_object_destroy(obj);
  3790. while (obj_priv->pin_count > 0)
  3791. i915_gem_object_unpin(obj);
  3792. if (obj_priv->phys_obj)
  3793. i915_gem_detach_phys_object(dev, obj);
  3794. i915_gem_free_object_tail(obj);
  3795. }
  3796. int
  3797. i915_gem_idle(struct drm_device *dev)
  3798. {
  3799. drm_i915_private_t *dev_priv = dev->dev_private;
  3800. int ret;
  3801. mutex_lock(&dev->struct_mutex);
  3802. if (dev_priv->mm.suspended) {
  3803. mutex_unlock(&dev->struct_mutex);
  3804. return 0;
  3805. }
  3806. ret = i915_gpu_idle(dev);
  3807. if (ret) {
  3808. mutex_unlock(&dev->struct_mutex);
  3809. return ret;
  3810. }
  3811. /* Under UMS, be paranoid and evict. */
  3812. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3813. ret = i915_gem_evict_inactive(dev, false);
  3814. if (ret) {
  3815. mutex_unlock(&dev->struct_mutex);
  3816. return ret;
  3817. }
  3818. }
  3819. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3820. * We need to replace this with a semaphore, or something.
  3821. * And not confound mm.suspended!
  3822. */
  3823. dev_priv->mm.suspended = 1;
  3824. del_timer_sync(&dev_priv->hangcheck_timer);
  3825. i915_kernel_lost_context(dev);
  3826. i915_gem_cleanup_ringbuffer(dev);
  3827. mutex_unlock(&dev->struct_mutex);
  3828. /* Cancel the retire work handler, which should be idle now. */
  3829. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3830. return 0;
  3831. }
  3832. /*
  3833. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3834. * over cache flushing.
  3835. */
  3836. static int
  3837. i915_gem_init_pipe_control(struct drm_device *dev)
  3838. {
  3839. drm_i915_private_t *dev_priv = dev->dev_private;
  3840. struct drm_gem_object *obj;
  3841. struct drm_i915_gem_object *obj_priv;
  3842. int ret;
  3843. obj = i915_gem_alloc_object(dev, 4096);
  3844. if (obj == NULL) {
  3845. DRM_ERROR("Failed to allocate seqno page\n");
  3846. ret = -ENOMEM;
  3847. goto err;
  3848. }
  3849. obj_priv = to_intel_bo(obj);
  3850. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3851. ret = i915_gem_object_pin(obj, 4096, true, false);
  3852. if (ret)
  3853. goto err_unref;
  3854. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3855. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3856. if (dev_priv->seqno_page == NULL)
  3857. goto err_unpin;
  3858. dev_priv->seqno_obj = obj;
  3859. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3860. return 0;
  3861. err_unpin:
  3862. i915_gem_object_unpin(obj);
  3863. err_unref:
  3864. drm_gem_object_unreference(obj);
  3865. err:
  3866. return ret;
  3867. }
  3868. static void
  3869. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3870. {
  3871. drm_i915_private_t *dev_priv = dev->dev_private;
  3872. struct drm_gem_object *obj;
  3873. struct drm_i915_gem_object *obj_priv;
  3874. obj = dev_priv->seqno_obj;
  3875. obj_priv = to_intel_bo(obj);
  3876. kunmap(obj_priv->pages[0]);
  3877. i915_gem_object_unpin(obj);
  3878. drm_gem_object_unreference(obj);
  3879. dev_priv->seqno_obj = NULL;
  3880. dev_priv->seqno_page = NULL;
  3881. }
  3882. int
  3883. i915_gem_init_ringbuffer(struct drm_device *dev)
  3884. {
  3885. drm_i915_private_t *dev_priv = dev->dev_private;
  3886. int ret;
  3887. if (HAS_PIPE_CONTROL(dev)) {
  3888. ret = i915_gem_init_pipe_control(dev);
  3889. if (ret)
  3890. return ret;
  3891. }
  3892. ret = intel_init_render_ring_buffer(dev);
  3893. if (ret)
  3894. goto cleanup_pipe_control;
  3895. if (HAS_BSD(dev)) {
  3896. ret = intel_init_bsd_ring_buffer(dev);
  3897. if (ret)
  3898. goto cleanup_render_ring;
  3899. }
  3900. if (HAS_BLT(dev)) {
  3901. ret = intel_init_blt_ring_buffer(dev);
  3902. if (ret)
  3903. goto cleanup_bsd_ring;
  3904. }
  3905. dev_priv->next_seqno = 1;
  3906. return 0;
  3907. cleanup_bsd_ring:
  3908. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3909. cleanup_render_ring:
  3910. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3911. cleanup_pipe_control:
  3912. if (HAS_PIPE_CONTROL(dev))
  3913. i915_gem_cleanup_pipe_control(dev);
  3914. return ret;
  3915. }
  3916. void
  3917. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3918. {
  3919. drm_i915_private_t *dev_priv = dev->dev_private;
  3920. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  3921. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  3922. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  3923. if (HAS_PIPE_CONTROL(dev))
  3924. i915_gem_cleanup_pipe_control(dev);
  3925. }
  3926. int
  3927. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3928. struct drm_file *file_priv)
  3929. {
  3930. drm_i915_private_t *dev_priv = dev->dev_private;
  3931. int ret;
  3932. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3933. return 0;
  3934. if (atomic_read(&dev_priv->mm.wedged)) {
