main.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. /*
  2. * drivers/base/power/main.c - Where the driver meets power management.
  3. *
  4. * Copyright (c) 2003 Patrick Mochel
  5. * Copyright (c) 2003 Open Source Development Lab
  6. *
  7. * This file is released under the GPLv2
  8. *
  9. *
  10. * The driver model core calls device_pm_add() when a device is registered.
  11. * This will intialize the embedded device_pm_info object in the device
  12. * and add it to the list of power-controlled devices. sysfs entries for
  13. * controlling device power management will also be added.
  14. *
  15. * A separate list is used for keeping track of power info, because the power
  16. * domain dependencies may differ from the ancestral dependencies that the
  17. * subsystem list maintains.
  18. */
  19. #include <linux/device.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/mutex.h>
  22. #include <linux/pm.h>
  23. #include <linux/pm_runtime.h>
  24. #include <linux/resume-trace.h>
  25. #include <linux/rwsem.h>
  26. #include <linux/interrupt.h>
  27. #include "../base.h"
  28. #include "power.h"
  29. /*
  30. * The entries in the dpm_list list are in a depth first order, simply
  31. * because children are guaranteed to be discovered after parents, and
  32. * are inserted at the back of the list on discovery.
  33. *
  34. * Since device_pm_add() may be called with a device semaphore held,
  35. * we must never try to acquire a device semaphore while holding
  36. * dpm_list_mutex.
  37. */
  38. LIST_HEAD(dpm_list);
  39. static DEFINE_MUTEX(dpm_list_mtx);
  40. /*
  41. * Set once the preparation of devices for a PM transition has started, reset
  42. * before starting to resume devices. Protected by dpm_list_mtx.
  43. */
  44. static bool transition_started;
  45. /**
  46. * device_pm_init - Initialize the PM-related part of a device object
  47. * @dev: Device object being initialized.
  48. */
  49. void device_pm_init(struct device *dev)
  50. {
  51. dev->power.status = DPM_ON;
  52. pm_runtime_init(dev);
  53. }
  54. /**
  55. * device_pm_lock - lock the list of active devices used by the PM core
  56. */
  57. void device_pm_lock(void)
  58. {
  59. mutex_lock(&dpm_list_mtx);
  60. }
  61. /**
  62. * device_pm_unlock - unlock the list of active devices used by the PM core
  63. */
  64. void device_pm_unlock(void)
  65. {
  66. mutex_unlock(&dpm_list_mtx);
  67. }
  68. /**
  69. * device_pm_add - add a device to the list of active devices
  70. * @dev: Device to be added to the list
  71. */
  72. void device_pm_add(struct device *dev)
  73. {
  74. pr_debug("PM: Adding info for %s:%s\n",
  75. dev->bus ? dev->bus->name : "No Bus",
  76. kobject_name(&dev->kobj));
  77. mutex_lock(&dpm_list_mtx);
  78. if (dev->parent) {
  79. if (dev->parent->power.status >= DPM_SUSPENDING)
  80. dev_warn(dev, "parent %s should not be sleeping\n",
  81. dev_name(dev->parent));
  82. } else if (transition_started) {
  83. /*
  84. * We refuse to register parentless devices while a PM
  85. * transition is in progress in order to avoid leaving them
  86. * unhandled down the road
  87. */
  88. dev_WARN(dev, "Parentless device registered during a PM transaction\n");
  89. }
  90. list_add_tail(&dev->power.entry, &dpm_list);
  91. mutex_unlock(&dpm_list_mtx);
  92. }
  93. /**
  94. * device_pm_remove - remove a device from the list of active devices
  95. * @dev: Device to be removed from the list
  96. *
  97. * This function also removes the device's PM-related sysfs attributes.
  98. */
  99. void device_pm_remove(struct device *dev)
  100. {
  101. pr_debug("PM: Removing info for %s:%s\n",
  102. dev->bus ? dev->bus->name : "No Bus",
  103. kobject_name(&dev->kobj));
  104. mutex_lock(&dpm_list_mtx);
  105. list_del_init(&dev->power.entry);
  106. mutex_unlock(&dpm_list_mtx);
  107. pm_runtime_remove(dev);
  108. }
  109. /**
  110. * device_pm_move_before - move device in dpm_list
  111. * @deva: Device to move in dpm_list
  112. * @devb: Device @deva should come before
  113. */
  114. void device_pm_move_before(struct device *deva, struct device *devb)
  115. {
  116. pr_debug("PM: Moving %s:%s before %s:%s\n",
  117. deva->bus ? deva->bus->name : "No Bus",
  118. kobject_name(&deva->kobj),
  119. devb->bus ? devb->bus->name : "No Bus",
  120. kobject_name(&devb->kobj));
  121. /* Delete deva from dpm_list and reinsert before devb. */
  122. list_move_tail(&deva->power.entry, &devb->power.entry);
  123. }
  124. /**
  125. * device_pm_move_after - move device in dpm_list
  126. * @deva: Device to move in dpm_list
  127. * @devb: Device @deva should come after
  128. */
  129. void device_pm_move_after(struct device *deva, struct device *devb)
  130. {
  131. pr_debug("PM: Moving %s:%s after %s:%s\n",
  132. deva->bus ? deva->bus->name : "No Bus",
  133. kobject_name(&deva->kobj),
  134. devb->bus ? devb->bus->name : "No Bus",
  135. kobject_name(&devb->kobj));
  136. /* Delete deva from dpm_list and reinsert after devb. */
  137. list_move(&deva->power.entry, &devb->power.entry);
  138. }
  139. /**
  140. * device_pm_move_last - move device to end of dpm_list
  141. * @dev: Device to move in dpm_list
  142. */
  143. void device_pm_move_last(struct device *dev)
  144. {
  145. pr_debug("PM: Moving %s:%s to end of list\n",
  146. dev->bus ? dev->bus->name : "No Bus",
  147. kobject_name(&dev->kobj));
  148. list_move_tail(&dev->power.entry, &dpm_list);
  149. }
  150. /**
  151. * pm_op - execute the PM operation appropiate for given PM event
  152. * @dev: Device.
  153. * @ops: PM operations to choose from.
  154. * @state: PM transition of the system being carried out.
  155. */
  156. static int pm_op(struct device *dev,
  157. const struct dev_pm_ops *ops,
  158. pm_message_t state)
  159. {
  160. int error = 0;
  161. switch (state.event) {
  162. #ifdef CONFIG_SUSPEND
  163. case PM_EVENT_SUSPEND:
  164. if (ops->suspend) {
  165. error = ops->suspend(dev);
  166. suspend_report_result(ops->suspend, error);
  167. }
  168. break;
  169. case PM_EVENT_RESUME:
  170. if (ops->resume) {
  171. error = ops->resume(dev);
  172. suspend_report_result(ops->resume, error);
  173. }
  174. break;
  175. #endif /* CONFIG_SUSPEND */
  176. #ifdef CONFIG_HIBERNATION
  177. case PM_EVENT_FREEZE:
  178. case PM_EVENT_QUIESCE:
  179. if (ops->freeze) {
  180. error = ops->freeze(dev);
  181. suspend_report_result(ops->freeze, error);
  182. }
  183. break;
  184. case PM_EVENT_HIBERNATE:
  185. if (ops->poweroff) {
  186. error = ops->poweroff(dev);
  187. suspend_report_result(ops->poweroff, error);
  188. }
  189. break;
  190. case PM_EVENT_THAW:
  191. case PM_EVENT_RECOVER:
  192. if (ops->thaw) {
  193. error = ops->thaw(dev);
  194. suspend_report_result(ops->thaw, error);
  195. }
  196. break;
  197. case PM_EVENT_RESTORE:
  198. if (ops->restore) {
  199. error = ops->restore(dev);
  200. suspend_report_result(ops->restore, error);
  201. }
  202. break;
  203. #endif /* CONFIG_HIBERNATION */
  204. default:
  205. error = -EINVAL;
  206. }
  207. return error;
  208. }
  209. /**
  210. * pm_noirq_op - execute the PM operation appropiate for given PM event
  211. * @dev: Device.