  3935. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3936. atomic_set(&dev_priv->mm.wedged, 0);
  3937. }
  3938. mutex_lock(&dev->struct_mutex);
  3939. dev_priv->mm.suspended = 0;
  3940. ret = i915_gem_init_ringbuffer(dev);
  3941. if (ret != 0) {
  3942. mutex_unlock(&dev->struct_mutex);
  3943. return ret;
  3944. }
  3945. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3946. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3947. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3948. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3949. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3950. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3951. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3952. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3953. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3954. mutex_unlock(&dev->struct_mutex);
  3955. ret = drm_irq_install(dev);
  3956. if (ret)
  3957. goto cleanup_ringbuffer;
  3958. return 0;
  3959. cleanup_ringbuffer:
  3960. mutex_lock(&dev->struct_mutex);
  3961. i915_gem_cleanup_ringbuffer(dev);
  3962. dev_priv->mm.suspended = 1;
  3963. mutex_unlock(&dev->struct_mutex);
  3964. return ret;
  3965. }
  3966. int
  3967. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3968. struct drm_file *file_priv)
  3969. {
  3970. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3971. return 0;
  3972. drm_irq_uninstall(dev);
  3973. return i915_gem_idle(dev);
  3974. }
  3975. void
  3976. i915_gem_lastclose(struct drm_device *dev)
  3977. {
  3978. int ret;
  3979. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3980. return;
  3981. ret = i915_gem_idle(dev);
  3982. if (ret)
  3983. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3984. }
  3985. static void
  3986. init_ring_lists(struct intel_ring_buffer *ring)
  3987. {
  3988. INIT_LIST_HEAD(&ring->active_list);
  3989. INIT_LIST_HEAD(&ring->request_list);
  3990. INIT_LIST_HEAD(&ring->gpu_write_list);
  3991. }
  3992. void
  3993. i915_gem_load(struct drm_device *dev)
  3994. {
  3995. int i;
  3996. drm_i915_private_t *dev_priv = dev->dev_private;
  3997. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3998. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3999. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4000. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4001. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4002. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4003. init_ring_lists(&dev_priv->render_ring);
  4004. init_ring_lists(&dev_priv->bsd_ring);
  4005. init_ring_lists(&dev_priv->blt_ring);
  4006. for (i = 0; i < 16; i++)
  4007. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4008. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4009. i915_gem_retire_work_handler);
  4010. init_completion(&dev_priv->error_completion);
  4011. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4012. if (IS_GEN3(dev)) {
  4013. u32 tmp = I915_READ(MI_ARB_STATE);
  4014. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4015. /* arb state is a masked write, so set bit + bit in mask */
  4016. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4017. I915_WRITE(MI_ARB_STATE, tmp);
  4018. }
  4019. }
  4020. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4021. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4022. dev_priv->fence_reg_start = 3;
  4023. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4024. dev_priv->num_fence_regs = 16;
  4025. else
  4026. dev_priv->num_fence_regs = 8;
  4027. /* Initialize fence registers to zero */
  4028. switch (INTEL_INFO(dev)->gen) {
  4029. case 6:
  4030. for (i = 0; i < 16; i++)
  4031. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4032. break;
  4033. case 5:
  4034. case 4:
  4035. for (i = 0; i < 16; i++)
  4036. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4037. break;
  4038. case 3:
  4039. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4040. for (i = 0; i < 8; i++)
  4041. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4042. case 2:
  4043. for (i = 0; i < 8; i++)
  4044. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4045. break;
  4046. }
  4047. i915_gem_detect_bit_6_swizzle(dev);
  4048. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4049. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4050. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4051. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4052. }
  4053. /*
  4054. * Create a physically contiguous memory object for this object
  4055. * e.g. for cursor + overlay regs
  4056. */
  4057. static int i915_gem_init_phys_object(struct drm_device *dev,
  4058. int id, int size, int align)
  4059. {
  4060. drm_i915_private_t *dev_priv = dev->dev_private;
  4061. struct drm_i915_gem_phys_object *phys_obj;
  4062. int ret;
  4063. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4064. return 0;