  212. * @ops: PM operations to choose from.
  213. * @state: PM transition of the system being carried out.
  214. *
  215. * The operation is executed with interrupts disabled by the only remaining
  216. * functional CPU in the system.
  217. */
  218. static int pm_noirq_op(struct device *dev,
  219. const struct dev_pm_ops *ops,
  220. pm_message_t state)
  221. {
  222. int error = 0;
  223. switch (state.event) {
  224. #ifdef CONFIG_SUSPEND
  225. case PM_EVENT_SUSPEND:
  226. if (ops->suspend_noirq) {
  227. error = ops->suspend_noirq(dev);
  228. suspend_report_result(ops->suspend_noirq, error);
  229. }
  230. break;
  231. case PM_EVENT_RESUME:
  232. if (ops->resume_noirq) {
  233. error = ops->resume_noirq(dev);
  234. suspend_report_result(ops->resume_noirq, error);
  235. }
  236. break;
  237. #endif /* CONFIG_SUSPEND */
  238. #ifdef CONFIG_HIBERNATION
  239. case PM_EVENT_FREEZE:
  240. case PM_EVENT_QUIESCE:
  241. if (ops->freeze_noirq) {
  242. error = ops->freeze_noirq(dev);
  243. suspend_report_result(ops->freeze_noirq, error);
  244. }
  245. break;
  246. case PM_EVENT_HIBERNATE:
  247. if (ops->poweroff_noirq) {
  248. error = ops->poweroff_noirq(dev);
  249. suspend_report_result(ops->poweroff_noirq, error);
  250. }
  251. break;
  252. case PM_EVENT_THAW:
  253. case PM_EVENT_RECOVER:
  254. if (ops->thaw_noirq) {
  255. error = ops->thaw_noirq(dev);
  256. suspend_report_result(ops->thaw_noirq, error);
  257. }
  258. break;
  259. case PM_EVENT_RESTORE:
  260. if (ops->restore_noirq) {
  261. error = ops->restore_noirq(dev);
  262. suspend_report_result(ops->restore_noirq, error);
  263. }
  264. break;
  265. #endif /* CONFIG_HIBERNATION */
  266. default:
  267. error = -EINVAL;
  268. }
  269. return error;
  270. }
  271. static char *pm_verb(int event)
  272. {
  273. switch (event) {
  274. case PM_EVENT_SUSPEND:
  275. return "suspend";
  276. case PM_EVENT_RESUME:
  277. return "resume";
  278. case PM_EVENT_FREEZE:
  279. return "freeze";
  280. case PM_EVENT_QUIESCE:
  281. return "quiesce";
  282. case PM_EVENT_HIBERNATE:
  283. return "hibernate";
  284. case PM_EVENT_THAW:
  285. return "thaw";
  286. case PM_EVENT_RESTORE:
  287. return "restore";
  288. case PM_EVENT_RECOVER:
  289. return "recover";
  290. default:
  291. return "(unknown PM event)";
  292. }
  293. }
  294. static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
  295. {
  296. dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
  297. ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
  298. ", may wakeup" : "");
  299. }
  300. static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
  301. int error)
  302. {
  303. printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
  304. kobject_name(&dev->kobj), pm_verb(state.event), info, error);
  305. }
  306. /*------------------------- Resume routines -------------------------*/
  307. /**
  308. * device_resume_noirq - Power on one device (early resume).
  309. * @dev: Device.
  310. * @state: PM transition of the system being carried out.
  311. *
  312. * Must be called with interrupts disabled.