  4065. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4066. if (!phys_obj)
  4067. return -ENOMEM;
  4068. phys_obj->id = id;
  4069. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4070. if (!phys_obj->handle) {
  4071. ret = -ENOMEM;
  4072. goto kfree_obj;
  4073. }
  4074. #ifdef CONFIG_X86
  4075. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4076. #endif
  4077. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4078. return 0;
  4079. kfree_obj:
  4080. kfree(phys_obj);
  4081. return ret;
  4082. }
  4083. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4084. {
  4085. drm_i915_private_t *dev_priv = dev->dev_private;
  4086. struct drm_i915_gem_phys_object *phys_obj;
  4087. if (!dev_priv->mm.phys_objs[id - 1])
  4088. return;
  4089. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4090. if (phys_obj->cur_obj) {
  4091. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4092. }
  4093. #ifdef CONFIG_X86
  4094. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4095. #endif
  4096. drm_pci_free(dev, phys_obj->handle);
  4097. kfree(phys_obj);
  4098. dev_priv->mm.phys_objs[id - 1] = NULL;
  4099. }
  4100. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4101. {
  4102. int i;
  4103. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4104. i915_gem_free_phys_object(dev, i);
  4105. }
  4106. void i915_gem_detach_phys_object(struct drm_device *dev,
  4107. struct drm_gem_object *obj)
  4108. {
  4109. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4110. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4111. char *vaddr;
  4112. int i;
  4113. int page_count;
  4114. if (!obj_priv->phys_obj)
  4115. return;
  4116. vaddr = obj_priv->phys_obj->handle->vaddr;
  4117. page_count = obj->size / PAGE_SIZE;
  4118. for (i = 0; i < page_count; i++) {
  4119. struct page *page = read_cache_page_gfp(mapping, i,
  4120. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4121. if (!IS_ERR(page)) {
  4122. char *dst = kmap_atomic(page);
  4123. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4124. kunmap_atomic(dst);
  4125. drm_clflush_pages(&page, 1);
  4126. set_page_dirty(page);
  4127. mark_page_accessed(page);
  4128. page_cache_release(page);
  4129. }
  4130. }
  4131. drm_agp_chipset_flush(dev);
  4132. obj_priv->phys_obj->cur_obj = NULL;
  4133. obj_priv->phys_obj = NULL;
  4134. }
  4135. int
  4136. i915_gem_attach_phys_object(struct drm_device *dev,
  4137. struct drm_gem_object *obj,
  4138. int id,
  4139. int align)
  4140. {
  4141. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4142. drm_i915_private_t *dev_priv = dev->dev_private;
  4143. struct drm_i915_gem_object *obj_priv;
  4144. int ret = 0;
  4145. int page_count;
  4146. int i;
  4147. if (id > I915_MAX_PHYS_OBJECT)
  4148. return -EINVAL;
  4149. obj_priv = to_intel_bo(obj);
  4150. if (obj_priv->phys_obj) {
  4151. if (obj_priv->phys_obj->id == id)
  4152. return 0;
  4153. i915_gem_detach_phys_object(dev, obj);
  4154. }
  4155. /* create a new object */
  4156. if (!dev_priv->mm.phys_objs[id - 1]) {
  4157. ret = i915_gem_init_phys_object(dev, id,
  4158. obj->size, align);
  4159. if (ret) {
  4160. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4161. return ret;
  4162. }
  4163. }
  4164. /* bind to the object */
  4165. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4166. obj_priv->phys_obj->cur_obj = obj;
  4167. page_count = obj->size / PAGE_SIZE;
  4168. for (i = 0; i < page_count; i++) {
  4169. struct page *page;
  4170. char *dst, *src;
  4171. page = read_cache_page_gfp(mapping, i,
  4172. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4173. if (IS_ERR(page))
  4174. return PTR_ERR(page);
  4175. src = kmap_atomic(page);
  4176. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4177. memcpy(dst, src, PAGE_SIZE);
  4178. kunmap_atomic(src);
  4179. mark_page_accessed(page);
  4180. page_cache_release(page);
  4181. }
  4182. return 0;
  4183. }
  4184. static int
  4185. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4186. struct drm_i915_gem_pwrite *args,
  4187. struct drm_file *file_priv)
  4188. {
  4189. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4190. void *obj_addr;
  4191. int ret;
  4192. char __user *user_data;
  4193. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4194. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4195. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4196. ret = copy_from_user(obj_addr, user_data, args->size);
  4197. if (ret)
  4198. return -EFAULT;
  4199. drm_agp_chipset_flush(dev);
  4200. return 0;
  4201. }
  4202. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4203. {
  4204. struct drm_i915_file_private *file_priv = file->driver_priv;
  4205. /* Clean up our request list when the client is going away, so that
  4206. * later retire_requests won't dereference our soon-to-be-gone
  4207. * file_priv.
  4208. */
  4209. spin_lock(&file_priv->mm.lock);
  4210. while (!list_empty(&file_priv->mm.request_list)) {
  4211. struct drm_i915_gem_request *request;
  4212. request = list_first_entry(&file_priv->mm.request_list,
  4213. struct drm_i915_gem_request,
  4214. client_list);
  4215. list_del(&request->client_list);
  4216. request->file_priv = NULL;
  4217. }
  4218. spin_unlock(&file_priv->mm.lock);
  4219. }
  4220. static int
  4221. i915_gpu_is_active(struct drm_device *dev)
  4222. {
  4223. drm_i915_private_t *dev_priv = dev->dev_private;
  4224. int lists_empty;
  4225. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4226. list_empty(&dev_priv->mm.active_list);
  4227. return !lists_empty;
  4228. }
  4229. static int
  4230. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4231. int nr_to_scan,
  4232. gfp_t gfp_mask)
  4233. {
  4234. struct drm_i915_private *dev_priv =
  4235. container_of(shrinker,
  4236. struct drm_i915_private,
  4237. mm.inactive_shrinker);
  4238. struct drm_device *dev = dev_priv->dev;
  4239. struct drm_i915_gem_object *obj, *next;
  4240. int cnt;
  4241. if (!mutex_trylock(&dev->struct_mutex))
  4242. return 0;
  4243. /* "fast-path" to count number of available objects */
  4244. if (nr_to_scan == 0) {
  4245. cnt = 0;
  4246. list_for_each_entry(obj,
  4247. &dev_priv->mm.inactive_list,
  4248. mm_list)
  4249. cnt++;
  4250. mutex_unlock(&dev->struct_mutex);
  4251. return cnt / 100 * sysctl_vfs_cache_pressure;
  4252. }
  4253. rescan:
  4254. /* first scan for clean buffers */
  4255. i915_gem_retire_requests(dev);
  4256. list_for_each_entry_safe(obj, next,
  4257. &dev_priv->mm.inactive_list,
  4258. mm_list) {
  4259. if (i915_gem_object_is_purgeable(obj)) {
  4260. i915_gem_object_unbind(&obj->base);
  4261. if (--nr_to_scan == 0)
  4262. break;
  4263. }
  4264. }
  4265. /* second pass, evict/count anything still on the inactive list */
  4266. cnt = 0;
  4267. list_for_each_entry_safe(obj, next,
  4268. &dev_priv->mm.inactive_list,
  4269. mm_list) {
  4270. if (nr_to_scan) {
  4271. i915_gem_object_unbind(&obj->base);
  4272. nr_to_scan--;
  4273. } else
  4274. cnt++;
  4275. }
  4276. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4277. /*
  4278. * We are desperate for pages, so as a last resort, wait
  4279. * for the GPU to finish and discard whatever we can.
  4280. * This has a dramatic impact to reduce the number of
  4281. * OOM-killer events whilst running the GPU aggressively.
  4282. */
  4283. if (i915_gpu_idle(dev) == 0)
  4284. goto rescan;
  4285. }
  4286. mutex_unlock(&dev->struct_mutex);
  4287. return cnt / 100 * sysctl_vfs_cache_pressure;
  4288. }