  313. */
  314. static int device_resume_noirq(struct device *dev, pm_message_t state)
  315. {
  316. int error = 0;
  317. TRACE_DEVICE(dev);
  318. TRACE_RESUME(0);
  319. if (!dev->bus)
  320. goto End;
  321. if (dev->bus->pm) {
  322. pm_dev_dbg(dev, state, "EARLY ");
  323. error = pm_noirq_op(dev, dev->bus->pm, state);
  324. }
  325. End:
  326. TRACE_RESUME(error);
  327. return error;
  328. }
  329. /**
  330. * dpm_resume_noirq - Power on all regular (non-sysdev) devices.
  331. * @state: PM transition of the system being carried out.
  332. *
  333. * Call the "noirq" resume handlers for all devices marked as
  334. * DPM_OFF_IRQ and enable device drivers to receive interrupts.
  335. *
  336. * Must be called under dpm_list_mtx. Device drivers should not receive
  337. * interrupts while it's being executed.
  338. */
  339. void dpm_resume_noirq(pm_message_t state)
  340. {
  341. struct device *dev;
  342. mutex_lock(&dpm_list_mtx);
  343. list_for_each_entry(dev, &dpm_list, power.entry)
  344. if (dev->power.status > DPM_OFF) {
  345. int error;
  346. dev->power.status = DPM_OFF;
  347. error = device_resume_noirq(dev, state);
  348. if (error)
  349. pm_dev_err(dev, state, " early", error);
  350. }
  351. mutex_unlock(&dpm_list_mtx);
  352. resume_device_irqs();
  353. }
  354. EXPORT_SYMBOL_GPL(dpm_resume_noirq);
  355. /**
  356. * device_resume - Restore state for one device.
  357. * @dev: Device.
  358. * @state: PM transition of the system being carried out.
  359. */
  360. static int device_resume(struct device *dev, pm_message_t state)
  361. {
  362. int error = 0;
  363. TRACE_DEVICE(dev);
  364. TRACE_RESUME(0);
  365. down(&dev->sem);
  366. if (dev->bus) {
  367. if (dev->bus->pm) {
  368. pm_dev_dbg(dev, state, "");
  369. error = pm_op(dev, dev->bus->pm, state);
  370. } else if (dev->bus->resume) {
  371. pm_dev_dbg(dev, state, "legacy ");
  372. error = dev->bus->resume(dev);
  373. }
  374. if (error)
  375. goto End;
  376. }
  377. if (dev->type) {
  378. if (dev->type->pm) {
  379. pm_dev_dbg(dev, state, "type ");
  380. error = pm_op(dev, dev->type->pm, state);
  381. }
  382. if (error)
  383. goto End;
  384. }
  385. if (dev->class) {
  386. if (dev->class->pm) {
  387. pm_dev_dbg(dev, state, "class ");
  388. error = pm_op(dev, dev->class->pm, state);
  389. } else if (dev->class->resume) {
  390. pm_dev_dbg(dev, state, "legacy class ");
  391. error = dev->class->resume(dev);
  392. }
  393. }
  394. End:
  395. up(&dev->sem);
  396. TRACE_RESUME(error);
  397. return error;
  398. }
  399. /**
  400. * dpm_resume - Resume every device.
  401. * @state: PM transition of the system being carried out.
  402. *
  403. * Execute the appropriate "resume" callback for all devices the status of
  404. * which indicates that they are inactive.
  405. */
  406. static void dpm_resume(pm_message_t state)
  407. {
  408. struct list_head list;
  409. INIT_LIST_HEAD(&list);
  410. mutex_lock(&dpm_list_mtx);
  411. transition_started = false;
  412. while (!list_empty(&dpm_list)) {
  413. struct device *dev = to_device(dpm_list.next);
  414. get_device(dev);
  415. if (dev->power.status >= DPM_OFF) {
  416. int error;
  417. dev->power.status = DPM_RESUMING;
  418. mutex_unlock(&dpm_list_mtx);
  419. error = device_resume(dev, state);
  420. mutex_lock(&dpm_list_mtx);
  421. if (error)
  422. pm_dev_err(dev, state, "", error);
  423. } else if (dev->power.status == DPM_SUSPENDING) {
  424. /* Allow new children of the device to be registered */
  425. dev->power.status = DPM_RESUMING;
  426. }
  427. if (!list_empty(&dev->power.entry))
  428. list_move_tail(&dev->power.entry, &list);
  429. put_device(dev);
  430. }
  431. list_splice(&list, &dpm_list);
  432. mutex_unlock(&dpm_list_mtx);
  433. }
  434. /**
  435. * device_complete - Complete a PM transition for given device
  436. * @dev: Device.
  437. * @state: PM transition of the system being carried out.
  438. */
  439. static void device_complete(struct device *dev, pm_message_t state)
  440. {
  441. down(&dev->sem);
  442. if (dev->class && dev->class->pm && dev->class->pm->complete) {
  443. pm_dev_dbg(dev, state, "completing class ");
  444. dev->class->pm->complete(dev);
  445. }
  446. if (dev->type && dev->type->pm && dev->type->pm->complete) {
  447. pm_dev_dbg(dev, state, "completing type ");
  448. dev->type->pm->complete(dev);
  449. }
  450. if (dev->bus && dev->bus->pm && dev->bus->pm->complete) {
  451. pm_dev_dbg(dev, state, "completing ");
  452. dev->bus->pm->complete(dev);
  453. }
  454. up(&dev->sem);
  455. }
  456. /**
  457. * dpm_complete - Complete a PM transition for all devices.
  458. * @state: PM transition of the system being carried out.
  459. *
  460. * Execute the ->complete() callbacks for all devices that are not marked
  461. * as DPM_ON.
  462. */
  463. static void dpm_complete(pm_message_t state)
  464. {
  465. struct list_head list;
  466. INIT_LIST_HEAD(&list);
  467. mutex_lock(&dpm_list_mtx);
  468. while (!list_empty(&dpm_list)) {
  469. struct device *dev = to_device(dpm_list.prev);
  470. get_device(dev);
  471. if (dev->power.status > DPM_ON) {
  472. dev->power.status = DPM_ON;
  473. mutex_unlock(&dpm_list_mtx);
  474. device_complete(dev, state);
  475. pm_runtime_put_noidle(dev);
  476. mutex_lock(&dpm_list_mtx);
  477. }
  478. if (!list_empty(&dev->power.entry))
  479. list_move(&dev->power.entry, &list);
  480. put_device(dev);
  481. }
  482. list_splice(&list, &dpm_list);
  483. mutex_unlock(&dpm_list_mtx);
  484. }
  485. /**
  486. * dpm_resume_end - Restore state of each device in system.
  487. * @state: PM transition of the system being carried out.
  488. *
  489. * Resume all the devices, unlock them all, and allow new
  490. * devices to be registered once again.
  491. */
  492. void dpm_resume_end(pm_message_t state)
  493. {
  494. might_sleep();
  495. dpm_resume(state);
  496. dpm_complete(state);
  497. }
  498. EXPORT_SYMBOL_GPL(dpm_resume_end);
  499. /*------------------------- Suspend routines -------------------------*/
  500. /**
  501. * resume_event - return a PM message representing the resume event
  502. * corresponding to given sleep state.
  503. * @sleep_state: PM message representing a sleep state.
  504. */
  505. static pm_message_t resume_event(pm_message_t sleep_state)
  506. {
  507. switch (sleep_state.event) {
  508. case PM_EVENT_SUSPEND:
  509. return PMSG_RESUME;
  510. case PM_EVENT_FREEZE:
  511. case PM_EVENT_QUIESCE:
  512. return PMSG_RECOVER;
  513. case PM_EVENT_HIBERNATE:
  514. return PMSG_RESTORE;
  515. }
  516. return PMSG_ON;
  517. }
  518. /**
  519. * device_suspend_noirq - Shut down one device (late suspend).
  520. * @dev: Device.
  521. * @state: PM transition of the system being carried out.
  522. *
  523. * This is called with interrupts off and only a single CPU running.
  524. */
  525. static int device_suspend_noirq(struct device *dev, pm_message_t state)
  526. {
  527. int error = 0;
  528. if (!dev->bus)
  529. return 0;
  530. if (dev->bus->pm) {
  531. pm_dev_dbg(dev, state, "LATE ");
  532. error = pm_noirq_op(dev, dev->bus->pm, state);
  533. }
  534. return error;
  535. }
  536. /**
  537. * dpm_suspend_noirq - Power down all regular (non-sysdev) devices.
  538. * @state: PM transition of the system being carried out.
  539. *
  540. * Prevent device drivers from receiving interrupts and call the "noirq"
  541. * suspend handlers.
  542. *
  543. * Must be called under dpm_list_mtx.
  544. */
  545. int dpm_suspend_noirq(pm_message_t state)
  546. {
  547. struct device *dev;
  548. int error = 0;
  549. suspend_device_irqs();
  550. mutex_lock(&dpm_list_mtx);
  551. list_for_each_entry_reverse(dev, &dpm_list, power.entry) {
  552. error = device_suspend_noirq(dev, state);
  553. if (error) {
  554. pm_dev_err(dev, state, " late", error);
  555. break;
  556. }
  557. dev->power.status = DPM_OFF_IRQ;
  558. }
  559. mutex_unlock(&dpm_list_mtx);
  560. if (error)
  561. dpm_resume_noirq(resume_event(state));
  562. return error;
  563. }
  564. EXPORT_SYMBOL_GPL(dpm_suspend_noirq);
  565. /**
  566. * device_suspend - Save state of one device.
  567. * @dev: Device.
  568. * @state: PM transition of the system being carried out.
  569. */
  570. static int device_suspend(struct device *dev, pm_message_t state)
  571. {
  572. int error = 0;
  573. down(&dev->sem);
  574. if (dev->class) {
  575. if (dev->class->pm) {
  576. pm_dev_dbg(dev, state, "class ");
  577. error = pm_op(dev, dev->class->pm, state);
  578. } else if (dev->class->suspend) {
  579. pm_dev_dbg(dev, state, "legacy class ");
  580. error = dev->class->suspend(dev, state);
  581. suspend_report_result(dev->class->suspend, error);
  582. }
  583. if (error)
  584. goto End;
  585. }
  586. if (dev->type) {
  587. if (dev->type->pm) {
  588. pm_dev_dbg(dev, state, "type ");
  589. error = pm_op(dev, dev->type->pm, state);
  590. }
  591. if (error)
  592. goto End;
  593. }
  594. if (dev->bus) {
  595. if (dev->bus->pm) {
  596. pm_dev_dbg(dev, state, "");
  597. error = pm_op(dev, dev->bus->pm, state);
  598. } else if (dev->bus->suspend) {
  599. pm_dev_dbg(dev, state, "legacy ");
  600. error = dev->bus->suspend(dev, state);
  601. suspend_report_result(dev->bus->suspend, error);
  602. }
  603. }
  604. End:
  605. up(&dev->sem);
  606. return error;
  607. }
  608. /**
  609. * dpm_suspend - Suspend every device.
  610. * @state: PM transition of the system being carried out.
  611. *
  612. * Execute the appropriate "suspend" callbacks for all devices.
  613. */
  614. static int dpm_suspend(pm_message_t state)
  615. {
  616. struct list_head list;
  617. int error = 0;
  618. INIT_LIST_HEAD(&list);
  619. mutex_lock(&dpm_list_mtx);
  620. while (!list_empty(&dpm_list)) {
  621. struct device *dev = to_device(dpm_list.prev);
  622. get_device(dev);
  623. mutex_unlock(&dpm_list_mtx);
  624. error = device_suspend(dev, state);
  625. mutex_lock(&dpm_list_mtx);
  626. if (error) {
  627. pm_dev_err(dev, state, "", error);
  628. put_device(dev);
  629. break;
  630. }
  631. dev->power.status = DPM_OFF;
  632. if (!list_empty(&dev->power.entry))
  633. list_move(&dev->power.entry, &list);
  634. put_device(dev);
  635. }
  636. list_splice(&list, dpm_list.prev);
  637. mutex_unlock(&dpm_list_mtx);
  638. return error;
  639. }
  640. /**
  641. * device_prepare - Execute the ->prepare() callback(s) for given device.
  642. * @dev: Device.
  643. * @state: PM transition of the system being carried out.
  644. */
  645. static int device_prepare(struct device *dev, pm_message_t state)
  646. {
  647. int error = 0;
  648. down(&dev->sem);
  649. if (dev->bus && dev->bus->pm && dev->bus->pm->prepare) {
  650. pm_dev_dbg(dev, state, "preparing ");
  651. error = dev->bus->pm->prepare(dev);
  652. suspend_report_result(dev->bus->pm->prepare, error);
  653. if (error)
  654. goto End;
  655. }
  656. if (dev->type && dev->type->pm && dev->type->pm->prepare) {
  657. pm_dev_dbg(dev, state, "preparing type ");
  658. error = dev->type->pm->prepare(dev);
  659. suspend_report_result(dev->type->pm->prepare, error);
  660. if (error)
  661. goto End;
  662. }
  663. if (dev->class && dev->class->pm && dev->class->pm->prepare) {
  664. pm_dev_dbg(dev, state, "preparing class ");
  665. error = dev->class->pm->prepare(dev);
  666. suspend_report_result(dev->class->pm->prepare, error);
  667. }
  668. End:
  669. up(&dev->sem);
  670. return error;
  671. }
  672. /**
  673. * dpm_prepare - Prepare all devices for a PM transition.
  674. * @state: PM transition of the system being carried out.
  675. *
  676. * Execute the ->prepare() callback for all devices.
  677. */
  678. static int dpm_prepare(pm_message_t state)
  679. {
  680. struct list_head list;
  681. int error = 0;
  682. INIT_LIST_HEAD(&list);
  683. mutex_lock(&dpm_list_mtx);
  684. transition_started = true;
  685. while (!list_empty(&dpm_list)) {
  686. struct device *dev = to_device(dpm_list.next);
  687. get_device(dev);
  688. dev->power.status = DPM_PREPARING;
  689. mutex_unlock(&dpm_list_mtx);
  690. pm_runtime_get_noresume(dev);
  691. if (pm_runtime_barrier(dev) && device_may_wakeup(dev)) {
  692. /* Wake-up requested during system sleep transition. */
  693. pm_runtime_put_noidle(dev);
  694. error = -EBUSY;
  695. } else {
  696. error = device_prepare(dev, state);
  697. }
  698. mutex_lock(&dpm_list_mtx);
  699. if (error) {
  700. dev->power.status = DPM_ON;
  701. if (error == -EAGAIN) {
  702. put_device(dev);
  703. error = 0;
  704. continue;
  705. }
  706. printk(KERN_ERR "PM: Failed to prepare device %s "
  707. "for power transition: error %d\n",
  708. kobject_name(&dev->kobj), error);
  709. put_device(dev);
  710. break;
  711. }
  712. dev->power.status = DPM_SUSPENDING;
  713. if (!list_empty(&dev->power.entry))
  714. list_move_tail(&dev->power.entry, &list);
  715. put_device(dev);
  716. }
  717. list_splice(&list, &dpm_list);
  718. mutex_unlock(&dpm_list_mtx);
  719. return error;
  720. }
  721. /**
  722. * dpm_suspend_start - Save state and stop all devices in system.
  723. * @state: PM transition of the system being carried out.
  724. *
  725. * Prepare and suspend all devices.
  726. */
  727. int dpm_suspend_start(pm_message_t state)
  728. {
  729. int error;
  730. might_sleep();
  731. error = dpm_prepare(state);
  732. if (!error)
  733. error = dpm_suspend(state);
  734. return error;
  735. }
  736. EXPORT_SYMBOL_GPL(dpm_suspend_start);
  737. void __suspend_report_result(const char *function, void *fn, int ret)
  738. {
  739. if (ret)
  740. printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
  741. }
  742. EXPORT_SYMBOL_GPL(__suspend_report_result);